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Topological tight-binding models from nontrivial square roots
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We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial
band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as
a nontrivial square root of a parent lattice Hamiltonian—in analogy to the passage from a Klein-Gordon equation
to a Dirac equation. In the tight-binding setting, the square-root operation admits to induce spectral symmetries
at the expense of broken crystal symmetries. As we illustrate in detail for a simple one-dimensional example,
the emergent and inherited spectral symmetries equip the energy gaps with independent topological quantum
numbers that control the formation of topologically protected states. We also describe an implementation of this
system in silicon photonic structures, outline applications in higher dimensions, and provide a general argument
for the origin and nature of the emergent symmetries, which are typically nonsymmorphic.
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I. INTRODUCTION

As the story goes, in 1927 Niels Bohr asked Paul Dirac
“What are you working on Mr. Dirac?” to which Dirac
replied “I’m trying to take the square root of something.”
Once Dirac achieved his goal, to identify the desired operator
that squares to the Klein-Gordon equation, he had not only
laid down a description of relativistic electrons replete with
spin and antimatter [1,2]. As it emerged later, Dirac’s very
same operator also plays a central role for topological con-
siderations in differential geometry, where the Atiyah-Singer
index theorem addresses its zero modes [3]. The zero modes
in the topological materials considered today are a direct
extension of this connection [4,5]. Fundamental symmetries
can guarantee that all positive-energy states are paired with
negative-energy states, with the exception of a protected set
of zero-energy states whose number |ν| is obtained from a
topological invariant. These properties may follow from a
charge-conjugation symmetry, as encountered in supercon-
ductors [6,7], or from a chiral symmetry, as encountered for
the Dirac operator [8,9]; both operations anticommute with
the Hamiltonian and therefore single out a spectral symmetry
point. In combination with possible invariance under time-
reversal, these spectral symmetries determine a tenfold system
of universality classes [7,10], which can be further extended
by including aspects of dimensionality [11,12] and the space
group (i.e., crystal symmetries) [13,14]—for example, non-
symmorphic symmetries involving fractional lattice transla-
tions can replace fundamental symmetries normally associated
with fermionic systems [15]. Depending on the universality
class, the topological invariant may take the values ν ∈ {0,1},
leading to the notion of aZ2 invariant, or be any integer, leading
to the notion of aZ invariant. These topological features are not
present in the Klein-Gordon equation from which Dirac had
started to take the square root of, a task which was nontrivial
as it required him to introduce extra components and matrices.
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Here we describe how rich topological effects arise when
one takes an analogous nontrivial square root on a tight-
binding lattice. Tight-binding lattices provide an ubiquitous
description of electronic bands in crystalline solids, but also
extend to atoms and photons in suitably engineered optical
and photonic lattices. This includes topological systems in all
universality classes, such as the paradigmatic Su-Schrieffer-
Heeger model, originally proposed for polyacetylene [16],
and nontopological variants such as the Rice-Mele model
for conjugated polymers [17], both of which have been
implemented on a wide range of platforms [18–21]. Both
models possess two bands in their clean incarnation. The
SSH model features a chiral symmetry which constraints
the Bloch states and allows to define a topological winding
number [22]. Defects between regions of different winding
number introduce localized, square-normalizable defect states
of a fixed chirality that are pinned to the midgap energy. The
procedure of taking square roots of lattice systems proposed
here provides a mechanism to generate a wider class of
models, including models with multiple band gaps, where
some of the topological properties can be traced back to
features of a parent system while others emerge from the
square-root operation. Given a suitable parent system with
energy bands at positive energies, taking the nontrivial square
root provides us with a symmetric arrangement of energy
bands at positive and negative energies. If the original system
harboured 2|ν| protected modes around a spectral symmetry
point E2

0 , the new system will harbour |ν| protected modes
around energy E = E0 and |ν| such modes around energy
E = −E0. Furthermore, the resulting system can also have
topologically protected states around the newly emergent
spectral symmetry point E = 0, whose formation is controlled
by an independent topological invariant. As we will show, these
features arise because the square-root operation allows us to
induce (typically nonsymmorphic) spectral symmetries at the
expense of broken crystal symmetries.

We justify this proposition with some general preparatory
remarks (Sec. II), and then demonstrate the resulting features
by deriving a simple minimal model that complies with
the properties mentioned above (Sec. III). Applying a Z2
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FIG. 1. Minimal model of a nontrivial square root. (a) The
bow-tie chain is composed of a sequence of dimers (triangles),
each supporting two nondegenerate modes (on-site energies ±β and
intradimer coupling γ ) where one mode couples to the left and the
other couples to the right (interdimer coupling κ). In the regular
case the dimer orientations alternate, resulting in a periodic system
with four bands. The depicted orientation defect generates robust
states in both of the finite energy bands. Here this is illustrated
for β = γ = κ = 1, corresponding to the change of the topological
index ξ̃ (see text); further defect configurations are shown in Figs. 4
and 5. (b) Interpretation of the dimer chain as a nontrivial square
root of a two-legged ladder system (a tight-binding system with
β ′ = β2 + γ 2 + κ2, κ ′ = 2βκ , γ ′ = γ κ). The parent system has two
sites per unit cell, thus only features two bands. After taking the
nontrivial square root we obtain a tight-binding system with four
sites per unit cell, which can be unfolded into a linear chain with
nearest-neighbor couplings. The bow-tie chain emerges after a Z2

gauge transformation, which renders all couplings positive.

gauge transformation, the derived system takes the form of
a bow-tie chain (see Fig. 1), which displays a chiral symmetry
involving a fractional lattice translation; the system can also
be interpreted as a topological extension of the Rice-Mele
model shown in Fig. 2. The bow-tie chain allows to explicitly
demonstrate the topological nature of the different bands, band
gaps, and interfaces, as expressed via topological Zak phases,
generalized Witten indices, and their mismatch at boundaries
and defects (see Sec. IV and Figs. 3–5, as well as the Appendix
detailing the utilized scattering approach). To demonstrate that
our construction is experimentally accessible and applies to
practical devices beyond the tight-binding assumption, we
describe the realization of the model in silicon photonics
structures, where the Z2 gauge freedom guarantees that all

FIG. 2. Example of a trivial square root. The Rice-Mele model,
a nontopological system proposed to describe conjugated polymers,
is composed of the same dimers as the bow-tie chain (Fig. 1), but
placed in an nonalternating fashion. The Rice-Mele model can also
be interpreted as a square root, but possesses the same number of
sites per unit cell as its parent system (a system of two uncoupled
chains, with effective parameters defined in the same way as in Fig. 1).
The illustrating band structures correspond to β = γ = κ = 1, hence
β ′ = 3 and γ ′ = 2.

effective couplings can be made positive (see Sec. V and
Figs. 6 and 7). Beyond the setting of this paradigmatic model,
we then consolidate our general criterion whether a square
root of a tight-binding system qualifies as nontrivial—the
resulting system has to exhibit reduced crystal symmetries,
manifested, e.g., via additional components that give rise to
an increased number of bands with newly emerging spectral
symmetries—and identify a number of systems in higher
dimensions where this is encountered as well (see Sec. VI as
well Figs. 8 and 9). As our findings also transfer to analogous
realizations in atom-optical and electronic systems (see our
concluding Sec. VII), they provide a general route to the design
of topologically rich and robust systems with multiple types
of protected modes.

