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Figure 3 Bioaccessibility of PAHs in soil where A, B and C represent the bioavailable, 

bioaccessible and non-bioaccessible fractions, respectively (Adopted from Ogbonnaya and 

Semple, [72]) 
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Abstract 25 

Polycyclic aromatic hydrocarbons (PAHs) are amongst the most common ubiquitous 26 

anthropogenic pollutants of terrestrial ecosystems. There are currently multiple sources of 27 

PAHs in Nigeria and land use activities have been shown to alter the composition of PAHs 28 

and in some cases increase the fractions of carcinogenic and recalcitrant components. This 29 

report considers the implementation of a more specific risk based corrective action to abate 30 

threats caused by carcinogenic PAHs in eroded and degraded soils for prospective risk 31 

assessment and realistic decision-making. Bioremediation is promoted for degradation of 32 

PAHs in soils, but faces several limitations that question the effectiveness of the approach. 33 

This review provides insights into bioaccessibility and chemical activity assessment of PAHs 34 

as a procedure of risk assessment and the potential use of specially produced biochar 35 

designed for specific risk mitigation remedial action was also considered. 36 

 37 
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Introduction 50 

Contaminated land is a critical issue and of great public health and environmental concern 51 

internationally. Extensive activities such as the exploration, production, transportation, 52 

storage and use of crude oil and its petroleum derived products which has several footprints 53 

within the environment, despite implementation of preventive measures. In Nigeria, the oil 54 

and gas industry under the auspices of the Department of Petroleum Resources (DPR), 55 

Environmental Guidelines and Standards of the Petroleum Industry in Nigeria (EGASPIN) 56 

was initiated and issued in 1991 and revised 2002 to ensure control of petroleum hydrocarbon 57 

pollution in the environment associated with the operations of Petroleum industry. Similarly, 58 

the National Oil Spill Detection and Response Agency (NOSDRA) which was initiated in 59 

2006 and assumed the responsibility of detection, monitoring and remediation but may not 60 

cover supervision of remediation activity.  61 

 62 

The frequent exploration, production, transportation, storage and use of crude oil and its 63 

derivatives leave several environmental footprints within the Nigerian land and receiving 64 

coastal environment. Despite implementation of waste management strategies during 65 

exploration and production, rapid detection and response to spills, several historical and 66 

newly contaminated sites require remediation and are currently posing severe life threatening 67 

hazards to humans and biota likewise. The challenges to effective remediation of such sites 68 

are attributed to: overlap of responsibilities of agencies, limited resources for agency 69 

operations, conflict of interest, shortage of knowledgeable technical personnel, transparency, 70 

security risk, cost, inadequate regulatory requirements and enforcement, interpretation of 71 

EGASPIN and inaccessibility to legislation (EGASPIN), site accessibility and land use [1,2]. 72 

Although the agencies and operators are seeking approaches to tackle these challenges, the 73 

mode of approach seems ambiguous.  74 
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EGASPIN recommends the use of the Risk-Based Corrective Action (RBCA) often referred 75 

to as “Rebecca” approach for contaminated land remediation, considering an intervention 76 

value of 5,000 mg kg
-1

 for mineral oil which is oftentimes referred to as total petroleum 77 

hydrocarbons (TPH). Historically, TPH has usually been the main criterion for environmental 78 

management of oil and gas operational locations internationally, owing to the development of 79 

acceptable health risk-based TPH levels [3]. Chemicals of critical concern such as polycyclic 80 

aromatic hydrocarbons (PAHs) and heavy metals found in crude oil and their derivatives are 81 

often in low concentrations, potentially posing a low risk to receptors [3-5]. This does not 82 

rule out that the ambiguous TPH measurement alone can either be under or over protective to 83 

receptors, since petroleum chemical composition and properties can vary from site to site. In 84 

addition, TPH measurement does not take into account the land-use where oil and gas facility 85 

is located, method of spill (vandalisation of pipelines or explosion), illegal refining (still on-86 

going), blow out of abandoned oil wells and the destruction of petroleum products found by 87 

security operatives in Nigeria. These activities often alter the nature and composition of crude 88 

oil and its derivatives, which can significantly increase the level of specific concerned 89 

contaminants.  90 

 91 

The constituents of TPH include::alkanes, alkylated alkenes, cyclic alkanes, phenols, 92 

organosulphur and organonitrogen compounds, acids, alkynes, alkyl benzenes and PAHs [5]. 93 

The consequences of releasing such compounds are far reaching since petroleum 94 

hydrocarbons together with heavy metals (lead, iron, cadmium, nickel) are released into the 95 

environment, thus contaminating the air, surface and ground waters, sediments, soils, 96 

vegetation and organisms. In some instances, there have been reported cases of fire outbreak 97 

due to such activities, hence, the regulatory system and policy for contaminated land 98 

remediation requires a more systematic approach considering chemical indicators and 99 



