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Abstract

Offshore structures, such as oil platforms and vessels, must be built such that they can

withstand extreme environmental conditions (e.g., high waves and strong winds) that may

occur during their lifetime. This means that it is essential to quantify probabilities of

the occurrence of such extreme events. However, a difficulty arises in that there are very

limited data available at these levels. The statistical field of extreme value theory provides

asymptotically motivated models for extreme events, hence allowing extrapolation to very

rare events.

In addition to the risk to a single site, we are also interested in the joint risk of multiple

offshore platforms being affected by the same extreme event. In order to understand joint

extremal behaviour for two or more locations, the spatial dependence between the different

locations must be considered. Extremal dependence between two locations can be of two

types: asymptotic independence (AI) when the extremes at the two sites are unlikely to

occur together, and asymptotic dependence (AD) when it is possible for both sites to be

affected simultaneously. For finite samples it is often difficult to determine which type of

dependence the data are more consistent with. In a large ocean basin it is reasonable to

expect both of these features to be present, with some close by locations AD, with the

dependence decreasing with distance, and some far apart locations AI. In this thesis we

develop new diagnostic tools for distinguishing between AD and AI and illustrate these on

North Sea wave height data. We also investigate how extremal dependence changes with

direction and find evidence for spatial anisotropy in our data set.
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The most widely used spatial models assume asymptotic dependence or perfect independence

between sites, which is often unrealistic in practice. Models that attempt to capture both

AD and AI exist, but they are difficult to implement in practice due to their complexity and

they are restricted in the forms of AD and AI they can model. In this thesis we introduce

a family of bivariate distributions that exhibits all the required features of short, medium

and long range extremal dependence required for pairwise dependence modelling in spatial

applications.
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Chapter 1

Introduction

1.1 Motivation

Inadequate design of offshore structures can have wide ranging negative consequences.

Weather induced structural damage to oil platforms and vessels can lead to lost revenue,

danger to operating staff and environmental pollution. In order to avoid such consequences,

design codes stipulate that all offshore structures must be built such that they can withstand

extreme environmental events (e.g., high waves and strong winds) with a low probability

of failure. This means that it is essential to quantify probabilities of the occurrence of

such extreme events, with values sought for events as rare as once in a 100 (or even 10000)

years. Hence, interest lies in environmental phenomena that are very rare with limited data

available that exceed these levels. An additional challenge is that often we need to estimate

probabilities of events that are more extreme than what has been observed previously.

In order to design reliable offshore structures, it is critical to gain an understanding of

extreme ocean environments. Significant wave height is one of the most commonly used

variables to characterise the ocean environment. This represents an average height of the

highest one-third of the waves in a given time period, or in a specific wave or storm system.

There are several factors that influence the formation of ocean waves, such as wind direction
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and speed, distance of open water that the wind has blown over (i.e., fetch), width of area

affected by fetch, distance from shore, time duration and water depth. These factors all

work together to determine the size of ocean waves. Traditionally, physical models have been

used to model ocean environments and to assess the reliability of offshore structures, but

increasingly, the benefits that statistical models can bring to this field are being recognised.

One particular area of statistics that is well suited for modelling extreme events is extreme

value theory. Unlike standard statistical methods that are driven by mean values, extreme

value theory provides asymptotically motivated models for the tails of a distribution, hence

allowing extrapolation to very rare events.

An additional benefit of using statistical models is that this allows us to quantify not only the

risk of extreme events at a single location, but also the joint risk of several locations being

affected by the same extreme event. The joint risk of multiple offshore platforms being

affected by the same storm is important information for insurance purposes. In general,

neighbouring locations are likely to be affected by the same physical phenomenon, whereas

locations further apart are unlikely to be affected simultaneously. In the case of ocean

storms, some characteristics of the storm, such as the direction of the storm path, might

also have an impact on the risk of multiple sites being affected.

In order to understand joint extremal behaviour for two or more locations, the spatial

dependence between the different locations must be considered. However, since the interest

lies in the extreme values, the dependence considered here only concerns the tail of the

distribution and not the body. This is termed tail dependence or extremal dependence, and

can be of two types: asymptotic independence (AI) and asymptotic dependence (AD). In

simple terms, we say that two locations are AI if they are unlikely to be affected by extreme

events simultaneously. On the other hand, if two locations are AD it is implied that if one

location is affected by an extreme event then it is possible for the other location to also be

affected. In a relatively large ocean basin, such as the North Sea, it is reasonable to expect

both of these features to be present, with some close by locations AD, with the dependence
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decreasing with distance, and some far apart locations AI.

Broadly speaking there exist three classes of statistical models for spatial extremes; (i)

models that assume AD, (ii) models that assume AI, and (iii) models that attempt to

model both AI and AD. This means that we either need to know whether our data is AI

or AD in advance and then fit a model of class (i) or (ii) accordingly, or we need to fit a

model of class (iii). This may sound simple but there are two problems. Firstly, it is very

difficult to determine with reasonable certainty whether a finite data set is consistent with

being AD or AI. Secondly, existing models of class (iii) are difficult to implement in practice

due to their complexity and they are restricted in the forms of AD and AI they can model.

In this thesis we aim to address both of these problems. The first major contribution of

this thesis is the development of new diagnostic tools for distinguishing between AI and

AD that can improve confidence in model selection between classes (i) and (ii). However,

as suggested previously, it is desirable to have a model that can capture a wide range of

extremal dependence structures, ranging from strong AD, weak AD, all the way to AI. As a

second major contribution of this thesis we introduce a family of bivariate distributions, with

simple multivariate extensions, that exhibits all the required features of short, medium and

long range extremal dependence for pairwise dependence modelling in spatial applications.

This family is shown to capture all possible bivariate distributions with these properties. We

propose novel bivariate characterisations of the extremal dependence structure that reveal

structure of this family of distributions that standard measures of extremal dependence fail

to identify. Additionally, we investigate how extremal dependence changes with direction

and find evidence for spatial anisotropy in extremal dependence in North Sea storm peak

significant wave height data.
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1.2 Thesis outline

The aim of this thesis is to provide novel statistical methodology for the modelling of extreme

ocean environments. The thesis is divided into the following chapters.

Chapter 2 gives a brief overview of the basic results of extreme value theory that are core

to the methods developed in the thesis. The overview starts with univariate methods. The

two main approaches in univariate extremes arise from different definitions of the concept

of being “extreme”. The first approach divides the data into blocks (e.g., months or years)

and models the block maxima, while the second approach sets a high threshold and models

the exceedances of this threshold. These two approaches have extensions in multivariate

extremes that we also review in this chapter, with particular focus given to the notion of

extremal dependence. We conclude our review by describing the most widely studied class of

models for spatial extremes, max-stable processes. Then in the last part of this chapter, we

present our work on two extensions to current approaches for modelling extremal depend-

ence. The first extension seeks to use more information when estimating tail dependence by

including information about extreme observations in lower dimensional cases. In the second

extension we test a recently proposed bias correction method for estimating tail dependence.

As suggested above, it is vital to have good diagnostics to identify the appropriate extremal

dependence class. If variables are AI, fitting an AD model can lead to overestimation of

the joint risk of extreme events, and hence to higher than necessary design costs of offshore

structures. In Chapter 3, we develop improved diagnostics for differentiating between AD

and AI dependence classes, which leads to increased confidence in model selection. Ap-

plication to samples of North Sea sea-state and storm-peak significant wave height suggest

that for sites located close by AD is a reasonable assumption, but for sites further apart AI

seems to be more appropriate. Our results also suggest that tail dependence changes with

direction and distance between spatial locations and with the level of overall dependence in

the data.
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In Chapter 4 we further investigate the effects of direction on extremal dependence in

samples of North Sea storm-peak significant wave height. It is well known that in the North

Sea the biggest storms come from a northerly or north-westerly direction. Here we want to

see whether this translates to an effect in the extremal dependence between various locations

in the data set. We use composite likelihood methods to fit various AI and AD models to

data at locations along strips with different orientations. Simplistically, we can imagine a

storm propagating along a straight line in time as a half-plane in space. Symmetry then

suggests that the extremal dependence spatially would exhibit limiting forms (i) along the

storm trajectory and (ii) perpendicular to the storm trajectory (i.e., along the edge of the

half plane representing the storm front). In the North Sea, large storms mostly travel in

an approximately north to south direction and we observe that two locations X1 and X2

located on a strip with a west-east orientation show stronger dependence than two locations

Y1 and Y2 located on a strip with a north-south orientation (when the distance between

X1 and X2 and Y1 and Y2 is kept constant). This indicates that extremal dependence is

stronger across the storm front than in the storm direction. We also find that extremal

dependence varies smoothly with the direction of the strips, suggesting that direction needs

to be considered when modelling extremal dependence.

In Chapter 5 we introduce a family of bivariate distributions that contains both AD and

AI components and has the flexibility to capture all dependence forms within very broad

classes in each case. Bivariate max-linear models provide a core building block for character-

ising bivariate max-stable distributions. The limiting distribution of marginally normalised

componentwise maxima of bivariate max-linear models can be dependent (asymptotically

dependent) or independent (asymptotically independent). However, for modelling bivariate

extremes they have weaknesses in that they are exactly max-stable with no penultimate

form of convergence to asymptotic dependence, and asymptotic independence arises if and

only if the bivariate max-linear model is independent. In this chapter we present more real-

istic structures for describing bivariate extremes. We show that these models are built on
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bivariate max-linearity but are much more general. In particular, we present models that

are dependent but asymptotically independent and others that are asymptotically depend-

ent but have penultimate forms. We characterise the limiting behaviour of these models

using two new different angular measures in a radial-angular representation that reveal more

structure than existing measures. The bivariate distributions studied here have simple mul-

tivariate extensions that can be used in spatial applications with higher dimensions.

In Chapter 6 we show how to do conditional simulation for the models introduced in

Chapter 5. Conditional simulation is useful when we want to estimate probabilities of

an extreme event at a particular location, given the characteristics of the same event at

one or more other locations. In an oceanographic application, for example, we might be

interested in the probability of wave heights exceeding a certain level at a site, given the

wave heights being large at some other sites.

In Chapter 7 we discuss the outcomes of the thesis and present some ideas for further work.
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Introduction to Extreme Value

Theory

In oceanography and other environmental applications it is often the case that extreme

events (e.g. extreme wave heights and wind speeds) are of interest, as these are the ones

that can cause the most damage. Some of these events can be as rare as once in 100 or

500 years, with very limited data available at these levels, or in some cases none at all. In

statistical terms, the interest lies in the tails rather than the bulk of the distribution. By

definition, observations in the tails are scarce, as most data points are concentrated towards

the centre of the distribution. In standard statistical methods, parameter estimates and

assessment of model fit are strongly driven by these central values, and different models

that fit the body of the data well can have very different extrapolations in the tail. Further

difficulty arises from the fact that estimation of the probability of events beyond the sample

maxima or minima is often required.

The ideas described above gave rise to the statistical field of Extreme Value Theory (EVT).

The problem requires an extrapolation from observed levels to unobserved levels, and EVT

provides asymptotic models to enable such extrapolation (Coles, 2001).
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In this chapter we aim to give an overview of some of the most important results in EVT. In

Section 2.1 we focus on approaches for modelling the tail distribution of a single variable of

interest. In Section 2.2 we present models for multivariate extreme values, with particular

focus on the idea of extremal dependence. In Section 2.3 we give an overview of models

for spatial extremes. Finally, in Section 2.4 we present some extensions to the described

methods.

2.1 Univariate extremes

Within univariate extremes there are two common approaches within the EVT literature;

models for block maxima and models for exceedances of a high threshold. In the following

we outline the main theoretical results for both of these approaches, along with advantages

and disadvantages of using them.

2.1.1 Models for block maxima

Consider an independent identically distributed (IID) sample X1, . . . , Xn with common

distribution function F . Let MX,n = max(X1, . . . , Xn) be the sample maximum. When it is

clear the subscript X will be dropped and we will write Mn to denote the sample maximum.

Here we will only consider maxima, i.e. the upper tail of the distribution, but it is easy to

see that the theory for maxima can be also applied to minima:

mX,n = min(X1, . . . , Xn)

= −max(−X1, . . . ,−Xn)

= −M−X,n.
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The distribution of Mn can be obtained in the following way:

Pr(Mn 6 x) = Pr(X1 6 x, . . . ,Xn 6 x)

= Pr(X1 6 x) · · ·Pr(Xn 6 x)

=
n∏
i=1

Pr(Xi 6 x)

= {F (x)}n.

However, as generally F is unknown, this formula is not useful. As we are often interested in

the maximum of a large number of variables it would be convenient to approach modelling

Mn using an asymptotic argument. However, Mn → xF in probability as n → ∞, where

xF is the upper end point of F . Hence, the asymptotic distribution of Mn is degenerate.

Limit arguments similar to the Central Limit Theorem suggest that some kind of scaling is

required.

Theorem 1. The Extremal Types Theorem (ETT) states that if there exist sequences of

constants an > 0 and bn such that, as n→∞

Pr

(
Mn − bn

an
6 x

)
→ G(x), (2.1.1)

for some non-degenerate distribution G, then G is of the same type as one of the following

distributions:

Gumbel: G(x) = exp[− exp(−x)] for −∞ < x <∞

Fréchet: G(x) =


0 for x 6 0,

exp(−x−α) for x > 0, α > 0

Negative Weibull: G(x) =


exp[−(−x)α] for x < 0, α > 0,

1 for x > 0.
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In words, the ETT states that the rescaled sample maxima converge in distribution to a

variable having a distribution within one of the above families of distributions, as suggested

by Fisher and Tippett (1928). The Gumbel, Fréchet and Negative Weibull families of

distributions are the only possible limits for the distributions of the rescaled sample maxima,

regardless of the distribution F of the population.

It is inconvenient to work with three separate classes of limiting distributions, so it is

preferable to use a parametrisation that unifies these distributions. Von Mises (1936) and

Jenkinson (1955) derived the GEV(µ, σ, ξ) distribution with distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ

+

}
(2.1.2)

where x+ = max(x, 0) and µ, σ > 0, and ξ are the location, scale and shape parameters,

respectively.

The shape parameter ξ describes the behaviour of the distribution in the tail and determines

the family of the limit distribution.

• ξ > 0 corresponds to the Fréchet distribution and a heavy upper tail,

• ξ = 0 corresponds to the Gumbel distribution and an exponential upper tail,

• ξ < 0 corresponds to the Negative Weibull distribution and a finite upper tail.

If ξ → 0 the GEV takes the form

G(x) = exp

{
− exp

[
−
(
x− µ
σ

)]}
.

Theorem 2. The Unified Extremal Types Theorem (UETT) states that in equation (2.1.1),

G is a member of the GEV family, i.e. it is of the same type (up to location and scale

parameter) as

G(x) = exp[−(1 + ξx)
−1/ξ
+ ]
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for some value of ξ.

The UETT does not guarantee the existence of a non-degenerate limit or say which type

will arise. It also does not tell us how to pick an and bn. In order to justify the UETT (or

equivalently the ETT) we need to introduce the notion of max-stability. For a full proof the

reader is referred to Leadbetter et al. (1983).

Definition. A distribution G is said to be max-stable if, for every integer n > 0 there are

constants αn > 0 and βn such that

Gn(αnx+ βn) = G(x). (2.1.3)

In simple terms, equation (2.1.3) states that the operation of taking sample maxima leads

to an identical distribution to the distribution of the original sample, except a change in the

location and scale. It can be proved that a distribution is max-stable if, and only if, it is a

GEV distribution (Resnick (1987) Proposition 5.9).

In most practical applications interest lies in the estimation of the so called return period

and return level. For 1/p return period let zp be the 1− p quantile of the GEV distribution

for 0 < p < 1. Then zp is the return level that is expected to be exceeded on average

once every 1/p years. An estimate of zp can be obtained by inverting equation (2.1.2) and

substituting the maximum likelihood estimates of the GEV parameters, giving

ẑp =


µ̂− σ̂

ξ̂

[
1− {− log(1− p)}−ξ̂

]
for ξ̂ 6= 0,

µ̂− σ̂ log{− log(1− p)} for ξ̂ = 0.

The block maxima approach is sensible when we only have access to data in the form of

weekly, monthly or yearly maxima. However, if an entire dataset of, say, hourly or daily

observations is available, then blocking the data and using only the maximum value in each

block is a wasteful approach. Figures 2.1.1 and 2.1.2 illustrate this idea. We can make
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better use of the data by avoiding the procedure of blocking. This leads to the methods

described in the following section on threshold models.

Figure 2.1.1: Illustration of the block maxima approach

2.1.2 Threshold models

Let X1, X2, . . . be a sequence of independent and identically distributed random variables

with common marginal distribution F , and let us consider those of the Xi that exceed some

high threshold u to be extreme. We will focus on the distribution of the exceedances of this

high threshold, i.e. X|X > u, which can be written as

Pr{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0. (2.1.4)

It can be shown that the limit distribution of scaled exceedances as u tends to the upper

endpoint of F is a generalized Pareto distribution, first derived by Pickands (1975), with

distribution function

H(y) = 1−
(

1 + ξ
y

σu

)−1/ξ

, (2.1.5)
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Figure 2.1.2: Illustration of the threshold exceedances approach

where σu is the scale parameter dependent on some high threshold u, and ξ is the shape

parameter. If block maxima have limiting distribution G from the GEV family with shape

parameter ξ, then threshold excesses have a corresponding limiting distribution within the

generalised Pareto (GP) family with the same shape parameter. Leadbetter et al. (1983)

gives a full proof of this. We can define the threshold excesses as Yu = max(X − u, 0), and

then Yu|Yu > 0 ∼ GP(σu, ξ).

One of the difficulties of implementing the threshold method is choice of threshold. On

the one hand we want to use as low a threshold as possible to maximise the amount of

data used. On the other hand we want to use as high a threshold as possible to make

sure that the asymptotic arguments hold and the GP distribution fits well. This choice

is equivalent to choosing the block size in the block maxima approach. Usually graphical

methods are used to make decisions about threshold selection, with the most common being

mean residual life plots and parameter stability plots. The threshold stability property

states that if Yu satisfies Yu|Yu > 0 ∼ GP(σu, ξ) for some high threshold u, then for any

higher threshold v > u, Yv|Yv > 0 ∼ GP(σu + ξ(v − u), ξ). So ξ is constant with threshold,

but σv = σu+ξ(v−u) is not. More recent advances in threshold selection methods generally
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build on and seek to improve the traditional diagnostic methods (e.g. Wadsworth and Tawn

(2012b), Northrop and Coleman (2014) and Wadsworth (2016)). Scarrott and MacDonald

(2012) give an overview of traditional and more recent methods of extreme value threshold

selection.

Return levels can be derived similarly to block maxima, but since here we model data

conditionally on exceeding a high threshold u, we must first undo this conditioning by

multiplying by the rate of exceedance λu = Pr(X > u). Hence, the unconditional survivor

function is

Pr(X > x) = λu

[
1 + ξ

(
x− u
σu

)]−1/ξ

+

, x > u.

This can be inverted to give the return level that will be exceeded once every N years:

x̂N =


u+ σ̂u

ξ̂

[
(Nnyλu)ξ̂ − 1

]
, for ξ̂ 6= 0,

u+ σ̂u log(Nnyλu), for ξ̂ = 0,

where σ̂u and ξ̂ are the maximum likelihood estimates of the generalised Pareto scale and

shape parameters and ny is the number of observation in a year.

The GEV and the GP results can both be derived from a Poisson point process representa-

tion (Pickands, 1971). Let P1, P2, . . . be a sequence of point processes on [0, 1]× R defined

by

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
; i = 1, . . . , n

}
, (2.1.6)

where an and bn are norming constants. Then, on the set [0, 1] × (bl,∞), where bl =

limn→∞(xF − bn)/an, with xF being the lower endpoint of the support of the underlying

distribution of the Xi, we have that Pn → P as n → ∞, where P is a non-homogeneous

Poisson process with intensity λ(x) = (1 + ξx)
−1−1/ξ
+ . See Smith (1989) for the statistical

implementation of this asymptotic result.
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2.2 Multivariate extremes

The methods for univariate extremes described above assume that the variables are inde-

pendently and identically distributed (IID). In practice this is often not a realistic assump-

tion to make. Dependence between variables can occur, for example, when the different

processes are influenced by a common physical phenomenon; in the context of oceano-

graphy an obvious example would be wind speed and significant wave height that are both

due to the same storm event. Another way dependence can arise is when a single process is

observed at different spatial locations or points in time. Neighbouring locations are likely

to be affected by the same physical phenomenon, and similarly, data points observed close

together in time are likely to be impacted by the same storm event. Hence, when mod-

elling multivariate extremes of environmental data, this dependence between the different

variables must be taken into account.

In this section we will introduce two approaches commonly used in multivariate extremes;

componentwise block maxima, which is an extension of the block maxima approach, and

methods for multivariate threshold exceedances that are extensions of univariate threshold

models.

2.2.1 Componentwise block maxima

Following Coles et al. (1999), let (Xi,1, . . . , Xi,d), for i = 1, . . . , n, be a collection of inde-

pendent and identically distributed d-dimensional random vectors with standard Fréchet

margins, i.e. Pr(Xij 6 x) = exp(−1/x) for x > 0 for all i, j. Then we define each of the

componentwise maxima in the following way:

Mn,k = max{X1,k, . . . , Xn,k}, k = 1, . . . , d,

and hence define the vector of componentwise maxima by Mn = {Mn,1, . . . ,Mn,d}.
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Theorem 3. If

Pr(Mn,1/n 6 x1, . . . ,Mn,d/n 6 xd) = {F (nx1, . . . , nxd)}n → G(x1, . . . , xd),

as n → ∞, with G(x1, . . . , xd) non-degenerate in each margin then G is a multivariate

extreme value distribution function, defined as G(x1, . . . , xd) = exp{−V (x1, . . . , xd)}, where

V (x1, . . . , xd) = d

∫
D

max
16j6d

(wj/xj)H(dw), (2.2.1)

where H is a distribution function on the (d−1)-dimensional unit simplex D = {(w1, . . . , wd) :∑d
j=1wj = 1, wj > 0, j = 1, . . . , d} satisfying the following condition:

∫
D
wjH(dw) = 1/d, j = 1, . . . , d. (2.2.2)

Note that the exponent measure V is homogeneous or order -1, i.e.

V (nx1, . . . , nxd) = V (x1, . . . , xd)/n. (2.2.3)

For simplicity, we will now consider the bivariate case. For a pair of random variables

X1 and X2 on Fréchet margins, the bivariate distribution function G is G(x1, x2)) =

exp{−V (x1, x2)}, where

V (x1, x2) =

∫ 1

0
max

(
w

x1
,
1− w
x2

)
2dH(w), (2.2.4)

for some distribution function H on the interval [0, 1] satisfying the moment constraint

∫ 1

0
wdH(w) = 1/2.
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For example, the bivariate logistic extreme value distribution is defined as

F (x1, x2) = exp
{
−
(
x
−1/γ
1 + x

−1/γ
2

)γ}
, 0 < γ 6 1, (2.2.5)

and is a bivariate member of the family of multivariate extreme value distributions defined

in Theorem 3. For this distribution V and H are defined as

V (x1, x2) =
(
x
−1/γ
1 + x

−1/γ
2

)γ
,

and

H(w) =
1

2

[
{w(1−γ)/γ − (1− w)(1−γ)/γ}{w1/γ + (1− w)1/γ}γ−1 + 1

]
.

Here γ = 1 corresponds to independence and γ → 0 to perfect dependence.

2.2.2 Multivariate threshold models

As in the univariate case, we can gain improvements in efficiency if we have entire series of

data available, not just block maxima. Multivariate threshold models provide a more flexible

approach for modelling the joint tail than componentwise maxima. A key consideration in

multivariate extremes is the extremal dependence structure, hence we start by introducing

some measures for extremal dependence. Then we will present three different tail models

that are widely used in the multivariate extremes literature; these are the Ledford and Tawn

joint tail model, the Ramos and Ledford model and the Heffernan and Tawn conditional

model. For ease of notation we will present the bivariate form of these models but they can

be extended to more dimensions in a straightforward fashion.
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Extremal dependence measures

In standard statistical analysis the correlation (or an equivalent measure) can be used to de-

termine the dependence between two variables. When dealing with extremes the dependence

can no longer be measured using correlation, as the dependence in the body can be quite

different from the tail dependence. There are several measures for extremal dependence in

the extreme value theory literature; here we will introduce some of the most commonly used

ones. In Chapter 3 we will see that in applications we can sometimes gain additional insight

if we supplement these extremal dependence measure with a dependence measure for the

body of the data (such as Spearman’s rank correlation coefficient ρ or Kendall’s τ).

A common technique in extreme value theory is to remove the effect of the marginals by

transforming the variables onto common margins. To achieve this, we need to introduce the

copula function (Nelsen, 2006). Subject to continuity conditions, there is a unique function

C(·, ·) with domain A = [0, 1]× [0, 1], such that

F (x, y) = C{FX(x), FY (y)}, (2.2.6)

where FX(x) = F (x,∞) and FY (y) = F (∞, y) are the marginal distribution functions. The

copula contains complete information about the dependence between X and Y , in a form

that is invariant to marginal monotone transformation.

An intuitive measure of the tail dependence for two identically distributed variables, X and

Y , is

χ = lim
z→z∗

Pr(Y > z|X > z),

where z∗ is the upper limit of the support of the common marginal distribution. In Chapter

3 we will present a version of this measure that holds for (X,Y ) having any marginal

distributions. Hence, χ is essentially the probability of one variable being extreme given

that the other is extreme.
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In practice, data could lead to estimates of χ = 0, suggesting asymptotic independence, i.e.

the most extreme events do not occur simultaneously. Hence, for the class of asymptotically

independent variables χ does not provide any information about dependence at finite levels.

To deal with this issue, Coles et al. (1999) introduce the measure χ̄. We can define the joint

survivor function Pr(X > x, Y > y) by

F̄ (x, y) = 1− FX(x)− FY (y) + F (x, y)

= C̄{FX(x), FY (y)},

where C̄(u, v) = 1 − u − v + C(u, v), u, v ∈ [0, 1], and C is the copula function. Then,

following Coles et al. (1999), we have

χ̄(u) =
2 log Pr(U > u)

log Pr(U > u, V > u)
− 1 =

2 log(1− u)

log C̄(u, u)
− 1 for 0 6 u 6 1, (2.2.7)

and

χ̄ = lim
u→1

χ̄(u), for which − 1 < χ̄ 6 1.

The two measures, χ and χ̄, together give a complete measure of dependence for both

asymptotically dependent and asymptotically independent variables; (χ > 0, χ̄ = 1) signifies

asymptotic dependence, for which the value of χ gives a measure of strength of dependence;

and (χ = 0, χ̄ < 1) signifies asymptotic independence, for which the value of χ̄ gives the

strength of dependence. Table 2.2.1 presents a summary of these dependence measures.

Measure of Dependence Scale Asymptotic Dependence Asymptotic Independence

χ [0, 1] χ ∈ (0, 1] χ = 0

χ̄ [−1, 1] χ̄ = 1 χ̄ ∈ [−1, 1)

Table 2.2.1: Summary of dependence measures χ and χ̄

In simple terms, if we have asymptotic independence, extreme events for both variables

(X,Y ) are very unlikely to occur simultaneously, whereas for asymptotic dependence, if X
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is extreme it is also possible for Y to be simultaneously extreme. Most statistical methods for

multivariate extremes assume asymptotic dependence, leading to overestimation of extremes

if in reality the data are asymptotically independent. On the other hand, if asymptotic

independence is assumed when the data are in fact asymptotically dependent, the extremes

will be underestimated. Hence it is very important to be able to differentiate between the

two cases when fitting a model.

The extremal coefficient is also a commonly used measure of extremal dependence. This

measure is based on the joint probability function. In the case of the bivariate extreme value

distribution, for (X,Y ) on standard Fréchet margins, this is given as,

Pr(X < z, Y < z) = exp{−V (1, 1)/z} = exp(−θ/z), z > 0, (2.2.8)

where V (x, y) is the exponent measure of the joint distribution of (X,Y ), and θ is the

extremal coefficient of (X,Y ). Here θ takes values between θ = 1 when the observations are

fully dependent, and θ = 2 when they are independent. The dependence measure χ defined

above can also be expressed in terms of the extremal coefficient: χ = 2 − θ. The idea and

definition of the extremal coefficient extends to the multivariate case (with d dimensions)

in the obvious way:

Pr(X1 6 x, . . . ,Xd 6 x) = exp{−V (1, . . . , 1)/x} = exp(−θd/x), x > 0.

Point process limit

Similarly to the univariate case, there is a point process approach that links the compon-

entwise block maxima and multivariate threshold approaches. Following Coles and Tawn

(1991), let X1,X2, . . . be a sequence of IID random vectors on Rd+ with Fréchet margins.

Let us consider a point process Pn on Rd+ where Pn = {n−1Xi : i = 1, . . . , n}. Then Pn
d−→ P

as n→∞, where P is a non-homogeneous Poisson process on Rd+ \ {0}. Pseudoradial and
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angular measures can be defined as ri =
∑d

j=1Xi,j/n and wi,j = Xi,j/nr, for i = 1, . . . , n

and j = 1, . . . , d, where Xi,j is the jth component of Xi. The intensity measure µ of the

limiting process P then satisfies

µ(dr × dw) = 2
dr

r2
dH(w), (2.2.9)

where w = {w1, . . . , wd} and H is the distribution function introduced in Theorem 3 in

Section 2.2.1.

2.2.3 Ledford and Tawn joint tail model

Ledford and Tawn (1996) prove that, under broad conditions, the joint survivor function of

(X,Y ), with common Fréchet margins, satisfies the asymptotic condition

Pr(X > z, Y > z) ∼ L(z){Pr(X > z)}1/η as z →∞, (2.2.10)

where L(z) is a slowly varying function at infinity (i.e. L(tz)/L(z) → 1 as z → ∞ for all

fixed t > 0), and η ∈ (0, 1] is the coefficient of the tail dependence. If η = 1 and L(z) → c

as z → ∞, with 0 < c 6 1, then χ = c and χ̄ = 1, and the variables are asymptotically

dependent of degree c. If η < 1, then χ = 0 and χ̄ = 2η−1, and X and Y are asymptotically

independent. If 0.5 < η < 1 the variables are positively associated; η = 0.5 occurs under

near independence, and 0 < η < 0.5 suggests that the variables are negatively associated.

Inference

The easiest way to estimate η is to transform the problem to a one-dimensional form by

defining T = min(X,Y ), where X and Y have Fréchet margins. If L(t) is approximated as
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a constant c for t > u, then

Pr(T > t) = Pr(X > t, Y > t) ∼ c

t1/η
for t > u, (2.2.11)

by the joint tail model given in (2.2.10). Other non-constant forms for L(t) will be explored

in Chapter 3, where we show that these give similar η estimates. Hence, we find that the

approximation of L(t) as a constant c is not very restrictive. Note that in expression (2.2.11),

η is in fact the shape parameter of a generalised Pareto tail fitted to T . Hence, we can use

univariate methods by fitting a generalized Pareto distribution to T and estimating η as the

shape parameter.

Another method to estimate η is by using the approximation to the joint tail probability

given in (2.2.11), but instead of using the generalised Pareto fit, we can construct a likelihood

and use this for estimation. Using a ‘censored’ likelihood approach we obtain the likelihood

as

L(η, c) =

{
nu∏
i=1

fT (ti)

}
Pr(T 6 u)n−nu ,

=

{
nu∏
i=1

c

ηt
1/η+1
i

}(
1− c

u1/η

)n−nu
, (2.2.12)

where nu is the number of points above the threshold u, and t1, . . . , tnu are the exceedances

of this threshold. Estimates of c and η can be obtained numerically or analytically by

maximizing the likelihood. Analytically, we obtain the following estimates:

η̂ = min

(
1

nu

nu∑
i=1

log

(
ti
u

)
, 1

)
, (2.2.13)

ĉ =
nu
n
u1/η̂.

Note that η̂ coincides with the Hill estimator (Hill, 1975). For numerical maximisation of

the likelihood in (2.2.12), the constraint 0 6 c 6 u1/η must be observed. Further parameter
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constraints and extensions for the Ledford and Tawn model will be given in Section 2.4. We

will also present and compare other estimators for the coefficient of tail dependence η in

Chapter 3.