II. PREPARATORY REMARKS AND PREMISE

A. Topological versus nontopological band structures

To develop our ideas, we consider quasi-one-dimensional
tight-binding systems with nearest-neighbor couplings. Such
systems are defined on a chain of cells labeled by an integer
n, each associated with an M-component amplitude ψn

(components ψn,1 . . . ψn,M ), where M takes care of the number
of sites in the cell, including internal degrees of freedom such
as polarization or spin. The energies E of the system are
obtained from the tight-binding equations

Eψn = Hnψn + T
†
n−1ψn−1 + Tnψn+1 (1)

with on-site Hamiltonians Hn = H
†
n and nearest-neighbor

coupling matrices Tn. A band structure emerges when the
system is periodic. We then can write the eigenstates as
Bloch waves ψn = ϕ(k)eink with wave number k, and find
the k-dependent eigenvalue problem E(k)ϕ(k) = H (k)ϕ(k)
with Bloch Hamiltonian H (k) = H0 + T

†
0 e−ik + T0e

ik . The
number M of sites in the unit cell determines the dimensions
of the Bloch Hamiltonian, and thereby also the number of
energy bands E(k), associated with eigenvectors ϕ(k).
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A useful prepatory example is the the Rice-Mele model
(shown in Fig. 2), where M = 2 and

Hn =
(

β κ

κ −β

)
, Tn =

(
0 0
γ 0

)
. (2)

It will be convenient to represent this system as a sequence
of asymmetric dimers with on-site energies −β, β, intradimer
coupling γ and interdimer coupling κ; these dimers are de-
picted symbolically as triangles in all figures. (Note that these
dimers combine two sites of adjacent cells, i.e., an amplitude
ψn,2 with an amplitude ψn+1,1; see Appendix and Fig. 10 for
further details.) The two bands E(k) = ±

√
β2 + |κ + γ eik|2

are arranged symmetrically in energy, which can be associated
with the property H (k) = −σy[H (k)]∗σy , where σl denotes the
standard Pauli matrices. This band structure is not classified
as topological as the line β = 0, |γ | = |κ|, where the gap
closes, does not divide the parameter space (β,γ,κ) into
disconnected segments. For fixed β = 0, however, the system
reduces to the Su-Schrieffer-Heeger model, whose band
structure is topological as the gap-closing lines |κ| = |γ |
now indeed divide the reduced parameter space (γ,κ) into
disconnected segments. The passage across a gap-closing line
is known as a band inversion. The topological properties of
the Su-Schrieffer-Heeger model can be associated with the
chiral symmetry σzH (k)σz = −H (k) [22], which lifts the
system into a topologically nontrivial universality class. It
is also useful to note that the chiral operator σz constitutes
a special case of a Z2 gauge transformation, in general
given by Zψn,m = σnmψn,m with independently chosen σnm =
±1. Such a gauge transformation allows to change the
sign of off-diagonal elements (couplings) in a tight-binding
Hamiltonian.

B. General considerations

For further motivation, let us have a more general look
at periodic tight-binding systems with Bloch Hamiltonian
H (k), which may include an arbitrary range of the couplings,
and explore a particular consequence of a chiral symmetry
H (k)X (k) = −X (k)H (k). It will be consistent with the fol-
lowing discussions to set the dimensions of this Hamiltonian
to 2M , as it is our goal to relate it to a parent Hamiltonian
with only M components. As indicated, we acknowledge
that the chiral operator X (k) may be k dependent. In a
suitable, possibly k-dependent basis (viz., gauge), however,
we can fix X (k) = σx ⊗ 1M ≡ X [23], upon which the Bloch
Hamiltonian takes the form

H (k) =
(

U (k) V (k)
−V (k) −U (k)

)
,

{
U †(k) = U (k),
V †(k) = −V (k).

(3)

For any eigenvector ϕ(k) = (u(k),v(k))T with energy E(k), we
have a partner stateXϕ(k) = (v(k),u(k))T with energy −E(k);
also, u†(k)v(k) + v†(k)u(k) = 0.

Note now that the squared Hamiltonian

H 2(k) =
(

U 2(k) − V 2(k) U (k)V (k) − V (k)U (k)
U (k)V (k) − V (k)U (k) U 2(k) − V 2(k)

)
(4)

commutes with X (k). The joint eigenvectors are the superpo-
sitions

(1 ± X )ϕ(k) =
(

u(k) ± v(k)

v(k) ± u(k)

)
=

(
u′

±(k)

±u′
±(k)

)
, (5)

where E2(k)u′
±(k) = H ′

±(k)u′
±(k) with the reduced Hamilto-

nian H ′
±(k) = (U (k) ∓ V (k))(U (k) ± V (k)).

Normally, we would expect U (k + nk0) = U (k) and V (k +
nk0) = V (k) be both periodic when cycling through the
Brillouin zone of size k0. However, as we will confirm
in our concrete example, the gauge choice that renders
X (k) constant can render V (k) antiperiodic, V (k + nk0) =
(−1)nV (k). In this case, traversing the Brillouin zone joins
H ′

−(k) = H ′
+(k + k0) and u′

−(k) = u′
+(k + k0), so that it is

natural to double the size of the Brillouin zone and describe
the Bloch waves by a reduced set of M (instead of 2M) com-
ponents. Furthermore, applying the transformation ϕ(k) →
diag (eiπk/2k0 ,e−iπk/2k0 )ϕ(k) we can revert to a gauge where
H (k) is periodic, and then find that X (k) = [cos(πk/k0)σx +
sin(πk/k0)σy] ⊗ 1M takes the form of a fractional lattice
translation, i.e., can be interpreted as a nonsymmorphic chiral
symmetry.

Upon retracing our steps, the upshot of this discussion is
the following proposition: taking a square root of a parent
tight-binding system as described by H ′

+(k), it can be possible
to break crystal symmetries, at the expense of an expanded
unit cell with twice as many components and a Brillouin zone
half in size, and in the process generate a chiral symmetry
X that induces spectrally symmetric bands. We will show
that this can indeed be achieved, including in cases where the
band structure is already topological, resulting in a nontrivial
square-root system that displays richer topological features. In
particular, we construct a practically realisable model system
that only features nearest-neighbour couplings.

III. THE BOW-TIE CHAIN

A. Construction of the minimal model

According to the features described in the preceding
section, we require that our minimal parent system features
a band gap about a spectral symmetry point; the unit cell
therefore needs to comprise at least two sites (M = 2). To be
nontrivial, the square-root system will have to have four bands,
thus, be periodic with period 2 in the original unit-cell indices.
Together with the required spectral symmetries, this allows to
identify a minimal model, which will turn out to correspond
to the bow-tie chain depicted in Fig. 1.

To implement these constraints we start with the putative
nontrivial square root system (termed the “candidate”) and
iterate the tight-binding equations (1) once, giving

E′ψn = H ′
nψn+T

′†
n−1ψn−1+T ′

nψn+1 + T̃
′†
n−2ψn−2+T̃ ′

nψn+2

(6)

where

E′ = E2, (7a)

H ′
n = H 2

n + T
†
n−1Tn−1 + TnT

†
n , (7b)

T ′
n = HnTn + TnHn+1, (7c)

T̃ ′
n = TnTn+1. (7d)
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We interpret this as a new tight-binding system, describing the
parent system with a positive energy spectrum. This parent
system should be periodic, H ′

n = H ′
0, T ′

n = T ′
0, with vanishing

next-nearest neighbor couplings T̃ ′
n = 0. As shown in Fig. 2,

taking the Rice-Mele model as the candidate this construc-
tion leads to a parent system consisting of two uncoupled
chains with on-site energies β ′ = β2 + γ 2 + κ2 and couplings
γ ′ = γ κ; the Rice-Mele model then constitutes a trivial
square root without any newly emerging topological features,
consistent with the fact that it still has the same period as its
parent.