5 
 

fractions in risk assessments. Hence, DPR initiated the intervention and target values for 100 

petroleum contaminants as protective and remedial endpoints for site assessment and 101 

remediation. The intervention value indicates quality for which the functionality of soil for 102 

human, animal and plant life are being threatened or seriously impaired with concentrations > 103 

5,000 mg kg
-1

 and > 40 mg kg
-1

 for TPH (mineral oil) and PAHs, respectively [6]. The target 104 

value indicates soil quality required for sustainability in terms of remedial policy, the soil 105 

quality required for full restoration of soil’s functionality for human, animal and plant life 106 

which is 50 mg kg
-1

 and 1 mg kg
-1

 for TPH (mineral oil) and PAH, respectively. Thus, this is 107 

the soil quality aimed for as requested by DPR [6]. A major weakness of the Nigerian 108 

standard is that where there is relative high risk of contaminant exposure and presence of 109 

carcinogenic PAHs at concentrations below the intervention values, no action is required to 110 

be taken. In contrast, the Dutch Environmental Standards considers levels below the 111 

intervention value where there is obvious human exposure. In addition, more emphasis is 112 

paid to TPH remediation without considering the risk posed by specific persistent and toxic 113 

contaminants present in the TPH continuum or generated during land-use.  114 

 115 

PAHs are a class of organic contaminants dispersed into the environment through incomplete 116 

combustion of organic materials and by natural processes [7,8]. PAHs are composed of two 117 

or more fused aromatic rings in linear or clustered arrangements containing carbon and 118 

hydrogen atoms with nitrogen, sulphur, and oxygen atoms substituted with the benzene ring 119 

to form heterocyclic aromatic compounds [9]. They are dominantly lipophilic in nature and 120 

have been classified into two subgroups which are the low molecular weights (LMW) (two or 121 

three fused rings) and high molecular weights (HMW) (four or more fused rings) (Figure 1). 122 

Majority of PAHs are considered to be low in concentrations but pose more toxic and 123 

recalcitrance under normal conditions, hence, total TPH concentration as a tool for risk-based 124 
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approach to remediate all hydrocarbon polluted site therefore has limited benefits. This paper 125 

promotes the implementation of specific chemical risk-based assessment of petroleum 126 

contaminated sites based on land properties, land-use and method of spill. It also considers 127 

the differences in soil within Nigeria, which affects the fate and transport of PAHs in the soil 128 

environment. 129 

 130 

2.0 Production of polycyclic aromatic hydrocarbons  131 

PAHs have been of growing concern due to consistent release, persistence, toxicity and 132 

transport. Most of the inputs are anthropogenic and thus can be controlled by avoidance, 133 

minimisation, recovery or treatment. The major sources of anthropogenic inputs into the 134 

environment are: automobile fuel combustion, pyrolytic processes, waste incinerators, 135 

domestic heaters, spillage of petroleum products, creosote wood treatment facilities, gas 136 

stations, sewage discharge and waste dumping, cigarette smoking, barbeque and roasting 137 

food, shipping and boating activities [10-14]. Thus, PAHs are ubiquitous as they can be 138 

found in soils, sediment, water and air particulates, with a potential of human exposure 139 

through the atmosphere, food and soil contact [15-17]. They are highly recalcitrant 140 

molecules, especially when they are HMWs and can cause carcinogenic, mutagenic, kidney 141 

and liver damages in humans [18]. Their formation can vary with substrate, fuel type and 142 

actual pyrolysis conditions [19-21].  143 

 144 

In detail, during combustion of light hydrocarbons such as acetylene and methane, several 145 

radicals are produced in the gas phase, and the combination of propargyl radicals (C3H3) lead 146 

to the formation of benzene [19,22,23]. Propargyl and acetylene (C2H2) can also react to 147 

produce cyclopentadienyl radicals (C5H5) [21] or two step hydrogen abstraction and 148 

acetylene addition (HACA) mechanism on benzene produces naphthalene [19,21]. 149 
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Alternatively, the cyclopentadienyl radical can undergo radical recombination to form 150 

naphthalene with loss of hydrogen [24-26]. Following benzene pyrolysis, aromatic growth is 151 

initiated to form biphenyl, which in the presence of acetylene forms phenanthrene [21]. 152 