2.2.4 Ramos and Ledford model

Ramos and Ledford (2009) obtain an asymptotically motivated bivariate model for (X,Y )

when both marginal variables are simultaneously large. They derive a general form for the

joint survivor model for (X,Y ) with Fréchet margins, an example of which is the following:

F̄XY (x, y) =
λu1/η

Nρ

(ρx)−1/η +

(
y

ρ

)−1/η

−

{
(ρx)−1/α +

(
y

ρ

)−1/α
}α/η , (2.2.14)

for (x, y) ∈ [u,∞)×[u,∞), where u is a high threshold and λ is the joint threshold exceedance

probability Pr(X > u, Y > u), and Nρ = ρ−1/η+ρ1/η−(ρ−1/α+ρ1/α)α/η with 0 < α, ρ, η 6 1.

This model has four key parameters, namely η, ρ, α and λ. As before, η is the coefficient

of tail dependence, with (X,Y ) asymptotically dependent for η = 1, and asymptotically

independent if η < 1. The parameter ρ is the so-called asymmetry parameter, with ρ = 1

corresponding to the symmetric case. The relative size of the α parameter to η defines the

dependence between the angular X/(X+Y ) and radial (X+Y ) re-parametrisation of (X,Y).

Lastly, the parameter λ is the joint threshold exceedance probability. For a fixed threshold

u, λ can be estimated empirically by λ̂ = Pr(X > u, Y > u), independently of the other

three parameters.

2.2.5 Heffernan and Tawn conditional model

The conditional tail model of Heffernan and Tawn (2004) is a semi-parametric approach

that allows for both asymptotic dependence and asymptotic independence. Most other

multivariate models focus on the case when all variables are extreme, whereas the conditional
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model is appropriate also when only a subset of the variables are extreme. The model can

be applied to problems of higher dimensions, but here we will only consider the bivariate

case.

We will initially follow the derivation of the model from Heffernan and Tawn (2004). Con-

sider random variables (X,Y ) with Gumbel marginal distributions and examine the limiting

behaviour of the conditional distribution Pr(Y 6 y|X = x), with X being the conditioning

margin as x → ∞. We assume that there exist normalising functions a(x) and b(x) > 0,

which can be chosen such that for all fixed z and for any sequence of x-values such that

x→∞,

lim
x→∞

Pr(Z 6 z|X = x) = G(z), (2.2.15)

for

Z =
Y − a(x)

b(x)
, (2.2.16)

where the limit distribution G is non-degenerate.

Under assumption (2.2.15), we have that, conditionally on X > u, as u→∞ the variables

X − u and Z are independent in the limit with their limiting marginals being exponential

and G(z), respectively.

The class of limit distributions is unique up to type, and the normalising functions a(x)

and b(x) can be identified up to the constants A and B in a∗(x) = a(x) + Ab(x) and

b∗(x) = Bb(x), where if a(x) and b(x) give a non-degenerate distribution G(z), then the

normalising functions a∗(x) and b∗(x) give the non-degenerate limit G(Bz +A).

Keef et al. (2013) find that this form of the conditional model runs into difficulties when

modelling variables with some components positively associated and some negatively asso-

ciated. This is due to the choice of the Gumbel distribution for the marginal distribution

in which to apply the model. To overcome this problem, Keef et al. (2013) suggest the use

of the Laplace marginal distributions instead. So X and Y both need to be transformed to
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have marginal distributions of the form

Pr(X < x) =


exp(x)/2 if x < 0,

1− exp(−x)/2 if x > 0,

which ensures that both the lower and the upper tails of X and Y are exponentially distrib-

uted. Now assume that there exist vector-valued normalising functions, a(x) and b(x) > 0,

such that for x > 0

Pr

(
X − u > x,

Y − a(X)

b(X)
6 z | X > u

)
→ exp(−x)G(z) as u→∞, (2.2.17)

where G is a non-degenerate distribution function. Heffernan and Resnick (2007) show

that the norming functions are regularly varying functions, and Heffernan and Tawn (2004)

derive the following specific finite form:

a(x) = αx and b(x) = xβ,

with (α, β) ∈ [−1, 1] × [−∞, 1], which they show holds widely. This representation covers

both positive and negative association, with 0 < α 6 1 corresponding to positive dependence

and −1 6 α < 0 corresponding to negative dependence. The parameters α and β take

different values for different dependence structures. Asymptotic independence is implied

when α = β = 0 and asymptotic dependence (with positive association) when α = 1 and

β = 0. Assuming that the limit in (2.2.17) holds for finite u, the model takes the form:

Y = αX +XβZ, X > u,

where Z is a random variable with distribution function G and is independent of X.

Details about inference and simulation from the Heffernan and Tawn model will be discussed

in Chapter 3.
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2.3 Spatial extremes

Environmental applications are often spatial in nature so benefits can be gained by using

spatial methods. For example, we can improve inference for a single location by using data

from the spatial neighbourhood around the location. Spatial extremes also allows us to

quantify the joint risk of multiple locations being affected by a single extreme event.

Most spatial extremes models can capture only one of the two classes of extremal dependence

described in Section 2.2. The most widely studied and used spatial extremes models are

in the family of max-stable processes, which can model asymptotic dependence or perfect

independence. Asymptotically independent models include Gaussian processes and inverted

max-stable processes (Wadsworth and Tawn, 2012a), but these are not widely adopted in

practice due to a general preference for conservativeness (i.e. overestimation of extremes is

considered safer than underestimation). The hybrid model of Wadsworth and Tawn (2012a)

is capable of modelling both asymptotic dependence and independence, but its complexity

makes it difficult to use in practice. We will touch upon all of these models in the subsequent

chapters of this thesis (Chapters 3 and 4 in particular), but since max-stable processes are

the most widely used, we will focus our attention on them for the rest of this section.

For a more comprehensive review of methods for spatial extremes, the reader is referred to

Davison et al. (2012).

2.3.1 Max-stable processes

The random process Z(t) is called max-stable on Ω, if for each k = 1, 2, . . ., there exist

continuous functions ak(t) > 0 and bk(t) such that for any function z(t),

Pr{Z(t) 6 ak(t)z(t) + bk(t), t ∈ Ω}k = Pr{Z(t) 6 z(t), t ∈ Ω},
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i.e. Z(t) and the maximum of k independent copies of {Z(t) − bk(t)}/ak(t) have the same

distribution. A consequence of this property is that {Z(t1), . . . , Z(tm)} follows a multivariate

extreme value distribution for all t1, . . . , tm ∈ Ω and all m.

All max-stable processes are asymptotically dependent over all distances, i.e. η = 1, unless

they are perfectly independent. Here we will show this for the bivariate extreme value

(BEV) distribution. The BEV distribution function takes the form:

G(x, y) = exp{−V (x, y)}. (2.3.1)

Hence it follows that,

Pr(X > x, Y > x) = 1− 2 exp

{
−1

x

}
+ exp{−V (x, x)},

= 1− 2 exp

{
−1

x

}
+ exp

{
−V (1, 1)

x

}
,

∼ 2− V (1, 1)

x
, as x→∞,

where the second line follows due to the homogeneity property of V as shown in (2.2.3).

By comparison with (2.2.11), η = 1, unless V (1, 1) = 2, which only occurs when X and

Y are perfectly independent. Hence, indeed the bivariate extreme value distribution is

asymptotically dependent.

In the following, we will introduce four commonly used classes of max-stable processes.

For the sake of simplicity of notation, here we will only present joint distributions for

two-dimensional max-stable models. Higher order joint distributions have been studied by

Wadsworth and Tawn (2014) and Genton et al. (2015).

Smith process

Following Smith (1990), consider a stochastic process {Z(t)}, with t ∈ Ω for some arbitrary

index set Ω. Without loss of generality we may assume that Z(t) has standard Fréchet
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margins:

Pr(Z(t) 6 z) = e−1/z, ∀t ∈ Ω.

Smith defines {(ξi, si), i > 1} as the points of a Poisson process on (0,∞)×S, with intensity

measure ξ−2dξ × ν(ds), where S is an arbitrary measurable set and ν is a positive measure

on S. Furthermore, let {f(s, t), s ∈ S, t ∈ Ω} denote a non-negative function for which

∫
S
f(s, t)ν(ds) = 1,∀t ∈ Ω.

Then Smith defines Z(t) as:

Z(t) = max
i
{ξif(si, t)}, t ∈ Ω,

where f(s, t) is a multivariate normal density with mean s and covariance matrix Σ,

f(s, t) = f0(s− t) = (2π)−d/2|Σ|−1 exp

{
−1

2
(s− t)TΣ−1(s− t)

}
, (2.3.2)

and takes ν(ds) = ds.

To motivate this representation from a practical point of view, we can think of si as storm

centres in Ω, with magnitude ξi, distributed over space according to a Poisson process, so

centres are uniformly distributed with intensity ds and sizes decay with a density 1/ξ2. The

function f represents the ‘shape’ of the storm. Hence, ξif(si, t) is the size of the storm at

position t from a storm of size ξi centred at location si. Figure 2.3.1 shows three realisations

of the process in one dimension. The underlying events are shown in black and the pointwise

maximum of these is taken to obtain a one-dimensional realisation from the Smith process

(shown in red).

It can be shown that this choice of Z(t) is max-stable and that it has unit Fréchet margins for

any t ∈ Ω (see Smith (1990)). Figure 2.3.2 shows two simulations from the two-dimensional

Smith model with different covariance matrices. The realisation shown on the left panel is
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Figure 2.3.1: Three one-dimensional realisations from the Smith process (top: σ = 0.5,
middle: σ = 1, bottom: σ = 1.5), with the red line being the pointwise maximum, and the
black lines the underlying events.
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Figure 2.3.2: Two simulations from the Smith model with different covariance matrices on
a 100× 100 grid. Left panel: σ11 = σ22 = 1.5 and σ12 = 0; right panel: σ11 = σ22 = 1.5 and
σ12 = 1.

isotropic whereas the one on the right is not. Both realisations are very smooth due to the

underlying Gaussian densities.

For two sites (d = 2), say the origin o and a location h, the joint distribution is given by

Pr(Z(o) 6 z1, Z(h) 6 z2) = exp{−Vh(z1, z2)}

where Vh is the exponent measure defined as

Vh(z1, z2) = z−1
1 Φ

{
a(h)

2
+ a−1(h) log

(
z2

z1

)}
+z−1

2 Φ

{
a(h)

2
+ a−1(h) log

(
z1

z2

)}
, (2.3.3)

where Φ is the standard normal distribution function, and a(h) =
√

hTΣ−1h is the Mahalan-

obis distance between h and the origin. Higher order joint distributions become increasingly

complicated.

The extremal coefficient for the Smith model is θ(h) = 2Φ{a(h)/2}, for which θ(h) → 2

as ‖h‖ → ∞, and θ(h) → 1 as ‖h‖ → 0, spanning the range of possible asymptotic

dependencies.
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Figure 2.3.3: Two simulations from the Schlather model with different range parameters on
a 100× 100 grid. Left panel: range = 10; right panel: range = 3.

Schlather process

Following Schlather (2002), let {Sj}∞j=1 be the points of a Poisson process on R+ with

intensity ds/s2. Let {Wj(x)}∞j=1 be independent replicates of a stationary Gaussian process

W (x) on Rd satisfying E[max{0,Wj(o)}] = 1, where o denotes the origin. Then Schlather

defines

Z(x) = max
j
Sj max{0,Wj(x)}. (2.3.4)

and proves that Z(x) is a stationary max-stable process on Rd with unit Fréchet marginals.

The exponent measure for this model in the bivariate case is given by

Vh(z1, z2) =
1

2

(
1

z1
+

1

z2

)
×

(
1 +

[
1− 2

(ρ(h) + 1)z1z2

(z1 + z2)2

]1/2
)
,

where ρ is a valid correlation function. The most commonly used correlation functions

are isotropic, i.e. ρ(h) = ρ(‖h‖), and include the Whittle-Matern, Cauchy and powered

exponential correlation functions. As for the Smith model, higher order forms are difficult

to express analytically. Figure 2.3.3 shows two realisations of the two-dimensional Schlather

process with powered exponential correlation functions with different range parameters.

Note that the Schlather model realisations are less smooth than the Smith realisations.
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The extremal coefficient is θ(h) = 1 + {[1 − ρ(h)]/2}1/2. Because of the requirement that

ρ(h) be a positive definite function for h ∈ R2, and Wj(x) be stationary and isotropic,

θ(h) < 1.838. So this means that the model cannot account for extremes that become

independent when ‖h‖ → ∞.

Brown-Resnick process

Let ε(x) be an isotropic fractional Brownian process with semivariogram γ(h) ∝ ‖h‖α,

0 < α 6 2 and ε(0) = 0 almost surely. Then W (x) in (2.3.4) can be taken as:

W (x) = exp{ε(x)− γ(x)}.

This process was introduced by Brown and Resnick (1977). When ε is a Brownian process

and α = 2, W (x) corresponds to the Smith model. The bivariate extremal coefficient

is θ(h) = 2Φ{a(‖h‖)/2}, as for the Smith process, but a takes a different value (a =

{2γ(‖h‖)}1/2). Therefore, θ(‖h‖) → 2 as ‖h‖ → ∞, so the process captures complete

independence for large distances.

Extremal-t process

The extremal-t process was first proposed by Demarta and McNeil (2005) and it assumes

the following representation of W (x) in (2.3.4):

W (x) =
√
π2−ν/2+1Γ

(
ν + 1

2

)−1

max{ε(x), 0}ν ,

where µ > 1, Γ is the Gamma function, and ε(x) is a Gaussian random field with mean

zero and correlation function ρ(h). The case when ν = 1 corresponds to the Schlather

process. The bivariate extremal coefficient is θ(h) = 2Tν+1(
√

(ν + 1)[1− ρ(h)]/[1 + ρ(h)]),

where Tν denotes the cumulative distribution function of a student-t random variable with
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Figure 2.3.4: Two simulations from the extremal-t model with different range parameters
on a 100× 100 grid. Left panel: range = 1; right panel: range = 3.

ν degrees of freedom, and correlation function ρ(h). Figure 2.3.4 shows two realisations

of the extremal-t process with different dependence structures. These realisations appear

similar in roughness to the simulations from the Schlather proces.

2.4 Extensions

In this section we will present two extensions to the multivariate approaches presented in

Section 2.2. The first one builds on the idea of including marginal information in the Ledford

and Tawn joint tail model introduced in Winter (2015). The second one seeks to use the

bias correction method introduced in Fougères et al. (2015) to reduce the bias in estimating

the coefficient of tail dependence η.

2.4.1 Including marginal information in the Ledford and Tawn model

The censored likelihood in (2.2.12) only uses information about the points that are above

the threshold in both margins, i.e. in the region {X > u, Y > u}. Winter (2015) shows that

some efficiency can be gained in the bivariate case by incorporating marginal information

about points that are above the threshold in one margin but not the other, i.e. in the regions
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{X > u, Y 6 u} and {X 6 u, Y > u}.

The two examples we will use in this section are the bivariate logistic extreme value distri-

bution (2.2.5) and the inverted bivariate logistic extreme value distribution, which has the

following distribution function:

F (x, y) = e−1/x + e−1/y − 1 + exp
{
−
[
{− log(1− e−1/x)}1/γ + {− log(1− e−1/y)}1/γ

]γ}
,

(2.4.1)

where γ ∈ (0, 1].

Figure 2.4.1 shows the main results of the simulation study in Winter (2015). It is clear

that there is a considerable reduction in the root mean square error of the χ estimate when

including marginal information in the Ledford and Tawn bivariate joint tail model. Here

we extend this approach to three dimensions.

In the bivariate case, the following constraints must be observed. As 0 6 Pr(T 6 u) 6 1,

where T = min(X,Y ) and has survivor function given in expression (2.2.11), it follows that

0 6 c 6 u1/η. In addition, the conditional probability of Y > u given that X > u must also

be in [0, 1];

Pr(Y > u|X > u) =
Pr(Y > u,X > u)

Pr(X > u)

=
Pr(T > u)

Pr(X > u)

=
c

u1/η−1
.

Hence, we obtain the following constraint on the parameter space:

0 < c 6 u1/η−1. (2.4.2)

As this constraint is stronger, it is sufficient to enforce this instead of 0 6 c 6 u1/η.

Now in the three-dimensional case, consider the random variablesX1, X2 andX3 on common
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Figure 2.4.1: Estimates of the RMSE of χ̂(v) for the Ledford and Tawn approach (black) and
the Ledford and Tawn approach with marginal information (grey). Simulated samples are
from the bivariate logistic extreme value distribution (top row) and the inverted bivariate
logistic extreme value distribution (bottom row). The critical level v is set at the 90%
quantile (left) and the 99% quantile (right).
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Pareto margins, i.e. Pr(Xi > t) = 1/t for i = 1, 2, 3. Define the following regions for some

high threshold u:

R000 = {X1 6 u,X2 6 u,X3 6 u}

R001 = {X1 6 u,X2 6 u,X3 > u}

R010 = {X1 6 u,X2 > u,X3 6 u}

R100 = {X1 > u,X2 6 u,X3 6 u}

R011 = {X1 6 u,X2 > u,X3 > u}

R101 = {X1 > u,X2 6 u,X3 > u}

R110 = {X1 > u,X2 > u,X3 6 u}

R111 = {X1 > u,X2 > u,X3 > u}

such that the whole three-dimensional space is divided into these nine regions. Then, the

probability of falling into region R111 is given by the expression in (2.2.11) as before, except

now T = min(X1, X2, X3). The probability of falling in the other regions can be derived by

the use of inclusion-exclusion arguments. For example,

Pr(X1 6 u,X2 6 u,X3 > u) = Pr(X3 > u)− Pr(X1 > u,X3 > u)

− Pr(X2 > u,X3 > u) + Pr(X1 > u,X2 > u,X3 > u),

=
1

u
− c12

u1/η12
− c23

u1/η23
+

c

u1/η
,

where cij and ηij , i, j = 1, 2, 3, i 6= j, represent the parameters of the bivariate models, and

c and η the parameters of the three-dimensional model. The probabilities of falling in the

other regions can be derived similarly. Let us denote the number of points falling in the

region R000 by n000, the number of points falling in the region R001 by n001 and so on. Then

36



CHAPTER 2

the we can write down the likelihood as follows,

L(θ) =

(
1− 3

u
+

c12

u1/η12
+

c13

u1/η13
+

c23

u1/η23
− c

u1/η

)n000

(2.4.3)

×
(

1

u
− c13

u1/η13
− c23

u1/η23
+

c

u1/η

)n001

×
(

1

u
− c12

u1/η12
− c23

u1/η23
+

c

u1/η

)n001

×
(

1

u
− c12

u1/η12
− c13

u1/η13
+

c

u1/η

)n100

×
( c23

u1/η23
− c

u1/η

)n011

×
( c13

u1/η13
− c

u1/η

)n101

×
( c12

u1/η12
− c

u1/η

)n110

×
n111∏
i=1

(
c

ηt
1+1/η
i

)
,

where θ = (c12, c23, c13, c, η12, η23, η13, η). The following parameter constraints must be

observed, ∀i, j ∈ {1, 2, 3}, i 6= j:

(i) 0 6 cij 6 u1/ηij−1 and 0 6 c 6 u1/η−1,

(ii) c/u1/η 6 cij/u1/ηij ,

(iii) 1/u− c13/u
1/η13 − c23/u

1/η23 + c/u1/η > 0,

(iv) 1/u− c12/u
1/η12 − c23/u

1/η23 + c/u1/η > 0,

(v) 1/u− c12/u
1/η12 − c13/u

1/η13 + c/u1/η > 0,

(vi) 0 < η 6 ηij 6 1.

Constraint (i) is the three-dimensional equivalent of the constraint (2.4.2). Constraints

(ii) and (iii)-(v) ensure that the terms inside the round brackets in lines 5-7 and lines 2-4,

respectively, of the expression in (2.4.3) are positive. Finally, constraint (vi) ensures that

Pr(min(X1, X2, X3) > x) 6 Pr(min(Xi, Xj) > x) for all x > 0.

To obtain parameter estimates for θ we can maximise the likelihood given in (2.4.3). We can

either do this in one step and estimate all eight parameters at once, or we can take a two-step

approach by fitting three bivariate models first to estimate cij and ηij for i, j = 1, 2, 3, i 6= j,
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and then maximising the likelihood with these parameters fixed to obtain the maximum

likelihood estimates of c and η.

Next we will examine whether this approach gives any additional benefits over the approach

with no marginal information. To do this we conduct a simulation study similar to the

one carried out in Winter (2015). We simulate 200 replicate samples of size 5000 from a

three-dimensional extreme value distribution with a logistic dependence structure (MEVL)

and from the inverted version of this distribution (IMEVL). For each of the samples we

estimate c and η using (i) the approach with no marginal information, (ii) the two-step

approach including marginal information, and (iii) the one-step approach including marginal

information. Then we can estimate χ(v) = Pr(X1 > v,X2 > v | X3 > v) as

χ̂(v) = ĉ/v1/η̂−1.

Note that Pr(X1 > v,X2 > v | X3 > v) = Pr(X1 > v,X3 > v | X2 > v) = Pr(X2 >

v,X3 > v | X1 > v). To compare the methods with and without marginal information we

calculate the root mean squared error (RMSE) of the estimated χ(v) values for each method

for various critical values v:

RMSE[χ(v)] =
√

E{[χ̂(v)− χtrue(v)]2}

For the MEVL the true χ(v) can be derived to first order for large v as

χtrue(v) ∼ 3− 3(2γ) + 3γ ,

and for the IMEVL as

χtrue(v) ∼ v1−3γ ,

where γ is the dependence parameter of the MEVL and IMEVL. Figure 2.4.2 shows the

RMSE estimates for both models at two different critical levels. It seems that the approach

38



CHAPTER 2

0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

γ

R
M

S
E

0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

γ

R
M

S
E

0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

γ

R
M

S
E

0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

γ

R
M

S
E

Figure 2.4.2: Estimates of the RMSE of χ̂(v) for the Ledford and Tawn approach (black) and
the Ledford and Tawn approach with marginal information (grey for two-step estimation,
red for one-step estimation). Simulated samples are from the MEVL distribution (top row)
and the IMEVL distribution (bottom row). The critical level v is set at the 90% quantile
(left) and the 99% quantile (right).

including marginal information reduces the RMSE slightly, especially for the lower crit-

ical value of v = 90%. There is negligible difference between the one-step and two-step

approaches.

In the three-dimensional case we could also define χ(v) as the probability of one of (X1,

X2, X3) being greater than v conditionally on the other two being above v, e.g. Pr(X1 >

v | X2 > v,X3 > v). We have also tested estimating this χ(v) using marginal information,

but since the RMSE estimates were only very slightly reduced compared to not including

marginal information, we do not include these results here.
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We conclude that although including marginal information provides some efficiency gains

in the bivariate case (as shown in Winter (2015) and on Figure 2.4.1), the benefits decrease

in the three-dimensional case. Hence, we think that on balance the additional complexity

of the model is not worthwhile beyond the bivariate case.

2.4.2 Bias correction using the approach of Fougères et al. (2015)

Estimation of the extremal dependence structure is biased, with the bias increasing with

the number of points used for the estimation. Fougères et al. (2015) suggest a method for

correcting the bias in estimating the stable tail dependence function, which in the bivariate

case is

L(x1, x2) = lim
t→∞

tPr{1− F1(X(1)) 6 t−1x1 or 1− F2(X(2)) 6 t−1x2}, (2.4.4)

where (X(1), X(2)) is a bivariate vector with continuous marginal distributions F1 and F2.

The bivariate stable tail dependence function L(x1, x2) is equivalent to V (1/x1, 1/x2) where

V is the exponent measure defined in (2.2.4). An empirical estimator of L(x) (where x =

(x1, x2)) is then obtained as

L̂k(x) =
1

k

n∑
i=1

1

{
X

(1)
i > X(1)

n−[kx1]+1,n or X
(2)
i > X(2)

n−[kx2]+1,n

}
, (2.4.5)

where X
(j)
k,n is the kth order statistics among n realisations of the margin X(j), with k/n→ 0

for n→∞. For large n, L̂k(x) is a biased estimator of the stable tail dependence function

L(x).

Fougères et al. (2015) suggest the following bias correction method to give an unbiased

estimator. Let us denote

L̂k,a(x) := a−1L̂k(ax), 0 < a < 1, (2.4.6)
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and

∆k,a(x) := L̂k,a(x)− L̂k(x), (2.4.7)

where a is a positive scale parameter which allows the contraction or dilation of the observed

data points. Then, the following asymptotically unbiased estimator of L(x) can be derived:

L̊k,1,kρ(x) := L̂k(x)−∆k,2−1/ρ̂(x), (2.4.8)

and, more generally,

L̊k,a,kρ(x) := L̂k,a(x)−∆k,(a−ρ̂+1)−1/ρ̂(x), (2.4.9)

with a fixed as a−ρ = 2, where ρ is a second order parameter estimated as ρ̂ and kρ is an

intermediate sequence that represents the number of order statistics used in the estimator

ρ̂. The authors derive the following estimator for ρ:

ρ̂k,a,r(x) :=

(
1− 1

log r
log

{
∆k,a(rx)

∆k,a(x)

})
, (2.4.10)

and they suggest fixing a = r = 0.4. The a and kρ parameters in (2.4.9) have also been

tuned and can be fixed to a = 0.4 and kρ = 990.

It is possible to avoid estimating ρ by using a combination of estimators. Fougères et al.

(2015) derive the following alternative estimator:

L̃k,a,kρ(x) :=
L̂k(x)∆kρ,a(ax)− L̂k(ax)∆kρ,a(x)

∆kρ,a(ax)− a∆kρ,a(x)
. (2.4.11)

We now test these bias correction methods on the bivariate logistic extreme value (BVEL)

distributions which has stable tail dependence function

L(x1, x2) =
(
x

1/γ
1 + x

1/γ
2

)γ
0 < γ 6 1.
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Fougères et al. (2015) have shown that the estimators in expressions (2.4.9) and (2.4.11) give

good results in estimating the stable tail dependence function for a number of theoretical

examples, including the BVEL. Our interest lies in estimating the second order tail depend-

ence structure, represented by the coefficient of tail dependence η, introduced in (2.2.10).

The stable tail dependence function can be used to estimate η in the following way. We can

write the bivariate stable tail dependence function as

L(tx, tx) = tPr(X > tx or Y > tx),

= t[Pr(X > tx) + Pr(Y > tx)− Pr(X > tx, Y > tx)],

=
2

x
− c

x1/ηt1/η−1
. (2.4.12)

Then, setting x = 1 in (2.4.12) and rearranging we have

2− L(t, t) =
c

t1/η−1
. (2.4.13)

Similarly, setting x = y, for some y > 0, in (2.4.12) and rearranging we have

2− L(ty, ty) =
c

y1/ηt1/η−1
. (2.4.14)

Then dividing (2.4.14) by (2.4.13) and rearranging we obtain the following estimator for η:

η̂ = log(y)

/
log

(
2− L(t, t)

2/y − L(ty, ty)

)
. (2.4.15)

We will now test the performance of this estimator on samples from the bivariate logistic

extreme value distribution (BEVL) and its inverted version (IBEVL), i.e. bivariate versions

of the MEVL and and IMEVL distributions we used in Section 2.4.1. For L in expression

(2.4.15) we use the empirical estimator L̂ given in (2.4.5), the unbiased estimator L̊ in

expression (2.4.9) and the alternative unbiased estimator L̃ in (2.4.11). We compare the

performance of these estimators against the Hill estimator given in (2.2.13). For asymptotic
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independence, Fougères et al. (2015) derive that η = 1/(1 − ρ) so we also include the

estimator

η̂ρ = 1/(1− ρ̂), (2.4.16)

where ρ̂ was estimated using (2.4.10).

Figure 2.4.3 shows the performance of this estimator on 100 BEVL (top row) and 100

IBEVL (bottom row) samples of size 1000 with γ = 0.2 (i.e. relatively strong dependence).

We set y equal to a value near 1, and set t such that on the left hand side plots 50 points

(out of 1000) were used for estimation, whereas on the right hand side 100 points. Note

that the true η for the BEVL is 1 and for the IBEVL is 2−γ , which is less than 1 for all

values γ > 0, and this is captured by the Hill estimator well. The estimator η̂ρ performs

reasonably well for the IBEVL samples, but poorly for the BEVL samples, as expected.

Even for IBEVL the estimator η̂ρ is much more variable than the Hill estimator, and so is

inefficient in terms of RMSE relative to η̂Hill. The three estimators based on the stable tail

dependence function all vastly underestimate η and perform significantly worse than η̂Hill.

Hence, the bias correction introduced in Fougères et al. (2015) does not seem to capture the

second order structure of the tail dependence of the data well.
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Figure 2.4.3: Comparison of estimators for η for 100 BEVL (top row) and 100 IBEVL
(bottom row) samples of size 1000 with γ = 0.2. On the left hand side 50 points (out of
1000) were used for estimation, whereas on the right hand side 100 points. The estimators
used are: η̂Hill in (2.2.13), η̂ρ in (2.4.16), and expression (2.4.15) with L estimated by the

empirical estimator L̂ in (2.4.5), the unbiased estimator L̊ in (2.4.9) and the alternative
unbiased estimator L̃ in (2.4.11).
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Assessing Extremal Dependence of

North Sea Storm Severity

3.1 Introduction

Metocean and coastal engineers are generally interested in the estimation of design condi-

tions for a specific spatial location. Of primary concern is the estimation of return values for

wind-, wave- and current-related variables corresponding to a long return period. However,

there are instances when the engineer is concerned with characterising joint occurrences of

rare events at different locations or multiple hazard occurrence at a single location. Ex-

amples of the former type might include (i) risk to multiple offshore facilities from a single

cyclone or hurricane event, (ii) impact of a single storm surge event on multiple coastal

locations, and (iii) insurance risk to a moving vessel traversing an ocean basin. Examples

of the latter type include the combined risk of wind-, wave- and current-induced forces on

a fixed structure, or motions of a floating structure. In such circumstances, a description of

the joint structure of extreme events is necessary. This chapter develops diagnostic methods

for assessing the appropriate form of dependence structure to model metocean data sets and

explores the implications of getting this decision right and wrong in application to significant
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wave height at neighbouring locations.

To help formulate the issues, consider the simplified example of two identically distributed

random variables X and Y . For example, the random variables X and Y could represent

significant wave height at neighbouring locations. We are typically interested in cases where

both variables are large together, i.e., we need to find the probability Pr{X > x, Y > x} for

large x, where x could correspond to the 50-year return level of each variable marginally. For

large x, this joint probability will be small, so for studying dependence between extremes,

it is typical to focus on the conditional probability Pr{Y > x|X > x}, recognising that

Pr{X > x, Y > x} can be recovered from this conditional probability by multiplying by

the marginal probability Pr{X > x}. Two special cases of dependence structure between

(X,Y ) correspond to the variables being independent (which we term perfect independence)

or perfectly dependent (i.e., X = Y always). Then,

Pr{Y > x|X > x} =


Pr{Y > x} if perfect independence

1 if perfect dependence.

(3.1.1)

As x tends to the upper endpoint x∗ of the common marginal distribution of X and Y , the

limiting probability χ then will satisfy

χ = lim
x→x∗

Pr{Y > x|X > x} =


0 if perfect independence

1 if perfect dependence.

(3.1.2)

The chance of joint occurrence of extremes is completely different in these cases. We cannot

assume observations of variables, such as significant wave height at different locations, to

be perfectly independent nor perfectly dependent of one another. An occurrence of an

extreme event at one location influences the chance of an extreme event at a location in its

neighbourhood, but even locations very close by can experience different conditions. The

most well known dependence model is the multivariate normal distribution, or equivalently
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the Gaussian copula, which is widely used across fields of empirical modelling, including

spatial interpolation using kriging or Gaussian process regression. Consideration of the

properties of the bivariate normal distribution with correlation parameter ρP (where we use

the subscript P to denote the Pearson correlation coefficient) suggests an alternative form

for Pr{Y > x|X > x} for large x, which is intermediate to perfect dependence and perfect

independence for all 0 < ρP < 1, but has χ = 0.

Hence, to model tail dependence reliably we need models which will account for the different

possibilities for how the conditional probability Pr{Y > x|X > x}, and its extensions for

our metocean examples, vary for large x. Clearly, models which capture intermediate forms

between perfect independence and perfect dependence are required, and we will explain that

these correspond to two broad classes, with either 0 < χ < 1 or χ = 0, termed asymptotic

dependence and asymptotic independence, respectively. For asymptotic independence, it is

impossible for the most extreme events for both variables (X,Y ) to occur simultaneously.

For asymptotic dependence, if X is extreme it is also possible for Y to be simultaneously

extreme. In theory, there are also cases where Pr{Y > x|X > x} decays to 0 faster than

Pr{Y > x} as x → x∗, corresponding to negative dependence between (X,Y ), but for our

metocean examples this typically does not occur. Hence, the key focus in the chapter will

be on positively dependent variables.