To ensure that we obtain a nontrivial square root, with four
bands arranged symmetrically about E = 0, we demand that
the candidate system has a period of two, and possesses a chiral
symmetry which maps E to −E. This can be enforced by the
choice

Hn = H0(−1)n, Tn = T0(−1)n. (8)

The chiral symmetry is induced by a translationXψn = ψn+1,
thus, a fractional translation by half a period of the candidate
system. This spectral symmetry is trivial in the parent system,
and therefore emerges only upon taking the square root, at
the expense of a reduced translational crystal symmetry. The
constraint T̃ ′

n = 0 requires T 2
0 = 0. The freedom to choose the

basis in every cell then allows us to write

Hn = (−1)n
(

β κ

κ β

)
, Tn = (−1)n

(
0 0
γ 0

)
, (9)

which defines the minimal nontrivial square root system. Its
parent system is given by

H ′
n =

(
β2 + γ 2 + κ2 2βκ

2βκ β2 + γ 2 + κ2

)
, (10a)

T ′
n =

(
γ κ 0
0 −γ κ

)
. (10b)

Via a suitable Z2 gauge transformation we can enforce that
the couplings γ,κ � 0 are real and nonnegative, which we
will assume from hereon.

B. Interpretation and band structure

With help of Fig. 1(b), we now can confirm that the
parent Hamiltonian corresponds to a two-legged ladder, with
on-site energies β ′ = β2 + γ 2 + κ2, couplings γ ′ = γ κ and
−γ ′ along the two legs and coupling κ ′ = 2βκ along the rungs.
Given the opposite couplings along the legs, each plaquette is
penetrated by a flux phase of π . The Bloch Hamiltonian of the
parent is

H ′(k) =
(

β ′ + 2γ ′ cos k κ ′
κ ′ β ′ − 2γ ′ cos k

)
, (11)

and the two energy bands are

E′
μ(k) = β ′ + μ

√
κ ′2 + 4γ ′2 cos2 k, μ = ±1. (12)

As depicted in the figure, the nontrivial square root system
can be unfolded into a linear chain, where all couplings are still
restricted to nearest neighbours (see the Appendix for a very
detailed description). Along the chain, the system then displays
a repeating coupling sequence κ , γ , −κ , −γ , and a repeating

sequence of on-site energies β, β, −β, −β. We interpret
this as an extended Rice-Mele model, but with topological
features that we establish in the next section. For the photonic
implementation we will make all couplings positive by an
additional Z2 gauge transformation; schematically, the system
is then composed of oppositely orientated dimers that form the
repeating bow-tie pattern shown in Fig. 1. For the analytical
considerations, it is more convenient to retain the system with
the coupling sequence as derived.

The Bloch Hamiltonian of the unfolded linear chain is

H (k) =

⎛
⎜⎜⎝

β κ 0 −γ e−ik

κ β γ eik 0
0 γ e−ik −β −κ

−γ eik 0 −κ −β

⎞
⎟⎟⎠, (13)

and the four energy bands are

Eμ,η(k) = η
√

E′
μ(k)

= η

√
β2 + γ 2 + κ2 + 2μκ

√
β2 + γ 2 cos2 k, (14)

where the label η = ±1 selects the bands at positive and
negative energies. The four bands thus come in two pairs,
covering the ranges

ξε− < |E| < ε̃−ξ̃ (inner bands, μ = −1), (15a)

ε̃ξ̃ < |E| < ε+ (outer bands, μ = 1), (15b)

separated by gaps at

|E| < ξε− (central gap), (16a)

ε̃−ξ̃ < |E| < ε̃ξ̃ (finite-energy gaps). (16b)

The band edges are given by

ε± =
√

β2 + γ 2 ± κ, (17a)

ε̃± =
√

γ 2 + (β ± κ)2. (17b)

These expressions feature an index

ξ = sgn ε− = sgn (β2 + γ 2 − κ2), (18)

which changes its sign when the central gap closes while
parameters are steered through a band inversion of the inner
bands. Analogously, the index

ξ̃ = sgn (ε̃+ − ε̃−) = sgn β (19)

changes its sign in a band inversion in which the finite-energy
gaps close (β = 0, where we recover the Su-Schrieffer-Heeger
model with only a single, central, gap).

The indices ξ and ξ̃ encode information which cannot be
inferred by simply inspecting the band structure—the same
band structure is found when one changes the sign of β, which
changes the sign of ξ̃ ; the band structure is also invariant when
one passes over to parameters

κ̄ =
√

β2 + γ 2, β̄ = βκ/κ̄, γ̄ = γ κ/κ̄, (20)

which changes the sign of ξ . In Figs. 3–5, the four cases
delivering the same band structure are distinguished via the
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orientation of the dimers (which effectively controls the sign
of β and thus ξ̃ ), while dimers with ξ = 1 are denoted in
orange-brown, and dimers with ξ = −1 are denoted in blue.
As we show next, the indices ξ and ξ̃ indeed capture the
topological features of the band structure.

IV. TOPOLOGICAL CHARACTERIZATION

To establish the topological features of the bow-tie chain,
we identify its symmetries and describe how they relate to
the associated topological indices. The index ξ arises from
the chiral symmetry that emerges by taking the square root,
while the index ξ̃ is inherited from the chiral symmetry of
the parent system and translates into an uncommon algebraic
property of the linear chain. These indices can be expressed in
terms of winding numbers in the bands and in the gaps, while
interfaces between regions with different indices give rise to
topologically protected defect states.

A. Symmetries

The spectral symmetry Eμ,−(k) = −Eμ,+(k) of the band
structure (14) about E = 0 is a consequence of the chiral
symmetry (8), which for the Bloch Hamiltonian (13) takes
the form

XH (k)X = −H (k), X =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (21)

As mentioned before, this symmetry originates from a frac-
tional lattice translation, by half a period of the system. We
also note the relations

RH (k)R = H (−k) = H ∗(k), R =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎠,

(22)

which correspond to a reflection symmetry and a conventional
time-reversal symmetry. Both entail that the bands also
are symmetric in k, which simplifies the determination of
topological indices [24,25].

The spectral symmetry E2
−,η(k) = 2β ′ − E2

+,η(k) of the
squared bands about E2 = β ′ is the consequence of the chiral
symmetry σyH

′(k)σy = 2β ′ − H ′(k) in the parent system. For
the unfolded linear chain, this gives the remarkable algebraic
relation

X̃H 2(k)X̃ = 2β ′ − H 2(k), X̃ =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠,

(23)

a property which would be difficult to interpret without
knowledge of the underlying parent system. This inherited
spectral symmetry plays an important role throughout the
remainder of this work.

Given these symmetries, applying the conventional classi-
fication of free-fermion models we expect that the topological

features in the central gap can be captured by the symmetry
class BDI for chiral systems with a conventional time-reversal
symmetry [11], i.e., the same symmetry class as for the SSH
model. As explained in Appendix by adapting the consider-
ations in Ref. [26], the same expectation is born out when
we take into account that the chiral symmetry encountered in
our model is nonsymmorphic. For the finite-energy gaps, we
arrive at the same conclusions starting from the topological
features of the parent system, which also suggests that the
corresponding topological index is independent. To show that
these expectations indeed hold true we explicitly construct
the topological invariants for the different bands and band
gaps.

B. Zak phase and Witten index

Each band can be associated with a Zak phase [27]

z = i

∮
BZ

ϕ†(k)
d

dk
ϕ(k) = πZ. (24)

This phase depends on a gauge choice, which can be fixed by
demanding that the component ϕ1(k) is real and positive. In
topological systems, the phase is quantized, giving rise to an
integer index Z = z/π , while in nontopological systems the
phase can take any value [22].