Subsequently, HACA mechanism on lower molecular weight (LMW) PAHs, such as 153 

naphthalene and phenanthrene occurs where hydrogen abstraction creates a surface radical, 154 

acetylene addition to the radical formed and followed by ring cyclisation leads to the 155 

formation of higher molecular weight (HMW) PAHs [21,25,27]. Alternatively, reaction of 156 

the phenyl ring with a PAH accompanied by acetylene addition and dehydrocyclisation 157 

produces a five-membered ring PAH [28]. Increasing time and temperature of combustion 158 

leads to increasing yields of all PAHs, especially the three-, four- and five-ring PAHs, 159 

accompanied by the formation of numerous methyl and phenyl substituted PAHs [20]. This is 160 

an obvious situation that occurs within the Niger Delta region of Nigeria where illegal 161 

refining activity occurs (artisanal refining), destruction of petroleum products, blow out of 162 

production wells or any condition where combustion of fossil fuel occurs. When these 163 

compounds are dispersed into the environment, they are mainly deposited through wet or dry 164 

deposition onto soil via point or diffuse sources [13,29]. The concentrations of PAHs within 165 

the soil vary, due to proximity to source, environmental conditions and properties of media in 166 

which it is found [16,30]. LMW PAHs can also exist in more complex mixtures as creosote, 167 

soot and coal tars [20,21,31], When LMW PAHs are more dominant (60-70%), it is 168 

suggested that the source of PAHs is fresh liquid spill, whereas when HMW PAHs are more 169 

abundant, it is suggested that the source is of pyrogenic origin [11,32]. 170 

 171 

2.1 Behaviour of PAHs in the soil environment  172 

Detailed information is available in literature on the fate of PAHs in soil [33,34]. Briefly, 173 

when PAHs gain access to soil, fractions may be lost through volatilisation, leaching, or 174 
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degradation at varying rates and extents due to differences in PAH physic-chemical 175 

properties and soil characteristics [35-39]. These processes (volatilisation, leaching and 176 

degradation) remove the mobile fractions, bioavailable and rapidly desorbable fractions of 177 

PAHs from soils leaving residual fractions that subsequently persist for a longer period of 178 

time [36,40,41] (Figure 2). However, microbial degradation of organic contaminants, such as 179 

PAHs stand out as the major mechanism for their removal, hence this process has often been 180 

favoured, stimulated and implemented in remediation of contaminated land globally.  181 

 182 

The biodegradation of a PAH is hence limited to intrinsic properties, soil properties, 183 

indigenous microbial population, chemical toxicity and environmental conditions. Hence, a 184 

highly toxic and recalcitrant PAH like benzo (a) pyrene (B[a]P) can readily be sorbed into the 185 

soil matrix (SOM, clay) thereby reducing its bioaccessible fraction to microorganisms [38]. 186 

The residual or non-bioaccessible fractions of PAHs also implies it is poorly available to 187 

organisms and could hence be considered as being inert and pose less risk following proper 188 

management. However, if the soil texture does not favour sorption of such contaminant, 189 

fractions of the parent compound and the metabolites pose considerable risk to receptors 190 

[42,43].  191 

    192 

2.2 Soil Texture and Conditions 193 

The soil texture varies greatly in different areas of Southern Nigeria where majority of oil 194 

exploration activities occur (Table 1). In addition to the inherent physical properties of the 195 

soils, the soils within southern Nigeria are in areas of high rainfall exceeding 2,000 mm with 196 

high intensities, high erositivity and undulating topography [44-46]. Land or soil degradation 197 

associated with wind and water erosion in Sub Sahara Africa has been extensively reported 198 

[47-49]. Although Table 1 does not give a total overview and variation of all the soils in 199 
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southern Nigeria, it however gives an insight on the very-degraded and vulnerable soils (low 200 

SOM and clay content) reported in literature. This is due to high temperatures, continuous 201 

cultivation and frequent burning of vegetation on land [46]. In confirmation, the United 202 

Nations Environment Programme [56] reported southern Nigeria as a location with 203 

potentially and very-degraded soils. For instance, the soils in Oyo were either poorly or 204 

imperfectly drained inland valleys which would have collected most of the minerals from 205 

eroded upland soils following runoff (Table 2). Such inland valleys are low to erosion and 206 

characterised with high silt and clay content. Soils in Ekiti, Kogi and Rivers states had SOM 207 

content < 3% and Rivers state (oil-rich region) had clay content below 2%. However, the 208 

soils located in the swampy areas of mangrove tidal flat area of Niger Delta are associated 209 

with fine, organic and very poorly drained high silt and clay content (40-97%) [57]. In 210 

petroleum-contaminated areas, Okoro et al. [54] discovered very high concentrations of OM 211 

within soil and such OM content was attributed to aged decomposition of TPH. This was due 212 

to application of bioremediation approach (33 months) on the contaminated land by the 213 

company responsible and presence of grease. Similarly, Ujowundu et al. [53] observed higher 214 