As we are interested in joint probabilities for large events, it is natural to look for asymp-

totic arguments that provide guidance regarding the possible form that these probabilities

can take. Extreme value theory provides this framework for one variable. For example,

although the distribution of a continuous random variable can take any form, subject to

weak convergence conditions, above a sufficiently high threshold, peaks over threshold of

this variable follow the generalised Pareto distribution approximately (Pickands, 1975). This

motivates the adoption of a specific tail functional form which can be estimated, and from

which extrapolations to long return period events can be obtained. For metocean data this

has been found to provide a reliable method for return level estimation of a single variable.
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Furthermore, the parameters of this distribution may be allowed to vary with one or more

covariates, such as direction or season (e.g., Jonathan et al. 2008).

Unfortunately, analogous specific asymptotic results are not available from extreme value

theory for the joint distribution of the extremes of two or more variables. For this reason,

a number of different approaches, none of which is completely satisfactory, have emerged

for modelling multivariate and spatial extremes. In the applied statistics literature popular

methodologies are motivated by consideration of componentwise maxima and regular vari-

ation (e.g., Coles and Tawn 1994; Cooley et al. 2012; Davis et al. 2013; Davison et al. 2012;

de Haan and de Ronde 1998). These lead to tractable models for joint extremes. However,

they require the assumption of asymptotic dependence between extremes of pairs of random

variables, i.e, χ > 0 (as defined in (3.1.2)).

Suppose that X and Y represent significant wave height at two different locations rX and

rY , respectively. Then if the distance dXY = |rY − rX | between these locations is small

relative to the spatial extent of an ocean storm, the assumption of χ > 0 may well be

valid. However, as dXY increases, the assumption appears increasingly untenable, since the

same physical cause (i.e., a low-pressure field causing wind causing waves) is increasingly

unlikely to produce simultaneous extreme values of significant wave height at both locations

despite there being some dependence between observed values of X and Y . Thus, it seems

reasonable for these dXY that χ = 0 corresponding to asymptotic independence. If we

continue to increase dXY , eventually the locations are so distant that the characteristics of

X and Y cannot possibly be influenced by the same physical cause. In this limit, we can

say that X and Y exhibit perfect independence of extremes.

The difference between joint extremes estimated under asymptotic dependence and asymp-

totic independence assumptions can be very large. For example, for the storm-peak signi-

ficant wave height from a typical location in the North Sea application that we present in

Section 3.5, marginal extreme value analysis suggests that the 100-year return level is ap-

proximately 15.5m and that this does not change much over neighbouring sites. If a 100 year
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event occurs at one location, the median of the conditional distribution at a neighbouring

location will also be approximately 15.5m, under strong asymptotic dependence. However,

under the assumption of an asymptotically independent Gaussian process model with correl-

ation parameter 0.8, the median of the conditional distribution at the neighbouring location

reduces to approximately 13.5m (see Section 3.5.3 for details). In fact all quantiles of the

conditional distribution reduce by approximately 2m; a reduction of 2m in the conditional

distribution is of considerable practical importance.

The majority of applicable models for multivariate and spatial extremes assume asymptotic

dependence, leading potentially to over-estimation of the risk of joint occurrences of ex-

tremes of X and Y if asymptotic dependence is incorrectly assumed. On the other hand,

if asymptotic independence is assumed when the data are in fact asymptotically depend-

ent, the risk of the extremes will be underestimated. Conservatism in design is desirable,

provided that the extent of conservatism is itself reasonable and well bounded. For ex-

treme dependence modelling this conservatism may be unbounded. For instance, if the

variables are falsely assumed to be asymptotically dependent (with χ > 0) when they were

actually perfectly independent, then Pr{X > x, Y > x} can be over-estimated by the

factor χ/Pr{X > x} → ∞ as x → x∗. This is an issue, as over-conservatism in some

aspects of design can lead to increased risks in other aspects, particularly when resources

are constrained. If asymptotic dependence is not a reasonable assumption for a particu-

lar application, alternative approaches admitting asymptotic independence must be used.

The conditional extremes model of Heffernan and Tawn (2004) and the hybrid model of

Wadsworth and Tawn (2012a) are possibilities, but the field of modelling asymptotically

independent spatial extremes is considerably less well developed in general.

These risks of over- and under-design illustrate that we must justify the specific assump-

tions made concerning extremal dependence in any metocean application. Therefore reliable

diagnostic methods for identifying between the asymptotic independence and asymptotic

dependence classes of extremal dependence based on a sample of data are required. Tawn
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and co-workers (e.g., Ledford and Tawn 1997; Heffernan and Tawn 2004; Wadsworth and

Tawn 2013b) have developed the description of asymptotic independence, and have offered

different characterisations. A number of diagnostic statistics for the form of extremal de-

pendence have been proposed (see e.g., Coles et al. 1999) and applied in metocean settings

(see e.g., Eastoe et al. 2013). In ideal situations, these provide good guidance regarding the

nature of extremal dependence in play in a particular application. However, for a typical

metocean application, where sample size might be small, the distributions of X and Y vary

with respect to multiple covariates, and are observed only with error (either from a physical

hindcast model or from observation), such diagnostics tend to be inconclusive.

This chapter attempts to refine the way diagnostics for extremal dependence are employed

in practice, to improve their interpretability. We develop improved diagnostics for differenti-

ating between asymptotic independence and dependence, which leads to increased assurance

in model selection. In turn, we hope this facilitates better understanding of the depend-

ence of extremes of ocean environmental variables, so that joint design conditions may be

estimated with improved confidence. A key component of our method is the novel idea

to supplement measures of extremal dependence with a measure of the dependence for the

body of the data. This enables the assessment of extremal dependence in the light of the

general dependence and we find that it noticeably increases diagnostic performance.

The layout of the chapter is as follows: in Section 3.2 we summarise measures of asymptotic

independence and illustrate their value for a range of the widely used extremal models;

in Section 3.3 we explore a range of inference methods to aid the diagnostic process; in

Section 3.4 we conduct a simulation study to illustrate the performance of the diagnostic

methods for a range of distributions and samples sizes; and in Section 3.5 we apply the

methods to North Sea significant wave height data; show that the tail dependence changes

with wave direction and distance between spatial locations; and infer that in many cases

the assumption of asymptotic independence is more plausible, and in all cases that the

presence of asymptotic independence cannot be dismissed. In Section 3.6 we conclude with
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a discussion.

3.2 Extremal dependence

3.2.1 Different dependence measures for typical and extreme value data

In standard statistical analysis the Pearson correlation coefficient ρP is often used to de-

termine the dependence between two variables. A weakness of this measure is that it is not

invariant to non-linear monotone increasing transformations of the marginal variables. For

oceanographic applications this means we have different correlations between wave heights

at two locations and their associated wave powers. To overcome this issue we use Spear-

man’s rank correlation coefficient ρ (Spearman, 1904), but we could have also used the

broadly equivalent Kendal τ . In the context of oceanographic variables it is reasonable to

interpret a value of ρ close to 0 (and 1) as indicating near independence (and near perfect

dependence) respectively.

Spearmans rank correlation measures dependence for the body of the distribution, i.e.,

typical values, as all observations are given equal weighting in the assessment of dependence.

When dealing with extremes, the dependence can no longer be measured using any form of

correlation estimate, as the dependence in the body can be quite different from the extremal

or tail dependence. This property is illustrated in Sections 3.4 and 3.5. A nice illustration of

this feature arises in time series: a Gaussian autoregressive process has temporal dependence

as measured by the autocorrelation function but no tail dependence as measured by χ

(Sibuya, 1960); whereas the reverse holds for the ARCH and GARCH processes (de Haan

and Resnick (1989), Laurini and Tawn (2012)).

Therefore in Section 3.2.2 we introduce some measures of dependence structure specific to

extreme values and illustrate these on different probabilistic models for spatial processes. As

there is limited information in the extreme values, there is typically not sufficient evidence
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from these extremal dependence measures for them to be effective diagnostic tools when

identifying the form of the extremal dependence, e.g., whether the processes the data are

observed on are asymptotically dependent or asymptotically independent. Therefore, the

novel approach we take in this chapter is to supplement these measures of extremal depend-

ence with ρ, measuring dependence of typical values. The combined information from these

two dependence measures improves diagnostic performance for extremal dependence, as ρ

provides a context in which to assess estimated values of extremal dependence.

3.2.2 Measures of Extremal Dependence

There exist several summary statistics for extremal dependence, see Coles et al. (1999),

Beirlant et al. (2004) and Wadsworth and Tawn (2013b). Here we focus on four measures

which identify different characteristics of the joint tail for asymptotically independent and

asymptotically dependent distributions.

In Section 3.1 we introduced χ, with 0 ≤ χ ≤ 1, as a measure of extremal dependence for

variables which are identically distributed. This measure holds more generally when X and

Y have marginal distribution functions FX and FY , and associated inverses F−1
X and F−1

Y ,

respectively, with

χ = lim
q→1

Pr{Y > F−1
Y (q)|X > F−1

X (q)} = lim
q→1

Pr{FY (Y ) > q|FX(X) > q}. (3.2.1)

The interpretation of χ is as in Section 3.1. From an oceanographic context this corresponds

to the the limit of the probability that one variable exceeds its T year return level given

that the other variable exceeds its T year return level as T → ∞, thus there is a greater

risk for metocean designs the larger the value of χ.

All measures of extremal dependence can be specified on general and different marginal

forms, like for χ, but it is often more simple mathematically to present them for identical

marginal distributions; compare expressions (3.1.2) and (3.2.1). The concept of copulas
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(Nelsen, 2006), shows there is no loss of generality in presenting extremal measures for a

specific marginal distribution choice. Specifically when presenting the measure for variables

X̃ and Ỹ with common marginal distribution choice F , then we need to transform (X,Y )

to (X̃, Ỹ ), by

X̃ = F−1{FX(X)} and Ỹ = F−1{FY (Y )}. (3.2.2)

To apply this transformation in practice, we estimate FX and FY using the empirical dis-

tribution functions. Alternatively, we could replace the empirical distributions in the upper

tail with a generalised Pareto distribution (Coles and Tawn, 1991). Various measures are

more simple to present mathematically for a specific marginal choice, which then dictate

the choice of common distribution function F . Specifically in this chapter we use Pareto

margins, F (x) = 1−x−1 for x ≥ 1 with (X̃, Ỹ ) then denoted by (XP , YP ), Fréchet margins,

F (x) = exp(−x−1) for x > 0 with (X̃, Ỹ ) then denoted by (XF , YF ), and Laplace mar-

gins, F (x) = exp(x)/2 for x 6 0 and 1 − exp(−x)/2 for x > 0 with (X̃, Ỹ ) then denoted

by (XL, YL). Note that Pr{XF > x} = 1 − exp(−x−1) = x−1 + x−2 + O(x−3) ≈ x−1 =

Pr{XP > x} for large x. Hence, the marginal tails of the Pareto and Fréchet distributions

are approximately equivalent and so these two margins can be used inter-changeably when

focusing on the upper tail.

The measure χ has limitations: all asymptotically independent variables have χ = 0; it

does not provide information about the dependence at levels of interest, e.g., at the 50 year

return level; and it is hard to estimate as it involves an extrapolation. In particular, there

could be stronger dependence at the 50 year level for asymptotically independent variables

than for asymptotically dependent variables. Therefore we need a more refined measure

than χ. The second extremal dependence measure χ(x) is presented for Pareto marginal

variables, with

χ(x) = Pr{YP > x|XP > x} for x > 1 (3.2.3)

and χ = limx→∞ χ(x). On this scale x corresponds to the return period on the marginal
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scale, so x = 50 is the one in every 50 observations return level. It follows from Section 3.1

that for positively dependent variables x−1 6 χ(x) 6 1, the bigger the value of χ(x), for

large x, the stronger the level of extremal dependence.

A complication with χ(x) is that it is a function over x > 1 and so not parsimonious. Ideally

what is required is a formulation for how χ(x) behaves for large x. Ledford and Tawn (1996)

prove that under weak conditions

Pr{XP > x, YP > x} ∼ L(x)x−1/η for x > 1, (3.2.4)

where η ∈ (0, 1] is termed the coefficient of the tail dependence, and L is any positive slowly

varying function at infinity, i.e.,

lim
t→∞
L(tx)/L(t) = 1, (3.2.5)

provided the derivative with respect to x of the right hand side of expression (3.2.4) is

non-negative for all x > 1. This formulation gives that

χ(x) = L(x)x−(1−η)/η for x > 1. (3.2.6)

From expression (3.2.6) the relevance of η is apparent. When the variables (XP , YP ) are

perfectly independent (perfectly dependent) expression (3.1.1) shows that η = 1
2 and L(x) =

1 (η = 1 and L(x) = 1), respectively. More generally, when η = 1 and L(x)→ c with 0 < c ≤

1, it follows that χ = c and the variables are asymptotically dependent. Furthermore, χ(x)

converges to c slower than any power of x for large x, and hence, for practical cases, can be

viewed as constant for large x, i.e., χ(x) = c for x > u for some large u. When 0 < η < 1 then

χ(x)→ 0 as x→∞, so χ = 0 and the variables are asymptotically independent. However,

the value of η provides additional information about the level of asymptotic independence

as η describes the rate of convergence to 0, and therefore is key in determining the difference
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between χ(x) and χ. Specifically 1
2 < η < 1 corresponds to positive extremal dependence

and 0 < η < 1
2 to negative extremal dependence. An example when 0 < η < 1 occurs

is for the Gaussian dependence structure, with η = (1 + ρP )/2, where ρP is the Pearson

correlation coefficient, so 0 < ρP < 1 implies 1
2 < η < 1, i.e., all non-perfectly dependent

Gaussian dependence structure variables are asymptotically independent.

Although the characterisation of Ledford and Tawn (1996) provides a more concrete formu-

lation for the structure of asymptotic independence, it is restricted to situations where both

variables are large. A more general formulation, based on slightly different assumptions,

has been proposed by Heffernan and Tawn (2004) and found to have substantial uses in

metocean applications (see e.g., Jonathan et al. 2013 and Eastoe et al. 2013). The formu-

lation is most apparent in Laplace margins, i.e., we have (XL, YL), with the connection for

large values of these variables with the Pareto variable case being that XL ≈ log(XP /2) and

YL ≈ log(YP /2). Under weak assumptions, a combination of Heffernan and Tawn (2004)

and Heffernan and Resnick (2007) show that there exist values α and β, with −1 6 α 6 1,

0 6 β < 1, for x > 0 and −∞ < z <∞, such that

lim
u→∞

Pr

{
YL − αXL

Xβ
L

< z,XL − u > x

∣∣∣∣∣XL > u

}
= exp(−x)G(z), (3.2.7)

where G is a non-degenerate distribution function. It follows that α, β and G jointly de-

termine the form of extremal dependence. Here, if α = 1 and β = 0 the variables are

asymptotically dependent with χ =
∫∞

0 [1−G (−t)] exp(−t)dt > 0, but otherwise χ = 0.

Specifically, the form of asymptotic independence is given by

χ(x) = Pr{YL > xL|XL > xL}

=

∫ ∞
0

[
1−G

(
xL − α(xL + t)

(xL + t)β

)]
exp(−t)dt, (3.2.8)

where xL = log(x/2). For statistical purposes, Heffernan and Tawn (2004) assume that

limit (3.2.7) holds exactly for a large finite u. As a consequence, conditionally on XL > u,
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XL − u and (YL − αXL)/Xβ
L are independent random variables, and conditionally on XL,

with XL > u, we have

YL = αXL +Xβ
LZ, (3.2.9)

where Z has mean µ and variance σ2, with distribution function G. It follows that E[YL |

XL] = αXL + Xβ
Lµ and Var(YL|XL) = X2β

L σ2 for XL > u. Then maximum likelihood

methods can be used, under a working assumption of normality for G, to estimate α̂, β̂, µ̂

and σ̂. Rearranging (3.2.9) gives

Ẑ =
YL − α̂XL

X β̂
L

, for XL > u,

and using the empirical distribution of such Ẑ’s gives an estimate of the distribution G, i.e.,

we estimate the distribution of Z using all pairs (XL, YL) with XL > u.

3.2.3 Extremal Dependence Models

Introduction

We will consider three classes of spatial processes: max-stable process, Gaussian processes

and inverted max-stable processes. Max-stable processes can be asymptotically dependent

or perfectly independent only. In contrast, Gaussian processes and inverted max-stable

processes are asymptotically independent always. The max-stable family is the most studied

asymptotically dependent model, but it has no finite parametrisation. To illustrate some of

the max-stable process features we will present a range of parametric sub-models that are

widely used in applications. For each of the three classes of processes we will present the

dependence measures χ, χ(x) for large x, η and α and β to reveal different features of their

dependence structures. These processes are also used in Section 3.4 in a simulation study

for assessing the performance of the estimation methods of Section 3.3.
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Max-stable Processes

Max-stable processes arise as the class of marginally non-degenerate limit distributions for

componentwise maxima of independent and identically distributed replicates of a spatial

process. For such processes all finite dimensional distributions are multivariate extreme

value distributions (Beirlant et al. (2004), Ch. 8). Max-stable fields are typically presented

via the following constructive approach (see e.g., de Haan (1984); Schlather (2002), de Haan

and Ferreira (2006), Ch. 9).

For a max-stable process on the space S, let {ri}, i = 1, . . ., be the points of a Poisson process

on (0,∞), with intensity dr, and define the spectral function to be {W (s) ≥ 0; s ∈ S}, a

continuous random function on S, satisfying E{W (s)} = 1 for all s ∈ S. If the processes

Wi(·) for i = 1, . . . are independent and identically distributed copies of W (·), then

XF (s) = max
i
Wi(s)/ri for s ∈ S

is a max-stable random field with unit Fréchet margins and d-dimensional distribution

function

Pr{XF (s1) ≤ x1, . . . , XF (sd) ≤ xd} = exp

(
E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}])

for xi > 0, i = 1, . . . , d.

To motivate this representation from a practical point of view, we can view the ith event

having magnitude 1/ri, and event profile/shape over space S of Wi(·), so the ith event for

the process is Wi(s)/ri for s ∈ S. Thus, XF (s) is the componentwise maxima of these events

at location s ∈ S. The dependence structure of the max-stable process is determined by the

form of the exponent function, V ,

V (x) = E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}]
,

57



CHAPTER 3

with x = (x1, . . . , xd) for all x and all d. Here 1 ≤ V (x) ≤ d, with the lower and upper

bounds achieved when the variables are perfectly dependent and perfectly independent re-

spectively. Key to the properties of max-stable processes is homogeneity of order −1 of V ,

i.e., V (nx) = n−1V (x) for all n and x. Thus

Pr{XF (s)/n ≤ x(s), s ∈ S}n = Pr{XF (s) ≤ x(s), s ∈ S},

i.e., XF (·) and the maximum of n independent copies of XF (·)/n have the same distribution.

All max-stable processes are pairwise asymptotically dependent or perfectly independent.

Dropping the index notation for sites, we have the joint survivor function of (XF , YF ) =

(XF (s1), XF (s2)) as

Pr{XF > x, YF > x} = 1− 2 exp(−1/x) + exp{−V (x, x)}

= 1− 2 exp(−1/x) + exp{−V (1, 1)/x}

=
2− V (1, 1)

x
+

[
V (1, 1)2

2
− 1

]
/x2 +O(x−3), as x→∞. (3.2.10)

It follows that

χ(x) = 2− V (1, 1) +

[
V (1, 1)2

2
− 1

]
/x+O(x−2), as x→∞.

Hence, χ = 2 − V (1, 1) > 0 if V (1, 1) < 2, i.e. the variables are asymptotically dependent

when they are not perfectly independent, and χ = 0 when V (1, 1) = 2, i.e., the variables

are only asymptotically independent when they are perfectly independent. For the bivariate

extreme value distribution with V (1, 1) < 2, η = 1, α = 1 and β = 0, withG(z) = −V1(1, ez),

where V1(·, ·) is the first derivative of V (·, ·) (see Heffernan and Tawn (2004), Section 8.4).

Typically, it is difficult to derive V explicitly, and this is the limiting factor in finding

tractable max-stable models. There exists a slowly growing set of models for which the

bivariate distributions are available; see, e.g., Smith (1990), Schlather (2002), Kabluchko
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et al. (2009), Davison et al. (2012) and Wadsworth and Tawn (2012a). We list the details

of the most widely used below:

Smith process: Smith (1990) takes Wi(s) = φd(s − ti,Σ), where d = dim(S), φd(·,Σ)

is the d-dimensional multivariate normal density function where the vector mean is 0 and

variance is Σ, and where ti have measure dt over Rd. For this model the pairwise exponent

measure for locations o, the origin, and h is

Vh(x, y) = x−1Φ

{
ψ(h)

2
+

1

ψ(h)
log
(y
x

)}
+ y−1Φ

{
ψ(h)

2
+

1

ψ(h)
log

(
x

y

)}
, (3.2.11)

where x > 0 and y > 0, Φ is the standard normal distribution function, and ψ(h) =

√
hTΣ−1h is the Mahalanobis distance between h and o. It follows that the level of asymp-

totic dependence at separation ‖h‖ is χh = 2[1−Φ{ψ(h)/2}] for which χh → 0 as ‖h‖ → ∞,

and χh → 1 as ‖h‖ → 0, spanning the range of possible asymptotic dependencies. At all

finite separations of the locations we have asymptotic dependence.

Schlather process: Schlather (2002) took Wi(s) = max{0, Zi(s)} where the Zi(s) are

independent replicates of a stationary process Z(s) on Rd, satisfying E[max{0, Z(o)}] = 1,

where o denotes the origin. When
√

2πZ(s) is a stationary Gaussian process with mean

zero, variance 2π and correlation function ρ(h), then the pairwise exponent measure for

locations o, the origin, and h is

Vh(x, y) =
1

2

(
1

x
+

1

y

)
×

(
1 +

[
1− 2

(ρ(h) + 1)xy

(x+ y)2

]1/2
)
,

where x > 0 and y > 0. Here χh = 1 − {[1 − ρ(h)]/2}1/2. When d = 2, because ρ(h) is

a positive definite function, χh ≥ 0.162. This means that the model cannot account for

processes with low asymptotic dependence at any separation.

Brown-Resnick process: Brown and Resnick (1977) let W (s) = exp{ε(s)− γ(s)}, where

ε(s) is a fractional Brownian process with semivariogram γ(h) = (h/c)α, 0 < α 6 2, c > 0,
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h = ‖h‖ > 0, and ε(0) = 0 almost surely. Here χh = 2[1−Φ{{2γ(h)}1/2/2}]. A special case

is the Smith model when α = 2.

Extremal-t process: Demarta and McNeil (2005) assume that

W (s) =
√
π2−ν/2+1[Γ{(ν + 1)/2}]−1 max{ε(s), 0}ν ,

where ν > 1, Γ is the Gamma function, and ε(x) is a stationary Gaussian random field

with mean zero and correlation function ρ(h). The case when ν = 1 corresponds to the

Schlather process. The level of asymptotic dependence between locations o and h is χh =

2[1 − Tν+1(
√

(ν + 1)[1− ρ(h)]/[1 + ρ(h)])], where Tν denotes the cumulative distribution

function of a student-t random variable with ν degrees of freedom.

Gaussian Processes

Gaussian processes are the simplest and most well-known asymptotically independent pro-

cesses. Let {Z(s), s ∈ S} be a stationary Gaussian process with E{Z(s)} = 0, Var{Z(s)} =

1 and Corr{Z(o), Z(h)} = ρ(h). Define

XF (s) = −1/ log Φ(Z(s)),

then XF (s) has Fréchet margins and a Gaussian process copula. For this process, χh = 0

for all ‖h‖ 6= o, and ηh = {1 + ρ(h)}/2, where ηh is the measure in (3.2.4) for the process

at the pair of sites o and h. For large x we have

χh(x) = Lh(x)/x1/ηh ,
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with Lh a slowly varying function. Furthermore, in the Heffernan and Tawn formulation,

the dependence parameters (α, β) for the process at the pair of sites o and h are

αh = (ρ(h))2 sign (ρ(h)) and βh = 1/2.

The limiting conditional distribution Gh (corresponding to G in equation (3.2.7)) is Gaus-

sian with variance 2ρ(h)2[1 − ρ(h)2]. This shows that simply using a Gaussian copula for

asymptotically independent cases is not a sufficiently general approach as both βh and Gh

have restrictive forms relative to the more general Heffernan and Tawn class.

Inverted Max-Stable Processes

Wadsworth and Tawn (2012a) introduce an alternative class of asymptotically independent

processes - the inverted max-stable processes. Essentially, these processes have the same

copula as max-stable processes, but with the copula inverted, so that lower tail dependence

translates to upper tail dependence, and vice versa. Formally, if XMS(·) and XIMS(·) are

a max-stable process and an inverted max-stable process, respectively, both with Fréchet

margins, then

XIMS(s) = −1/ log[1− exp{−1/XMS(s)}], for s ∈ S. (3.2.12)

This process has χh = 0 for all h 6= 0, and

χh(x) = x−1/Vh(1,1) +O(x−1−1/Vh(1,1)) for large x,

so ηh = 1/Vh(1, 1), where Vh is the exponent measure for XMS(o) and XMS(h). The form

of the conditional extremes parameters (αh, βh) is complicated in general, see Papastatho-

poulos and Tawn (2016). We focus in particular on the example where V (x, y) corresponds
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to the logistic model (Tawn, 1988)

V (x, y) =
(
x−1/γ + y−1/γ

)γ

where x > 0, y > 0 and γ ∈ (0, 1], with γ → 1 implying independence and γ → 0 implying

perfect dependence. Then the joint distribution function for the inverted bivariate logistic

extreme value distribution is

F (x, y) = exp(−1/x) + exp(−1/y)− 1

+ exp

{
−

[(
−1

log(1− e−1/x)

)−1/γ

+

(
−1

log(1− e−1/y)

)−1/γ
]γ}

.

(3.2.13)

For this distribution η = 2−γ , α = 0 and β = 1− γ.

3.3 Estimation

In this section we introduce several methods for estimating the dependence measures de-

scribed in Section 3.2. The performance of these methods will be explored in Section 3.4.

Our particular focus is on the estimation of η and χ(x); the former as it gives a single

number summary indicating how close the joint tail is to asymptotic dependence, and the

latter as it provides a clear picture of the implications of the nature of the extremal de-

pendence on actual joint occurrences. We base our estimation of η on methods of Ledford

and Tawn (1996), and propose new models and constraints. Equations (3.2.6) and (3.2.8)

present different formulations for χ(x); we present inference based on both of these.
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3.3.1 Estimating η

To estimate the tail dependence given in representation (3.2.4) it is useful to define T =

min(XP , YP ) and note that

Pr{T > x} = Pr{min(XP , YP ) > x}

= Pr{XP > x, YP > x}

= L(x)x−1/η for x > 1. (3.3.1)

Thus, 0 < η ≤ 1 is the tail index of the variable T . This means that, even though dependence

is a bivariate feature, univariate techniques can be used to estimate η simply by using data

on T constructed from (XP , YP ). To estimate η using the tail form (3.3.1), we need to make

some modelling assumptions about the positive slowly varying function L(x) above a high

threshold u, in addition to the property (3.2.5) and expression (3.3.1) representing a valid

survivor function. In previous studies when parametric models have been specified for L(x)

for x ≥ u, the only constraint imposed is that 0 < Pr{T > u} ≤ 1, so 0 < L(u) ≤ u1/η.

However, from conditional probability (3.2.6) we have the stronger condition 0 < L(u) ≤

u(1−η)/η. For the tail of T to have a density fT (x) > 0 for x > u, we also require that

L(x) > ηxL′(x) for all x ≥ u.

Possible choices for L(x), for x > u, that have been suggested in the past (see, Ledford

and Tawn (1996), Ledford and Tawn (2003) and Pickands (1975), respectively, for models
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(3.3.2)-(3.3.4)) are:

L1(x) = c (3.3.2)

L2(x) = c+ dx1/η−2 (3.3.3)

L3(x) = λ

[
x−1

(
1 +

η(x− u)

σ

)]−1/η

. (3.3.4)

Model (3.3.2) leads to the Hill estimator for η and model (3.3.4) corresponds to a generalised

Pareto tail with the shape η > 0, scale σ > 0 and threshold exceedance rate 0 < λ < 1.

In contrast, the two-term model (3.3.3) attempts to capture a natural second order decay

rate with the tail cx−1/η + dx−2, so for this to be the second term, we additionally require

η > 1/2, corresponding to positive extremal dependence. Our constraints impose that 0 6

c 6 u(1−η)/η for model (3.3.2), and cu−(1−η)/η+du−1 6 1 and if d < 0 that c > 2η|d|u−2+1/η

for model (3.3.3). Additionally, we imposed that η must be in the range (0, 1].

The models given above can be fitted using a censored likelihood approach. We take the

likelihood to be

L(θ) =

{
nu∏
i=1

fT (ti)

}
Pr{T 6 u}n−nu , (3.3.5)

where θ is the vector parameter for the tail of T , T = min(XP , YP ), nu is the number of

points above the threshold u, and t1, . . . , tnu is an enumeration of the values of T > u. We

use constrained maximum likelihood to impose our restrictions on the parameter space when

estimating θ = (c, η), θ = (c, d, η) or θ = (λ, σ, η) for models (3.3.2), (3.3.3) and (3.3.4),

respectively. For model (3.3.2) analytical estimates can be obtained

θ̂ = (ĉ, η̂) =

(
nu
n
u1/η̂,min

{
1

nu

nu∑
i=1

log

(
ti
u

)
, 1

})
.

The other two models require constrained numerical maximisation of the likelihood to obtain

parameter estimates as no tractable solutions exist.

Simply using the likelihood function does not exploit knowledge about the processes in-
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volved, e.g., they are positively dependent in the extremes, nor our caution in the inference

about being conservative from the outset, i.e., expecting the extremal dependence structure

to be more like asymptotic dependent than asymptotic independence prior to seeing data.

To incorporate this information it is natural to adopt a Bayesian framework to the infer-

ence. Although much work (see e.g., Lee 2012) has been undertaken on selecting priors to

represent our lack of knowledge (i.e., non-informative priors), less work exists for guiding

the incorporation of informative prior knowledge. A key development in the latter has been

through the approach of Simpson et al. (2015). They introduce the penalised complexity

(PC) prior as a way of constructing prior distributions for situations where there is a natural

nested structure in the model components; i.e., there is a more flexible model that is an

extension of a base model. PC priors penalise the complexity induced by deviating from the

simpler base model. For our context, a natural base model is asymptotic dependence and

the more flexible model covers both asymptotic independence and dependence parametrised

by η. Focusing on exceedances of the threshold u by T and adopting model (3.3.2) for L(x),

the base model is

g(x) =
u

x2
, x > u,

and the more flexible model is

f(x) =
u1/η

ηx1/η+1
, x > u, 0 < η 6 1, u > 0.

So, f(x) = g(x) when η = 1. The penalised complexity prior for η (derived in Appendix 3.A)

is then

π(η;λ) =
λ(1− η) exp

(
−λ
√
−2 log η + 2(η − 1)

)
η
√
−2 log η + 2(η − 1)

, for 0 < η ≤ 1,

where the parameter λ > 0 controls the shape of the prior. The value of λ determines

the strength of the prior belief that a model close to an asymptotically dependent model

is appropriate to the data. In the studies in this chapter we chose λ such that π(η >

0.5;λ) = 0.99, which essentially ensures positive extremal dependence. From this it follows
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that λ = 7.409. We use this prior with the likelihood given in (3.3.5) to obtain a maximum

a posteriori (MAP) estimate of η.

3.3.2 Estimating χ(x)

Though it is possible to estimate χ(x), defined by probability (3.2.3), empirically, this

restricts estimates to x in the range of the data. To estimate beyond the data we need to

use a model; here we use asymptotic forms (3.2.6) and (3.2.8).

Using the Ledford and Tawn model (3.2.6), with estimates η̂ and L̂(x) for each of the

models (3.3.2)-(3.3.4), substituting the maximum likelihood estimates of the parameters,

gives

χ̂i(x) ≈ L̂i(x)

x1/η̂−1
, for x > u, i = 1, 2, 3. (3.3.6)

Now consider inference for χ(x) using the conditional extremes model (3.2.7), with χ(x)

given by the integral expression (3.2.8). The simplest way to evaluate this integral is through

Monte Carlo methods using estimated values α̂, β̂ and Ĝ of α, β and G, as shown in the

algorithm below.

Algorithm 1 Algorithm for Monte Carlo evaluation of χ(x) using conditional extremes
model
Simulate XL above xL = log(x/2) as XL = xL + v, where v is a realisation of an Exponen-
tial(1) random variable;
Simulate Z from Ĝ independently of XL;

Set YL = α̂XL + (XL)β̂Z;
Repeat steps 1-3 m-times;
Set χ̂HT (x) as the proportion of the m simulated pairs (XL, YL) with YL > xL.