To evaluate the Zak phase, we adopt the convenient
scattering formalism (see Refs. [24,25,28–30], as well as the
Appendix providing further details for the statements in the
present Subsection). The phase is then expressed in terms of
a reflection coefficient r(E) of a wave entering a semi-infinite
segment of the system. In the band gaps, including the band
edges, the wave will be totally reflected, so that |r(E)| = 1.
By inspecting the winding deep in the bulk of each different
topological sector, we find the remarkably simple relation

Z = 1
2 [r(lower band edge) − r(upper band edge)] (25)

for the Zak phase in each band.
The reflection coefficient can be obtained from the transfer

matrix of the system. Given the amplitudes ψn in a cell, the
tight-binding equations at fixed energy E allow us to determine
the amplitudes in the next cell as ψn = Mn(E)ψn−1. The
matrix M(E) = M2(E)M1(E) then describes the transfer by
two cells, thus a period of the square-root system. Unitarity
of quantum mechanics enforces the symplectic symmetry
M†(E)σyM(E) = σy , which amounts to flux conservation.
This entails det M(E) = 1, so that the two eigenvalues ±(E)
of M(E) are reciprocal, −(E) = 1/+(E). In the bands,
these eigenvalues determine the Bloch factors of the propagat-
ing waves. In the gap, the modes become evanescent, where
we choose |+(E)| < 1 to describe the decaying wave. The
reflection coefficient

r(E) = φ+,1(E) + iφ+,2(E)

φ+,2(E) + iφ+,1(E)
(26)

follows from the associated eigenvector φ+(E).
At the band edges, the propagating modes must match

up with the evanescent modes. This enforces + = − = 1
or + = − = −1, as well as φ+ = φ− = (1,1)T or φ+ =
φ− = (1, − 1)T , corresponding to r = 1 or r = −1. At the
band edges E = ±ε− of the central gap, we find + = 1,
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FIG. 3. Witten index in different configurations. The left panel shows the identical band structure for four different parameter combinations,
corresponding to the four combinations of the topological index ξ = ±1, ξ̃ = ±1. The remaining panels show the winding of the reflection
phase, obtained from the reflection coefficient (26), and the Witten index in each of the bands. For (ξ,ξ̃ ) = (1,1), we set β = γ = κ = 1,
while for (ξ,ξ̃ ) = (1, − 1), we set −β = γ = κ = 1, thus change the sign of β (equivalently, interchange the orientation of the dimers, as
shown on the top). For (ξ,ξ̃ ) = (−1,1), we transform the parameters according to Eq. (20), resulting in 2β = 2γ = κ = √

2 (the dimers
corresponding to these transformed values are shown in blue). The case (ξ,ξ̃ ) = (−1, − 1) follows by once more changing the value of β, so
that −2β = 2γ = κ = √

2; this is again equivalent to interchanging the orientation of the dimers.

φ+ = (1, ∓ 1)T , thus r = ∓1. At the band edges |E| = ε̃± of
the finite-energy gap, we have + = −1 and φ+ = (1, ± 1)T ,
thus r = ±1. At the extremal edges E = ±ε+, we have
+ = 1 and φ+ = (1, ± 1)T , so that r = ±1. The Zak phase
of each band is therefore indeed quantized, and can be written
as

Zμ,η =
{

(ηξ̃ − ξ )/2, (inner bands, μ = −1),

(ηξ̃ − 1)/2, (outer bands, μ = 1).
(27)

In particular, we can express ξ = −(Z−1,1 + Z−1,−1) and ξ̃ =
(Z−1,1 − Z−1,−1) = (Z1,1 − Z1,−1).

Similarly, we can associate a topological phase to each gap.
This can normally done, e.g., via the Witten index [31], which
here relates to the reflection phase at a spectral symmetry
point [32–34]. In the finite-frequency gaps, this information
is instead encoded in the winding of the reflection coefficient
r(E) = exp(iφ(E)) as one crosses the gap from the lower band
edge to the upper band edge (see Fig. 3). At the band edges,
the phase φ(E) is fixed to the symmetry-protected values 0
or π , so that r = ±1 as discussed above. As one crosses the
gap, the reflection coefficient winds along the unit circle, which
encodes topological information. As dictated by causality [35],
the winding is always in the clockwise sense, and in the system
considered here, it is always by π . A reflection coefficient
starting at r = 1 at the lower band edge therefore needs to
pass by the point r = −i before ending at r = −1 at the upper
band edge; this scenario is characterized by the Witten index
1. If the arc is from r = −1 via r = i to 1, we associate this
with an index −1. With these conventions it follows that the
Witten index is equal to the value of r at the lower band edge,

W = ξ (central gap), (28a)

W̃η = −ηξ̃ (finite-energy gaps). (28b)

In each gap, the Witten index is therefore directly related to the
index ξ or ξ̃ that controls the band inversion. This establishes
the topological features of the band structure. We now turn to
the observable consequences, and in particular the formation
of defect states.

C. Topologically protected defect states

The adopted scattering approach to the topological charac-
terization of the band structure sets up an efficient criterion to
infer the existence of topologically protected defect states.

When we terminate the system as shown in Fig. 4, a bound
state is formed if the decaying state fulfills the boundary
condition φ+,1(E) = 0, hence r(E) = i, which is guaranteed
for a Witten index W = −1 in the central gap, and W̃η = −1
in the finite-energy gaps. Since the Witten index in the
finite-energy gap at positive energies is opposite to the one
at negative energies, exactly one such finite-energy bound
state exists for any given combination of parameters. In the
central gap, the state only exists for some configurations. In
particular, the state in the central gap can be switched on or
off by passing from the values (β,γ,κ) to the transformed
values (β̄,γ̄ ,κ̄) given in Eq. (20), which changes the index W

while keeping the bulk band structure unchanged. In the figure,
dimers with W = 1 are again denoted in orange-brown, while
the transformed dimers with W = −1 are denoted in blue.

These considerations can be extended to more general
boundary conditions. For example, a boundary cutting through
the middle of a dimer translates into the condition φ+,2(E) = 0,
hence r(E) = −i, requiring a Witten index W = 1 in the
central gap and W̃η = 1 in the finite-energy gaps. Displacing
the boundary by a full dimer amounts to the fractional lattice
translation that induces the chiral symmetry (8). Under this
translation, the index W̃ (and hence also ξ̃ ) changes its sign
while W (and hence also ξ ) remains unchanged. This is
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FIG. 4. Edge states. Each figure (a-d) corresponds to a semi-
infinite system with parameters as given in Fig. 3. A defect state
exists whenever the Witten index in a gap equals = 1. In each figure,
the left panel shows the mode profile of the edge state while the right
panel indicates its position within the spectrum of the system.

consistent with the results shown in Fig. 4, where such a
translation interchanges panels (a) and (b), as well as panels
(c) and (d).

As already anticipated in Fig. 1(a), defect states can also
form at interfaces between two semi-infinite systems, denoted
as left (L) and right (R). In the parent Hamiltonian, this defect
amounts to a coupling defect between to the two ladders, as
shown in Fig. 5(c). Two further interface scenarios are shown
in Figs. 5(a) and 5(b). In terms of the corresponding reflection
matrices, the general quantization condition of states in the
gaps can then be written as RLR ≡ rLrR = 1. As we traverse
through a gap, this product will rotate by 2π along the unit
circle, and is guaranteed to pass through 1 if at the band edges
RLR = −1. This occurs exactly when the Witten index of

FIG. 5. Interface states. Defect states that arise at interfaces be-
tween systems with opposite index ξL = 1, ξR = −1, corresponding
to a change of the parameters by the transformation (20). In (a), the
index ξ̃L = ξ̃R = 1 is identical on both sides, while in panel (b) we
have ξ̃L = 1, ξ̃R = −1. The parameters are chosen as in Figs. 3 and 4.
See Fig. 1(a) for an interface state between systems with opposite
indices ξ̃L = 1, ξ̃L = −1 but identical ξL = ξR = 1; as shown in panel
(c), this interface amounts to a coupling defect in the parent system.
No such interface states form when all indices are the same on both
sides of an interface.

the gap differs on the two sides of the interface. The central
gap supports a topological defect state if ξL 
= ξR , while a
topological defect state in both of the finite-frequency gaps
appears if ξ̃L 
= ξ̃R . We recall that all combinations of these
indices can be achieved while keeping the band structure on
both sides aligned. In particular, to set ξL 
= ξR , one can again
pass over to the values from values (β,γ,κ) on one side to
the transformed values (β̄,γ̄ ,κ̄) on the other side; the different
types of dimers are again indicated by their color.