SOM content in diesel contaminated soil, owing to the high level of petroleum 215 

contamination. This suggests that such SOM was mainly composed of petroleum 216 

hydrocarbons which would not contain required micronutrients for plant optimum growth and 217 

ecosystem sustainability. Rather, it contains potentially toxic compounds that would pose 218 

significant harm in future when released via SOM biotic and abiotic degradation. 219 

 220 

2.3 TPH and PAH contaminated soils in Nigeria 221 

Following the establishment of NOSDRA, over 9,200 oil spills were reported between 222 

January 2006 and 2015. More recently, over 3,222 spills have been reported since January 223 

2013 despite reduced oil exploration and production activities [58,59]. Majority of the major 224 
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oil spills were reported to be due to artisanal activities, sabotage by bursting of delivery pipes 225 

and theft of unrefined or refined oil at various quantities. Spills of smaller amounts have been 226 

due to aged pipes, equipment failure, natural incident, accident and maintenance error [2,59]. 227 

The composition of the spills however differs due to source, process of spill event and 228 

remediation process. For instance Ezenne et al. [60] showed that composition of TPH and 229 

PAH can differ in concentration despite having same source owing to different processing in 230 

soils. Most site assessment studies in Nigeria have focused on TPH concentration, without 231 

considering PAH fractions which constitute more toxic and persistent contaminants. For 232 

instance, following oil spills over 15 years ago in a community where oil and gas exploration 233 

activities took place in Rivers State, Nigeria, soil samples were collected at various depths 234 

and homogenised [61]. At the two most contaminated sites, mean TPH concentration ranged 235 

from 101 mg kg
-1

 to 1,651 mg kg
-1

, with groundwater concentration exceeding 12,000 mg kg
-

236 

1
. Although the authors did not provide information on the mode of spillage, it shows that 237 

groundwater can be contaminated by leaching, depending on the properties of soil and 238 

persistence of spillage. Okop and Ekpo [62] also showed that soil samples around a well head 239 

of an oil pipeline contained TPH levels between 54 mg kg
-1

 and 345 mg kg
-1

. This was due to 240 

spillage of crude oil from the aged facility. 241 

 242 

Similarly, soil samples were collected around a depot facility carrying refined petroleum 243 

products in Aba, Abia state Nigeria at three different depths (0-10, 10-20, 20-30 cm). The 244 

concentrations of TPH ranged from 5,120 mg kg
-1

 (20-30 cm depth) to 24,900 mg kg
-1

 (0-10 245 

cm depth) [63], whilst a control site had less than 1 m kg
-1

 TPH concentration. The author 246 

observed that total PAH concentration did not exceed 1% of the value of TPH concentration 247 

at each depth but it exceeded the PAH concentration at control site. This showed that the spill 248 

of oil within the site may be due to corrosive pipes or tanks and the low PAH fraction would 249 
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have been part of the TPH in the refined product. Similarly, soil samples collected from 250 

diesel storage sites located in Imo state recorded 46,726 mg kg
-1

 and 844 mg kg
-1

 of TPH and 251 

PAH, respectively, showing the presence of PAH in diesel oil [53]. Although below 2% of 252 

TPH, the high PAH concentration was due to aging of the contaminant within the soil around 253 

the storage site. More recently, Okpashi et al. [64] determined the TPH and total PAH 254 

concentration in soils following crude oil overflow by a flow-station owned by an oil 255 

company located in Delta state, Nigeria. The authors found 15,056 mg kg
-1

 and 2,462 mg kg
-1

 256 

of TPH and PAHs, respectively present in the soils. 257 

 258 

Over thirty years ago, an undisclosed quantity of crude oil spilled from an unknown source 259 

around Ejamah Ebubu in Eleme Local Government area of Rivers State, where a pipeline 260 

running inside the town existed [65]. The spill flowed along the topographic slope, 261 

contaminating the soils and surface waters and the crude oil ignited and burned for several 262 

days before the fire was brought under control. The concentrations of TPH and the associated 263 

benzene, toluene, ethylene and xylene (BTEX) and PAH fractions within the swamp 264 

sediment were investigated. Results showed that TPH ranged from 14.6 mg kg
-1

 to 28,687 mg 265 

kg
-1

 with an average value of 4,979 mg kg
-1

, BTEX values did not exceed 0.1 mg kg
-1

 and 266 

PAH values ranged from 8.42 mg kg
-1

 to 14,130 mg kg
-1

 with an average value of 2,517 mg 267 

kg
-1

 [65]. In another study by Mmom and Deekor [57], well-drained and water-logged acidic 268 

soils within the mangrove area inhabiting oil exploration activities, had varying 269 

concentrations of TPH and PAH with minimal BTEX. TPH concentrations ranged between 270 