3.4 Simulation study

Here we compare different methods for the estimation of η and χ(x) presented in Section 3.3

for samples from asymptotically dependent and asymptotically independent models given in

Section 3.2.3. We further investigate how sample size and threshold choice affect estimation.
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3.4.1 Design

Simulation processes

We simulate samples from the max-stable Smith, Schlather, Brown-Resnick and extremal-

t processes, the Gaussian process, and from the inverted logistic bivariate extreme value

distribution.

Simulating from a max-stable process is relatively straightforward; for details, see Schlather

(2002). In this chapter we used the SpatialExtremes package in R (Ribatet 2008), which

gives samples on Fréchet margins that can then be transformed to the desired margins

using the probability integral transform. We simulated from the processes over 10 equally

spaced locations on a straight line. For the Smith process, we set Σ = {σij} with σ11 =

σ22 = 2 and σ12 = σ21 = 0, in order to give a good range of Spearman’s ρ on (0,1)

between pairs of locations. For similar reasons, we simulated the Schlather process with

correlation function ρP (h) = exp(−h/4) and the Brown-Resnick process with semivariogram

γ(h) = exp(−h/0.8). For the extremal-t simulation, the correlation function used was

ρP (h) = exp(−h/3) with ν = 5 degrees of freedom.

The Gaussian process samples were simulated over 15 equally spaced locations on a line,

with a distance of one unit between the closest sites. The process has correlation function

ρP (h) = e−λh, where h is the distance between two locations, and λ was chosen such that

ρP (1) = 0.6. Hence, ρP (mh) = ρP (h)m, for m = 1, . . . , 15, leading to a process at the

observed sites being a first order Markov process. We generated the samples using the

mvtnorm package in R (Genz et al. 2014). The chosen combination of number of sites and

first order dependence parameter λ ensures a good coverage of the range (0,1) for Spearman’s

ρ.

Samples from the inverted logistic distribution were obtained by simulating from the bivari-

ate extreme value distribution using the evd package in R (Stephenson 2002), and then
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inverting the lower tail of this using (3.2.12). We simulated over 10 equally spaced locations

on a line, and the dependence parameter γ was chosen such that a good range of Spearman’s

ρ is obtained over (0,1).

General behaviour of η and χ(x) with ρ

Throughout the simulation study, we simulate samples from each of the processes described

above over 10 (or 15) equally spaced locations on a straight line, and we estimate ρ, χ(x)

and η for pairs of locations with different separation lags along this line. In general, we

expect pairs of locations with smaller lag to be more correlated (and hence have higher ρ

estimates) than pairs of locations further apart. Hence, ρ corresponds to the lag between

locations to some extent. Since the estimation of ρ is very precise relative to the estimation

of η and χ(x), we only show confidence intervals for η and χ(x) throughout.

First we explore how values of η and χ(x) link to Spearman’s ρ for the different processes we

have introduced above. Here we evaluate each of these properties using estimates obtained

from replicates of very large samples.

Figure 3.4.1 illustrates the relationship between median estimates for η and χ(x) and val-

ues for ρ from 1000 realisations of samples of size 106 from each of the processes, with η

estimated using model (3.3.4) with threshold probability q = Pr{T 6 u} = 0.99, and χ(x)

estimated empirically using equation (3.2.3) with x = 100. The point-wise (2.5%, 97.5%)

uncertainty band is also shown for η and χ(x). Here ρ̂ denotes the median estimate of ρ

over the 1000 sample realisations. The width of the 95% confidence interval for ρ̂ is at most

0.01 for this large sample size, so the ρ estimates are very precise. The relationship between

η̂ and ρ̂ is very similar for all asymptotically dependent max-stable processes (shown in

magenta, red, blue and green), as is the relationship between χ̂(x) and ρ̂. The behaviour

of the asymptotically independent Gaussian process (shown in black) and inverted logistic

distribution (shown in cyan) is clearly different for both η̂ with ρ̂ and χ̂(x) with ρ̂. However,
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Figure 3.4.1: Estimates for (a) η and (b) χ(x) against estimates for Spearman’s ρ for
simulated samples of size n = 106 from each of the models introduced in Section 3.2.3;
Smith (magenta), Schlather (red), Brown-Resnick (blue), extremal-t (green) and Gaussian
(black) processes, and the inverted logistic distribution (cyan). Estimation methods use
model (3.3.4) for η with q = 0.99, and the empirical estimate for χ(x) with x = 100. Solid
lines are median estimates (of η and χ(x)) from 1000 sample replications, dashed lines give
2.5% and 97.5% quantiles. The estimation of Spearman’s ρ is very precise relative to the
estimation of η and χ(x), so ρ̂ here is the median of the 1000 sample estimates for each
model with no confidence intervals shown.

for asymptotic dependence, the known limiting value of unity for η is only achieved (ap-

proximately) for max-stable processes with ρ̂ exceeding 0.2 (see Figure 3.4.1(a)). Similarly,

for asymptotic independence, the known limiting value of zero for χ(x) is never achieved

for either the Gaussian process or inverted logistic distribution for our choices of x (see

Figure 3.4.1(b)). This suggests that relying purely on sample estimates for η and χ(x) ap-

proximating limiting values, even for large samples, is not a useful diagnostic for extremal

dependence. However, the obvious differences in behaviour between estimates of η with ρ,

and χ(x) with ρ suggest that distinction between asymptotic dependence and asymptotic

independence is possible.

We confirmed by simulation that the functional relationships between η and ρ, and χ(x)

and ρ, are not strongly dependent on the values of model parameters for a specific model.

The results we present in the remainder of this section are therefore effectively independent

of the model parameter specification.
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Estimators, sample sizes and thresholds

We investigate the performance of the set of estimators for η and χ(x) for samples from

different processes, with different sample sizes and threshold choices. Since the character-

istics of all max-stable models (for given sample size and threshold) are found to be very

similar, we choose here to illustrate their behaviour using results for the Smith process only;

corresponding results for other max-stable processes are given in Appendix 3.B.

In Sections 3.4.2 and 3.4.3, we examine the performance of different estimators for η and

χ(x), respectively, for samples from the Smith max-stable process and the Gaussian process.

We chose these two processes, so that the behaviour of η and χ(x) can be inspected for both

an AI and an AD process. In Section 3.4.4, we assess the effect of sample size on estimates

for η and χ(x), for samples from the Smith and Gaussian processes, and the inverted logistic

distribution. We also consider in Section 3.4.4 the effect of the threshold probability q and

level x on estimates for η and χ(x), respectively, for these samples.

We consider three sample sizes, motivated by the North Sea application discussed in Section

3.5: a large sample with n = 106 observations (probably unrealistically large for typical

metocean applications, but useful to assess large sample performance), and two more realistic

sample sizes of n = 58585 (medium size, equivalent to the size of the sea-state significant

wave height sample in Section 3.5), and n = 916 (small size, equivalent to the size of the

storm-peak significant wave height sample in Section 3.5). For each sample size, we adjust

the threshold probability q and the level x to achieve acceptable numbers of observations

for estimation of η and χ(x), respectively. For the large sample, high threshold probabilities

and levels are chosen, whereas for the more realistically-sized medium and small samples

we are forced to choose lower threshold probabilities.

The key feature of figures shown in this section is the degree of agreement between sample

estimates for η and χ(x) and their known limiting behaviour given the underlying process

(or distribution) used to simulate the sample. For asymptotically dependent samples, we
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expect estimates for η close to unity, and estimates for χ(x) bounded away from zero even for

large x. For asymptotically independent samples, we expect estimates for η less than unity,

and estimates for χ(x) approaching zero for large x. We expect that agreement between

sample estimate and limiting behaviour further depends on the overall extent of dependence

in the full sample, hence we plot these estimated extremal dependence features against the

Spearman’s rank correlation ρ.

3.4.2 Comparison of estimation methods for η

We denote the estimators of η given by the censored likelihood approach (3.3.5) for the

models (3.3.2)-(3.3.4) by η̂1, η̂2 and η̂3 respectively. We also estimated models (3.3.2)

and (3.3.3) with the Bayesian penalised complexity (PC) prior described in Section 3.3.1.

However, we found that the estimates were effectively unchanged unless very strong priors

were used. Hence, we only show these results for the smallest sample size, where the prior

is not dominated by the sample likelihood.

We compare estimators for the following combinations (n, q) of sample size n and threshold

probability q: (106, 0.99), (58585, 0.90) and (916, 0.90). For each sample size, 1000 replicate

samples are generated from each of the Smith and Gaussian processes to allow estimation

of 2.5% and 97.5% quantiles of the sampling distribution of the estimator of η. Since ρ is

relatively precise to estimate, with the width of the 95% confidence interval around ρ̂ at

most 0.01 for the large sample and at most 0.1 for the small sample, we use the median of

ρ̂ over the 1000 sample replications. Figure 3.4.2 shows estimates for η using the different

methods, represented by lines of different colour, for the large sample from the Smith (see

Figure 3.4.2(a)) and Gaussian processes (see Figure 3.4.2(b)), plotted against Spearman’s

ρ.

The Gaussian process is asymptotically independent, with η = (1+ρP )/2 < 1. The estimates

in Figure 3.4.2(b) are consistent with this. There is no material difference between the means

71



CHAPTER 3

of the sampling distributions for the different methods for estimating η here. However, note

that the variance of the sampling distributions is slightly larger for model (3.3.3). This is

likely due to the additional term in the tail model.

The Smith model is asymptotically dependent over all distances, so the true value of η is

unity for all pairs. Whilst there is some difference between the different estimation methods,

all estimators underestimate η for asymptotically dependent samples when dependence is

low and the sample size is relatively small (see Figure 3.4.2(a)). All η estimators are close

to unity for large ρ̂, but η̂2 and η̂3 seem to perform better than η̂1 for pairs with lower ρ̂, as

these better capture the higher order features of the tail decay.

The following argument helps understand why η estimates start to perform poorly for the

Smith process with weak dependence. For the Smith process, using expression (3.2.10), we

know that

F̄T,h(x) = Pr(min(X(s), X(s+ h)) > x)

= Pr(X(s) > x,X(s+ h) > x)

=
(2− 2Φ{a(h)/2})

x
+

2Φ2{a(h)/2} − 1

x2
+O(x−3), for large x, (3.4.1)

where Φ is the standard normal distribution function and a(h) is the Mahalanobis distance

between h and the origin o. For two locations with Spearmans ρ approximately equal to 0.1,

the upper tail in equation (3.4.1) becomes F̄T,h(x) ≈ cx−1 + dx−2 +O(x−3), with c = 0.004

and d = 0.991. In order for the first term to dominate we would need cx−1 � dx−2, but

this can only be achieved if x is very large. Even to just have cx−1 > dx−2, for x > u,

we need u ≈ 250 on the Fréchet scale, which means a threshold quantile of approximately

99.995% for T . Hence, for practical sample sizes and threshold choices, the estimator η̂1

will be biased for pairs with low Spearmans ρ.

Figures 3.4.3 and 3.4.4 present analogous estimates of η for the medium and small sample

sizes, respectively. Note that the smaller the sample size, the η estimates for the Smith
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Figure 3.4.2: Estimates for η against Spearman’s ρ for sample size n = 106 with q = 0.99,
from (a) Smith process and (b) Gaussian process. Estimation methods are model (3.3.2)
(red), model (3.3.3) (blue), and model (3.3.4) (black). Solid lines give the median from 1000
sample replications, dashed lines give 2.5% and 97.5% quantiles. The solid grey line shows
a correct limiting value for η. The dashed grey line shows a limiting value that η should not
take.

model have more bias for pairs with low dependence, and show more uncertainty (see Figures

3.4.3(a) and 3.4.4(a)). However, when the sample size is small, the prior is more important

and its inclusion gives better estimates, drawing η̂ towards unity (see Figure 3.4.4(a)). For

the Gaussian process the estimates are consistent with the true η value, but here too there is

more uncertainty in the estimates due to the small sample sizes. The increased uncertainty

means that unity lies within the confidence bounds for pairs with ρ > 0.6 (see Figure

3.4.4(b)), so in these cases asymptotic dependence might be selected incorrectly.

3.4.3 Comparison of estimation methods for χ(x)

For samples of size n = 58585 from the Smith and Gaussian processes, we compare different

methods for estimating χ(x) outlined in Section 3.3.2. Specifically, model-based estimates

χ̂1(x), χ̂3(x) and χ̂HT (x) are compared with empirical estimate χ̂EMP (x). We estimate

χ̂EMP (x) using the conditional probability given in (3.2.3), by simply counting the points

in the region {YP > x,XP > x} and dividing by the number of points in the region {YP > x}.

Estimates for χ̂2(x) are omitted in figures for clarity due to their close similarity to those for
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Figure 3.4.3: Estimates for η against Spearman’s ρ for sample size n = 58585 with q = 0.90,
from (a) Smith process and (b) Gaussian process. Lines are as described in Figure 3.4.2.
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Figure 3.4.4: Estimates for η against Spearman’s ρ for sample size n = 916 with q = 0.90
from (a) Smith process and (b) Gaussian process. Lines are as described in Figure 3.4.2.
Additionally, estimation methods using model (3.3.2) with PC prior (green) and model
(3.3.3) with PC prior (cyan) are shown.
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χ̂1(x). For the model-based estimates χ̂1(x) and χ̂3(x) a modelling threshold u was chosen

such that Pr{T 6 u} = 0.90. For the third model-based estimate χ̂HT (x) we estimated

the model parameters α, β, µ, and σ above a 90th percentile threshold (see Section 3.2.2).

We estimate χ(x) at the level x = 10000. This level was chosen, since it is a very high

quantile of the sample, with only 5 data points above this level, so the empirical estimate

is expected to be poor. Hence, we can better compare the model-based estimates. We have

also compared the estimators at the level x = 100, which is within the data, but at this

level all the estimators were performing very similarly, so these results are not shown here.

The different estimates are shown against estimates of Spearman’s ρ in Figure 3.4.5. The

empirical estimate is not reliable, due to the small number of points above this level. The

model-based estimates perform similarly for the Gaussian sample (see Figure 3.4.5(b)).

However, for the Smith model, χ̂3(x) gives higher mean values and wider uncertainty bands

than the other model-based estimators. This might be due to the tail model (3.3.4) that

this estimator is based on. Note the different pattern of the relationship between χ̂(x) and

ρ̂ for the two processes, as already noted on Figure 3.4.1; the asymptotically dependent

Smith process shows higher levels of tail dependence than the asymptotically independent

Gaussian process across all levels of Spearman’s ρ̂. At the high level x = 10000, χ̂(x)

approaches 0 for the Gaussian process sample, which is the limiting value as x→∞.

In summary, it appears that the different estimation methods lead to fairly similar estimates

for both processes, when x is set to a level that is within the data. For this reason, in

Section 3.4.4, we adopt the empirical estimate only due to ease of computation. We note

however that model-based estimates offer the additional benefit of extrapolation to rare

levels (beyond the sample) when necessary.
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Figure 3.4.5: Estimates for χ(x) against Spearman’s ρ for sample size n = 58585 with
x = 10000 from (a) Smith process and (b) Gaussian process. Estimation methods are
empirical χEMP (x) (black), χ1(x) (blue), χ3(x) (red) and χHT (x) (green). Solid lines give
the median from 1000 sample replications, dashed lines give 2.5% and 97.5% quantiles.

3.4.4 Effect of sample size and threshold effect

Here we assess the effect of sample size, threshold probability and level x on selected estim-

ates for η and χ(x) for samples from the Smith and Gaussian processes, and the inverted

logistic distribution. The estimator η̂3 as given by model (3.3.4) is used for η estima-

tion, and the empirical estimate χ̂EMP (x) for χ(x). For estimating η, the following pairs

(n, q) of sample size n and threshold probability q are considered: (106, 0.99), (106, 0.999),

(106, 0.9999), (58585, 0.80), (58585, 0.90) and (58585, 0.99). For estimating χ(x), the level

x was set so that the same number of observations would be used for estimation as for the

corresponding η estimation. This gives the following pairs (n, x) of sample size n and level

x: (106, 100), (106, 1000), (106, 10000), (58585, 5), (58585, 10) and (58585, 100).

For asymptotically dependent samples, we expect η estimates close to unity, and χ(x) es-

timates bounded away from zero for all x. Results for the Smith process clearly show that

χ̂(x) > 0 even for large x and small ρ (see Figure 3.4.6(b) and 3.4.6(d)). Further, η ≈ 1 for

pairs with high dependence in the body (as measured by Spearman’s ρ), however, η is under-

estimated for pairs with weak dependence in the body, particularly for smaller sample sizes
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and lower thresholds. Figure 3.4.6(a) shows that the η estimate is good for our large sample,

but this sample size and threshold probability are not typically achievable in practice. For

realistic sample sizes and threshold probabilities, η is underestimated for low levels of de-

pendence (see Figure 3.4.6(c)). This is the case for other asymptotically dependent models

as well. We conducted the same analysis for the other max-stable processes described in

Section 3.2.3 with similar results (see Appendix 3.B).

For asymptotically independent samples, the limiting value of η is less than 1 for all pairs,

and so χ = 0. For both the Gaussian and the inverted logistic samples, η̂ < 1 for all pairs

(see Figures 3.4.7(a,c) and 3.4.8(a,c)). However, χ̂(x) is approximately 0 only for pairs

with low dependence in the body of the data for all levels of x considered here. At high

levels x, estimates approach the limiting value of χ (see Figures 3.4.7(b,d) and 3.4.8(b,d)).

Face-value interpretation of χ(x) estimates suggests asymptotic dependence; and we know

this is not the case. This shows the critical importance η plays in distinguishing asymptotic

independence from asymptotic dependence.

We note also that η̂ and χ̂(x) appear to decrease faster with decreasing ρ̂ for the inverted

logistic sample than for the Gaussian sample (compare Figures 3.4.7 and 3.4.8). This be-

haviour is not affected by the distributional parameters chosen for sample simulation from

these processes; these only affect the range of ρ, not the relationship between ρ and η and

χ(x). These features therefore provide a valuable tool for model diagnostics for asymptot-

ically independent processes, and will be used in Section 3.5.

3.5 Application

3.5.1 Data

Characterisation of marginal and spatial dependence for extremes of significant wave height

HS is essential to reliable design and operation of marine and coastal installations. Sea-state
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Figure 3.4.6: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from
the Smith model. Sample size is n = 106 (top row) and n = 58585 (bottom row). Threshold
probabilities for the η estimation are q = 0.9999 (green line), q = 0.999 (red line), q = 0.99
(black line), q = 0.90 (cyan line) and q = 0.80 (magenta line). Corresponding levels for
the χ(x) estimation are x = 10000 (green line), x = 1000 (red line), x = 100 (black line),
x = 10 (cyan line) and x = 5 (magenta line). Solid lines give the median from a 1000 sample
replications, dashed lines give the 2.5% and 97.5% quantiles. The solid grey line shows a
correct limiting value for η.
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Figure 3.4.7: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from
the Gaussian process. Sample size is n = 106 (top row) and n = 58585 (bottom row). Lines
are as described on Figure 3.4.6. The dashed grey line shows a limiting value for η that the
estimates should not take.
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Figure 3.4.8: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from
the inverted logistic model. Sample size is n = 106 (top row) and n = 58585 (bottom row).
Lines are as described on Figure 3.4.6. The dashed grey line shows a value for η that the
estimates should not take.
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HS is defined as four times the standard deviation of the ocean surface elevation in a given

time period. The data examined here consists of time-series for HS for three hour sea-

states (from the hindcast of Reistad et al. 2011) for the period September 1957 to December

2012 on a grid of 150 northern North Sea locations, covering an area of approximately 5◦

longitude by 5◦ latitude, with an approximate grid spacing of 0.4◦; see Figure 3.5.1. The

univariate extreme value characteristics of HS from the hindcast have been examined by

Aarnes et al. (2012) and Breivik et al. (2013). We analyse this sample of sea-state HS and

a further sample of 916 independent storm-peak HS values extracted from the sea-state

data using the procedure of Ewans and Jonathan (2014): briefly, contiguous intervals of

sea-state HS above a low peak-picking threshold are identified, each interval corresponding

to a storm event. The maximum of HS during the interval is taken as the storm-peak HS

for the storm. Consecutive values of sea-state HS at a location typically exhibit temporal

dependence, whereas consecutive storm-peak values do not.

The distribution of sea-state HS varies with wave direction θ due to the combination of

prevailing wind field and land shadow effects. Figure 3.5.2 shows (θ,HS) for one location.

Note that θ represents the direction from which waves emanate, measured clockwise from

North. The density estimates for θ|HS > v for v = 0, 4, 8m and 10m are also shown.

It can be seen that as the threshold v increases, the density is increasingly concentrated

in the [320, 10] and [120, 200] directional sectors. This suggests that for this particular

location the biggest waves come from these directions, corresponding to storms emanating

from the North North-West and South South-East approximately, respectively, roughly the

orientation of the blue strip in Figure 3.5.1. We therefore might expect directional effects

to influence spatial dependence, and that ignoring θ in assessing spatial dependence might

not be justified. Focusing on strips of locations with different orientations helps us assess

and illustrate directional influences on spatial dependence in a more straightforward way.

Hence, we proceed to examine the extremal dependence between pairs of locations on the

four straight-line strips, shown on Figure 3.5.1. The blue strip has approximately North-
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Figure 3.5.1: Map of location of data, showing four colour-coded sets of locations lying on
straight lines with particular orientations, referred to in the text as “strips”.
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Figure 3.5.2: Sea-state HS against wave direction θ for a central location, and corresponding
density estimates for θ|HS > v for v = 0m (magenta), v = 4m (purple), v = 8m (cyan) and
v = 10m (dark green).

South orientation with long along-strip fetches in both directions. The red and black strips

are both aligned North-West – South-East. The westerly end of the red strip is in the land

shadow of the Shetland islands, but the westerly end of the black strip is located between

the Shetland and Orkney islands, so has a long fetch from the North-West Atlantic Ocean.

The green strip has a South-West – North-East orientation with along-strip fetch limited

by the land masses of the Britain Isles and Norway.

3.5.2 Identification of extremal dependence

Figure 3.5.3 illustrates that the dependence between locations on each of the strips varies

with inter-location separation. In Figure 3.5.3(a), plots of convex hulls for sea-state HS

from pairs of locations on the black strip corresponding to inter-location separations of 1,

5 and 10 are shown (or separations of 0.5◦, 2.3◦ and 4.5◦ respectively). Figure 3.5.3(a),

and corresponding figures for other strips (not shown), suggests that dependence reduces

with increasing separation as expected. Because of the orientation of the location grid used

for the hindcast, inter-location separation along the red and black strips is approximately

the same; however, inter-location separations along the green and blue strips are different.
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Figure 3.5.3(b) shows convex hulls of sea-state HS for pairs from all strips with inter-

location separation of approximately 2.4◦, achieved by taking an inter-location separation

of 5 for the red and black strips, 6 for the blue and both 6 (approximately 2.2◦) and 7

(approximately 2.6◦) for the green strip. From Figure 3.5.3(b) it is difficult to identify

differences in dependence between strips for pairs at a separation of approximately 2.4◦;

however there is some suggestion that the dependence between sea-state HS for pairs of

locations on the red and black strips is similar. Blue and green strips also appear to be

relatively similar. The corresponding plots for the storm-peak sample are given in Figure

3.5.3(c, d), with very similar characteristics.

We next estimate ρ, η and χ(x) for sea-state and storm-peak HS for pairs of locations on each

of the four strips. Each of η, χ(x) and ρ were estimated for sea-state HS at pairs of locations

on the four strips shown on Figure 3.5.1. We used the estimator η̂3 for η estimation, and

χ̂EMP (x) for χ(x) estimation, as in Section 3.4.4. The estimates are shown in Figure 3.5.4.

Equivalent estimates for simulated samples of the same size from the Smith and Gaussian

processes and the inverted logistic distribution are also shown. This enables us to compare

the patterns of relationship between η, χ(x) and ρ for the different asymptotically dependent

and asymptotically independent processes that we observed in Figure 3.4.1 with the pattern

the data exhibits. It appears that behaviour on the blue (North-South) and green (South-

West – North-East) strips is reasonable well represented by the Gaussian model, whereas

the dependence characteristics on black and red strips (North-West – South-East) are better

captured by the inverted logistic model. Both the functional relationships between η and ρ

and χ(x) and ρ support this fit. This is particularly clear for higher threshold probabilities q

and levels x. Both these best-matching distributions are asymptotically independent. This

clearly shows how our novel approach of supplementing measures of extremal dependence

with ρ improves diagnostic performance.

We further estimate η, χ(x) and ρ for pairs of values of storm-peak HS from locations on each

of the four strips. Figure 3.5.5 illustrates these estimates together with the corresponding
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Figure 3.5.3: Convex hulls for pairs of sea-state significant wave heights HS illustrating
dependence. (a) Convex hulls for locations from the black strip (see Figure 3.5.1) are
plotted, corresponding to inter-location separation of 0.5◦ (light grey), 2.3◦ (grey) and 4.5◦

(black); (b) convex hulls for locations with inter-location separation of approximately 2.4◦

are plotted, for all strips, coloured accordingly. Since there are no pairs of locations on the
green strip corresponding to separation of 2.4◦, those with separation 2.2◦ (light green) and
2.6◦ (dark green) are shown. The corresponding convex hulls for the storm-peak sample are
shown in plots (c) and (d).
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Figure 3.5.4: Estimates of η with (a) q = 0.90 and (c) q = 0.99, and χ(x) with (b) x = 10
and (d) x = 100, plotted against Spearman’s ρ for sea-state HS sample of size n = 58585.
Coloured points identify estimates from corresponding strip. Lines identify estimates using
simulated samples of same size from Smith (black) and Gaussian (red) processes, and from
the inverted logistic distribution (green).
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Figure 3.5.5: Estimates of (a) η with q = 0.90 and (b) χ(x) with x = 10, plotted against
Spearman’s ρ for storm-peak HS sample of size n = 916. Points and lines as described in
Figure 3.5.4.

estimates from simulated samples of the same size from the Smith and Gaussian processes

and the inverted logistic distribution. It appears that storm-peak HS dependence is more

consistent with the asymptotically independent Gaussian and inverted logistic models for

all strips, but due to small sample size there is a large overlap between the estimated

uncertainty bands for different models. Inferring the nature of extremal dependence from

samples of this size is extremely difficult.

3.5.3 Design implications

The choice of extremal dependence structure of storm-peak significant wave height values

at neighbouring locations has material implications for structural design and reliability

assessment. To illustrate the type of difference, consider the storm-peak significant wave

heights (X,Y ) at two of our North Sea locations separated along a strip by approximately

2.6◦. If the risk of joint extremes at the two locations is of interest, then we would want to

find the distribution of Y given that X was equal to its 100 year return level, denoted by
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x100, i.e. we want to find yp, the pth conditional quantile, such that

P (Y < yp|X = x100) = p.

For simplicity of calculation we make the assumption that the marginal distribution of X

and Y is identical to a typical site in our region shown in Figure 3.5.1. This is a reasonable

assumption, as over this spatial scale, away from land shadows, the marginal distributions

do not change rapidly. As mentioned in Section 3.1, a naive approach is to assume perfect

dependence, and hence yp = x100 for all p. Under strong asymptotic dependence similar

values for yp arise. The question is what reduction can we get in yp from using our best

fitting model for extremal dependence, i.e., an asymptotically independent distribution,

which we take here as the Gaussian dependence structure. For the storm-peak significant

wave heights we take a threshold u and assume that the marginal conditional distribution

of threshold exceedances is described by a generalised Pareto distribution

F (x) = P (X < x|X > u) = P (Y < x|Y > u) = 1−
(

1 + ξ
x− u
σ

)−1/ξ

+

, for x > u,

where ξ and σ > 0 are the shape and scale parameters respectively and t+ = max(t, 0).

The threshold u is selected using parameter stability plots (Coles 2001). Here we choose

P{X > u} = φ = 0.5, and estimate the parameters ξ and σ using maximum likelihood.

For our data, u = 6.66m and the estimates are (ξ̂, σ̂) = (−0.23, 2.48). Then the expected

number of storm peaks above some value x in 100 years is

100× npy × φ×
[
1 + ξ̂

x− u
σ̂

]−1/ξ̂

, (3.5.1)

where npy is the average number of storm peaks per year (npy = 30.11 for our data). Setting

expression (3.5.1) to 1 when x = x100, and rearranging, we find the marginal 100-year return

value x100 for location X to be the marginal quantile of storm peaks with non-exceedance

probability F (x100) = 1− (100npyφ)−1, corresponding to a value x100 ≈ 15.5m. Thus under
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perfect dependence yp = 15.5m.

The conditional extremes model of Heffernan and Tawn (2004) is most straightforward to

apply on Laplace margins. To transform to Laplace margins we use expression (3.2.2)

which transforms quantiles of F to the same quantile of the Laplace distribution FL. Hence

the transformed 100-year level on Laplace scale is xL100 where F (x100) = FL(xL100), giving

xL100 = − log[2(100npyφ)−1]. Now suppose further that the extremal dependence between the

locations corresponds approximately to the asymptotically independent Gaussian process

with correlation ρP , which is consistent with our findings of Section 3.5.2. We had found

in our analysis that two locations at separation of approximately 2.6◦ correspond to a

Spearman’s ρ value of approximately 0.8 (see Figure 3.5.5), which, in turn, corresponds to a

Gaussian process with Pearson correlation coefficient of ρP = 0.8. The conditional extremes

model of Heffernan and Tawn then suggests for Gaussian processes, with Laplace margins

(XL,YL), that

P

{
YL − ρ2

PXL

X
1/2
L

< z

∣∣∣∣∣XL = xL100

}
≈ Φ

(
z

ρP (1− ρ2
P )1/2

)
; (3.5.2)

see Section 8 of Heffernan and Tawn (2004) for more details. If we assume that approx-

imation (3.5.2) holds for xL100 then the pth quantile of the distribution of YL|(XL = xL100)

is

yLp = ρ2
Px

L
100 + ρP (1− ρ2

P )1/2(xL100)1/2Φ−1(p), (3.5.3)

where Φ is the distribution function of a standard normal variable. Here yLp is on Laplace

scale, and converting back to the original scale, quantile to quantile transformation suggests

that yp satisfies F (yp) = FL(yLp ). This means that the associated quantile of storm-peak

significant wave height at the neighbouring location will be

yp = u+
σ̂

ξ̂

({
1

2φ
exp

(
−yLp

)}−ξ̂
− 1

)
,
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Figure 3.5.6: Values of yp plotted against values of p, where p is a quantile of the distribution
of YL|(XL = xL100).

where yLp is given by expression (3.5.3). For our data the yp values are plotted against the

quantile p (see Figure 3.5.6). For almost all values of p, yp � 15.5m, so the estimated risk

is much less than under perfect dependence; for example, the median is 2m lower. Only for

ρP very close to 1 is there essentially no practical difference between the two approaches.

3.6 Discussion and conclusions

The extremal dependence between contemporaneous observations of significant wave height

at neighbouring locations determines the rate and size of occurrences of joint extremes at

those locations. In this work we examined the extremal dependence of significant wave

height for pairs of locations from a North Sea hindcast. We showed that the characterist-

ics of extremal dependence vary systematically with distance between locations and with

orientation of locations, given prevailing atmospheric conditions and fetch variation. Using

the variation of coefficient of tail dependence η and the χ(x) statistic with (full-sample)

Spearman rank correlation ρ to quantify extremal dependence, we find that a sample of

sea-state significant wave height exhibits asymptotic independence consistent with either
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the Gaussian process or inverted logistic models. The nature of extremal dependence for a

sample of storm-peak significant wave height is very difficult to estimate, due to its small size

of approximately 1000 in comparison to 58000 for the full sample. However, again the ex-

tremal dependence of the sample examined is consistent with either the Gaussian process or

the inverted max-stable model. Had we found instead that our sample exhibits asymptotic

dependence, a choice between various max-stable model needs to be made. Our diagnostics

are not ideal for this; for more details about model selection for asymptotic dependence see

Davison et al. (2012).

We examined the behaviour of different estimators for η and χ(x) for simulated samples from

processes with different known extremal dependencies. We found that, in general, different

estimators yield consistent estimates for η and χ(x). As might be expected, the bias of

estimates reduces with increasing tail threshold, and variance of estimates reduces with

increasing tail sample size. For samples with sizes of the order of 104 typical for metocean

applications, interpretation of plots of estimated η and χ(x) as a function of estimated

ρ is difficult. In particular, when estimated ρ is small, η estimated from asymptotically

dependent processes is biased, and χ(x) from asymptotically independent processes only

approaches the limiting value of zero for levels x that are unachievable in practice. It

appears that comparison of sample-based plots of η and χ(x) with ρ for significant wave

height with those for samples of the same size from bivariate processes with known extremal

dependence provides more intuitive interpretation.