Therefore, by either using a boundary or an interface,
the formation of topological protected bound states can
be controlled independently in any of the three gaps. In
contrast to the SSH model, these states do not display a
sublattice polarization; however, they all decay exponentially
and therefore are square normalizable. We next demonstrate
the utility of these states in the specific setting of silicon
photonics.

V. PHOTONIC REALIZATION

Topological photonics was incepted by considering the
behavior of photonic crystals under the influence of
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magneto-optical effects [36,37]. Subsequently, a range of
mechanisms to effectively break time-reversal symmetry were
identified [38–42], and so were mechanisms to engineer a
chiral symmetry [18–20] or a charge-conjugation symme-
try [43]. The first experimental realizations utilized microwave
structures [44], followed by implementations at optical fre-
quencies relying on platforms including resonator arrays [45],
waveguide lattices [46], and optical quantum walks [47].
In most cases the design of these structures is based on
tight-binding models, e.g., within a coupled-mode description
of resonator or waveguide arrays [48,49]. The paradigmatic
Su-Schrieffer Heeger model with staggered couplings has
received particular attention on a large variety of platforms,
with works directly probing the topological nature of the
bands [18,19,21], also in the non-Hermitian regime [50–53],
and utilizing the protected defect states for phenomena such
as mode selection [20,51] and on-chip optical diodes [54].
Staggered on-site energies have been implemented using
optical lattices [19] as well as resonators or waveguides, e.g., to
realize a photonic analog of a Peierls-spin chain [55]. Negative
couplings can be obtained, e.g., by using auxiliary components
that mediate the coupling [56].

To implement the bow-tie chain, we first apply a Z2 gauge
transformation to make all couplings positive. The desired
gauge transformation takes the form of a basis change

ψn →
{
ψn, n even,
σzψn, n odd, (29)

after which the Bloch Hamiltonian (13) becomes

H (k) =

⎛
⎜⎜⎝

β κ 0 γ e−ik

κ β γ eik 0
0 γ e−ik −β κ

γ eik 0 κ −β

⎞
⎟⎟⎠. (30)

This corresponds to alternating couplings κ , γ , κ , γ that
now are all positive, while the on-site energies still follow
the sequence β, β, −β, −β; topological defects amount to
irregularities in these sequences.

As in the general discussion, we focus on cases where the
structure can be interpreted as a succession of asymmetric
dimers, represented by the triangular elements in the pictorial
description of Figs. 1–5. In a given physical realization, the
components that support the two fundamental dimer modes can
have a variety of shapes; all that is required is the existence of
two modes that are spectrally well isolated from the remaining
modes. The effective tight-binding description employed here
then follows from the application of standard coupled mode
theory [49].

Here we consider the most straightforward implementation,
the ridge waveguide geometry shown in Fig. 6(a) in which
each dimer is formed by two distinct waveguides that operate
in the single-mode regime. In this setup, the diagonal elements
of the Hamiltonian represent propagation constants rather than
energies. The on-site elements are controlled via modifying the
size or material composition of the guiding channels, while the
coupling coefficients can be tuned by adjusting their spacings.
A benefit of this waveguide geometry is the possibility to
study the wave dynamics along the structure (designated as

FIG. 6. Silicon photonics realization. (a) The bow-tie chain can
be realized in an integrated photonic structure made of silicon
waveguides on top of a silica substrate. Each dimer consists of
two waveguides of different dimensions, giving rise to detuned
propagation constants β0 ± β, while the interdimer and intradimer
couplings γ , κ can be controlled via the spacings. These parameters
can be inferred from the formation of supermodes in an isolated
dimer, as shown in (b) for a system with β0 = 11.24 μm−1 and
β = γ = 0.06 μm−1 (for the geometric parameters see Table I).

the z coordinate), which in coupled-mode theory is generated
by i dψ(z)/dz = Hψ(z).

For a realistic modeling, we consider silicon ridge waveg-
uides on a silica substrate, as depicted in Fig. 6, which we
characterize using a full-wave finite element method [57].
The waveguides are designed to support a single fundamental
TE mode at a free-space wavelength of λ0 = 1.55 μm. The
geometric parameters (height and width) of each waveguide
as well as their separation distance are listed in Table I. These
design parameters correspond to a detuning β = 0.06 μm−1

that equals the intradimer coupling strength, so that γ = β.
Figure 6(b) illustrates the supermode structure of an isolated
dimer under the above conditions. The field profiles of the
supermodes are clearly asymmetric, with one supermode
localized mainly in the left waveguide while the other resides
in the right waveguide.

For the extended system, we discuss three different array
designs, giving rise to the representative band structures shown
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TABLE I. Geometric parameters for a silicon dimer with β0 =
11.24 μm−1 and β = γ = 0.06 μm−1, giving rise to the supermodes
shown in Fig. 6(b).

Parameter Value

w1 600 nm
w2 450 nm
h 50 nm
H 180 nm
D 965 nm

in the bottom panels of Fig. 7. These scenarios are obtained
by choosing the inter-dimer distances according to the values
given in Table II, which selects the interdimer coupling κ while

FIG. 7. Probing edge states in wave propagation. The top panels
show the predicted evolution of light intensity when an optical beam is
launched into the leftmost waveguide of a silicon photonics structure
of 18 waveguides, designed as shown in Fig. 6(a). The dimers are
configured to β = γ = 0.06 μm−1, while the interdimer coupling is
set to (a) κ = γ /2, (b)

√
2γ , and (c) 2γ (see geometric parameters

in Tables I and II for the structure shown in Fig. 6). The results
of the simulations coincide well with the predictions of couple-mode
theory, shown in the middle panels. The band structure underlying the
couple-mode theory is shown in the bottom panels, with edge states
at the left and right edge indicated by solid and dashed horizontal
lines. In case (a), only a single edge state exists at the left edge [cf.
Fig. 4(a)]; this state is clearly seen in the propagation. In case (b), the
central gap closes, leading to a locally linear dispersion that gives rise
to a characteristic diffraction pattern. In case (c), the gap is reopened,
and the band inversion results in the formation of a second edge state
[cf. Fig. 4(c)]. Both edge states are clearly seen to interfere in the
propagation intensity pattern.

TABLE II. Geometric parameters corresponding to three rep-
resentative values of the interdimer coupling κ , for fixed dimer
configurations with β = γ = 0.06 μm−1 as given in Table I.

Center-to-center Case (a) Case (b) Case (c)
separation distance κ = 0.5γ κ = √

2γ κ = 2γ

d1 1220 nm 870 nm 750 nm
d2 1270 nm 850 nm 700 nm

keeping β = γ fixed. In case (a) κ = γ /2, hence ξ = ξ̃ = 1,
for which one topological edge state exists at the left side of
the array (see Fig. 4(a); another such state exists at the right
edge). This edge state also exists in case (b) where κ = √

2γ ,
at which still ξ̃ = 1 but the central band gap is closed. In case
(c), κ = 2γ , so that now ξ = −1; then two localized modes
having different eigenvalues and residing in different band
gaps coexist at each edge [see Fig. 4(c)].

As shown in the top panels of Fig. 7, these modes can be
probed by investigating the intensity evolution when an optical
beam is launched into the leftmost waveguide. To mimic
realistic experimental conditions, we consider an integrated
silicon device made of 18 waveguides, each of which is
170-μm long. In case (a), the intensity is guided by the
edge state in the finite-frequency gap. In case (b), where
the central gap is closed, a secondary emission appears that
resembles diffraction in uniform waveguide arrays [58]. The
subsequent appearance of a second localized mode in the
central gap, case (c), can be inferred from the beating pattern
of the optical intensity in the leftmost waveguide. The results
for the integrated silicon device agree well with those using
coupled-mode theory, which are shown in the middle panels.