3,100 mg kg
-1

 and 6,600 mg kg
-1

, whilst PAH fractions ranged between 2,100 mg kg
-1

 and 271 

4,100 mg kg
-1

. Interestingly, PAH fractions ranged from 46% to 86% of the value of TPH 272 

which indicates a remarkable proportion suggesting most of the sites had experienced ignition 273 

thereby raising PAH concentrations. The authors implemented a land farming 274 
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(bioremediation) approach to degrade the petroleum contaminants but this failed to ensure the 275 

concentrations of PAHs go below 1,268 mg kg
-1

. In fact, a maximum of approximately 50% 276 

of total PAHs was biodegraded, owing to the acidic nature, water logging of soil and toxicity 277 

of the PAHs.  278 

 279 

Based on the above studies, although TPH may be reduced to values permissible by the 280 

regulatory bodies through biodegradation, contaminated soils can still exhibit highly toxic 281 

characteristics due to the PAH concentrations within. Stroud et al. [38] demonstrated rapid 282 

removal of aliphatic hydrocarbon followed by the PAHs, with the HMW PAHs (pyrene, 283 

B[a]P) being more persistent having low catabolic potential. The concentration of inherent 284 

PAHs in petroleum products may be sufficiently low, but when hazardous events associated 285 

with elevated temperatures occur (explosions, fire outbreak, ignition or bush burning), 286 

increases in PAH concentration occurs, hence increasing the toxic conditions. As previously 287 

indicated in this current paper, most of the soils within southern Nigeria region exhibit low 288 

OM content and clay (vulnerable and degraded soils), reducing PAH sorptive potential and 289 

increasing PAH bioaccessibility and chemical activity. Environmental chemists depend on 290 

partitioning coefficients between SOM and octanol/water partitioning coefficient (KOW) to 291 

determine partitioning of chemical compounds to soils and sediments [66,67]. B[a]P has high 292 

KOW and greater affinity to partition into SOM but yet less biodegradable [38,67]. In such 293 

degraded soils, the total fraction of B[a]P concentration available for uptake would need to be 294 

measured to determine the risk of exposure to biota and humans using appropriate predictive 295 

procedures.  296 

 297 

3.0 Risk assessment of PAHs in soil 298 

3.1 Bioaccessibility and Chemical Activity  299 
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As previously noted, remediation intervention based on total concentration of TPH (5,000 mg 300 

kg
-1

) or PAH (40 mg kg
-1

) overestimates the risk of exposure to receptors, without 301 

considering constituent bioavailability, bioaccessibility thermodynamics or transport 302 

(pathway) to specific receptors [68,69]. Semple et al. [70] described bioavailability ‘referred 303 

to as A in Figure 3’ as that fraction of a chemical that is freely available to cross an 304 

organism’s membrane from the medium which the organism inhabits at a given time. 305 

Bioaccessibility ‘referred to as B in Figure 3’ encompasses both the bioavailable fraction and 306 

the potentially bioavailable fractions [70] (Figure 3). In regards to uptake from soil, 307 

bioavailability describes the rate of uptake or biodegradation and bioaccessibility describes 308 

the extent to which PAHs may be degraded or taken up [34]. There are however, 309 

distinguishing characteristics related to bioavailability and bioaccessibility of one PAH to 310 

another owing to differing chemical properties which affects their environmental fate [39,67]. 311 

The predictable bioaccessible fraction also refers to that which can be rapidly desorbed from 312 

the soil components (SOM or clay) and freely dissolved in pore water over time but this 313 

fractional quantity is governed by soil properties and often reduces over time due to increase 314 

in contact time [41,71]. It is the bioavailable fraction or a sub-fraction of the bioaccessible 315 

fraction (Figure 3) that can either be degraded or cause toxicity to biota. Hence in order to 316 

avoid underestimating the potential toxic fraction, using the predicted bioaccessible fraction 317 

in contaminated land risk assessment, will provide more useful information to contaminated 318 

land practitioners and can be a driving tool for guidelines on remediation. Several methods 319 

have been adopted to successfully measure the bioaccessible fraction of PAHs in soil (Table 320 