The extremal spatial dependence of sea-state and storm-peak significant wave height in the

North Sea appears, at the very least, not to be inconsistent with asymptotic independence,

implying that extreme value models admitting asymptotic independence should be sought

for such applications. The great majority of models for spatial extremes which have been ap-

plied to environmental problems, motivated by max-stable assumptions, admit asymptotic

dependence only; these are not ideal therefore for the current application. The conditional

extremes model of Heffernan and Tawn (2004) provides a potential solution, although the
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approach does not lend itself naturally to spatial modelling over continuous space. The

hybrid model of Wadsworth and Tawn (2012a) is an alternative more suitable to spatial

application; but considerable effort would be needed to develop a reliable engineering im-

plementation. We found that the asymptotically independent Gaussian process and the

inverted max-stable processes seem to fit well to the data. As the inverted max-stable mod-

els benefit from the recent investment of model development in max-stable processes, we

foresee future spatial modelling of extremes of HS using these models.

Inspection of Figure 3.5.5 shows that identifying the appropriate form of extremal depend-

ence for storm-peak significant wave height is problematic for samples of size approximately

1000. Since this is critical to reliable design, and since samples of size less than 1000 are

typical for metocean applications, it is appealing to seek means of improved identification of

extremal dependence for storm-peak HS . The obvious approach is to gather larger samples

of storm-peak values, but this is often impossible in practice. Another approach might

be to assume that the dependence between contemporaneous values of sea-state HS (for

which sample size is large, and identification of extremal dependence somewhat easier) is

similar if not equal to that of contemporaneous peak-over-threshold values. However, in

reality, times of storm-peak occurrences at neighbouring locations are not the same; for

example, they are obviously associated with the storm trajectory in space and time across

the neighbourhood. Perhaps estimates of extremal dependence for time-series of sea-state

HS , appropriately time-lagged such that storm-peak events are contemporaneous, offer an

approximate solution.

In some ocean basins, pooling of samples from locations within a spatial neighbourhood is

performed routinely to increase sample size for extreme value modelling (see e.g., Heideman

and Mitchell 2009). Data from the different locations that are pooled are assumed to follow a

common marginal extreme value distribution, so that any marginal spatial non-stationarity

is neglected. Moreover, the extremal dependence of values from different locations is also

typically ignored; at best, uncertainties in estimated return values are inflated to reflect de-
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pendence using a suitable bootstrapping scheme. A well-informed spatial extremes model,

accommodating the appropriate form of extremal dependence, offers reduced bias and im-

proved uncertainty quantification.

The diagnostic tools explored in this work are of general relevance to any application in

which understanding the characteristics of the joint occurrences of extreme events is of

interest. For example, the nature of extremal dependence between HS at two locations

may differ from location to location within an ocean basin, and between ocean basins.

Application of the diagnostic analysis suggested here for other locations in the North Sea,

and for other ocean basins, would quantify this. We might explore the spatial behaviour

of joint extremes of variables other than HS , such as wind speed between locations (or

altitudes), or current speed between locations (or water depths). There is no reason to

expect that wind speed and current speed exhibit the same form of extremal dependence as

HS , and the form of dependence may differ temporally depending on prevailing conditions

at the locations of interest. For example, if we are interested in understanding the loading

on risers of a moored vessel, appropriate models for extreme current profiles with depth

are required, incorporating appropriate forms for extremal dependence; otherwise biased

estimates of riser loads and tensions may result, as explained in Section 3.5 above.

The current work is also relevant in improving understanding of engineering design prac-

tices which implicitly assume, often with little justification, a particular form of extremal

dependence between variables: an estimate of return value for a particular oceanographic

variable, with corresponding estimate of associated return value for another related vari-

able, falls into this category. For example, any parametric model for the joint structure of

two oceanographic variables (e.g., HS and peak wave period TP , or HS and wind speed)

is usually estimated by fitting the model to observations, usually not exclusively of jointly

extreme events. We therefore expect that the assumed parametric form explains the bulk of

observations well. But the parametric form also imposes a specific structure on the extremal

dependence between variables which may or may not be justified. Estimating the type of
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extremal dependence present explicitly using the current diagnostics for jointly extreme

events is at least advisable if not essential in demonstrating that the parametric form used

is also appropriate for joint extremes.

When there is doubt concerning the nature of extremal dependence present, conventional

wisdom is that the metocean engineer should err on the side of caution and assume asymp-

totic dependence, since this will yield more and larger joint occurrences of large events.

However, this approach too may have undesirable knock-on consequences. For example,

consider the design of a multi-component system. The incorrect assumption of asymptotic

dependence for variables in one component (which actually exhibit asymptotic independ-

ence) might result in greater build cost for that component. When overall build cost is

constrained, this might lead to less build resources for other system components. That is,

over-conservatism in one aspect of design causes lack of conservatism in others, and hence

overall increased structural risk. A sensible approach in such circumstances is to balance

risk in a statistically valid manner with respect to competing design requirements, requir-

ing consistent assessment of risk throughout design. In a metocean context, specification

of consistent return values for a set of oceanographic variables is challenging, because of

the difficulty of quantifying the dependence between extreme values of two or more vari-

ables. The current work provides diagnostics to assist in quantifying extremal dependence

rationally.

3.A Derivation of the PC prior

Simpson et al. (2015) use the Kullback-Leibler divergence (KLD) to measure the increased

complexity from g to f . In other words, it is a measure of the information lost when the

base model g is used to approximate the more flexible model f . This is defined by

KLD(f ||g) =

∫
f(x) log

(
f(x)

g(x)

)
dx.
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For g(x) and f(x) as defined in Section 3.3.1, we can calculate the KLD between g and f

as,

KLD(f ||g) = − log η + η − 1.

This can be transformed onto a physically interpretable distance scale:

dfg =
√

2KLD(f ||g)

=
√
−2 log η + 2(η − 1)

Simpson et al. (2015) assume that the penalisation rate is constant, which implies an

exponential prior on the distance scale. Hence, dfg ∼ Exponential(λ) and πλ(dfg) =

λ exp(−λdfg), λ > 0. Since dfg is a function of η (d =
√
−2 log η + 2(η − 1)), we can use

Jacobian transformation to obtain a prior for η; i.e. πλ(η) = πλ(dfg)·|J |, where J = ddfg/dη.

This gives the following prior for η,

π(η;λ) =
λ(1− η) exp

(
−λ
√
−2 log η + 2(η − 1)

)
η
√
−2 log η + 2(η − 1)

.

3.B Results for other processes

In this section we give equivalent results to those shown on Figure 3.4.6 for other max-stable

processes. For computational reasons, here we only used 100 replications, but this does not

affect the main conclusions we draw. As all max-stable processes are AD, we expect η̂ ≈ 1

and χ̂ > 0.

3.B.1 Schlather process

Figure 3.B.1 shows η and χ estimates against Spearman’s ρ for simulated samples from the

Schlather process. Due to the constraint mentioned in Section 3.2.3, we cannot simulate

samples with low dependence. Hence, η̂ ≈ 1 and χ̂ > 0 everywhere.
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Figure 3.B.1: Estimates of η and χ plotted against Spearman’s ρ for simulated data from
the Schlather model; sample size: n = 106 (top row), n = 58585 (bottom row). Threshold
probabilities for the η estimation are q = 0.9999 (green line), q = 0.999 (red line), q = 0.99
(black line), q = 0.90 (cyan line) and q = 0.80 (magenta line). Corresponding levels for
the χ(x) estimation are x = 10000 (green line), x = 1000 (red line), x = 100 (black line),
x = 10 (cyan line) and x = 5 (magenta line). Solid lines give the median from a 100 sample
replications, dashed lines give the 2.5% and 97.5% quantiles. The solid grey line shows a
correct limiting value for η.
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3.B.2 Brown-Resnick process

The Brown-Resnick process behaves similarly to the Smith process in terms of its extremal

properties. Figure 3.B.2 shows that η̂ is estimated as approximately 1 for higher dependence

ρ, but it is underestimated for lower dependence, especially for small sample sizes and

lower thresholds. The χ estimates are greater than 0, as it is expected for asymptotically

dependent models.

3.B.3 Extremal-t process

Results for the extremal-t process are very similar to those for the Brown-Resnick process.

Figure 3.B.3 shows that η̂ is estimated as approximately 1 when the general level of de-

pendence in the data is stronger (as measured by ρ), but η̂ is underestimated when the

dependence is weaker. The χ estimates are greater than 0 here too, as it is expected for

asymptotically dependent models.
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Figure 3.B.2: Estimates of η and χ plotted against Spearman’s ρ for simulated data from the
Brown-Resnick model; sample size: n = 106 (top row), n = 58585 (bottom row). Threshold
probabilities for the η estimation are q = 0.9999 (green line), q = 0.999 (red line), q = 0.99
(black line), q = 0.90 (cyan line) and q = 0.80 (magenta line). Corresponding levels for
the χ(x) estimation are x = 10000 (green line), x = 1000 (red line), x = 100 (black line),
x = 10 (cyan line) and x = 5 (magenta line). Solid lines give the median from a 100 sample
replications, dashed lines give the 2.5% and 97.5% quantiles. The solid grey line shows a
correct limiting value for η.
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Figure 3.B.3: Estimates of η and χ plotted against Spearman’s ρ for simulated data from
the extremal-t model; sample size: n = 106 (top row), n = 58585 (bottom row). Threshold
probabilities for the η estimation are q = 0.9999 (green line), q = 0.999 (red line), q = 0.99
(black line), q = 0.90 (cyan line) and q = 0.80 (magenta line). Corresponding levels for
the χ(x) estimation are x = 10000 (green line), x = 1000 (red line), x = 100 (black line),
x = 10 (cyan line) and x = 5 (magenta line). Solid lines give the median from a 100 sample
replications, dashed lines give the 2.5% and 97.5% quantiles. The solid grey line shows a
correct limiting value for η.
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Directional Effects in the Extremal

Dependence of North Sea Storm

Severity

4.1 Introduction

In Chapter 3 we have estimated various extremal dependence measures for samples of North

Sea sea-state and storm-peak significant wave height. We have found that there is typically

not sufficient evidence from these extremal dependence measures for them to be effective

diagnostic tools when identifying the form of the extremal dependence, e.g., whether the

data are asymptotically dependent (AD) or asymptotically independent (AI). However,

supplementing these measures of extremal dependence with a dependence measure for the

body of the data improves diagnostic performance, particularly when comparing estimates

from the data to estimates for known AI and AD processes.

Application of this novel diagnostic method to the North Sea data showed that the de-

pendence characteristics of the data are better captured by AI models. We also found that
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data along locations on strips with different orientations have different extremal depend-

ence structures. In this chapter we further investigate the effects of direction on extremal

dependence in samples of North Sea storm-peak significant wave height. Since we are inter-

ested in the effects on extremal dependence and not marginal effects, the data set has been

marginally “whitened”. At each location a directional Gamma-generalised Pareto mixture

model has been fitted independently and the data transformed to unit Fréchet margins, thus

the marginal variables are all independent of direction. For more details on this procedure

see Jonathan et al. (2014) and Randell et al. (2016). This transformation ensures that any

directional effects we see should be due to differences in the dependence structure rather

than common marginal effects across space. Similarly to Chapter 3, we examine the effects

of direction by examining extremal dependence between locations on six straight-line strips,

shown in Figure 4.1.1. For each of these six strips we also look at nine parallel strips (four

on one side and 5 on the other side of the strips shown on Figure 4.1.1), so in total there

are 60 strips, ten with each of the orientations shown on Figure 4.1.1.

Simplistically, we can imagine a storm propagating along a straight line in time as a half-

plane in space. Symmetry then suggests that the extremal dependence spatially would

exhibit limiting forms (i) along the storm trajectory and (ii) perpendicular to the storm

trajectory (i.e., along the edge of the half plane representing the storm front). In the

North Sea, storms that cause large waves mostly travel in an approximately north to south

direction, hence, we would expect extremal dependence to be the strongest either along

strips with an approximately north to south orientation (in line with (i)) or along strips

with an approximately west to east orientation (in line with (ii)). To determine if this

is indeed the case, we fit various AI and AD models to data along strips with different

orientations using composite likelihood methods. The models used are four of the processes

presented in Chapter 3: two AD processes (Smith and Schlather max-stable processes)

and two AI processes (Gaussian and inverted Smith processes). In Chapter 3 we used an

inverted logistic extreme value distribution, which is a simple form of an inverted max-stable
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Figure 4.1.1: Map of location of data, showing six colour-coded sets of locations lying on
straight lines with particular orientations, referred to in the text as “strips”.

distribution. For the purposes of the analysis in Chapter 3 this model was suitable as the

analysis was pairwise, but since here we are fitting models to spatial data it makes more

sense to use an inverted Smith max-stable process as this already has an in-built spatial

structure.

This chapter is structured as follows. In Section 4.2 we introduce the composite and censored

likelihood methods we use for inference in this chapter. In Section 4.3 we derive the necessary

results for the four models listed above. Then in Section 4.4 we fit these models to the North

Sea storm-peak wave height data set and present the results. We close with a discussion in

Section 4.5.
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4.2 Inference

Density functions for max-stable processes are intractable in higher dimensions, so stand-

ard likelihood methods are difficult to implement. There is some recent work that tries to

overcome this problem. Wadsworth and Tawn (2013a) exploit the structure of a specific

class of max-stable processes and perform full likelihood inference for this class if the oc-

currence times of spatial componentwise maxima are available. More generally, Thibaud

et al. (2016) use Bayesian MCMC methods to conduct inference for the Brown-Resnick

max-stable process. Padoan et al. (2010) introduced what is regarded to be the stand-

ard approach to practical methods for fitting max-stable processes to spatial data using

composite likelihood-based methods. Using this latter approach the pairwise composite

log-likelihood is

l(ψ; z) =

N∑
n=1

K−1∑
i=1

K∑
j=i+1

log fi,j(zn,i, zn,j ;ψ), (4.2.1)

where {zn,k} denote the maximum of m samples over n = 1, . . . , N blocks and k = 1, . . . ,K

locations, fi,j is a marginal bivariate density function based on data at locations i and j,

and ψ is the parameter vector.

As max-stable processes arise as the limit distribution of componentwise maxima, when

applied to event data they only provide a valid model when two events are simultaneously

extreme at both locations. Hence, we adopt a censored likelihood approach (see, e.g., Coles

(2001) and Huser and Davison (2012)). Let us assume that u is a sufficiently high threshold

for some bivariate distribution F (z1, z2) to be a valid model for z1 > u and z2 > u. Then
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the likelihood contribution Lu(z1, z2) of the pair (z1, z2) is

Lu(z1, z2) =



∂2

∂z1∂z2
F (z1, z2), z1 > u, z2 > u;

∂
∂z1

F (z1, u), z1 > u, z2 6 u;

∂
∂z2

F (u, z2), z1 6 u, z2 > u;

F (u, u), z1 6 u, z2 6 u.

In the following section we derive these first and second derivatives for each of the models

we use.

4.3 Models

In this section we derive the necessary results for fitting each model to spatial data. We

also present the extremal coefficient (or the sub-asymptotic extremal coefficient) for each

model, as this gives a more natural way of comparing the models than the model parameters

themselves.

4.3.1 Smith process

The bivariate distribution function for the Smith max-stable process can be written as

Fh(z1, z2) = exp

(
−Φ(w(h))

z1
− Φ(v(h))

z2

)
,

where z1 > 0 and z2 > 0, and Φ is the standard Gaussian distribution function, h = (t2−t1)T

for locations t1 and t2. The terms w(h) and v(h) are defined as

w(h) = a(h)/2 + log(z1/z2)/a(h),
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and

v(h) = a(h)− w(h),

with a(h) = (hTΣ−1h)1/2 the Mahalanobis distance, where Σ is a covariance matrix

Σ =

 σ
2
1 σ12

σ12 σ2
2

 . (4.3.1)

Hence the parameter set of the Smith process is ψ = (σ1, σ2, σ12).

Following the derivation in Padoan et al. (2010), the first derivatives are

∂

∂z1
Fh(z1, z2) =

(
Φ(w(h))

z2
1

+
ϕ(w(h))

a(h)z2
1

− ϕ(v(h))

a(h)z1z2

)
exp

(
−Φ(w(h))

z1
− Φ(v(h))

z2

)
,

and

∂

∂z2
Fh(z1, z2) =

(
Φ(v(h))

z2
2

+
ϕ(v(h))

a(h)z2
2

− ϕ(w(h))

a(h)z1z2

)
exp

(
−Φ(w(h))

z1
− Φ(v(h))

z2

)
,

where ϕ is the standard Gaussian density function. The second derivative gives the bivariate

density function

∂2

∂z1∂z2
Fh(z1, z2) = fh(z1, z2),

which for the Smith process is

fh(z1, z2) = exp

(
−Φ(w(h))

z1
− Φ(v(h))

z2

){(
Φ(w(h))

z2
1

+
ϕ(w(h))

a(h)z2
1

− ϕ(v(h))

a(h)z1z2

)
×(

Φ(v(h))

z2
2

+
ϕ(v(h))

a(h)z2
2

− ϕ(w(h))

a(h)z1z2

)
+

(
v(h)ϕ(w(h))

a(h)2z2
1z2

+
w(h)ϕ(v(h))

a(h)2z1z2
2

)}
.

The extremal coefficient for the Smith process is θ(h) = 2Φ{a(h)/2}.
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4.3.2 Schlather process

From Schlather (2002), the bivariate distribution function for a Schlather max-stable process

with latent correlation function ρ(h) is

F (z1, z2) = exp

{
−1

2

(
1

z1
+

1

z2

)(
1 +

√
1− 2(ρ(h) + 1)

z1z2

(z1 + z2)2

)}
.

Some commonly used correlation functions are listed in Chapter 2. Here we use a powered

exponential correlation function of the form ρ(h) = exp{−(hTΣ−1h)/2}, where Σ is a

covariance matrix. This allows a parametrisation similar to the one used for the Smith

process, with parameters (σ1, σ2, σ12).

To obtain the first and second derivatives we need for the censored likelihood, first let

F ∗ = log(F ). Then, dropping arguments, the bivariate density can be derived as,

f(z1, z2) =
∂2

∂z1∂z2
F (z1, z2) =

(
∂F ∗

∂z1

∂F ∗

∂z2
+

∂2F ∗

∂z1∂z2

)
F.

and the first partial derivatives as

∂

∂z1
F (z1, z2) =

∂F ∗

∂z1
F,

∂

∂z2
F (z1, z2) =

∂F ∗

∂z2
F.

Let us define the following

W = 1− 2(ρ(h) + 1)
z1z2

(z1 + z2)2
,

A = W−1/2 ρ(h) + 1

2(z1 + z2)3
.
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Then the first partial derivatives of F ∗ are

∂F ∗

∂z1
=

1

2z2
1

(1 +
√
W ) +A

z2
2 − z2

1

z1
;

∂F ∗

∂z2
=

1

2z2
2

(1 +
√
W ) +A

z2
1 − z2

2

z2
,

with the second partial derivative being

∂2F ∗

∂z1∂z2
= A

[
2−W−1(ρ(h) + 1)

(
z1 − z2

z1 + z2

)2
]
.

The extremal coefficient for the Schlather process is θ(h) = 1 +
√
{1− ρ(h)}/2.

4.3.3 Gaussian process

Here we will consider Gaussian processes with univariate marginals transformed to Fréchet

margins. First consider a stationary Gaussian process {X∗t } at location t, for t in some

suitable set. Assume the Gaussian process has standard normal margins and correlation

ρ(h) = exp(−hTΣ−1h), where h = (t1 − t2)T , for locations t1 and t2. Now consider the

bivariate distribution of (X∗t1 , X
∗
t2) and denote these variables, for simplicity, as (X1, X2).

Note that the transformations Z1 = −1/ log Φ(X1) and Z2 = −1/ log Φ(X2) give (Z1, Z2)

on Fréchet margins. Then, on Fréchet margins,

Fh(z1, z2) = Pr(Z1 6 z1, Z2 6 z2),

= Pr (−1/ log Φ(X1) 6 z1,−1/ log Φ(X2) 6 z2) ,

= Pr
(
X1 6 Φ−1(e−1/z1), X2 6 Φ−1(e−1/z2)

)
,

= Φ2

(
Φ−1(e−1/z1),Φ−1(e−1/z2); ρ(h)

)
,

= Φ(x1, x2; ρ(h)),
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where Φ2(x1, x2; ρ(h)) denotes the bivariate Gaussian distribution function with correlation

ρh, and (x1, x2) =
(
Φ−1(e−1/z1),Φ−1(e−1/z2)

)
. Thus, this model corresponds to a bivariate

normal copula with Fréchet margins. Note that, for i = 1, 2,

dxi
dzi

=
1

z2
i e

1/ziϕ
[
Φ−1(e1/zi)

] .
Then, for z1 > u and z2 > u,

∂2Fh(z1, z2)

∂z1∂z2
=
∂2Φ(x1, x2; ρ(h))

∂z1∂z2
= ϕ(x1, x2; ρ(h))

∂x1

∂z1

∂x2

∂z2
,

where ϕ(x1, x2; ρ(h)) is the standard form bivariate Gaussian density function that can be

written as

ϕ(x1, x2; ρ(h)) =
1

2π
√

1− ρ2(h)
exp

(
−x

2
1 − 2ρ2(h)x1x2 + x2

2

2(1− ρ2(h))

)
.

The first partial derivative then is

∂Fh(z1, z2)

∂z1
=
∂Φ(x1, x2; ρ(h))

∂z1
=
∂x1

∂z1

∫ x2

−∞
ϕ(x1, t)dt,

=
∂x1

∂z1

∫ x2

−∞
ϕ(z1)ϕ(t | z1)dt,

=
∂x1

∂z1
ϕ(x1)Φ

(
x2 − ρ(h)x1√

1− ρ2(h)

)
, (4.3.2)

where the last line follows since X2 | X1 ∼ N (ρ(h)z1, 1− ρ2(h)). By symmetry, the second

partial derivative is

∂Fh(z1, z2)

∂z2
=
∂Φ(x1, x2; ρ(h))

∂z2
=
∂x2

∂z2
ϕ(x2)Φ

(
x1 − ρ(h)x2√

1− ρ2(h)

)
.

The sub-asymptotic extremal coefficient (equivalent to the sub-asymptotic extremal index
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introduced in Ledford and Tawn (2003)) can be derived as

θz(h) =
logFh(z, z; ρ(h))

logF (z)
.

This is equivalent to

θz(h) =
log Φ(x, x; ρ(h))

log Φ(x)
, where x = Φ−1(e−1/z)

≈ 1− Φ(x, x; ρ(h))

1− Φ(x)
,

=
2Φ̄(x)− Φ̄(x, x; ρ(h))

Φ̄(x)
,

= 2− Φ̄(x, x; ρ(h))

Φ̄(x)
, for large x or z, (4.3.3)

where Φ̄(·) denotes the survival function, and the second line follows from Taylor series

expansions for both the numerator and the denominator. It follows from Ledford and Tawn

(1996) that θz(h) → 2 for any h 6= 0 as z → ∞, as expected for an AI model. For very

large values of x, both Φ̄(x, x; ρ(h)) and Φ̄(x) tend to zero very rapidly, hence numerically

calculating θx(h) runs into difficulties. In Appendix 4.A we present a numerical trick to get

around this problem.

4.3.4 Inverted Smith process

The bivariate distribution function of the inverted Smith max-stable process is

Fh(z1, z2) = e−1/z1 + e−1/z2 − 1 + (1− e−1/z1)Φ(w(h)) × (1− e−1/z2)Φ(v(h)), (4.3.4)

where Φ, w(h) and v(h) are defined as in Section 4.3.1.
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The first derivatives are

∂Fh(z1, z2)

∂z1
= z−2

1 e−1/z1 − z2
1e
−1/z1

1− e−1/z1

[
(1− e−1/z1)Φ(w(h)) + (1− e−1/z2)Φ(v(h))

]
×

[
Φ(w(h)) +

φ(w(h))

a(h)
− log(1− e−1/z2)

log(1− e−1/z1)

φ(v(h))

a(h)

]
,

and

∂Fh(z1, z2)

∂z2
= z−2

2 e−1/z2 − z2
2e
−1/z2

1− e−1/z2

[
(1− e−1/z1)Φ(w(h)) + (1− e−1/z2)Φ(v(h))

]
×

[
Φ(v(h)) +

φ(v(h))

a(h)
− log(1− e−1/z1)

log(1− e−1/z2)

φ(w(h))

a(h)

]
,

where ϕ and a(h) are defined as in Section 4.3.1. Then the bivariate density can be derived

as

fh(z1, z2) =
z2

1e
−1/z1

1− e−1/z1

z2
2e
−1/z2

1− e−1/z2

[
(1− e−1/z1)Φ(w(h)) + (1− e−1/z2)Φ(v(h))

]
×
{
a−2(h)

[
w(h)φ(w(h))

log(1− e−1/z2)
+

v(h)φ(v(h))

log(1− e−1/z1)

]
− a−1(h)

[
φ(w(h))

log(1− e−1/z2)
+

φ(v(h))

log(1− e−1/z1)

]
+

[
Φ(w(h)) +

φ(w(h))

a(h)
− log(1− e−1/z2)

log(1− e−1/z1)

φ(v(h))

a(h)

]

×

[
Φ(v(h)) +

φ(v(h))

a(h)
− log(1− e−1/z1)

log(1− e−1/z2)

φ(w(h))

a(h)

]}
.

The sub-asymptotic extremal coefficient is

θz(h) =
logFh(z, z)

logF (z)
,

where Fh(z, z) is the inverted Smith bivariate distribution function as given in (4.3.4) and
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F (z) is the unit Fréchet distribution function. Hence,

θz(h) =
log
(
2e−1/z − 1 + (1− e−1/z)2Φ{a(h)/2})

−1/z
,

≈ 2−
(

1

z

)2Φ{a(h)/2}−1

for large z.

Similarly to the Gaussian process case, here too θz(h) → 2 for any h 6= 0 as z → ∞. This

is as expected, since the inverted Smith max-stable process is AI.

4.4 Application to North Sea data

In this section we use the inference methods introduced in Section 4.2 and the results

derived in Section 4.3 to fit two AD and two AI models to the whitened North Sea storm-

peak significant wave height data set described in Section 4.1. We first briefly investigate

how the censoring threshold choice affects the results. Then, we explore how the orientation

of the strip affects the model parameters, and hence the extremal dependence. Finally, we

briefly look at whether there is also a difference in extremal dependence between strips with

the same orientation.

4.4.1 Threshold effects

First, we fit the Smith max-stable process along each of the six strips shown on Figure 4.1.1

with different censoring thresholds u. As all locations lie on a strip for each fit, h reduces

to a distance h, and σ2
2 = σ12 = 0 in Σ, so only one parameter, σ2

1, needs to be estimated.

Denote this parameter σ2
φ when the strip is in direction φ, measured clockwise relative to

East. Figure 4.4.1 shows the estimated Smith parameter σ2
φ plotted against the censoring

threshold level. First, note that the Smith parameter estimates decrease as the threshold

is increased for all strips. However, the ordering of the estimates for the various strips

is broadly maintained for any threshold, suggesting that any directional effect we might
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Figure 4.4.1: Estimated Smith parameter σ2
φ plotted against the censoring threshold as

quantile of the data. The colours correspond to the strips shown on Figure 4.1.1 and
determine φ. Confidence intervals were obtained as the 2.5% and 97.5% quantiles from fits
to 100 bootstrap samples.

see would not be affected by threshold choice. Since the models fitted are valid only for

sufficiently high thresholds, for the rest of this chapter we will use the 90% quantile of the

data as the threshold.

4.4.2 Directional effects

Next, we fit all four models in two ways. First, along each strip, in which case the parameter

set is reduced to just one parameter σ2
φ for each of the models. This allows us to see whether

there is any difference between parameter estimates along strips with different orientations.

Secondly, we fit each model to the full data set obtaining estimates of σ1, σ2 and σ12 for

each model. Then we can use the following transformation to estimate the parameter in a

given direction φ:

σ̂2
φ =

[
cosφ sinφ

] σ̂
2
1 σ̂12

σ̂12 σ̂2
2


cosφ

sinφ

 . (4.4.1)
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This allows us to compare the results along the strips with the results from fitting the

models to the whole data set. Throughout, the threshold is set to the 90% quantile. Con-

fidence intervals are obtained from 100 bootstrap samples of the data. Result are shown on

Figure 4.4.2.

There is a clear pattern present across all four models, with parameter estimates for the

red strip highest everywhere and those for the yellow strip the lowest. This means that

the extremal dependence is strongest along the red strips and weakest along the yellow

strips. The plots suggests that there is a smooth relationship between the parameters (and

hence extremal dependence) with the orientation of the strips. The estimates obtained from

fitting the models to the whole region (solid black line) also show a similar pattern. There

is a reasonably good agreement with the estimates for the individual strips, although the

fitted parameters for the whole region seem to suggest stronger dependence than the fitted

parameters for the individual strips for the Smith, Schlather max-stable processes and the

Gaussian process, and slightly lower dependence for the inverted Smith max-stable process.

The estimated parameters are on different scales for the different models and there is no

intuitive way of interpreting the values. Hence, we use the estimated parameters to calculate

the extremal coefficient θ(h) (for AD models) or the sub-asymptotic extremal coefficient

θz(h) (for AI models) for various h and z levels. We show results for three different levels of

h; h1 = (ti − tj)
T where ti and tj are neighbouring location, h2 = (ti − tj)

T where ti and

tj are locations in the centre and the edge of the region, respectively, and h3 = (ti − tj)
T

where ti and tj are locations at opposite edges of the region. The extremal coefficient and

the sub-asymptotic extremal coefficient range between the values 1 and 2, with a value close

to 1 signifying strong dependence, and a value close to 2 implying near independence.

Figure 4.4.3 shows θ(h1), θ(h2) and θ(h3) obtained from the fitted Smith parameters. The

values for θ(h1) are close to 1 suggesting strong dependence, whereas θ(h2) and θ(h3)

are higher, with θ(h3) close to 2, suggesting near independence. Since h1 corresponds to

locations close by and h3 to locations relatively far apart, the results confirm that extremal
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Figure 4.4.2: Triangles show the estimated parameters σ2
φ along strips with orientations as

shown on Figure 4.1.1 for the (a) Smith process, (b) Schlather process, (c) Gaussian process,
and (d) inverted Smith process. Boxplots show the estimates for a 100 bootstrap samples of
each strip. Solid black line shows the parameter estimate obtained from fitting the model
to the whole data set. Dashed black lines show the 2.5% and 97.5% quantiles obtained from
100 bootstrap samples.
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Figure 4.4.3: The extremal coefficient θ(h) for h = h1 (closest to 1), h = h2 and h = h3

(closest to 2), obtained from the fitted Smith parameters. The interpretation of colours,
lines, boxplots and symbols is the same as before.

dependence decreases with distance. Note also that the pattern we observed on Figure 4.4.2

is maintained here, with the red strips showing the strongest dependence for all three levels

of h. Equivalent results for the Schlather model are shown on Figure 4.4.4. Note that the

Schlather process cannot account for extremes that become independent for large distances

as the extremal coefficient is bounded θ(h) < 1.838 for any h (Schlather (2002)). This

property is clearly shown in Figure 4.4.4, where θ(h) stays below 1.75 even for h3.

The sub-asymptotic extremal coefficient θz(h) can be evaluated at various levels z, so we

first explore how θz(h) behaves for a range of levels z for h1, h2 and h3 for both the

Gaussian and the inverted Smith processes. Since, these processes are AI, it is expected

that θz(h) → 2 as z → ∞, for any h 6= 0. Figures 4.4.5a, 4.4.5c and 4.4.5d show θz(h)

calculated from the fitted Gaussian parameters along each strip for a range of z levels (with

z on the log scale), for h1, h2 and h3, respectively. For h2 and h3, θz(h) reaches 2 for
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Figure 4.4.4: The extremal coefficient θ(h) for h = h1 (closest to 1), h = h2 and h = h3

(closest to 2), obtained from the fitted Schlather parameters. The interpretation of colours,
lines, boxplots and symbols is the same as before.

log(z) < 60. However, for h1, θz(h) only reaches 2 for log(z) ≈ 3000 (see Figure 4.4.5b),

corresponding to an exceedance probability of approximately e−3000. Figure 4.4.6 shows

equivalent results for the inverted Smith process. Similarly to the Gaussian process, θz(h)

reaches 2 for relatively low z values (log(z) < 50) for h2, h3, but for h1, θz(h) reaches 2

for all strips only around log(z) ≈ 300, which corresponds to an exceedance probability of

approximately e−300. This suggests that the inverted Smith process has weaker extremal

dependence and reaches independence at lower levels z than the Gaussian process.