The construction of the bow-tie chain, invoking a nontrivial
square root, is intimately linked to a tight-binding picture. The
results in the present section show that such considerations
indeed transfer to realistic continuous systems, as long as they
are suitably patterned to justify the coupled-mode description.

VI. POSSIBLE GENERALIZATIONS

As already mentioned in the discussion of Fig. 2, the
Rice-Mele model itself can be viewed as an example of a
trivial square root, where the parent system consists of two
uncoupled chains; both the square root and the parent system
possess two sites per unit cell. Starting from the bow-tie
chain, further generalization can be achieved by expanding
the underlying algebra beyond the square-root operation.
For example, a spectrally shifted spectrum is obtained by
starting from a parent tight-binding Hamiltonian written as
H ′ = H 2 + αH + α′, which we exploited implicitly for the
photonic realization with a reference propagation constant β0.
In the construction of the bow-tie chain, we also restricted
our attention to systems with couplings between adjacent
unit cells. More remote couplings introduce nonmonotonous
bands, which is a prerequisite to generate multiple defect
states in selected band gaps and realize the full scope of a
topological quantum number ν ∈ Z. These features require
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the generalization

E2ψn =
⎛
⎝H 2

n +
∑
m
=n

TnmTmn

⎞
⎠ψn

+
∑
m
=n

(HnTnm + TnmHm)ψm +
∑

l 
=n;m
=l,n

TnmTmlψl

(31)

of the relations Eqs. (6) and (7) between the parent and the
child system, obtained by iteration of a tight-binding equation
with couplings Tml between cells m and l. Additional bands can
be created by increasing the period in the child system, so that
the unit cell encompasses more components. Alternatively,
one could shift the spectrum of the child to positive ener-
gies and take additional square roots, effectively generating
polynomials of higher order. The unifying key feature in this

general one-dimensional setting is the observation that the
square root operation allows to replace crystal symmetries
by spectral symmetries, and that these can be interpreted as
fractional lattice translations, as described in Sec. II B.

To see how our considerations can be further extended
beyond this one-dimensional setting, we now briefly describe
nontrivial examples in two dimensions, as illustrated in
Figs. 8 and 9. The first system [Fig. 8(a)] highlights a
typical feature of topologically nontrivial models in higher
dimensions, namely, the role of gauge configurations. When
generated by a magnetic field, these configurations result
in finite fluxes through plaquettes that cannot be gauged
away. Starting from four uncoupled copies of square lattices
without such fluxes (on-site energies β ′′ = β2 + 2γ 2 + 2κ2

and couplings γ ′ = γ κ), a π -flux lattice can be generated
via the square-root operation. Such lattices are characterized
by one negative coupling around each plaquette, and have
been studied extensively due to their rich topological and

FIG. 8. Extensions to two-dimensional square lattices. (a) The π -flux square lattice, a systems which has gained considerable attention
due to its topological and statistical features, can be interpreted as the square-root of four uncoupled square lattices. The square-root operation
leaves freedom to choose between several dimerization patterns, whose interplay has been studied in the past to define topological defects with
fractionalized charge [60]. Our construction reveals the additional freedom to choose an on-site corrugation pattern, which maybe exploited to
define additional defects. While the unit cell retains four sites, we deem this square root nontrivial as the resulting system has a reduced rotation
symmetry (this already applies without the on-site corrugation). The parameters of both models are related by β ′′ = β2 + 2γ 2 + 2κ2, γ ′ = γ κ .
(b) Starting from a square lattice system with π fluxes in alternating cells, and additional next-nearest neighbor couplings (unit cell size 4), the
square-root operation allows to obtain a system with 8 sites per unit cell. Again, there is freedom to choose between various dimerization and
on-site corrugation patterns, providing scope to form topological defects in the system. This system constitutes the most natural extension of
the bow-tie chain into two dimensions. The couplings are defined in the same way as above, with in addition κ ′ = 2βκ .
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statistical features (see, e.g., Ref. [59]). As we see in the
figure, the square-root operation introduces the freedom to
choose a dimerization pattern, as well as an on-site corrugation
pattern. These features do not require to extend the unit cell
(there are still four sites per unit cell), but break the rotational
symmetry of the system; they therefore still reduce the crystal
symmetry. U (1) and Z4 defects in the dimerization pattern
have been introduced in [60] to study charge fractionalization;
working backwards as in Eqs. (6) and (7), such defects can
now be seen to introduce localized potential variations and
couplings between the four parent lattices. Further defects can
be introduced through the on-site corrugation pattern, a feature
which remains to be explored.

For the second example, we generalize this system so that
the square-root operation induces extra components. As shown
in Fig. 8(b), the parent system possesses four sites per unit cell
and includes next-nearest-neighbour couplings, in analogy to
the two-legged ladder. Choosing a suitable flux configuration
and exploiting the freedom of dimerization and corrugation
patterns, the nontrivial square root features a unit cell with 8
sites. This system appears to be the most natural extension of
the bow-tie chain to two dimensions.

As a third example, we consider honeycomb systems such
as graphene [61]. Anisotropic versions of these systems appear
in the single-particle sector of the Kitaev honeycomb [62],
where π fluxes are generated by couplings with an inverted
sign (inverted bonds). As shown in Fig. 9, the parent system is
the sum of two triangular lattices, each with inverted bonds that
generate a corresponding arrangement of π fluxes. Symmetry
breaking again occurs as a consequence of a spectral shift
in the parent system, which under the square-root operation
generates a sublattice-staggered potential ±β. In absence of
the fluxes, the resulting honeycomb system only displays a
threefold rotation symmetry about each plaquette center, while
the parent system displays a sixfold rotation symmetry.

These considerations suggest the following criterion to
signify whether a square root is nontrivial—a trivial square
root displays the same crystal symmetries as the parent system,

while in a nontrivial square root some of these symmetries are
broken down. Supported by the examples studied here, and
recalling also our general considerations for one-dimensional
systems in Sec. II B, we then argue that the reduction in sym-
metry gives scope for richer representations, which in the sim-
plest case amounts to a larger unit cell, effectively equipping
the system with more components. The lost crystal symmetries
may be replaced by new spectral constraints, as exemplified
by the chiral symmetry (8) in the bow-tie chain; additional
features such as a chiral symmetry of the parent system yield
further nontrivial constraints, as exemplified by Eq. (23).

VII. CONCLUDING REMARKS AND OUTLOOK

In this work, we set out to explore whether interesting
topological features can arise when one considers the concept
of a square root of a Hamiltonian, as utilized by Dirac in
the pursuit of relativistic quantum mechanics, and transfers it
to the setting of periodic tight-binding lattices. We identified
the simplest nontrivial one-dimensional example, the bow-tie
chain, and found that it possesses a rich topological band
structure, providing means to generate a versatile combination
of edge and interface states. These features arise from spectral
symmetries and topological indices that emerge under the
square-root operation while some crystal symmetries are
broken. The model can be implemented in suitably engineered
photonic systems, not only in the integrated silicon photonic
structures considered in Sec. V, but also, for example, in
plasmonic devices and atom-optical settings, which have been
used to implement a wide range of tight-binding systems. In the
context of electronic transport, the model may, e.g., be viewed
as a topologically nontrivial extension of the Rice-Mele model,
corresponding to a conjugated polymer with a larger unit cell.