2). 321 

 322 

Another limitation of measuring the total quantity of dissolved and desorbable fraction is that 323 

it does not provide detailed information on the diffusion and partitioning potential of PAHs, 324 
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as such, giving limited information on chemical activity of the compounds in question. The 325 

chemical activity of a compound provides information on the fate and energetic state of the 326 

chemical which quantifies the potential for diffusion to pore water and partitioning into soil 327 

particulates (SOM, clay) [73]. It thus provides valuable estimates of the measured 328 

environmental concentrations or exposure levels to potentially toxic levels [74]. Equilibrium 329 

employed to measure free dissolved concentrations are utilised to measure chemical activity 330 

of PAHs, where the equilibrium partitioning concentration in the device is multiplied by an 331 

activity coefficient [73,75]. This is then translated to chemical activity. Similar to 332 

bioaccessibility, chemical activity decreases with increasing contact-time and sorption 333 

processes and it is a dimensionless measurement between zero and one and can be derived 334 

from fugacity [73,76]. The latter (one) represents a point of pure liquid saturation of a 335 

compound which cannot be attained by either a gas or solid substance [73]. For instance, 336 

even where the concentration of a HMW PAH is low in water due to low solubility, they can 337 

possess high activities and fugacities with substantial adverse effects [67].  338 

 339 

Normally, clay content of soil increases and SOM decreases with increasing soil depth [52]. 340 

Where the topsoil which constitutes the higher fraction of SOM becomes degraded, it reduces 341 

the capacity of soils in such regions to adsorb PAHs and diminishes agricultural productivity 342 

and stabilisation. Rather, there would be reversible partitioning of the contaminants to the 343 

mineral surfaces, hence resulting in insignificant retention of the contaminants. Further 344 

consideration is required for risk assessment, if total PAH concentration is below intervention 345 

value and there is substantial fraction of B[a]P and cohorts in the soil, risk of exposure to the 346 

confirmed carcinogen should be quantified.   347 

 348 

3.2 Toxicity Equivalence 349 
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The US EPA recommended using toxicity equivalent factors (TEF) to assess human health 350 

risks from exposure to dioxin-like compounds in Comprehensive Environmental Response, 351 

Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act 352 

(RCRA) contaminated sites [87]. Previously, the World Health Organisation (WHO) 353 

recommended the use of TEFs to characterise mixtures of dioxins/furans and PCBs [88]. 354 

Apparently, this was due to the prevalence and carcinogenic potential of their congeners 355 

when exposed to biota, which is highly applicable to PAH congeners as well. TEFs express 356 

the toxicity of complex mixtures potent chemical compounds to be expressed as a unitless 357 

number representing the concentration of most toxic congeners. The application of TEFs to 358 

PAHs as routinely used for dioxins and PCBs, reflect the actual risks posed by PAH 359 

contaminated sites is of special interest [89]. More recently, the TEF methodology has been 360 

used to evaluate toxicity and assess the associated risks of environmental mixtures of 361 

carcinogenic-polycyclic aromatic hydrocarbons (c-PAHs) by the department of Ecology, 362 

Washington US, United Kingdom, Australia, Provinces of Canada and the Netherlands. The 363 

mixtures of c-PAHs (benzo[a]pyrene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-364 

cd]pyrene, benzo[b]fluorantheneare, benzo[k]fluoranthene, benzo[a]anthracene, 365 

benzo[g,h,i]perylene) are considered as a single hazardous substance when determining 366 

compliance to target levels. The European Food Safety Authority Panel on Contaminants in 367 

the Food Chain (CONTAM Panel) concluded that where either four or eight PAHs (PAH4, 368 

PAH8), individually or in combination in food, are possible indicators of the carcinogenic 369 

potency [90]. Toxicity of a complex mixture of PAHs can be addressed in order to evaluate 370 

human health risks from oral exposure to PAHs in soils. In relation to the Australian National 371 

Environment Protection Measures (NEPM) (Assessment of Site Contamination), each 372 

constituent compounds contribute has a specific toxic equivalence factor (TEF) that weights 373 

(varying from 1 to 0.01) (Table 3) its toxicity relative to that of Benzo(a)pyrene. It is assumed 374 
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that the toxicity and the mode of action for all the c-PAHs are common and any toxicological 375 

interactions (antagonism, synergism) would be absent among the c-PAHs. 376 

 377 

The TEF approach is implemented when determining compliance with remediation levels 378 

that have been previously established for mixtures of cPAHs. However, some limitations of 379 

the approach include; 380 

 limited data from studies on potency and carcinogenicity of individual PAHs other 381 

than B[a]P,  382 

 individual PAHs exert similar toxicological effect,  383 

 lack of toxicological data base 384 

 few other PAHs in mixture contribute to the incidence of carcinogenicity,  385 

 B[a]P equivalency factors most frequently underestimate carcinogenicity and do not 386 

describe the potency of PAH mixtures. [90,91]. 387 

 388 

Notwithstanding, it remains the best of several carefully evaluated approaches where PAH4 389 

or PAH8 is applied to manage the cancer risks of PAH-containing mixtures. In order to 390 

develop PAH remediation target values for soil and groundwater, the physic-chemical 391 

properties of individual carcinogenic c-PAHs should be used along with the soil properties. 392 