This is also visible on Figures 4.4.7 and 4.4.8 where we show the sub-asymptotic extremal

coefficient for two values of log(z), (a) log(z) = 2 and (b) log(z) = 15, obtained from the

fitted Gaussian process copula parameters on Figure 4.4.2c and the fitted inverted Smith

process parameters on Figure 4.4.2d, respectively. For the same level log(z), θz(h) is closer

to 2 (independence) for the inverted Smith max-stable process than for the Gaussian process
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(d)

Figure 4.4.5: The sub-asymptotic extremal coefficient θz(h) for a range of levels z, for (a)
h = h1, (c) h = h2 and (d) h = h3 for log(z) < 60, and (b) h = h1 for log(z) extended to
> 60, obtained from the fitted Gaussian process copula parameters for locations along the
strips shown on Figure 4.1.1.
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Figure 4.4.6: The sub-asymptotic extremal coefficient θz(h) for a range of levels z, for (a)
h = h1, (c) h = h2 and (d) h = h3 for log(z) < 60, and (b) h = h1 for log(z) extended
to > 60, obtained from the fitted inverted Smith process parameters for locations along the
strips shown on Figure 4.1.1.
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Figure 4.4.7: The sub-asymptotic extremal coefficient θz(h) for h = h1 (closest to 1), h = h2

and h = h3 (closest to 2), obtained from the fitted Gaussian process copula parameters,
for (a) log(z) = 2, and (b) log(z) = 15. The interpretation of colours, lines, boxplots and
symbols is the same as before.

for all distances h. The same patterns as noted in the case of the Smith and Schlather models

is present here also, with extremal dependence being weaker the larger h is.

The sub-asymptotic extremal coefficient can also be estimated empirically from the data

itself using

θz(h) =
log Pr(Z1 6 z, Z2 6 z)

log Pr(Z1 6 z)
, (4.4.2)

where Z1 and Z2 are observations at two locations t1 and t2, and h = (t1 − t2)T . Both

probabilities in expression (4.4.2) can be estimated from the data using empirical counts.

Figures 4.4.9a-4.4.9c show the empirical estimates for the strips shown on Figure 4.1.1

calculated for the distances h1, h2 and h3 for a range of levels z. First, note that, similarly

to Figures 4.4.5 and 4.4.6, the estimates for the different strips are ordered in roughly the

same way with the red strip showing the strongest extremal dependence (θz(h) closest to 1)

and the yellow strip the weakest. All the models we fitted capture this feature in the data

well.

Also note on Figures 4.4.9a-4.4.9c that the empirical estimates of θz(h) increase with dis-

tance h and level z. Figure 4.4.9d, where the estimated θz(h) is shown for a range of
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Figure 4.4.8: The sub-asymptotic extremal coefficient θz(h) for h = h1 (closest to 1), h = h2

and h = h3 (closest to 2), obtained from the fitted inverted Smith process parameters, for
(a) log(z) = 2, and (b) log(z) = 15. The interpretation of colours, lines, boxplots and
symbols is the same as before.

distances for three levels of z, also clearly shows these features. For all the fitted models

we observed a similar increase with distance h, signifying that dependence decreases with

distance in both the data and in the fitted models. However, for the max-stable Smith and

Schlather processes the extremal coefficient does not increase with z. This is only the case

for the AI processes fitted (Gaussian and inverted max-stable Smith), and hence the fact

that the empirical estimates do increase with z suggest that the data is more consistent

with AI models.

Comparing the empirical estimates with the model estimates on Figures 4.4.5 and 4.4.6 is

difficult, as for large values of z there is high uncertainty in the empirical estimates. For the

relatively low level of log(z) = 5 the empirical estimates are θz(h1) ≈ 1.1, θz(h2) ≈ 1.6 and

θz(h3) ≈ 1.8 (see Figures 4.4.9a-4.4.9c). For h1 and h2 both the Gaussian and the inverted

Smith max-stable processes reach similar values at log(z) = 5. However, for the Gaussian

process θz(h3) ≈ 1.9, whereas for the inverted Smith process θz(h3) ≈ 1.8, suggesting that

at this distance the Gaussian process is less dependent than the data. Hence, the inverted

Smith model might be more suitable for this data set. Interestingly, the Gaussian process

seems to exhibit weaker dependence at long distances (h3), but stronger dependence for
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short distances (h1) than the inverted Smith process, highlighting the differing extremal

dependence structures of the two models.

4.4.3 Location effects

We are also interested in whether there is a difference between estimates for different strips

with the same orientation. This might be the case if, for example, a strip is protected

from large storms by land shadow. To see whether there is such an effect we will look at

ten parallel strips for each orientation. We refer to the strips shown on Figure 4.1.1 as

central strips, and calculate the distance between the central strip and each of the parallel

strips with the same orientation. More northerly strips than the central strip are assigned a

positive distance, whereas more southerly strips than the central strip are assigned a negative

distance. Figure 4.4.10 shows the extremal coefficient θ(h1) obtained from the fitted Smith

process along each strip against the distance of each strip from the central strip in each

orientation. It is clear that there are some differences between different estimates for strips

with the same orientation. For example, the green and yellow strips seem to show stronger

extremal dependence in the middle of the region than at the edges, but further investigation

is needed to ascertain these effects. Results for other h values and other models are similar

so not shown here.

4.4.4 Simulations

Figure 4.4.11 shows four realisations of the whitened North Sea storm-peak significant wave

height dataset, plotted on Gumbel scale. To see how the fitted models compare to the data,

we can simulate from each model using the fitted values of σ2
1, σ2

2 and σ12. Figure 4.4.12

shows four simulated samples from each of the fitted models. Compared to the data, simu-

lated samples from the Smith and Gaussian processes seem to be too smooth, whereas the

Schlather process appears to be too rough. Simulated samples from the inverted Smith pro-
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Figure 4.4.9: The sub-asymptotic extremal coefficient θz(h) estimated empirically from the
data with (a) h = h1, (b) h = h2, (c) h = h3, plotted against z on the log-scale; and (d) the
sub-asymptotic extremal coefficient θz(h) estimated empirically from the data for a range
of h, with h1 6 h 6 h3, and three different levels of z: the 90% quantile (line closest to 1),
the 99% quantile, and the 99.9% quantile (line closest to 2). On subfigure (c) results for the
red, blue and magenta strips are not shown as these strip were too short to have any pairs
of locations distance h3 apart.
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Figure 4.4.10: The extremal coefficient θ(h1), obtained from the fitted Smith process along
each strip, plotted against the distance of each strip from the central strip in each orientation,
with colours corresponding to the strips on on Figure 4.1.1. Positive distance is assigned
if the strip crosses the y-axis higher than the central strip with the same orientation and
negative distance if lower. Points represent estimates for each strip, solid lines are the
median estimate from a 100 bootstrap samples, dashed lines 2.5% and 97.5% quantiles from
a 100 bootstrap samples.
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Figure 4.4.11: Four realisations of the whitened North Sea storm-peak significant wave
height dataset, plotted on Gumbel scale.

cess appear somewhat smoother than the data samples, but arguably this model captures

the patterns in the data the best out of these four models.

It is hard to draw definitive conclusions about directional effects from just four samples,

but the north to south effect captured on Figure 4.4.11 (top and bottom right) is similar to

some of the Smith or inverted Smith max-stable process realisations (Figures 4.4.12a and

4.4.12d).

Other examples in the extremes literature of higher order measures of fit for spatial models

include composite likelihood information criterion (CLIC) used, for example, by Blanchet

and Davison (2011) and Davison et al. (2012).

4.5 Conclusion

In this chapter we presented a study of spatial extremes that systematically tests directional

features of models. As far as we are aware, this is a novel contribution to the extremes
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Figure 4.4.12: Four simulated samples (transformed to Gumbel margins) from each of the
fitted models; (a) Smith process, (b) an isotropic version of the Schlather process, (c)
Gaussian process and (d) inverted Smith process.
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literature with no other equivalent studies.

The parameter estimates from the four models fitted to the North Sea storm-peak signi-

ficant wave height data set suggest that extremal dependence is strongest on strips with

an approximately west to east orientation. Since, the largest storms typically travel in a

north to south direction in the North Sea, this suggests that the extremal dependence is

stronger across the storm front than in the storm direction. We also find that extremal

dependence varies smoothly with the direction of the strips, suggesting that direction needs

to be considered when modelling extremal dependence. There is some suggestion in the

data of a location effect, but more investigation is needed to explore these effects.

4.A Sub-asymptotic extremal coefficient for the Gaussian pro-

cess

Evaluating θz(h), the expression (4.3.3) leads to numerical problems for large values of

x = Φ−1(e−1/z). To avoid this, we can use the following approximation. First, by Mill’s

ratio

Φ̄(x) ∼ ϕ(x)

x
as x→∞.

Then, we can write the ratio in expression (4.3.3), as x→∞, as

Φ̄(x, x; ρ(h))

Φ̄(x)
∼
∫∞
x

∫∞
x ϕ(s, t)dsdt

ϕ(x)/x
,

=

∫∞
x

∫∞
x ϕ(t | s)dtϕ(s)ds

ϕ(x)/x
,

= x

∫ ∞
x

Φ̄

(
x− ρ(h)s√
1− ρ2(h)

)
ϕ(s)

ϕ(x)
ds,
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where the last line follows after a similar argument to that in (4.3.4). Using a change of

variables, s = x+ y, then gives

Φ̄(x, x; ρ(h))

Φ̄(x)
= x

∫ ∞
0

Φ̄

(
x− ρ(h)(x+ y)√

1− ρ2(h)

)
ϕ(x+ y)

ϕ(x)
dy,

= x

∫ ∞
0

Φ̄

(
x− ρ(h)(x+ y)√

1− ρ2(h)

)
exp(−xy − y2/2)dy.

Numerical integration can be used then to evaluate this integral. This leads to results with

greater numerical stability than obtained using expression (4.3.3).
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Chapter 5

Properties of Extremal

Dependence Models Built on

Bivariate Max–Linearity

5.1 Introduction

When modelling extremes of spatial environmental processes we often care about both local

dependence and long-range dependence. For example, in an oceanographic application, we

would be interested in the relationship between extreme significant wave heights at two loc-

ations that might be close by or located far apart. In particular, we want to know how likely

it is that both locations are affected by the same storm and have high waves simultaneously

(see e.g. Jonathan et al. (2013)). Since interest lies in the extremes, the standard measures

of spatial dependence are not appropriate and alternative dependence measures and models

should be used. Here we introduce a family of bivariate distributions, with simple mul-

tivariate extensions, that exhibits all the required features of short, medium and long range

extremal dependence for spatial applications. This family is shown to capture all possible
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bivariate distributions with these properties. We propose novel bivariate characterisations

of the extremal dependence structure that reveal structure of this family of distributions

that standard measures of extremal dependence fail to identify.

First we identify the two core extremal dependence measures. Let X and Y be identically

distributed random variables. Then, an intuitive measure of extremal dependence is the tail

dependence measure χ, which is defined as the limiting probability that Y is extreme given

that X is extreme,

χ = lim
z→zF

Pr(Y > z | X > z), (5.1.1)

where zF is the upper end point of the common marginal distribution. When χ > 0, X and

Y are said to be asymptotically dependent (AD) and the value of χ signifies the strength of

asymptotic dependence. This means that X and Y can be extreme simultaneously. However,

when the variables are asymptotically independent (AI), χ = 0 and hence χ does not contain

any information about the sub-asymptotic dependence structure. Coles et al. (1999) argue

that to give a more complete summary of extremal dependence a second measure is needed

to describe the rate of convergence of Pr(Y > z | X > z) to 0. A useful tail dependence

measure can be obtained from the Ledford and Tawn (1996) joint tail dependence model,

which states that

Pr(X > z, Y > z) = L(1/Pr(X > z)){Pr(X > z)}2/(χ̄+1), (5.1.2)

where L is a slowly varying function at infinity and χ̄ ∈ (−1, 1]. The exponent 2/(χ̄ +

1) determines the decay rate of the joint probability, with smaller χ̄ giving more rapid

convergence of χ to 0. The pair (χ > 0; χ̄ = 1) signifies AD, for which the value of χ gives

a measure of strength of dependence; and (χ = 0; χ̄ < 1) signifies AI, for which the value

of χ̄ gives the strength of dependence.

Both the dependence measures χ and χ̄, in expressions (5.1.1) and (5.1.2), are invariant to

the marginal distribution. Of course, using the concept of copulas, all dependence measures
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can be expressed independently of the marginal distributions. However, for some choices of

marginal distributions extremal dependence structure properties are more simply expressed

than for other marginal choices. For example, much of the traditional multivariate extreme

value theory results are expressed for Fréchet marginals, as they lead to the cleanest ex-

pressions of results for componentwise maxima and multivariate regular variation (Resnick

(1987)). This marginal choice is fine when the variables are AD, however for AI variables

this selection leads to an identical limit form whatever the nature of the AI, i.e., whatever

χ̄ < 1. For AI variables, Heffernan and Tawn (2004), Keef et al. (2013) and Wadsworth and

Tawn (2013b) all identify that non-degenerate limit distributions, under affine transform-

ations, can be obtained using exponential margins/tails, whereas under their formulations

the limits are degenerate for Fréchet margins. Furthermore, in exponential margins results

for AD are also non-degenerate. The reason for this extra flexibility in exponential mar-

gins is that an affine transformation in that space is a complex non-linear transformation

in Fréchet margins (see Section 2.2 of Papastathopoulos and Tawn (2016)). Therefore, we

work in exponential margins to illustrate our novel extremal dependence characterisations

and show that if Fréchet margins had been used, the structure we find would not have been

apparent using affine transformations.

In the analysis of multivariate data, it is often difficult to make a choice between AD and AI

(see e.g., Davison et al. 2013, Thibaud et al. 2013, and Kereszturi et al. 2016). By having a

model that has both AD and AI components, we can avoid having to make this key decision.

Wadsworth and Tawn (2012a) combine a max-stable process with an inverted max-stable

process to construct a hybrid spatial dependence model. This model can capture both the

AD and AI dependence structure but it is restricted in its forms of AD and AI that can be

modelled. Here we use the core structure of the Wadsworth and Tawn (2012a) model as a

basis for exploring bivariate extreme value modelling in a new light. Specifically, we develop

a distribution that contains both AD and AI components and has the flexibility to capture

all dependence forms within very broad classes in each case.
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We construct our model using the multivariate max-linear model (Davis and Resnick, 1989)

as the building block. This class of distributions is both mathematically elegant and was

the starting point for understanding the formulation of multivariate extremes (Pickands,

1981). In the bivariate case with Fréchet marginal variables XF and YF , the max-linear

model takes the following form:

XF = max
i=1,...,m

{αiZi}, (5.1.3)

YF = max
i=1,...,m

{βiZi},

where 0 6 αi, βi 6 1 for all i, m can be finite or infinite, Σm
i=1αi = 1, Σm

i=1βi = 1, and

Zi ∼ i.i.d. Fréchet, i = 1, . . . ,m, with distribution function FZ(z) = exp(−1/z) for z > 0

and density denoted fZ(z). This model has joint distribution function

Pr(XF < x, YF < y) = exp

(
−

m∑
i=1

max

(
αi
x
,
βi
y

))
, for x > 0, y > 0,

and it is straightforward to show that this satisfies max-stability, since for any n > 0, x > 0

and y > 0,

Pr(XF < nx, YF < ny)n = Pr(XF < x, YF < y).

Fundamental to our approach is that Deheuvels (1983) shows that every multivariate ex-

treme value distribution for minima, with exponential marginals (i.e., with variables (X−1
F ,

Y −1
F )), can be arbitrarily well approximated by a multivariate max-linear model. Fougères

et al. (2013) showed this property holds for (XF , YF ), as well as presenting a broader dis-

cussion on alternative representations of multivariate extreme value distributions.

This chapter introduces two bivariate distributions, with exponential margins, that are

derived from the max-linear model (5.1.3) with Fréchet margins: these are the transformed

max-linear model and the inverted max-linear model, denoted by (XE , YE) and (X
(I)
E , Y

(I)
E )
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respectively. Specifically,

(XE , YE) = (− log(1− exp{−1/XF }),− log(1− exp{−1/YF })) (5.1.4)

and

(X
(I)
E , Y

(I)
E ) = (1/XF , 1/YF ). (5.1.5)

Here XE (YE) transforms XF (YF ) to the exponential margins through a monotone increas-

ing mapping, with repeated use of the probability integral transform, whereas X
(I)
E (Y

(I)
E )

transforms XF (YF ) to the exponential margins through a monotone decreasing mapping.

So marginally both (XE , YE) and (X
(I)
E , Y

(I)
E ) are identical, but they differ significantly in

their dependence structure and, in particular, their extremal dependence properties. The

models (XF , YF ) and (XE , YE) have the same copula, while (X
(I)
E , Y

(I)
E ) has the same copula

as the joint lower tail of (XF , YF ). Hence, we refer to (XE , YE) and (X
(I)
E , Y

(I)
E ) as having

the upper tail and the lower tail copula of (XF , YF ), respectively. For both models we

explore their joint upper tail, and so focus on different features of the (XF , YF ) copula.

The copula of the joint distribution (X
(I)
E , Y

(I)
E ) is an example of the class of inverted max-

stable models first introduced in Ledford and Tawn (1996, 1997). The inverted max-stable

distributions are a broad class of AI distributions, covering all values of χ̄ with 0 6 χ̄ < 1.

Heffernan and Tawn (2004) found interesting conditional extremal behaviour for a sub-family

of this class, with much broader structures explored by Papastathopoulos and Tawn (2016).

Furthermore, Wadsworth and Tawn (2012a) explored extensions of the representations of

Ledford and Tawn (1997) through a series of multivariate regular variation conditions, and

found the inverted max-stable distributions to have particular importance in modelling AI. It

follows from results in Deheuvels (1983) that inverted max-linear models give an arbitrarily

good approximation to inverted multivariate extreme value distributions, and so for a study

of AI distributions models of the form (X
(I)
E , Y

(I)
E ) are of core importance. Next we derive

χ and χ̄ for the transformed max-linear and inverted max-linear models.
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The joint distribution function of the transformed max-linear model (XE , YE) is

Pr(XE < x, YE < y) =
m∏
i=1

min
(

(1− exp(−x))αi , (1− exp(−y))βi
)
, for x > 0, y > 0.

(5.1.6)

Unlike (XF , YF ), this is not max-stable, but this is due to the margin choice not the copula,

which remains unchanged. The limiting distribution of normalised componentwise maxima

of (5.1.6) can be shown to be max-stable, so (XE , YE) is in the domain of attraction of a

bivariate extreme value distribution with limiting dependence. For this model, χ̄ = 1 and

χ = 2 −
∑m

i=1 max(αi, βi), so the variables are AD. On exponential margins, simulations

from the max-linear model in (5.1.3) give lines of mass, parallel with XE = YE , and points

scattered around these lines, as shown on Figure 5.1.1a, where XE and YE were determined

by XF = max(0.7Z1, 0.2Z2, 0.1Z3) and YF = max(0.4Z1, 0.5Z2, 0.1Z4). The number of Zi

variables in common between XF and YF determines the number of lines with mass on. In

the case of Figure 5.1.1a there are two Zi variables, Z1 and Z2, in common between XF and

YF , hence there is mass on two lines. The independent scatter of points around the lines is

due to the presence of Z3 in XF and Z4 in YF .

The joint distribution function of the inverted max-linear model (X
(I)
E , Y

(I)
E ) is

Pr(X
(I)
E < x, Y

(I)
E < y) = 1− exp(−x)− exp(−y) + exp

(
−

m∑
i=1

max(αix, βiy)

)
, (5.1.7)

for x > 0, y > 0. For this model, that χ = 0 and χ̄ = (2/
∑m

i=1 max(αi, βi)) − 1, so the

variables are AI. Figure 5.1.1b shows a random sample from (X
(I)
E , Y

(I)
E ) derived from the

same max-linear model (XF , YF ) as used to illustrate (XE , YE) above. This model gives

points on rays and points scattered around these rays. Similarly to (XE , YE), the number

of rays is determined by the number of Zi variables that are common between XF and YF ,

which in our example is two. Note, that in the inverted max-linear model the point masses

are no longer on parallel lines, but on rays (y = hx for 0 < h <∞) that meet at the origin.
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Figure 5.1.1: Bivariate simulations derived from the max-linear model in (5.1.3) with XF =
max(0.7Z1, 0.2Z2, 0.1Z3) and YF = max(0.4Z1, 0.5Z2, 0.1Z4); (a) transformed max-linear

model (XE , YE), (b) inverted max-linear model (X
(I)
E , Y

(I)
E ), and (c) mixture model (XM ,

YM ) with δ = 0.5 in (5.5.1).

If there exists at least one i = 1, . . . ,m such that αi = βi, then there is a ray with gradient

h = 1, but despite this the variables are AI.

Combining these two models provides a flexible approach to modelling extremal dependence

that can capture both AI and AD. Figure 5.1.1c shows an example of a model (XM , YM )

that has both AI and AD components. Note, that there is a mass both on parallel lines and

on rays in exponential margins, and hence, both AD and AI behaviours are represented.

We are interested in the tail behaviour of these models, where this feature is most apparent.

Wadsworth and Tawn (2012a) present a statistical analysis which shows the benefit of this

mixture type of model, incorporating AD and AI, over established dependence models. As

illustrated in Figure 5.1.1, our models put mass on rays and lines, which is inconsistent

with most data applications where an assumption of a joint density everywhere is reas-

onable. Consequently, if these models are fitted using likelihood/Bayesian-based inference

they would need almost as many parameters as data points to get a reasonable fit as each

line of mass can only explain one data point. Therefore, as currently set up, these are not

parsimonious models for likelihood inference but can be used as building blocks for future

parsimonious model development. Alternatively, such models can be fitted using other in-

ference criteria which do not depend on the mass on rays/lines. That though is not the focus
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of this chapter. The aim of this chapter is to study mathematically the extremal structure

of this class of models, the novel tools we use for this are introduced next.

To explore the tail behaviour of bivariate distributions with identical marginals the estab-

lished approach is to adopt a so-called radial-angular representation. We want the radial

component, R, to represent how far we are from the origin, and the angular component,

W , to represent some form of measure of angle relative to the coordinate axes. This is

common practice in multivariate extremes (see e.g. de Haan and Ferreira (2006) and Res-

nick (1987)). For Fréchet marginals, (XF , YF ), these correspond to RF = XF + YF and

WF = XF /(XF +YF ) , although other norms can be used to define these. Then in the limit

as r → ∞ the distribution WF | (RF > r) is non-degenerate if (XF , YF ) are AD, but not

perfectly dependent, but collapses to mass on {0} and {1} if the variables are AI. Here the

extreme events being considered are those with RF > r.

The key departures to this standard radial-angular approach in our work is that we focus on

exponential margins, different combinations of the variables are considered to be extreme,

and we use a different dependence variable than WF . We consider the following radial-

angular variables for general bivariate variables (X, Y ) on exponential margins:

R = X + Y, WD = Y −X, WI = X/(X + Y ). (5.1.8)

Here two different angular variables WD and WI are considered. Also the radial variable

R differs from RF as X and Y are on exponential scale. We will explore these radial-

angular variables for the transformed max-linear model (XE , YE) in (5.1.4) and the inverted

max-linear model (X
(I)
E , Y

(I)
E ) in (5.1.5).

To help understand the difference in our new radial-angular variables first consider the

connection between WD and WF . For large XE we have that XE ≈ log(XF ), similarly for
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YE , and so

WF ≈ exp(XE)/(exp(XE) + exp(YE)) = 1/(1 + exp(YE −XE)).

Hence, for large XE and YE , WD is simply a function of WF , and at first sight it would

appear that this choice of radial and angular variable should not reveal any new structure.

But conditioning on R > r leads to the selection of different extreme events than RF > s,

for any choice of r and s, so different results can arise. Specifically, we will show that the

radial and angular representation (R, WD) gives a non-trivial limit for the distribution of

WD | (R > r) as r → ∞ for the transformed max-linear model, but for the inverted max-

linear model it gives only mass at {−∞}, {0} or {∞} depending on the (αi, βi), i = 1, . . . ,m,

values. The latter limit is at odds with results for WF , as there the associated mass at {0},

corresponding to WF = 1/2, does not arise. For the radial and angular formulation (R, WI)

the limit distribution of WI | (RI > r), as r → ∞, for the transformed max-linear model

is degenerate, with limit WI = 1/2, and is a non-trivial limit for the inverted max-linear

model.

The layout of the chapter is as follows. In Section 5.2 we introduce a simple case of the max-

linear model given in (5.1.3), called the Marshall-Olkin model, and we will use this to derive

some of the key tail dependence properties of the model. The mathematical techniques used

throughout are based on the techniques shown in this section. Then in Section 5.3 we derive

properties for the general case for both the transformed max-linear and inverted max-linear

models. In Section 5.4 we examine the asymptotic behaviour of the upper tail for both of

these models. In Section 5.5 we combine the two models together and study the extremal

properties of this formulation. Proofs of the results are given in Sections 5.6. We close

with a discussion in Section 5.7 that discusses multivariate and spatial models extending

our bivariate models.

136



CHAPTER 5

5.2 Marshall-Olkin model

Let us consider a simple case of model (5.1.3). This corresponds to the Marshall and Olkin

(1967) model, and has the following form:

XF = max{αZ1, (1− α)Z2},

YF = max{βZ1, (1− β)Z3},

where Zi, i = 1, 2, 3, are defined as in (5.1.3), and 0 6 α, β 6 1 are known constants. As

there is only Z1 in common between XF and YF , a similar simulation to that shown on

Figure 5.1.1a would give point mass on a single line, with the rest of the points scattered

above and below the line. The variables XF and YF are independent only in the cases when

α = 1 and β = 0 or α = 0 and β = 1, otherwise they are dependent.

In order to characterise this model it is useful to define the following three cases: (i) on the

line YF = β
αXF , (ii) below the line with YF <

β
αXF , and (iii) above the line with YF >

β
αXF .

In each of these cases there are certain combinations of Zi’s that can lead to them. To have

points on the line we need (XF , YF ) = (αZ1, βZ1), which requires Z2 6 α/(1 − α)Z1 and

Z3 6 β/(1 − β)Z1. Below the line we need (XF , YF ) = ((1 − α)Z2, βZ1) or (XF , YF ) =

((1 − α)Z2, (1 − β)Z3) with (1 − α)Z2/α > (1 − β)Z3/β, and above the line (XF , YF ) =

(αZ1, (1− β)Z3) or (XF , YF ) = ((1− α)Z2, (1− β)Z3) with (1− α)Z2/α < (1− β)Z3/β.

In each case we can derive the probability of being in that case and the density conditional on

being in each region. Here we will illustrate the calculations for case (i) when YF = β
αXF ; i.e.,

we want to work out the probability that XF < x for some x > 0 given that YF = βXF /α.

We use conditional probability:

Pr

{
XF < x

∣∣∣∣YF =
β

α
XF

}
=

Pr
{
XF < x, YF = β

αXF

}
Pr
{
YF = β

αXF

} . (5.2.1)
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The joint probability in the numerator is

Pr

{
XF < x, YF =

β

α
XF

}
= Pr {αZ1 < x,αZ1 > (1− α)Z2, βZ1 > (1− β)Z3}

= Pr

{
Z1 <

x

α
,Z2 <

αZ1

1− α
,Z3 <

βZ1

1− β

}
.

To calculate this, we can condition on one of the Z’s, in this case Z1, and integrate over the

range Z1 < x/α, which gives

Pr

{
XF < x, YF =

β

α
XF

}
=

∫ x/α

0
Pr

{
Z2 <

αz

1− α
,Z3 <

βz

1− β

∣∣∣∣Z1 = z

}
fZ(z)dz,

=

∫ x/α

0
e−(1−α)/(αz)e−(1−β)/(βz) 1

z2
e−1/zdz,

=
αβ

α+ β − αβ
exp

(
−α+ β − αβ

βx

)
,

where the second equality holds as Z2 and Z3 are independent Fréchet random variables. It

follows that

Pr

{
YF =

β

α
XF

}
=

αβ

α+ β − αβ
,

and hence we have obtained the conditional distribution in (5.2.1) as exp{−(α + β −

αβ)/(βx)} for x > 0. To obtain the one-dimensional density of the points on the line

we can differentiate this distribution function, which gives

fXF

(
x

∣∣∣∣YF =
β

α
XF

)
=
α+ β − αβ

βx2
exp

(
−α+ β − αβ

βx

)
, for x > 0,

or, equivalently,

fYF

(
y

∣∣∣∣YF =
β

α
XF

)
=
α+ β − αβ

αy2
exp

(
−α+ β − αβ

αy

)
, for y > 0.

See Appendix 5.A for similar calculations for the other two cases using this first principles

approach. Deriving the densities as described above is laborious, involving many complex
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integrals, which makes the calculations hard to extend to the more general case. As the

densities seem to have much simpler forms than the distribution functions it seems sensible

to work with densities directly. For example, above the line YF > (β/α)XF the probability

element is

Pr

{
XF ∈ dx, YF ∈ dy

∣∣∣∣YF > β

α
XF

}
=

Pr
{
XF ∈ dx, YF ∈ dy, YF > β

αXF

}
Pr
{
YF >

β
αXF

} , (5.2.2)

where X ∈ dx denotes X ∈ (x, x+ δx). Then, there are two possible combinations that lead

to this case, (XF , YF ) = (αZ1, (1 − β)Z3) and (XF , YF ) = ((1 − α)Z2, (1 − β)Z3), so the

joint probability in the numerator of expression (5.2.2) can be broken down into the sum of

two probabilities, P1 and P2, where

P1 = Pr

{
XF = αZ1 ∈ dx, YF = (1− β)Z3 ∈ dy, YF >

β

α
XF

}
,

P2 = Pr

{
XF = (1− α)Z2 ∈ dx, YF = (1− β)Z3 ∈ dy, YF >

β

α
XF

}
.

Then, it follows that the probability P1 is equivalent to the joint probability Pr{αZ1 ∈

dx, (1− β)Z3 ∈ dy, Z2 < x/(1− α)} given that y > (βx)/α. Hence, using that the Zi’s are

independent Fréchet random variables,

P1 = Pr

(
Z1 ∈

dx

α

)
Pr

(
Z3 ∈

dy

1− β

)
Pr

(
Z2 <

x

1− α

)
I
(
y >

β

α
x

)
∼
( α
x2
e−α/x

)(1− β
y2

e−(1−β)/y

)(
e−(1−α)/x

)
I
(
y >

β

α
x

)
δxδy

=
α(1− β)

x2y2
e−1/xe−(1−β)/y I

(
y >

β

α
x

)
δxδy,

as δx→ 0 and δy → 0. Similarly, as δx→ 0 and δy → 0,

P2 ∼
(1− α)(1− β)

x2y2
e−1/xe−(1−β)/y I

(
y >

β

α
x

)
δxδy.
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Hence, by summing P1 and P2, as δx→ 0 and δy → 0,

Pr

{
XF ∈ dx, YF ∈ dy, YF >

β

α
XF

}
∼ (1− β)

x2y2
e−1/xe−(1−β)/y I

(
y >

β

α
x

)
δxδy.

This can be integrated in the region y > (βx)/α to obtain the probability

Pr

{
YF >

β

α
XF

}
=

α(1− β)

α+ β − αβ
.

Hence, we obtain the density, conditionally on being above the line YF > (β/α)XF , as

f(XF ,YF )

(
x, y

∣∣∣∣YF > β

α
XF

)
=
α+ β − αβ
αx2y2

e−1/xe−(1−β)/y I
(
y >

β

α
x

)
.

Similar calculations can be performed to obtain densities for cases (i) and (ii).

5.3 General max-linear models

5.3.1 Set up and densities on Fréchet margins

Our work in this section has considerable parallels with the hitting scenarios and the condi-

tional probability results for max-linear models developed by Wang and Stoev (2011). Here,

we go beyond the scope of this chapter by calculating conditional densities.