While we mainly employed this concept to identify a
minimal model that can be easily implemented, it also brings
a new perspective to a broad range of systems that are
already under investigation. By working backwards as in
Eqs. (6) and (7), it is indeed not difficult to relate a variety of

FIG. 9. Anisotropic honeycomb lattice with π fluxes. The Kitaev honeycomb can be solved by a mapping to graphenelike single-particle
sectors with anisotropic couplings and inverted bonds, where the latter generate an arrangement of π fluxes [62]. Each of these sectors can be
viewed as a square root of two triangular lattices with a corresponding flux arrangement, as shown here for a pair of π fluxes generated by a
single inverted bond. The parameters in the parent system are β ′′′ = β2 + γ 2

x + γ 2
y + γ 2

z and γ ′
i = γxγyγz/γi with i ∈ {x,y,z}, where we also

include a staggered on-site potential β not present in the Kitaev honeycomb.
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well-known systems to simple parent configurations. Besides
the π -flux square and honeycomb lattices described in Sec. VI,
this applies, e.g., to the Lieb lattice [63] or the Haldane
model [64]. We are certain that many rich examples of these
correspondences remain to be discovered.

In summary, the utility of the constructions presented
here is twofold—by taking a nontrivial square root, it is
possible to construct simple but topologically rich models
from well-understood parent systems; by reading the relations
backwards, they present a tool to gain additional insights
into a range of interesting models. As an application, we
constructed the bow-tie chain, a simple system with two
topological invariants that can be implemented on a variety
of platforms. Our considerations also open up a range of
general questions—in particular, concerning the precise scope
for the nontrivial effects that can emerge, both from the point
of view of representation theory as well as regarding their
place in the well-established system of topological universality
classes [11–13,65].
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APPENDIX: DETAILED CONSIDERATION OF
THE TOPOLOGICAL FEATURES

In this Appendix, we provide the technical details of the
topological characterization of the bow-tie chain, including
the specific construction of the transfer and reflection matrices,
the way these quantities enter the defect quantization condition
and how the solutions of these conditions are linked to the
topological indices. We also discuss the general topological
classification of the system.

1. Transfer matrix and scattering approach

As shown in more detail in Fig. 10(a), the bow-tie chain
in Fig. 1 can be unfolded into a linear chain with nearest-
neighbour couplings. As shown in Figs. 10(b) and 10(c), this
allows us to formulate a convenient scattering picture for
the formation of defect states at boundaries and interfaces,
which directly connects to the topological analysis of the band
structure.

We start with the definition of the transfer matrix. Exploring
the fact that we only have nearest-neighbour couplings, we can
set M = 1 in the tight-binding equations (1). Denoting these
amplitudes for clarity as �l , where in our previous notation

FIG. 10. Transfer and scattering approach in the unfolded chain. (a) Detailed definition of the unfolded chain and symmmetric dimers. The
transfer matrices translate amplitudes between cells as defined in the top panel. These matrices can be inferred from the corresponding linear
chain defined in the middle panel. After the Z2 transformation, the system can be represented by two types of oppositely orientated asymmetric
dimers (bottom panel). Note that the dimers (dashed boxes) span across two cells (solid boxes). (b) Definition of the reflection coefficient for
scattering from a semi-infinite system. The external medium is perfectly matched, and its characteristics drop out when the system is terminated.
This leads to the simple quantization condition for edge states r(E) = i. (c) The scattering approach also allows to address interfaces between
two semi-infinite systems (denoted L and R), where the quantization condition takes the form rR(E)rL(E) = 1.
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�2n = ψn,1 and �2n+1 = ψn,2 [see Fig. 10(a)], they take the
form

E�l = Vl�l + tl−1�l−1 + tl�l+1. (A1)

Here we assumed that the coefficients tl are real, which can
always be achieved by adopting a suitable gauge, i.e., fixing
the phase of the amplitudes �l . We still retain the Z2 gauge
freedom of choosing the signs of �l , which allows us to switch
the sign of any coupling. Given Eq. (A1), we obtain

�l+1 = E − Vl

tl
�l − tl−1

tl
�l−1, (A2)

from which we read off the transfer matrix

M̃l(E) =
(

0 1
−tl−1/tl (E − Vl)/tl

)
. (A3)

Given the amplitudes �0 and �1 on two neighboring sites, the
amplitudes throughout the system can then be inferred from(

�l

�l+1

)
= M̃l(E) × M̃l−1(E) × . . . × M̃1(E)

(
�0

�1

)
. (A4)

Reverting back to the original paired amplitudes within each
cell, we thus have

ψn = Mn(E) × Mn−1(E) × . . . × M1(E)ψ0, (A5)

where Mn(E) = M̃2n(E)M̃2n−1(E).
In the linear chain, the couplings follow the repeating

pattern (t0,t1,t2,t3) = (κ,γ, − κ, − γ ), while the on-site en-
ergies repeat according to (V0,V1,V2,V3) = (β,β, − β, − β).
Therefore

M̃1(E) =
(

0 1
−κ/γ (E − β)/γ

)
, (A6a)

M̃2(E) =
(

0 1
γ /κ −(E + β)/κ

)
, (A6b)

M̃3(E) =
(

0 1
−κ/γ −(E + β)/γ

)
, (A6c)

M̃4(E) =
(

0 1
γ /κ (E − β)/κ

)
. (A6d)

The transfer by a period of the system (two cells) is then de-
scribed by the product M(E) = M̃4(E)M̃3(E)M̃2(E)M̃1(E).

As required by flux conservation, this matrix is symplec-
tic, M†(E)σyM(E) = σy . The eigenvalues can be written
as ±(E) = exp(±ik(E)) [hence +(E)−(E) = 1], and
determine the band structure of the system. For energies in the
bands, k(E) is real, hence |+(E)| = |−(E)| = 1. In the gaps
we choose the sign of k(E) = iκ(E) according to Re κ > 0,
so that |+(E)| < 1 describes an evanescent wave that decays
to the right, while |−(E)| > 1 describes an evanescent wave
that decays to the left. The associated eigenvectors are denoted
by φ±(E).

For the formation of an edge state in a semi-infinite system
as shown in Fig. 4, we require the boundary condition �0 =
ψ0,1 = 0 [see Fig. 10(b)]. This has to be compatible with an
evanescent mode that decays to the right, hence

φ+,1(E) = 0. (A7)

Analogously, a boundary cutting across a dimer element
enforces the boundary condition �1 = ψ0,2 = 0, hence

φ+,2(E) = 0. (A8)

For the interfaces shown in Figs. 1(a), 5(a), and 5(b), we require
that decaying modes in the left and right medium match up as
shown in Fig. 10(c), which leads to the condition

φL
−(E) = φR

+(E). (A9)

To set up the scattering formulation of these conditions,
we consider a semi-infinite chain attached to an exterior
medium [see again Figs. 10(b) and 10(c)]. The details of this
medium will drop out once we replace it by a boundary or an
interface to another system. We therefore assume an ideally
matched featureless medium, which is obtained by continuing
the system as a monoatomic chain with on-site potential set
to the energy of the system. We denote the amplitudes in
the medium as �l with l � 0, while for the system l � 1.
In the medium, the solution is a Bloch wave of the form
�l = A(eik0(l−1/2) + re−ik0(l−1/2)), where k0 = π/2 due to our
choice of the on-site potential, while the offset by 1/2 refers
the reflected wave to the effective location of the interface.
This wave has to match with the decaying wave in the system,
which is achieved if

φ+,1(E) = A(eik0(−1/2) + r(E)e−ik0(−1/2))

= Ae−iπ/4(1 + ir(E)), (A10a)

φ+,2(E) = A(eik0(1/2) + r(E)e−ik0(1/2))

= Ae−iπ/4(i + r(E)). (A10b)

From this, we obtain the reflection coefficient r(E) as given
in Eq. (26).

2. Quantization conditions and topological invariants

In terms of this reflection coefficient, the boundary
condition (A7) yields the quantization condition r(E) = i

while the boundary condition (A8) yields the quantization
condition r(E) = −i. To describe an interface, we analogously
define

rR(E) = φR
+,1(E) + iφR

+,2(E)

φR
+,2(E) + iφR

+,1(E)
, (A11a)

rL(E) = φL
−,2(E) + iφL

−,1(E)

φL
−,1(E) + iφL

−,2(E)
. (A11b)

The boundary condition (A9) then requires rR(E)rL(E) = 1,
which can be interpreted as the condition for constructive
interference in a round trip through the system.