The USEPA, NEPM, WHO and CCME have already assigned individual single unitless TEF 393 

values for PAH8 (mixture of carcinogenic PAHs). This is expressed as an example in Table 3 394 

to attain the toxic equivalent quotient (TEQ) which can be calculated by multiplying the 395 

concentration of c-PAHs in an environmental mixture by its corresponding TEF value. The 396 

value attained is compared to desired level of acceptable risk in soil quality guidelines 397 

protective of different components of the environment at immediate risk of exposure 398 

(portable water, biota, soil). This is equally done for non-carcinogenic PAHs, but where 399 
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PAHs display risk for both carcinogenic and non-carcinogenic effects, protection to cancer 400 

risk is considered for remediation [92].   Considering the c-PAH TEQ values (2.67, 4.16, 1.57 401 

mg kg
-1

) deduced from PAH values derived from Nduka et al. [14] and based on the TEF 402 

units provided by NEPM guidelines (Table 3), when compared to the target value (1 mg kg
-1

) 403 

developed by EGASPIN, the value exceeds the safe limits and thus requires constructive 404 

remedial actions due to threat posed to human health. These values were compared to 405 

EGASPIN target value only as an illustration of the applicability and consideration of TEF 406 

values for human health protection. These TEQ results deduced in this paper are in 407 

accordance with literature where PAHs induce dioxin-like activity in contaminated sediments 408 

[91,93]. 409 

 410 

4.0 Mitigation of Risks Associated to PAH-Contaminated Soils 411 

The implementation of bioremediation in remediating PAH contaminated soils has oftentimes 412 

been unsuccessful due to high toxicity, unfavourable soil properties, PAH recalcitrance, 413 

environmental conditions (e.g. consistent rainfall), nutrient inadequacy and low population of 414 

PAH-degrading organisms [57,94,95]. Following the removal of the very rapidly desorbable 415 

PAH fraction, the remaining fraction consists of a sorbed fraction that can potentially be 416 

extracted and a potentially irreversibly bound fraction within soil (Figure 3) [34,35,40,41]. 417 

The retained contaminant is thought to be sorbed through covalent bonding, partitioning or 418 

entrapment within soil organic matter, thereby rendering the contaminant immobile [40,96]. 419 

The retention of the contaminant becomes enhanced following increase in soil-PAH contact 420 

time (aging) [40,41,71] (Figure 2). Aging and the presence of carbonaceous organic matter 421 

have often been shown to be a constraint to bioremediation by reducing the bioaccessibility 422 

of PAHs in soils [40,74,97]. Recently, this constraint has been tailored to become a strength 423 

in order to control mobility and reduce the bioaccessible fraction of PAHs in soils by 424 
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amending soils with biochar or activated carbon [40,41,98,99]. It is believed that c-PAHs i.e. 425 

HMW PAHs with higher KOW values and sorptive capacity will be far more retained within 426 

the SOM than other PAHs, however, this may only be a risk postponed when SOM is 427 

degraded or disturbed.  428 

 429 

Hence, using more recalcitrant ubiquitous organic matter to adsorb and contain contaminants 430 

by locking them up through chemical and physical mechanisms of binding will eventually 431 

ensure limited risk in soils. The choice of adsorbent material is a question of cost, soil 432 

properties, contaminant concentration and specific purpose. Biochar is an inexpensive and 433 

recalcitrant black carbon material derived from the pyrolysis of organic matter under specific 434 

temperature and duration regimes with wide range of applicability. Although, biochar may 435 

have contrasting features and properties, owing to nature of feedstock and production 436 

condition, it has been reported to be useful in mitigating risk of chemical exposure and 437 

remediation of contaminated soils [72,100]. Biochar has the capacity to encourage 438 

degradation of some petroleum hydrocarbons [101] and retain the more hydrophobic HMW 439 

PAHs within the network of macro-pore structure [41,102]. With regards to the latter, the 440 

contaminants desorb from soil components and are attracted to the high binding sites of 441 

biochar, where retention will depend on the volume and distribution of the macro-pores 442 

[41,98,99,103]. However, Webber et al. [104] has shown that majority of biochars exhibit 443 

more macroporous structures and that hydrophobic labile components display pore blocking 444 

effect which can limit sorptive capacity. Hence, increasing heat treatment temperature (HTT) 445 

results in dehydroxylation, inducing pore development and higher surface areas by driving 446 

off the labile phase and exposing the blocked pores [104-107]. Hence, rather than increasing 447 

biochar concentration, more emphasis will be made on increasing sorptive capacity through 448 

activation. Constructive activated biochar or activated carbon amendment/capping in 449 
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degraded soils or sediments increases SOM content and also increases the sorptive capacity 450 

of the soils control mobility/transport, leaching and corresponding risk of PAH exposure. 451 