Let us consider the general max-linear model given in expression (5.1.3). Without loss of

generality, let us assume that the αiZi and βiZi terms are ordered such that

α = (α1, . . . , αk, αk+1, . . . , αk+l, 0, . . . , 0),

β = (β1, . . . , βk, 0, . . . , 0, βk+l+1, . . . , βm),

i.e., for i = 1, . . . , k, αi 6= 0 and βi 6= 0, for i = k + 1, . . . , k + l, αi 6= 0 and βi = 0, and for

i = k + l+ 1, . . . ,m, αi = 0 and βi 6= 0, with
∑k+l

i=1 αi = 1 and
∑k

i=1 βi +
∑m

h=k+l+1 βh = 1.
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We also assume that ωi := βi/αi are unique for i = 1, . . . , k. In this general case there are k

common Zi variables between XF and YF , hence there is mass on k lines, each with equation

YF = (βi/αi)XF , i = 1, . . . , k. If k = 0 then XF and YF are independent. Furthermore,

without loss of generality, let us assume the following ordering for the first k terms,

β1

α1
<
β2

α2
< . . . <

βk
αk
⇔ 0 < ω1 < ω2 < . . . < ωk <∞.

This notation ensures that the line with mass that has the least steep gradient is YF = ω1XF ,

followed by YF = ω2XF , and so on until YF = ωkXF . Let us also define the following sums,

αsum = αk+1 + . . .+ αk+l,

βsum = βk+l+1 + . . .+ βm,

α(j)
sum = αsum + Σj

i=1αi, for 0 6 j 6 k,

β(h)
sum = βsum + Σk

i=hβi, for 1 6 h 6 k + 1,

where we define
∑0

i=1 xi = 0 and
∑k

i=k+1 xi = 0, which leads to α
(0)
sum = αsum and β

(k+1)
sum =

βsum.

In this more general set up it is useful to define four types of ’regions’: (i) above the line

YF = ωkXF , (ii) on the line YF = ωjXF , j = 1, . . . , k, (iii) between the two lines YF = ωjXF

and YF = ωj+1XF , j = 1, . . . , k−1, and (iv) below the line YF = ω1XF . There is one region

of type (i) and (iv) each, k regions of type (ii) since there are k lines, and k − 1 regions of

type (iii), since k lines define k − 1 between-line regions.

The strategy for the derivation of the densities for each of these regions is as in Section 5.2,

with full derivations given in Appendix 5.B. Here we will give the conditional density forms

for each of the four region types. The density conditional on being in the region above the

line YF = ωkXF is

f(XF ,YF )

(
x, y

∣∣∣∣ YFXF
> ωk

)
=
αkβsum + βk
αkx2y2

exp

(
−1

x
− βsum

y

)
,
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for y > ωkx. On the line YF = ωjXF , j = 1, . . . , k, the density for x > 0 is

f(XF ,YF )

(
x, ωjx

∣∣∣∣ YFXF
= ωj

)
=
αjβ

(j+1)
sum + βjα

(j)
sum

βjx2
exp

(
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

)
.

Between two lines YF = ωjXF and YF = ωj+1XF , j = 1, . . . , k − 1, the conditional density

is

f(XF ,YF )

(
x, y

∣∣∣∣ωj < YF
XF

< ωj+1

)
=

cj
(αjβj+1 − βjαj+1)x2y2

exp

(
−α

(j)
sum

x
− β

(j+1)
sum

y

)
,

for ωjx < y < ωj+1x where cj = (αjβ
(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum). Finally, in

the region below the line YF = ω1XF , the conditional density is

f(XF ,YF )

(
x, y

∣∣∣∣ YFXF
< ω1

)
=
α1 + β1αsum
β1x2y2

exp

(
−αsum

x
− 1

y

)
,

for y < ω1x.

5.3.2 Densities on exponential margins

Transformed max-linear model

In Section 5.3.1 we gave densities conditional on being on each line and in the regions

defined by the lines on Fréchet margins. Since it is more straightforward to expose the

difference between AI and AD on exponential margins, we want to obtain the densities for

exponential margins. Hence for each case (i)-(iv) defined in Section 5.3.1 we will identify

the corresponding case on exponential margins and then transform to obtain the densities

on the new margins.

On exponential margins for the transformed max-linear model (XE , YE), the line YF = ωjXF

becomes the curve YE = − log(1 − (1 − e−XE )1/ωj ) for all j ∈ {1, . . . , k}. For ease of

notation, let us define gj(XE) = − log(1 − (1 − e−XE )1/ωj ) for j = 1, . . . , k. Note that
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gj(XE) ≈ XE + log(ωj) for large XE ; this asymptotic linearity is useful when we explore

the limiting behaviour of the model. The cases defined in Section 5.3.1 become (i) above

the curve YE = gk(XE), (ii) on the curve YE = gj(XE), j = 1, . . . , k, (iii) between the

two curves YE = gj(XE) and YE = gj+1(XE), j = 1, . . . , k − 1, and (iv) below the curve

YE = g1(XE). Note that the transformation to exponential margins means that the lines

with mass on are now curves. Furthermore, even asymptotically they are no longer rays

that meet at the origin, but parallel lines each with gradient equal to one with intercepts

log(ωj), j = 1, . . . , k. For each region we transform the conditional densities given in Section

5.3.1 to exponential margins.

Hence, the conditional density in the region above the curve YE = gk(XE) is:

f(XE ,YE) (x, y|YE > gk(XE)) =

(
αkβsum + βk

αk

)
e−xe−y(1− e−y)βsum−1, (5.3.1)

for x > 0 and y > gk(x). On the curve YE = gj(XE), j = 1, . . . , k, the conditional density

for x > 0 is:

f(XE ,YE) (x, gj(x)|YE = gj(XE)) =

(
αjβ

(j+1)
sum + βjα

(j)
sum

βj

)
e−x(1−e−x)(αjβ

(j+1)
sum +βjα

(j)
sum)/βj−1.

The conditional density between the curves YE = gj(XE) and YE = gj+1(XE), for j =

1, . . . , k − 1, is:

f(XE ,YE) (x, y|gj(XE) < YE < gj+1(XE)) =
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − βjαj+1)

×e−xe−y(1− e−x)α
(j)
sum−1(1− e−y)β

(j+1)
sum −1,

for x > 0 and gj(x) < y < gj+1(x), j = 1, . . . , k − 1. The conditional density below the

curve YE = g1(XE) is

f(XE ,YE) (x, y|YE < g1(XE)) =

(
α1 + β1αsum

β1

)
e−x(1− e−x)αsum−1e−y,
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for x > 0 and y < g1(x).

Inverted max-linear model

Now we turn our attention to the lower tail of the max-linear model (5.1.3), i.e. the upper

tail of the inverted max-linear model. Similarly to Section 5.3.2, the densities given in

Section 5.3.1 can be transformed to inverted exponential margins (X
(I)
E , Y

(I)
E ).

To invert the lower tail of XE , set U = 1 − e−XE . Then the inversion of U is U (I) =

1− U = e−XE . Also, U (I) = 1− e−X
(I)
E , which leads to e−XE = 1− e−X

(I)
E . Hence, X

(I)
E =

− log(1 − e−XE ) and by substituting in XE from expression (5.1.4) we get X
(I)
E = 1/XF .

Similarly, Y
(I)
E = 1/YF .

On the new inverted exponential margins, the line YF = ωjXF becomes Y
(I)
E = X

(I)
E /ωj

for j = 1, . . . , k. Hence the cases defined in Section 5.3.1 become (i) below the line Y
(I)
E =

X
(I)
E /ωk, (ii) on the line Y

(I)
E = X

(I)
E /ωj , j = 1, . . . , k, (iii) between the two lines Y

(I)
E =

X
(I)
E /ωj+1 and Y

(I)
E = X

(I)
E /ωj , j = 1, . . . , k − 1, and (iv) above the line Y

(I)
E = X

(I)
E /ωj .

Note that the transformation flips the order of the lines, with the line Y
(I)
E = X

(I)
E /ω1 having

the steepest gradient and Y
(I)
E = X

(I)
E /ωk the least steep.

The conditional density below the line Y
(I)
E = X

(I)
E /ωk has the following form:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | Y (I)

E < X
(I)
E /ωk

)
=
αkβsum + βk

αk
e−xe−βsumy, x > 0, y < x/ωk.

On the line Y
(I)
E = X

(I)
E /ωj , j = 1, . . . , k, the conditional density for x > 0 takes the form:

f
(X

(I)
E ,Y

(I)
E )

(
x, x/ωj | Y (I)

E = X
(I)
E /ωj

)
=
αjβ

(j+1)
sum + βjα

(j)
sum

βj
exp

{
−αjβ

(j+1)
sum + βjα

(j)
sum

βj
x

}
.

Between the two lines Y
(I)
E = X

(I)
E /ωj+1 and Y

(I)
E = X

(I)
E /ωj , j = 1, . . . , k−1, the conditional
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density is:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | X(I)

E /ωj+1 < Y
(I)
E < X

(I)
E /ωj

)
=

cj
(αjβj+1 − βjαj+1)

e−α
(j)
sumxe−β

(j+1)
sum y.

where cj = (αjβ
(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum), x > 0 and x/ωj < y < x/ωj+1.

Finally, above the line Y
(I)
E = X

(I)
E /ω1 the conditional density is:

f
(X

(I)
E ,Y

(I)
E )

(
x, y | Y (I)

E > X
(I)
E /ω1

)
=
α1 + β1αsum

β1
e−αsumxe−y, x > 0, y > x/ω1.

5.4 Angular representation and limiting behaviour

In this section we explore the asymptotic behaviour of the upper tails of the transformed

max-linear model (5.1.6) and the inverted max-linear model (5.1.7). As discussed in Sec-

tion 5.1, we use a radial-angular representation (R,W ) to explore the limiting properties of

the models. For general exponential marginal variables (X,Y ) we define the radial compon-

ent to be of the form R = X + Y . For the angular component we use two different forms:

WD = Y − X and WI = X/(X + Y ) for the reasons given in Section 5.1. Our aim is to

determine the tail behaviour of the models in the region {R > r} as r → ∞. So for each

type of region J (identified in the previous sections), and for both forms of W , we will also

calculate the joint density of R and W given that R > r to give the conditional probability

Pr(W > w,R > r + t | R > r,W ∈ J ) =
Pr(W > w,R > r + t |W ∈ J )

Pr(R > r |W ∈ J )
, t > 0. (5.4.1)

Then we can use these results to obtain the conditional probability of being in each region

J , given R > r as r →∞, as

Pr(W ∈ J | R > r) =
Pr(R > r |W ∈ J ) Pr(W ∈ J )

Pr(R > r)
, for all J . (5.4.2)
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5.4.1 Transformed max-linear model

First, we explore the asymptotic behaviour of the upper tail of the transformed max-linear

model (5.1.6). We use the densities in Section 5.3.2, to obtain the densities in each region

on (R,WD) margins.

For (R,WD) the curve YE = gj(XE), j = 1, . . . , k, is WD = gj(XE)−XE , which is approx-

imately WD = log(ωj) := wj , with −∞ < wj < ∞, for large R and hence for large XE .

So the case (i) becomes approximately the region WD > wk for large R. For finite samples

the region is WD > gk(XE) −XE . The joint density conditional on being in this region is

obtained from the density in (5.3.1) as:

f(R,WD) (r, w|WD > gk(XE)−XE) =

(
αkβsum + βk

2αk

)
e−r(1− e−(r+w)/2)βsum−1, (5.4.3)

for r > 0 and w > gk(XE) − XE . We can then calculate the conditional probability in

(5.4.1) as

Pr(WD > w,R > r + t | R > r,WD > gk(XE)−XE) ≈
(

1 +
t

r + 1

)
e−t → e−t,

as r →∞, for t > 0 and w > wk. This shows that Pr(WD > w | R > r)→ 1 for all w > wk.

Hence Lemma 1 follows.

Lemma 1. In the limit as r → ∞, WD | {R > r,WD > wk} →p wk, and asymptotically

WD ⊥⊥ R | {R > r,WD > wk}.

On the curve WD = gj(XE)−XE , j = 1, . . . , k, the density is

fR (r|WD = gj(XE)−XE) = cje
−(r−wj)/2(1− e−(r−wj)/2)2cj−1, r > 0,

where cj = (αjβ
(j+1)
sum + βjα

(j)
sum)/(2βj). Then, the distribution of the points, conditional on

146



CHAPTER 5

being on this curve is

Pr(R > r |WD = gj(XE)−XE) = 1− (1− ewj/2e−r/2)cj ,

∼ cjewj/2e−r/2, as r →∞,

for j = 1, . . . , k.

Lemma 2. The distribution of the radial points on the line WD = wj, j = 1, . . . , k, has an

exponential tail.

In the region between the curves WD = gj(XE) − XE and WD = gj+1(XE) − XE , j =

1, . . . , k − 1, the joint density is:

f(R,WD) (r, w|gj(XE)−XE < WD < gj+1(XE)−XE) =
cj
2
e−r(1− e−(r−w)/2)αsum−1

×(1− e−(r+w)/2)βsum−1,

for r > 0 and gj(XE)−XE < w < gj+1(XE)−XE . Then the conditional probability,

Pr(WD > w,R > r + t | R > r, gj(XE)−XE < WD < gj+1(XE)−XE)→ (wj+1 − w)e−t

wj+1 − wj
,

as r →∞, for t > 0 and wj < w < wj+1. Hence Lemma 3 follows.

Lemma 3. The limiting angular distribution is uniform in regions between the rays WD =

wj and WD = wj+1, j = 1, . . . , k − 1, and independent of the radial variable, which follows

a unit exponential distribution.

Lastly, in the region WD < g1(XE)−XE the joint density is

f(R,WD) (r, w|WD < g1(XE)−XE) =

(
αj + βjαsum

2βj

)
e−r(1− e−(r−w)/2)αsum−1,

for r > 0 and w < g1(XE)−XE . Then the conditional probability,

Pr(WD > w,R > r + t | R > r,WD < w1) ∼ (w1 − w)e−t

w1 + r + 1
, as r →∞, t > 0, w < w1.
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This suggests that Pr(WD > w | R > r,WD < w1) → 0 as r → ∞ for all w < w1 and the

following lemma follows.

Lemma 4. In the limit as r → ∞, WD | {R > r,WD < w1} →p w1, and asymptotically

WD ⊥⊥ R | {R > r,WD < w1}.

Now we use the results above to calculate the probability of being in each region J , given

R > r as r → ∞. Theorems 4 and 5 describe the asymptotic behaviour of the conditional

probability (5.4.2) for angular measures W = WD and W = WI , respectively. Proofs are

deferred to Section 5.6.

Theorem 4. Let R = XE + YE, WD = YE −XE and wj = log(βj/αj). Then, as r →∞,

Pr(WD ∈ J | R > r)→


αj exp(wj/2)∑k
i=1 αi exp(wi/2)

, for J = {wj}, j = 1, . . . , k

0, otherwise.

Theorem 5. Let R = XE + YE and WI = XE/(XE + YE). Then, as r →∞,

Pr(WI < w | R > r)→


0, w < 1/2,

1, w > 1/2,

i.e., WI | R > r →p 1/2.

Thus, Theorem 4 shows that in the limit r →∞, there is only mass on the lines WD = wj ,

j = 1, . . . , k, and not in any of the other regions for this model. Figure 5.4.1a illustrates

this for the max-linear model with the same α and β parameters as in Figure 5.1.1. For

the other angular form WI , the mass collapses onto the diagonal, as shown by Theorem 5,

and hence WI is a poor angular measure for exploring the extremal dependence structure

for AD variables.
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Figure 5.4.1: Asymptotic behaviour of the (a) transformed max-linear and (b) inverted
max-linear model on exponential margins, for XF and YF defined as in Figure 5.1.1.

5.4.2 Inverted max-linear model

Now we explore the asymptotic upper tail behaviour of the inverted max-linear model (5.1.7).

We transform the densities given in Section 5.3.2 to obtain the densities in each region

on (R,WI) margins. On these new margins, the line Y
(I)
E = X

(I)
E /ωj becomes the line

WI = ωj/(1 + ωj), j = 1, . . . , k. Let us denote wj = ωj/(1 + ωj) for j = 1, . . . , k. Note

wj here is different than in Section 5.4.1. The lines are then ordered such that 0 < w1 <

w2 < . . . < wk < 1. Then, the region below the line Y
(I)
E = X

(I)
E /ωk becomes the region

wk < WI < 1. The conditional density in this region is:

f(R,WI)(r, w | wk < WI < 1) =

(
αjβsum + βj

αj

)
re−βsumre−wr(1−βsum), r > 0, wk < w < 1.

To determine the limiting behaviour for r → ∞ we calculate the conditional probability

Pr(WI > w,R > r + t | wk < WI < 1, R > r). We obtain the joint survival function of WI

and R as

Pr(WI > w,R > r | wk < WI < 1) =
αkβsum + βk
αk(1− βsum)

[
e−rc(w)

c(w)
− e−r

]
, r > 0, wk < w < 1,

(5.4.4)
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where c(w) = βsum + w(1 − βsum). Setting w = wk in (5.4.4) we get the conditional

distribution for R given ωk < WI < 1. Hence, for t > 0 and wk < w < 1,

Pr(WI > w,R > r + t | R > r,wk < WI < 1) =
[c(w)]−1e−(r+t)c(w) − e−(r+t)

[c(wk)]−1e−rc(wk) − e−r
.

Now note that c(w) is an increasing function for wk < w < 1 and c(1) = 1. Hence, as

r →∞,

Pr(WI > w,R > r + t | R > r,wk < WI < 1) ∼ c(wk)

c(w)
e−tc(w)e−r[c(w)−c(wk)], wk < w < 1

which as r → ∞ tends to 0 for all w ∈ (wk, 1), and equals e−tc(wk) for w = wk, leading to

Lemma 5.

Lemma 5. WI | {R > r,wk < WI < 1} →p wk, as r → ∞, and asymptotically WI is

independent of R, which has an exponential tail with rate c(wk).

The conditional density of R on the line WI = wj , j = 1, . . . , k, is

fR(r |WI = wj) =

(
αjβ

(j+1)
sum + βjα

(j)
sum

βj

)
exp

{
−αjβ

(j+1)
sum + βjα

(j)
sum

βj
r

}
, for r > 0.

Lemma 6. The distribution of R | {WI = wj}, is exponential with rate (αjβ
(j+1)
sum +

βjα
(j)
sum)/βj, j = 1, . . . , k.

For the region between the lines WI = wj and WI = wj+1 the conditional density is

f(R,WI)(r, w | wj < WI < wj+1) =

(
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − βjαj+1)

)

× re−β
(j+1)
sum re−(α

(j)
sum+β

(j)
sum)wr,

for r > 0 and wj < w < wj+1. Similarly to above we calculate the conditional probability
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as

Pr(WI > w,R > r + t | wj < WI < wj+1, R > r)

=
[c(wj+1)]−1e−(r+t)c(wj+1) − [c(w)]−1e−(r+t)c(w)

[c(wj+1)]−1e−rc(wj+1) − [c(wj)]−1e−rc(wj)
,

where t > 0, wj < w < wj+1 and c(w) = w(α
(j)
sum + β

(j+1)
sum ) + β

(j+1)
sum . Here c(w) is an

increasing function for wj < w < wj+1, so c(wj) < c(w) < c(wj+1). Hence, as r → ∞, for

wj < w < wj+1,

Pr(WI > w,R > r + t | wj < WI < wj+1, R > r) ∼ c(wj)

c(w)
e−tc(w)e−r[c(w)−c(wj)],

which tends to 0 for r →∞ for all w ∈ (wj , wj+1), and tends to e−tc(wj) for w = wj . Hence,

Lemma 7 follows.

Lemma 7. In the limit as r →∞, WI | {R > r,wj < WI < wj+1} →p wj, j = 1, . . . , k− 1,

and asymptotically WI ⊥⊥ R | {R > r,wj < WI < wj+1}.

On (R,WI) margins the region above the line Y
(I)
E = X

(I)
E /ω1 translates to the area repres-

ented by WI < w1. The conditional density in this region is

f(R,WI)(r, w |WI < w1) =

(
α1 + β1αsum

β1

)
e−rw(αsum−1)e−r, for r > 0, w < w1.

Again, we can work out the conditional probability, for t > 0 and w < w1,

Pr(WI > w,R > r + t |WI < w1, R > r) =
[c(w1)]−1e−(r+t)c(w1) − [c(w)]−1e−(r+t)c(w)

[c(w1)]−1e−rc(w1) − e−r
,

where c(w) = 1 − (1 − αsum)w. The function c(w) is in this case a decreasing function for

w ∈ (0, w1), and c(0) = 1, so 0 < c(w1) < c(w) < 1. This means that as r →∞,

Pr(WI > w,R > r + t |WI < w1, R > r)→ e−tc(w),
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for all w ∈ (0, w1), suggesting that all points in this region will tend toWI = 0 asymptotically

as r →∞.

Lemma 8. As r →∞, WI | {R > r,WI < w1} →p 0, and asymptotically WI is independent

of R, which is unit exponential.

Now we use the above results to calculate the conditional probability (5.4.2). Theorems 6

and 7 describe the behaviour of the conditional probability of points being in each region

given that R > r as r →∞, i.e., expression (5.4.2) with W = WI and W = WD, respectively,

where J denotes the different regions. Proofs are given in Section 5.6.

Theorem 6. Let R = X
(I)
E + Y

(I)
E and WI = X

(I)
E /(X

(I)
E + Y

(I)
E ). Let γj = (αjβ

(j+1)
sum +

βjα
(j)
sum)/(αj +βj), 0 < γj 6 1, for j = 1, . . . , k, and γmin = min

j=1,...,k
(γj). If there is a unique

γj value, j = 1, . . . , k, equal to γmin, i.e., γmin = γj, then, for t > 0, as r →∞,

1. Pr(WI = wj , R > r + t | R > r)→ (aj/dj)e
−γjt,

2. Pr(wj < WI < wj+1, R > r + t | R > r)→ (bj/dj)e
−γjt,

3. Pr(wj−1 < WI < wj , R > r + t | R > r)→ (−bj−1/dj)e
−γjt,

4. Pr({0 < WI < wj−1} ∪ {wj < WI < 1}, R > r + t | R > r)→ 0,

where w0 = 0, wk+1 = 1, aj = αjβj/(αj + βj), bj = α
(j)
sumβ

(j+1)
sum /(α

(j)
sum − β(j+1)

sum ) and

dj = aj + bj − bj−1, j = 1, . . . , k.

Theorem 7. Let R = X
(I)
E + Y

(I)
E and WD = Y

(I)
E − X(I)

E . Let aj, bj, dj, γj and γmin

be defined as in Theorem 6. If there is a unique γj value, j = 1, . . . , k, equal to γmin, i.e.

γmin = γj, then as r →∞,

WD | R > r →



+∞, with probability I(αj > βj) + I(αj = βj)(−bj−1/dj),

0, with probability I(αj = βj)(aj/dj),

−∞, with probability I(αj < βj) + I(αj = βj)(bj/dj).

Hence, Theorem 6 shows that asymptotically for R > r and r → ∞, if γmin = γj , there
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is an exponential density on the jth ray, and a uniform density in the regions between the

(j− 1)th and jth and the jth and (j+ 1)th rays. This is illustrated on Figure 5.4.1b for the

inverted max-linear model given in Figure 5.1.1b. Note that γj is not necessarily unique, so

it is possible that γmin = γj = γi, for i and j distinct integers in {1, . . . , k}. If this is the

case then mass falls on both the ith and jth rays, and also in the regions on either side of

these. For the alternative form WD for the angular component, the mass collapses to {−∞},

{0} and {∞}, as shown by Theorem 7. This is still the case, even when γj is not unique.

Note, that even though the inverted max-linear model is AI, we find that there is mass on

the diagonal WD = 0 in the case when there exists i ∈ {1, . . . , k} such that αi = βi. This is

due to the fact that we defined the radial and angular components on exponential margins,

which gives a different region R > r than the more commonly used Fréchet margins. This

illustrates one of the benefits of identifying extremal dependence structure using exponential

marginal variables.

5.5 Mixture distribution

The transformed max-linear model (5.1.6) and the inverted max-linear model (5.1.7) can be

combined into a mixture distribution

XM

YM

 =



XE

YE

 with probability δ

X
(I)
E

Y
(I)
E

 with probability 1− δ

(5.5.1)

where δ ∈ [0, 1], and (XE , YE) and (X
(I)
E , Y

(I)
E ) represent a transformed max-linear model

and an inverted max-linear model, respectively, on exponential margins. The statistical

importance of the mixture model (5.5.1) is most easily seen by studying the sub-asymptotic
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behaviour of χ defined by expression (5.1.1). Specifically let

χ(z) = Pr(Y > z | X > z),

so χ(z) → χ as z → ∞. For the transformed max-linear model (5.1.6) it follows that

χ = 2−
∑m

i=1 max(αi, βi) and that for large z

χE(z) ≈ χ+
(2− χ)(1− χ)

2
exp(−z).

So here χE(z) converges to χ > 0 at a fixed rate of decay. In contrast, for the inverted

max-linear model (5.1.7) χ = 0, but

χE(I)(z) = {exp(−z)}
∑m
i=1 max(αi,βi)−1.

Here χE(I)(z) converges to χ = 0 at a rate of decay depending on the parameters of the

underlying max-linear model, but there is no flexibility in the constant multiplier of this

rate term. However for the mixture model (5.5.1) we have

χM (z) ≈ δχ+ (1− δ){exp(−z)}1−χ + δ
(2− χ)(1− χ)

2
exp(−z),

where χ = 2−
∑m

i=1 max(αi, βi). Thus, here there is AD, but also a penultimate behaviour

that has flexibility in both its rate and coefficient features. Hence, although this mixture

model is slightly artificial in its construction it has a sufficiently flexible form to be able to

capture all natures of the leading and penultimate forms of extremal dependence.

We use results from Section 5.4 to deduce asymptotic properties of this mixture distribution.

Here too, we will use the two different angular form representations WD and WI . Let

XM and YM be random variables, on exponential margins, from the mixture distribution

(5.5.1), and let us define the radial and angular variables R = XM + YM , WD = YM −

XM , and WI = XM/(XM + YM ). Then, using the angular form WD, it follows from
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Theorems 4 and 7 that, asymptotically for R > r as r → ∞, if there are no pairs (αj , βj)

such that αj = βj , j = 1, . . . , k, then there is mass totalling δ on the lines WD = wh,

h = 1, . . . , k, and (1 − δ) mass either at {−∞} or at {+∞}. If there is a pair (αj , βj)

such that αj = βj , then there is (1 − δ)(−bj−1/dj) mass at {+∞}, (1 − δ)(−bj/dj) mass

at {−∞}, δ(αh exp(wh/2))/(
∑k

i=1 αi exp(wi/2)) mass on each line WD = wh, h 6= j, and

δ(αh exp(wh/2))/(
∑k

i=1 αi exp(wi/2)) + (1− δ)(aj/dj) mass on the diagonal WD = wj = 0.

This is summarised in Theorem 8.

Theorem 8. Let R = XM + YM , WD = YM −XM , and wh = log(βh/αh), h = 1, . . . , k.

Then, for aj, bj, dj and γj, j = 1, . . . , k, defined as in Theorem 6, we have the following

for r →∞,

WD | R > r →



+∞, with probability (1− δ)(I(αj > βj) + I(αj = βj)(−bj−1/dj)),

wh, with probability δ
(

αh exp(wh/2)∑k
i=1 αi exp(wi/2)

)
+ (1− δ)I(αj = βj)(aj/dj),

for h = 1, . . . , k,

−∞, with probability (1− δ)(I(αj < βj) + I(αj = βj)(bj/dj)).

Using the second angular form WI , it follows from Theorems 5 and 6 that asymptotically

for R > r as r →∞, if γmin = γj and αj 6= βj , then there is mass totalling (1−δ) on the jth

ray and the two regions adjacent to this ray, and δ mass on the diagonal ray WI = 1/2. If

αj = βj , then there is (1− δ)aj/dj + δ mass on the diagonal ray WI = 1/2, and (1− δ)bj/dj

and −(1 − δ)bj−1/dj mass in the two regions on either side of this ray, respectively. See

Theorem 9 for details.

Theorem 9. Let R = XM + YM and WI = XM/(XM + YM ), and aj, bj, dj and γj,

j = 1, . . . , k, defined as in Theorem 6. Then, if γmin = γj, we have the following as r →∞,

1. Pr(WI = wj | R > r)→ (1− δ)aj/dj + δI(αj = βj),

2. Pr(WI = 1/2 | R > r)→ δ + (1− δ)(aj/dj)I(αj = βj),
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3. Pr(wj < WI < wj+1 | R > r)→ (1− δ)bj/dj ,

4. Pr(wj−1 < WI < wj | R > r)→ −(1− δ)bj−1/dj ,

5. Pr({0 < WI < wj−1} ∪ {wj < WI < 1} | R > r)→ 0.

5.6 Proofs

5.6.1 Proof of Theorem 1

The probability Pr(R > r) can be written in the following way using total probability:

Pr(R > r) =
∑
J

Pr(R > r |WD ∈ J ) Pr(WD ∈ J )

= Pr(R > r |WD > wk) Pr(WD > wk) +

k∑
j=1

Pr(R > r |WD = wj) Pr(WD = wj)

+

k−1∑
j=1

Pr(R > r | wj < WD < wj+1) Pr(wj < WD < wj+1)

+ Pr(R > r |WD < w1) Pr(WD < w1),

where each of the product terms in this sum can be derived using results from Section

5.4.1. We will illustrate the derivation of the elements of the first term Pr(R > r | WD >

wk) Pr(WD > wk). First, note that Pr(WD > wk) ≈ Pr(YF > (βk/αk)XF ) for large XF and

YF . Hence,

Pr(WD > wk) ≈
αkβsum

αkβsum + βk
,

using results from Appendix 5.B.1. To obtain Pr(R > r | WD > wk) we first integrate

expression (5.4.3) with respect to w:

fR(r |WD > wk) =

∫ r

wk

f(R,WD)(r, w |WD > wk)dw,

≈ αkβsum + βk
2αk

e−r(r − wk).
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Then integrate this with respect to r to obtain the conditional probability:

Pr(R > r |WD > wk) =

∫ ∞
r

fR(r |WD > wk)dr,

≈ αkβsum + βk
2αk

e−r(r − wk + 1).

The other three product terms can be derived similarly, leading to

Pr(R > r) ≈ βsum
2

(r − wk + 1) exp(−r) +

k∑
j=1

αj
2

exp
(wj

2

)
exp

(
−r

2

)

+

k−1∑
j=1

α
(j)
sumβ

(j+1)
sum

2
(wj+1 − wj) exp(−r) +

αsum
2

(r + w1 + 1) exp(−r), for large r.

For r →∞ we can write

Pr(R > r) ∼ exp
(
−r

2

) k∑
j=1

αj
2

exp
(wj

2

)
,

since the other terms all contain exp(−r) and they go to zero faster as r →∞.

For the region WD > wk, substituting into (5.4.2), we get for large r

Pr(WD > wk | R > r) ≈ βsum(r − wk + 1) exp(−r)∑k
j=1 αj exp(wj/2) exp(−r/2)

.

Since the numerator tends to zero faster than the denominator, Pr(WD > wk | R > r)→ 0

as r →∞. This is the same for the region WD < w1 and the regions wj < WD < wj+1 for

all j = 1, . . . , k − 1, i.e., Pr(WD < w1 | R > r)→ 0 and Pr(wj < WD < wj+1 | R > r)→ 0

for all j = 1, . . . , k − 1 as r →∞.

For the case when WD = wj , j = 1, . . . , k, both the numerator and denominator have

exponent term exp(−r/2), hence,

Pr(WD = wj | R > r)→ αj exp(wj/2)∑k
i=1 αi exp(wi/2)

, as r →∞.
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�

5.6.2 Proof of Theorem 2

It follows from Theorem 4 that, asymptotically, WD is on one of the k lines, i.e., on expo-

nential margins, YE = − log(−1 − (1 − exp(−XE))1/ωj ) ≈ XE + log(ωj), j = 1, . . . , k, for

large XE . Hence, for large R,

WI ≈
1

2
− log(ωj)

2R
, j = 1, . . . , k.