Within the gaps, the reflection coefficient |r(E)| = 1 and
the winding of its phase is constrained by the symmetry-
constrained values r = ±1 at the different band edges. It
follows that the winding is a topological invariant and can only
change when band gaps are closed. The number of solutions
for the various boundary conditions can therefore be inferred
from the topological features of the band structure.

To characterize these features, we first consider the
Zak phase Z, defined in Eq. (24). As a first step, let us
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parametrize

ϕ(k) = N (k)

⎛
⎜⎜⎜⎝

1

α(k)

A(k)

A(k)α̃(k)

⎞
⎟⎟⎟⎠ (A12)

with normalization constant N (k) and parameters α(k), α̃(k),
and A(k). The symmetries (22) imply ϕ(k) ∝ Rϕ∗(k), from
which we obtain the constraints α̃(k) = −A∗(k)α(k)/A(k) as
well as |α(k)|2 = 1. Hence

ϕ(k) = N (k)

⎛
⎜⎜⎜⎝

1

α(k)

A(k)

−A∗(k)α(k)

⎞
⎟⎟⎟⎠, N (k) = 1√

2(1 + |A(k)|2)
.

(A13)

To further exploit the symmetries (22), we split the
integral into the right-propagating branch ϕ+(E) and the
left-propagating branch ϕ−(E) = ϕ∗

+(E), parameterized by
energy. The Zak phase then takes the form

z = i Im
∫ Emax

Emin

dE

[
ϕ
†
+(E)

d

dE
ϕ+(E) − ϕ

†
−(E)

d

dE
ϕ−(E)

]

= −2 Im
∫ Emax

Emin

dE ϕ
†
+(E)

d

dE
ϕ+(E)

= −Im
∫ Emax

Emin

dE α∗
+(E)

d

dE
α+(E), (A14)

where the band edges Emin and Emax are taken from Eq. (15),
while in the last step we made use of the parametrization (A13).
It follows that the Zak phase is determined by the winding of
α+(E).

The first two components of the Bloch wave ϕ+(E) coincide
with the eigenvector φ+(E) of the transfer matrix. Therefore
the reflection coefficient is

r(E) = 1 + iα+(E)

α+(E) + i
, hence α+(E) = r(E) + i

1 + ir(E)
. (A15)

The constraint |α+(E)|2 = 1 implies that within a band
r(E) is real, while |r(E)| � 1 implies that Im α+(E) � 0.
It follows that multiple windings of this phase factor are
forbidden, allowing us to fix the branch 0 � arg α+(E) � π .
With these constraints, it suffices to know α+(E) at the band
edges,

z = arg α+(Emin) − arg α+(Emax). (A16)

As at the edges the reflection coefficient can only take
the values r(Emin,max) = ±1, we have arg α+(Emin,max) =
[1 + r(Emin,max)]π/2, from which we recover Eq. (25).
More formally, this result can be substantiated by the
transformation

z = −Im
∫ Emax

Emin

dE α∗
+(E)

d

dE
α+(E)

= −2
∫ Emax

Emin

dE
1

1 + r2(E)

d

dE
r(E)

= 2 arctan r(Emin) − 2 arctan r(Emax). (A17)

Given that arctan(±1) = ±π/4 (with other branches not
accessible due to the constraint that r(E) is real and obeys
|r(E)| � 1), we again recover Eq. (25).

The explicit value of the reflection coefficient at a given
band edge E0 = Emin,Emax, specified again by Eqs. (15), is
most quickly obtained by testing whether the transfer matrix
M(E0) has an eigenvector (1,1)T or (1, − 1)T . This amounts
to the conditions

(1, − 1)M(E0)

(
1
1

)
= 0 for r(E0) = 1, (A18a)

(1,1)M(E0)

(
1

−1

)
= 0 for r(E0) = −1, (A18b)

and leads to the Zak phases as summarized in Eq. (27).
These considerations also allow us to establish the winding

of the reflection coefficient in the gaps. For each gap, we find
from the conditions (A18) that the reflection coefficients at the
upper and lower band edge are always opposite. We also find
that r(E) = ±1 only occurs at these edges, and at no other
energies in the system. From the conditions

(1,0)M(E′)
(

0
1

)
= 0 for r(E′) = i, (A19a)

(0,1)M(E′)
(

1
0

)
= 0 for r(E′) = −i, (A19b)

we analogously always find exactly one value r(E′) = ±i

of the reflection coefficient within each of the gaps. These
values fix the winding of r(E) in the gap, according to the
Witten index as summarized in Eq. (28). In combination with
the values at the edges, we further verify that in each gap,
the winding of the reflection coefficient is always by π and
occurs in the clockwise sense. This agrees with the scenarios
illustrated in Fig. 3.

3. Universality class

As mentioned in the main text, given the symmetries of the
bow-tie chain it is reasonable to place this system into the BDI
symmetry class of chiral systems with a conventional time
reversal symmetry. For the finite energy gaps, the analogous
conclusion follows from the consideration of the parent
systems, implying also that the topological features in the
two finite-energy gaps are related. As we have shown in detail
in the previous section of this Appendix, the fact that we can
still generate different states in these finite-energy gaps can be
understood from the specific quantization conditions at inter-
faces and boundaries. In practice, we find at most one defect
state in each gap, but this can be attributed to the restriction
to couplings between neighboring unit cells, in analogy to
the situation in the SSH model [the general considerations in
Sec. II B do not rely on these assumption; for a starting point for
richer one-dimensional models see Eq. (31)]. What requires a
more careful consideration, however, is the fact that the chiral
symmetry in the bow-tie chain constitutes a fractional lattice
translation, and therefore is nonsymmorphic. In principle, this
can modify the topological nature of the central gap. We
therefore supplement the topological classification from the
perspective of systems with an additional order-two lattice
symmetry S, characterized by the feature [S2,H (k)] = 0,
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for which a complete classification has been developed in
Ref. [26]. We make direct use of the results in the cited work, in
the hope that they are of interest for the specialist reader (equa-
tion and table numbers in the following refer to the cited work).

Reference [26] distinguishes between order-two lattice
symmetries that are unitary or antiunitary and commute or
anticommute with the Bloch Hamiltonian or other symmetries,
in particular time-reversal symmetry. We start in symmetry
class AI (s = 0) for systems with a conventional time-reversal
symmetry. Our chiral symmetry X fulfills the criteria for a
unitary symmetry that anticommutes with the Hamiltonian,
squares to +1 and commutes with the time-reversal symmetry;
such operations are denoted as Ū+

+ . According to Table IV
we are therefore concerned with the case t = 3. The chiral
symmetry X conserves the momentum, so that d‖ = 0, d⊥ =
d = 1 [see Eq. (3.16) for the decomposition of directions], and
the defect dimensions are D = D‖ = 0. According to equa-

tions (3.27) and (3.31), KU
R (s = 0,t = 3,d = 1,d‖ = 0,D =

0,D‖ = 0) = KU
R (−1 mod 8,3,0,0,0,0) = π0(R0). Table I

then confirms that the topological invariant takes values in Z,
which indeed coincides with class BDI in d = 1 dimensions.

Finally, we remark that there is a striking duality between
these considerations, which are intimately linked to the
commutation relation [X2,H ] = 0 (interpreting X as a chiral
symmetry linked to an order-two spatial symmetry), and our
considerations, which are intimately linked to the relation
[X,H 2] = 0 (starting from a spatial symmetry of a parent
Hamiltonian H 2, which generates a chiral symmetry for the
underlying child Hamiltonian H ). Indeed, it is simple to show
that, for general systems, anti-commutative and commuta-
tive symmetries represent commutative symmetries in even
powers of either the Hamiltonian or the symmetry operation
itself. The physical ramifications of this are left as an open
question.
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