Although more research work is required, successful studies and implementations have 452 

shown by Ghosh et al. [108], Kupryianchyk et al. [109], in Superfund sites [110] and in one 453 

of the biggest remediation works in the US (Onondaga lake New York clean up exercise). 454 

 455 

Conclusion 456 

Over the years, assessment and remediation of contaminated land has been based on total 457 

extractable concentrations of TPH and PAHs in soil which does not consider risk of exposure 458 

to specific carcinogenic petroleum contaminants to humans and biota. There have been 459 

reported cases of catastrophic events at oil exploration facilities in Nigeria which often alters 460 

the composition of petroleum hydrocarbons and potentially increasing fractions of 461 

carcinogenic PAHs in soils constantly being degraded by erosion. There is also variation in 462 

site characteristics and fate of contaminants in soil, hence proper planning and 463 

implementation of risk assessment is required for decision making. This report proposes the 464 

implementation of risk assessment tools (bioaccessibility, chemical activity, TEQ) to be 465 

adopted for safe site investigation and management of contaminants in soil for the protection 466 

of human health and the ecosystem. In addition, the implementation of in-situ retention of 467 

contaminants that can be controlled using engineered activated biochar or activated carbon 468 

materials should be considered for adoption into risk-based approach in remediating 469 

contaminated land. 470 

 471 

 472 

 473 

 474 
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Figure 1 Chemical structure of some polycyclic aromatic hydrocarbons (PAHs) (ChemSpider) 812 
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Figure 2 Fate of PAHs in soil (Adopted from Stokes et al. [36])    842 
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Table 1 Insight on surface soil texture in Southern Nigeria 870 

Location Clay 

(%) 

Sand 

(%) 

Silt 

(%) 

CEC OM 

(%) 

Texture  pH Reference 

Oyo 19 36 45 14.11 5.9 L 6.5 Ogban & 

Babalola, [50]  

 30 35 35 11.56 3.9 L 7.7 [50] 

 22 41 37 11.56 8.6 L 7.4 [50] 

 16 48 36 18.77 5.1 L 7.4 [50] 

 31 22 47 13.31 6.2 SiL 6.1 [50] 

 28 47 25 18.89 4.2 SiL 6.2 [50] 
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Figure 3 Bioaccessibility of PAHs in soil where A, B and C represent the bioavailable, 884 
bioaccessible and non-bioaccessible fractions, respectively (Adopted from Ogbonnaya and 885 
Semple, [72]) 886 
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Table 2 Measurements of bioaccessibility and chemical activity 913 

Measurement Technique Reference 

Bioaccessibility Respirometric assay Reid et al. [77]; Stokes et al. [36]  

 Cyclodextrin extraction Rhodes et al. [71]; Sanchez-Trujillo 

et al. [32]; Ogbonnaya et al. [41]  

 Gastro-intestinal extraction Lu et al. [78]  

 butanol extraction Yang et al., [79]  

 Tenax extraction Yang et al., [79]  

Chemical activity Polydimethylsiloxane vial 

coating 

Reichenberg et al. [80]  

 SPME fibre Mayer et al. [81]; Marchal et al. 

[82]  

 Low-density polyethylene 

strips 

Booij et al. [83]  

 Liquid filled hollow fibre Liu et al. [84]  

 Polyoxymethylene plates Jonker and Koelman, [85]  

 Thin-film solid phase 

extraction 

Wilcockson and Gobas, [86]  
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Table 3 Application of TEF values to contaminated site  931 

c-PAHs Site A Site B Site C TEF TEQ(A)  TEQ(B) TEQ(C) 

Benz[a]anthracene 0.53 1.04 0.07 0.1 0.53 1.04 0.07 

Chrysene 0.12 0.22 0.01 0.01 0.00 0.00 0.00 

Benzo[b]fluoranthene 0.06 0.11 0.01 0.1 0.01 0.01 0.00 

Benzo[k]fluoranthene 0.31 0.66 0.12 0.1 0.03 0.07 0.01 

Benzo[a]pyrene 1.71 2.40 1.16 1 1.71 2.40 1.16 

Benzo[ghi]perylene 0.01 0.00 0.00 0.01 0.00 0.00 0.00 

Dibenzo[ah]anthracene 0.36 0.60 0.13 1 0.36 0.60 0.30 

Indeno[123-cd]pyrene 0.34 0.38 0.29 0.1 0.03 0.04 0.03 

Total TEQ 
    

2.67 4.16 1.57 

TEQ refers to toxicity equivalent quotient 932 
Site A,B,C are concentrations of PAHs from literature in mg kg

-1
 [93] (Nduka et al., 2013) 933 

TEQ (A,B,C) refers to TEQ of individual sites 934 
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