Hence, using Theorem 4, it follows that WI | R > r →p 1/2, j = 1, . . . , k, as r →∞. �

5.6.3 Proof of Theorem 3

The probability Pr(WI ∈ J | R > r) is equivalent to the expression given in (5.4.2) with

W = WI . The joint probability in the numerator can be calculated in each case using

methods similar to those in previous sections (see e.g. equation (5.4.4) for the case when

WI > wk). Then we can use total probability to calculate Pr(R > r) as shown below:

Pr(R > r) =
∑
J

Pr(R > r |WI ∈ J ) Pr(WI ∈ J )

= Pr(R > r |WI > wk) Pr(WI > wk) +

k∑
j=1

Pr(R > r |WI = wj) Pr(WI = wj)

+

k−1∑
j=1

Pr(R > r | wj < WI < wj+1) Pr(wj < WI < wj+1)

+ Pr(R > r |WI < w1) Pr(WI < w1).
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Then,

Pr(R > r) =
βsum

1− βsum
[
γ−1
k exp (−γkr)− exp(−r)

]
+

k∑
j=1

αjβj
αj + βj

γ−1
j exp (−γjr)

+
k−1∑
j=1

α
(j)
sumβ

(j+1)
sum

α
(j)
sum − β(j+1)

sum

[
γ−1
j exp(−γjr)− γ−1

j+1 exp(−γj+1r)
]

+
αsum

1− αsum
[
γ−1

1 exp (−γ1r)− exp(−r)
]
,

where γj = (αjβ
(j+1)
sum + βjα

(j)
sum)/(αj + βj), 0 < γj 6 1, for j = 1, . . . , k. For large r,

Pr(R > r) approximately becomes

Pr(R > r) ≈ βsum
1− βsum

γ−1
k exp (−γkr) +

k∑
j=1

αjβj
αj + βj

γ−1
j exp (−γjr)

+
k−1∑
j=1

α
(j)
sumβ

(j+1)
sum

α
(j)
sum − β(j+1)

sum

[
γ−1
j exp(−γjr)− γ−1

j+1 exp(−γj+1r)
]

+
αsum

1− αsum
γ−1

1 exp (−γ1r) , (5.6.1)

since the terms containing exp(−r) are smaller than the terms containing the exponential

terms exp(−γjr) for all j = 1, . . . , k − 1. Note that using the notation defined in Theorem

6, we can write (5.6.1) as

Pr(R > r) ≈
k∑
j=1

(aj + bj − bj−1)γ−1
j e−γjr. (5.6.2)

For each region the probability in (5.4.2) will tend to zero as r → ∞, unless the exponent

term in the numerator is the same as the largest exponent term in expression (5.6.1). Hence,

the result in Theorem 6 follows. �

5.6.4 Proof of Theorem 4

For the inverted max-linear distribution on exponential margins, Y
(I)
E = X

(I)
E /ωj , j =

1, . . . , k, where 0 < ωj < ∞. On (R,WD) margins this becomes, WD = Rδj , where δj =
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(1− ωj)/(1 + ωj), j = 1, . . . , k. Hence, as r →∞,

WD | R > r →



∞, for ωj < 1,

0, for ωj = 1,

−∞, for ωj > 1.

To work out the mass at {−∞}, {0} and {∞} we calculate the probabilities Pr(WD < 0 |

R > r), Pr(WD = 0 | R > r) and Pr(WD > 0 | R > r). By conditional probability,

Pr(WD < 0 | R > r) =
Pr(R > r |WD < 0) Pr(WD < 0)

Pr(R > r)
(5.6.3)

where Pr(R > r) is the same as in expression (5.6.2), and Pr(WD < 0) can be easily

obtained as Pr(WD < 0) = Pr(XF < YF ) =
∑k

i=1 I(αi = βi)β
(j+1)
sum /(α

(j)
sum + β

(j+1)
sum ). Then

we calculate the conditional probability Pr(R > r |WD < 0) as the following sum,

Pr(R > r |WD < 0) = Pr(R > r |WD < 0,WD < Rδk) Pr(WD < Rδk |WD < 0)

+

k∑
j=i+1

Pr(R > r |WD < 0,WD = Rδj) Pr(WD = Rδj |WD < 0)

+

k−1∑
j=i

Pr(R > r |WD < 0, Rδj+1 < WD < Rδj)

× Pr(Rδj+1 < WD < Rδj |WD < 0),

where we assumed that there is an i ∈ {1, . . . , k} such that ωi = 1. Using results from

Section 5.3.2, we have

Pr(R > r,WD < 0) ≈ bkγ−1
k e−γkr +

k∑
j=i+1

ajγ
−1
j e−γjr +

k−1∑
j=i

bj

[
γ−1
j e−γjr − γ−1

j+1e
−γj+1r

]
,

= biγ
−1
i e−γir +

k∑
j=i+1

(aj + bj − bj−1)γ−1
j e−γjr,
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where aj , bj and γj , j = 1, . . . , k, are defined as in Theorem 6. The probabilities Pr(WD =

0 | R > r) and Pr(WD > 0 | R > r) can be calculated similarly. Substituting into expression

(5.6.3) we obtain the results in Theorem 7. �

5.7 Conclusions

In this chapter we have characterised the asymptotic behaviour of models built on bivariate

max-linearity, using two different angular measures defined in exponential marginal space.

We found that the limiting behaviour of our three models (transformed max-linear, in-

verted max-linear and mixture) can be either asymptotically dependent or asymptotically

independent. At finite levels, however, they feature points on rays of the form y = hx,

0 < h < ∞, points on lines of the form y = h + x, −∞ < h < ∞, and independent points

scattered in the regions defined by these rays and lines.

Simulation from the max-linear model (5.1.3) is straightforward by sampling Zj , j =

1, . . . ,m, independently from a Fréchet distribution and simply calculating XF and YF ,

subject to α and β values being known. Then we can transform to margins (XE , YE) or

(X
(I)
E , Y

(I)
E ) to obtain samples on exponential margins from the transformed max-linear or

the inverted max-linear models. Assuming δ is also known, we can easily sample from the

mixture distribution (5.5.1), by sampling from the transformed max-linear model with prob-

ability δ and the inverted max-linear model with probability 1 − δ. Simulation from the

conditional distribution YF | XF is also straightforward if α and β are known, using meth-

ods described in Wang and Stoev (2011), so conditional simulation follows easily for our

three models. For a detailed description of the simulation algorithm the reader is referred

to Chapter 6.

This chapter has been restricted to bivariate models, but the formulation is straightforward

to extend to multivariate cases. Specifically, consider a d-dimensional max-linear model,
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with Fréchet margins, where

XF,j = max
i=1,...,m

(αijZi) for j = 1, . . . , d,

where Z1, . . . , Zm are independent and identically distributed Fréchet variables and αij > 0

with
∑m

i=1 αij = 1 for all j = 1, . . . , d. The multivariate transformed max-linear and

inverted max-linear models follow using multivariate analogues of transformations (5.1.4)

and (5.1.5), respectively. The extreme values from these joint distributions can be studied

by multivariate extensions of our radial and angular transformations, in particular using

R =
d∑
j=1

Xj , WD = (X2 −X1, . . . , Xd −X1), WI = (X2/R, . . . ,Xd/R),

where (X1, . . . , Xd) are on exponential margins. We expect to obtain similar findings to

the bivariate case with a range of asymptotic independence and asymptotic dependence

over different subsets of the variables. Similarly, both the joint and conditional simulation

algorithms can be easily extended to the multivariate case.

Our work has potential to be useful in spatial applications of extreme value theory since

there is often need to model bivariate dependence for both local dependence and long-range

dependence in this setting. Generally, extreme events at locations close by are expected to

occur simultaneously, as they are likely to be affected by the same underlying process. Hence,

it seems natural to model these as asymptotically dependent. On the other hand, extreme

events at locations far apart are unlikely to occur together as the chance of both locations

being affected by the same event is reduced; thus asymptotically independent models seem

more appropriate in this case. In practice, it is necessary to have a model that can move

through the two types and different levels of extremal dependence; e.g., to model sites close

by as asymptotically dependent, with dependence decreasing with distance, and asymptotic

independence for locations further apart. To achieve a smooth transition between the two

types of dependence we need a model that has both components. This chapter introduced
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a new model that incorporates both types of dependence, and that easily lends itself to

spatial applications, since we can allow the mass on the rays and lines to vary smoothly

with distance or some measure of the strength of dependence between locations. One way

to do this could be to have both αi and βi (i = 1, . . . ,m) decay with distance at different

rates. The development of such models and their statistical inference is the topic for further

work.

5.A Derivation of conditional densities for the Marshall-Olkin

model

5.A.1 Case (ii) - Below the line with YF <
β
α
XF

In this case, we want to work out the distribution of the points in the region below the line.

A similar approach to the one described in Section 5.2 can be taken, but here we need to

consider two possible combinations of Zi’s that can give YF < β
αXF . So, by conditional

probability,

Pr

{
XF > x, YF > y

∣∣∣∣YF < β

α
XF

}
=

Pr
{
XF > x, YF > y, YF <

β
αXF

}
Pr
{
YF <

β
αXF

} .

As noted before, there are two possible combinations that lead to this case: (XF , YF ) =

((1− α)Z2, βZ1), and (XF , YF ) = ((1− α)Z2, (1− β)Z3) with (1− α)Z2/α > (1− β)Z3/β.

So, the joint probability can be broken down into the sum of the two cases, such that

Pr

{
XF > x, YF > y, YF <

β

α
XF

}
= P1 + P2,
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where

P1 = Pr {XF > x, YF > y,XF = (1− α)Z2, YF = βZ1} ,

P2 = Pr {XF > x, YF > y,XF = (1− α)Z2, YF = (1− β)Z3} .

Then,

P1 = Pr{(1− α)Z2 > x, βZ1 > y, (1− α)Z2 > αZ1, βZ1 > (1− β)Z3}

= Pr

{
Z2 >

x

1− α
,Z1 >

y

β
,Z2 >

αZ1

1− α
,Z3 <

βZ1

1− β

}
=

∫ ∞
y/β

Pr

{
Z2 > max

(
x

1− α
,
αz

1− α

)
, Z3 <

βZ1

1− β

∣∣∣∣Z1 = z

}
fZ(z)dz

= I
(
y <

β

α
x

)[
β − αβ

α+ β − αβ
− βe−1/y −

(
β − αβ

α+ β − αβ

)
e−(α+β−αβ)/(βx)

+ βe−(1−α)/xe−1/y
]
,

and

P2 = Pr {(1− α)Z2 > x, (1− β)Z3 > y, (1− α)Z2 > αZ1, (1− β)Z3 > βZ1,

β(1− α)Z2 > α(1− β)Z3}

= I
(
y <

β

α
x

)[
β(1− α)(1− β)

α+ β − αβ
− (1− β)e−1/y − β(1− α)(1− β)

α+ β − αβ
e−(α+β−αβ)/(βx)

+(1− β)e−(1−α)/xe−1/y
]
,

where the last equalities in the derivations of P1 and P2 follow after extensive calculations.

Summing P1 and P2 we get,

Pr

{
XF > x, YF > y, YF <

β

α
XF

}
=

I
(
y <

β

α
x

)[
(1− α)β

α+ β − αβ
− e−1/y − (1− α)β

α+ β − αβ
e−(α+β−αβ)/(βx) + e−(1−α)/xe−1/y

]
.
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Similarly for the denominator,

Pr

{
YF <

β

α
XF

}
= P̃1 + P̃2,

where

P̃1 = Pr {XF = (1− α)Z2, YF = βZ1} = β − αβ

α+ β − αβ
,

P̃2 = Pr {XF = (1− α)Z2, YF = (1− β)Z3} =
β(1− α)(1− β)

α+ β − αβ
.

Hence,

Pr

{
YF <

β

α
XF

}
=

(1− α)β

α+ β − αβ
.

Substituting into the conditional probability formula we finally obtain the joint survival

function conditional on being in the region below the line, as

Pr

{
XF > x, YF > y

∣∣∣∣YF < β

α
XF

}
=

I
(
y <

β

α
x

)[
1− α+ β − αβ

(1− α)β
e−1/y − e−(α+β−αβ)/(βx) +

α+ β − αβ
(1− α)β

e−(1−α)/xe−1/y

]
.

Differentiating, we obtain the conditional density in the region below the line as:

f(XF ,YF )

(
x, y

∣∣∣∣YF < β

α
XF

)
=
α+ β − αβ
βx2y2

e−(1−α)/xe−1/y I
(
y <

β

α
x

)
.

5.A.2 Case (iii) - Above the line with YF >
β
α
XF

In this case, we want to work out the distribution of the points conditional on being in the

region above the line. The calculations in this case are very similar to those in Section 5.A.1
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so we will give less detail. Again, by conditional probability,

Pr

{
XF > x, YF > y

∣∣∣∣YF > β

α
XF

}
=

Pr
{
XF > x, YF > y, YF >

β
αXF

}
Pr
{
YF >

β
αXF

} ,

and there are two possible combinations that lead to this case: (XF , YF ) = (αZ1, (1−β)Z3)

and (XF , YF ) = ((1− α)Z2, (1− β)Z3) with (1− α)Z2/α < (1− β)Z3/β.

Similarly to Section 5.A.1, we can calculate the following marginal and joint probabilities:

Pr

{
YF >

β

α
XF

}
=

α(1− β)

α+ β − αβ
,

and

Pr

{
XF > x, YF > y, YF >

β

α
XF

}
=

I
(
y >

β

α
x

)[
α(1− β)

α+ β − αβ
− e−1/x − α(1− β)

α+ β − αβ
e−(α+β−αβ)/(αy) + e−1/xe−(1−β)/y

]
.

Substituting into the conditional probability formula we obtain the conditional distribution:

Pr

{
XF > x, YF > y

∣∣∣∣YF > β

α
XF

}
=

I
(
y >

β

α
x

)[
1− α+ β − αβ

α(1− β)
e−1/x − e−(α+β−αβ)/(αy) +

α+ β − αβ
α(1− β)

e−1/xe−(1−β)/y

]
.

Differentiating, we obtain the conditional density of the points in the region above the line

as

f(XF ,YF )

(
x, y

∣∣∣∣YF > β

α
XF

)
=
α+ β − αβ
αx2y2

e−1/xe−(1−β)/y I
(
y >

β

α
x

)
.
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5.B Derivation of density formulas in the general case

5.B.1 Type (i) - Above the line YF = ωkXF

From the condition that YF > ωkXF , it can be established that the pairs that can lead

to this case are combinations of the following: XF = αiZi where i = 1, . . . , k + l, and

YF = βhZh where h = k + l + 1, . . . ,m. Hence,

Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF ) =

m∑
h=k+l+1

k+l∑
i=1

Pr (αiZi ∈ dx, βhZh ∈ dy, YF > ωkXF ) .

The Zi’s are independent Fréchet random variables, hence,

Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF )

= I (y > ωkx)

m∑
h=k+l+1

k+l∑
i=1

[
Pr

(
Zi ∈

dx

αi

)
Pr

(
Zh ∈

dy

βh

)

×
k∏

p=1,{p 6=i}

Pr

(
Zp < min

(
x

αp
,
y

βp

)) k+l∏
p=k+1,{p 6=i}

Pr

(
Zp <

x

αp

)

×
m∏

p=k+l+1,{p 6=h}

Pr

(
Zp <

y

βp

) dxdy
= I (y > ωkx)

m∑
h=k+l+1

k+l∑
i=1

αi
x2
e−αi/x

βh
y2
e−βh/y

k+l∏
p=1,{p 6=i}

(
e−αp/x

)

×
m∏

p=k+l+1,{p 6=h}

(
e−βp/y

) dxdy
= I (y > ωkx)

m∑
h=k+l+1

k+l∑
i=1

αiβh
x2y2

k+l∏
p=1

(
e−αp/x

) m∏
p=k+l+1

(
e−βp/y

) dxdy
= I (y > ωkx)

βsum
x2y2

e−1/xe−βsum/ydxdy,

(5.B.1)
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where the third equality follows since x/αp < y/βp, ∀p = 1, . . . , k. The marginal can be

obtained simply by integrating (5.B.1) over the region

Pr (YF > ωkXF ) =

∫ ∞
0

∫ ∞
ωkx

(
βsum
x2y2

e−1/xe−βsum/y
)
dydx

=
αkβsum

βk + αkβsum
.

Hence, the conditional density is

f(XF ,YF )(x, y | YF > ωkXF ) =
Pr (XF ∈ dx, YF ∈ dy, YF > ωkXF )

Pr (YF > ωkXF )

= I (y > ωkx)
βk + αkβsum
αkx2y2

e−1/xe−βsum/y.

5.B.2 Type (ii) - On the line YF = ωjXF , j = 1, . . . , k

This case only occurs if XF = αjZj and YF = βjZj . Hence,

Pr (XF ∈ dx, YF ∈ dy, YF = ωjXF ) = Pr (αjZj ∈ dx, βjZj ∈ dy, YF = ωjXF ) .

Similarly to the approach in Section 5.B.1, this can be written as

Pr (XF ∈ dx, YF ∈ dy, YF = ωjXF )

= I (y = ωjx) Pr

(
Zj ∈

dx

αj

) j−1∏
p=1

Pr

(
Zp <

x

αp

) k∏
p=j+1

Pr

(
Zp <

y

βp

)

×
k+l∏

p=k+1

Pr

(
Zp <

x

αp

) m∏
p=k+l+1

Pr

(
Zp <

y

βp

)
dxdy

= I (y = ωjx)
αj
x2
e−αj/x

j−1∏
p=1

(
e−αp/x

) k∏
p=j+1

(
e−βp/y

) k+l∏
p=k+1

(
e−αp/x

)
×

m∏
p=k+l+1

(
e−βp/y

)
dxdy

= I (y = ωjx)
αj
x2

exp

{
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

}
dxdy.
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By integrating this from 0 to ∞ we can obtain the marginal as

Pr (YF = ωjXF ) =
αjβj

αjβ
(j+1)
sum + βjα

(j)
sum

.

Hence, the conditional density is

f(XF ,YF )(x, y | YF = ωjXF ) = I (y = ωjx)
αjβ

(j+1)
sum + βjα

(j)
sum

βjx2
exp

{
−αjβ

(j+1)
sum + βjα

(j)
sum

βjx

}
.

5.B.3 Type (iii) - Between the two lines YF = ωjXF and YF = ωj+1XF ,

j = 1, . . . , k − 1

From the condition that ωjXF < YF < ωj+1XF , it follows that the pairs that lead to this

case are combinations of XF = αiZi where i = 1, . . . , j, k + 1, . . . , k + l, and YF = βhZh

where h = j + 1, . . . ,m. Hence,

Pr (XF ∈ dx, YF ∈ dy, ωjXF < YF < ωj+1XF )

=
∑
h∈H

∑
i∈I

Pr (αiZi ∈ dx, βhZh ∈ dy, ωjXF < YF < ωj+1XF ) ,

where I = {1, . . . , j, k+1, . . . , k+l} and H = {j+1, . . . ,m}. Then, due to the independence

of the Zi’s this can be written as,

Pr (XF ∈ dx, YF ∈ dy, ωjXF < YF < ωj+1XF )

= I (ωjx < y < ωj+1x)
∑
h∈H

∑
i∈I

Pr

(
Zi ∈

dx

αi

)
Pr

(
Zh ∈

dy

βh

) j∏
p=1,{p 6=i}

Pr

(
Zp <

x

αp

)

×
k∏

p=j+1,{p 6=h}

Pr

(
Zp <

y

βp

) k+l∏
p=k+1,{p 6=i}

Pr

(
Zp <

x

αp

)

×
m∏

p=k+l+1,{p 6=h}

Pr

(
Zp <

y

βp

) dxdy.
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Then,

Pr (XF ∈ dx, YF ∈ dy, ωjXF < YF < ωj+1XF )

= I (ωjx < y < ωj+1x)
∑
h∈H

∑
i∈I

αi
x2
e−αi/x

βh
y2
e−βh/y

j∏
p=1,{p 6=i}

(
e−αp/x

)

×
k∏

p=j+1,{p 6=h}

(
e−βp/y

) k+l∏
p=k+1,{p 6=i}

(
e−αp/x

) m∏
p=k+l+1,{p 6=h}

(
e−βp/y

) dxdy
= I (ωjx < y < ωj+1x)

α
(j)
sumβ

(j+1)
sum

x2y2
e−α

(j)
sum/xe−β

(j+1)
sum /ydxdy.

Integrating this over the range 0 < x <∞ and ωjx < y < ωj+1x, we obtain the marginal as

Pr (ωjXF < YF < ωj+1XF ) =
α

(j)
sumβ

(j+1)
sum (αjβj+1 − αj+1βj)

(αjβ
(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

.

Using conditional probability, the conditional density is,

f(XF ,YF )(x, y | ωjXF < YF < ωj+1XF )

= I (ωjx < y < ωj+1x)

(
(αjβ

(j+1)
sum + βjα

(j)
sum)(αj+1β

(j+1)
sum + βj+1α

(j)
sum)

(αjβj+1 − αj+1βj)x2y2

)

× e−α
(j)
sum/xe−β

(j+1)
sum /y.

5.B.4 Type (iv) - Below the line YF = ω1XF

From the condition that YF < ω1XF , it can be established that the pairs that can lead to

this case are combinations of XF = αiZi and YF = βhZh where i = k + 1, . . . , k + l and

h = 1, . . . , k, k + l + 1, . . . ,m. Hence,

Pr (XF ∈ dx, YF ∈ dy, YF < ω1XF ) =
∑
h∈H

∑
i∈I

Pr (αiZi ∈ dx, βhZh ∈ dy, YF < ω1XF ) ,
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where I = {k+ 1, . . . , k+ l} and H = {1, . . . , k, k+ l+ 1, . . . ,m}. The Zi’s are independent

Fréchet random variables, hence

Pr (XF ∈ dx, YF ∈ dy, YF < ω1XF )

= I (y < ω1x)
∑
h∈H

∑
i∈I

Pr

(
Zi ∈

dx

αi

)
Pr

(
Zh ∈

dy

βh

) k∏
p=1,{p 6=h}

Pr

(
Zp <

y

βp

)

×
k+l∏

p=k+1,{p6=i}

Pr

(
Zp <

x

αp

) m∏
p=k+l+1,{p 6=h}

Pr

(
Zp <

y

βp

) dxdy
= I (y < ω1x)

∑
h∈H

∑
i∈I

αi
x2
e−αi/x

βh
y2
e−βh/y

k∏
p=1,{p 6=h}

(
e−βp/y

) k+l∏
p=k+1,{p 6=i}

(
e−αp/x

)

×
m∏

p=k+l+1,{p 6=h}

(
e−βp/y

) dxdy
= I (y < ω1x)

αsum
x2y2

e−αsum/xe−1/ydxdy.

The marginal can be obtained by integrating this over the region.

Pr (YF < ω1XF ) =
αsumβ1

αsumβ1 + α1
.

Hence, the conditional density is

f(XF ,YF )(x, y | YF < ω1XF ) = I (y < ω1x)
αsumβ1 + α1

β1x2y2
e−αsum/xe−1/y.
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Conditional Simulation of Models

Built on Max–Linearity

6.1 Introduction

In applications of spatial and multivariate extremes (e.g. wave heights at different locations

in an ocean basin, or wave heights and wind speed at a single location) it is often the case that

we have information about one or more variables/locations and want to simulate the process

for another variable/location. More specifically, we might want to estimate probabilities of

an extreme event at location Y , given the characteristics of the same event at locations

X1 and X2. In an oceanographic application, for example, we might be interested in the

probability of wave heights exceeding a certain level at a site, given the wave heights being

large at some other sites. Conditional simulation from the distribution of Y | X1, X2 is one

way of estimating these probabilities of interest.

In this chapter we will show how to do conditional simulation for the max-linear and in-

verted max-linear models described in Chapter 5. Similarly to Chapter 5, we start with a

simple example of a max-linear model, namely the Marshall-Olkin model. In Section 6.2
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we describe how to simulate Y | X for this model. Then in Section 6.3 we extend the

simulation method to a general bivariate and multivariate max-linear model. In Section 6.4

we show how to do conditional simulation from an inverted max-linear model. Finally, in

Section 6.5 we will combine the results of Sections 6.3 and 6.4 to show how to simulate from

a mixture distribution composed of a max-linear and an inverted max-linear model. For

ease of notation, in Sections 6.4 and 6.5 we will limit ourselves to the bivariate case, but

the algorithms are straightforward to extend to higher dimensions.

6.2 Marshall-Olkin model

Let us consider the following simple example of a max-linear model:

X = max{αZ1, (1− α)Z2},

Y = max{βZ1, (1− β)Z3},
(6.2.1)

where Zi, i = 1, 2, 3, are independent Fréchet random variables and 0 < α, β < 1. We

want to simulate samples from the conditional distribution of Y | X. To do this we need to

know the probabilities of X coming from Z1 and Z2, respectively. Hence, we calculate the

following probability:

Pr(αZ1 > (1− α)Z2) =

∫ ∞
0

Pr(αx > (1− α)Z2)fZ1(x)dx,

=

∫ ∞
0

FZ2

(
αx

1− α

)
fZ1(x)dx,

=

∫ ∞
0

e−(1−α)/αx 1

x2
e−1/xdx,

=

∫ ∞
0

1

x2
e−1/αxdx,

=

∫ ∞
0

α

y2
e−1/ydy,

= α, (6.2.2)
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where f(·) and F (·) are the Fréchet density and distribution function, respectively. It follows

that Pr(αZ1 6 (1 − α)Z2) = 1 − α. Then, assuming X is known, we can simulate from

Y | X as follows. With probability α, we assume that X = αZ1, and hence Z1 = X/α.

Then we simulate Z2 given that Z2 < α/(1−α)Z1, and draw Z3 as an independent Fréchet

variable. With probability (1−α), we assume that X = (1−α)Z2 and hence Z2 = X/(1−α).

Then we simulate Z1 given that Z1 < (1−α)/αZ2, and draw Z3 as an independent Fréchet

variable. For details see Algorithm 2. Figure 6.2.1 shows an example of a sample simulated

from Y | X for model (6.2.1) with α = 0.3 and β = 0.8.

Algorithm 2 Algorithm for simulating a sample of size N from Y | X for model (6.2.1)

Input: X1, . . . , XN ; α; β;
Output: Y1, . . . , YN ;

1: for n← 1, N do
2: Draw u ∼ Unif(0, 1).
3: if u < α then
4: Set Z1 = Xn/α

5: Simulate Z2

∣∣∣(Z2 <
α

1−αZ1

)
as follows,

6: Begin

7: Set p = e
− 1−α
αZ1

8: Draw ZU ∼ Uniform(0, p)
9: Set Z2 = −1/ log(ZU )

10: End
11: else
12: Set Z2 = Xn/(1− α)

13: Simulate Z1

∣∣∣(Z1 <
(1−α)
α Z2

)
as follows,

14: Begin

15: Set p = e
− α

(1−α)Z2

16: Draw ZU ∼ Uniform(0, p)
17: Set Z1 = −1/ log(ZU )
18: End
19: end if
20: Draw Z3 ∼ Fréchet(1) independently;
21: Set Yn = max{βZ1, (1− β)Z3}.
22: end for
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Figure 6.2.1: Simulated sample of Y | X plotted against X for model (6.2.1) with α = 0.3
and β = 0.8. Exponential margins are used for ease of visualisation.

6.3 Generalisation

6.3.1 Bivariate case

Consider the following bivariate max-linear model,

X = max
i=1,...,m

{αiZi},

Y = max
i=1,...,m

{βiZi},
(6.3.1)

where 0 6 αi, βi 6 1 for all i = 1, . . . ,m,
∑m

i=1 αi = 1,
∑m

i=1 βi = 1 and Zi ∼ i.i.d Fréchet

random variables for i = 1, . . . ,m. Without loss of generality, let us assume that the αiZi

and βiZi terms are ordered such that,

α = (α1, . . . , αk, αk+1, . . . , αk+l, 0, . . . , 0), (6.3.2)

β = (β1, . . . , βk, 0, . . . , 0, βk+l+1, . . . , βm), (6.3.3)
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i.e. for i = 1, . . . , k, αi 6= 0 and βi 6= 0, for i = k + 1, . . . , k + l, αi 6= 0 and βi = 0, and for

i = k + l+ 1, . . . ,m, αi = 0 and βi 6= 0, with
∑k+l

i=1 αi = 1 and
∑k

i=1 βi +
∑m

h=k+l+1 βh = 1.

Similarly to the argument in (6.2.2), it can be shown that, for i = 1, . . . , k,

Pr(αiZi > max
j∈J
{αjZj}) = αi, (6.3.4)

where J = {1, . . . , k + l} \ {i}. Then, we can simulate from the conditional distribution of

Y | X as given in Algorithm 3.

Algorithm 3 Algorithm for simulating a sample of size N from Y | X for model (6.3.1)

Input: X1, . . . , XN ; α1, . . . , αm; β1, . . . , βm;
Require:

∑
i αi = 1,

∑
i βi = 1;

Output: Y1, . . . , YN ;

1: for n← 1, N do
2: Draw u ∼ Unif(0, 1).
3: for i← 1, (k + l) do
4: if u <

∑i
l=1 αl then

5: Set Zi = Xn/αi
6: for j ∈ {1, . . . , k}/{i} do

7: Simulate Zj

∣∣∣(Zj < Xn
αj

)
as follows,

8: Begin

9: Set p = e−
αj
Xn

10: Draw ZU ∼ Uniform(0, p)
11: Set Zj = −1/ log(ZU )
12: End
13: end for
14: end if
15: end for
16: for i← (k + l + 1),m do
17: Draw Zi ∼ Fréchet(1) independently;
18: end for
19: Set Yn = max

i=1,...,m
{βiZi}.

20: end for
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Figure 6.3.1: Simulated sample of Y | X plotted against X for Example 6.3.1. Exponential
margins are used for ease of visualisation.

Example (6.3.1)

Let α = (0.3, 0.4, 0.3, 0), β = (0.2, 0.6, 0, 0.2), and X is a known vector of length N = 10000

equal to max
i=1,...,4

{αiZi}, where Zi, i = 1, . . . , 4, are unknown Fréchet random variables. Hence,

in the notation of Algorithm 3, k = 2, l = 1 and m = 4. Then, following Algorithm 3, for

each n = 1, . . . , N , we draw a uniform (0,1) variable u. If u < α1 = 0.3, we set Z1 = Xn/0.3,

and simulate Z2 | Z2 < Xn/α2 and Z3 | Z3 < Xn/α3. If α1 6 u < (α1 + α2) = 0.7, we set

Z2 = Xn/0.4, and simulate Z1 | Z1 < Xn/α1 and Z3 | Z3 < Xn/α3. Finally, if u > 0.7,

we set Z3 = Xn/0.3, and simulate Z1 | Z1 < Xn/α1 and Z2 | Z2 < Xn/α2. Then, since

α4 = 0, we draw Z4 as an independent unit Fréchet variable. Finally, we calculate Yn as

max
i=1,...,4

{βiZi}. Figure 6.3.1 shows a simulated sample of Y | X plotted against X on Gumbel

margins.

6.3.2 Multivariate case

Let A = (αji) be a p ×m matrix of constants, where αji > 0 and
∑

j αji = 1, for j ∈ J ,

i ∈ I, where J = {1, . . . , p} and I = {1, . . . ,m}. Let Z = {Z1, . . . , Zm} be a vector of m
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independent Fréchet random variables. Then, let X = {X1, . . . , Xp} be a vector containing

p variables, where Xj = max{αj1Z1, . . . , αjmZm} for j ∈ J , as given in (6.3.5),

X1 = max
i=1,...,m

{α1iZi},

. . .

Xp = max
i=1,...,m

{αpiZi},

Y = max
i=1,...,m

{βiZi},

(6.3.5)

We want to simulate from the conditional distribution of Y | X, where Y = maxi=1,...,m{βiZi},

with βi > 0 for i ∈ I, and
∑

i βi = 1. Hence, in vector notation, we have that Y =

max{βtZ}, where β = {β1, . . . , βm}.

To simulate from Y | X, first we need to establish which Zi each of the Xj , j ∈ J , comes

from. Let us define the following.

Definition. For each i ∈ I, let Ji be a subset of J , such that for all j ∈ Ji, αji 6= 0. Let

J ci denote the complement of this set, i.e., J ci = J \ Ji.

Definition. Let C = (cji) be a p×m matrix, where for i ∈ I,

cji :=


Xj/αji, for j ∈ Ji,

∞, for j ∈ J ci .

If for all j ∈ J for some l ∈ I, cjl equals the same finite constant c > 0, that means that all

Xj must come from the same Zi variable, namely Zl, and hence we can set Zl = c. Then we

can simulate all other Zi, i ∈ I \ {l}, as Fréchet random variables given that Zi < Xj/αji

for all j where αji 6= 0, i.e., Zi < min
Ji
{Xj/αji}. If αji = 0 ∀j ∈ J for some i = 1, . . . ,m,

i.e., Ji = ∅, then we draw Zi independently from a unit Fréchet distribution.

If not all Xj come from the same Zi then we need to look at values of cji and use the

following lemmas to determine which Zi lead to which Xj for each j ∈ J .
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Lemma 9. If cli > cji for some j, l ∈ Ji and i ∈ I, then Pr(Xl = αliZi) = 0.

Proof. From cli > cji it follows that Xl/αli > Xj/αji, and hence

max

{
αl1
αli

Z1, . . . , Zi, . . . ,
αlm
αli

Zm

}
> max

{
αj1
αji

Z1, . . . , Zi, . . . ,
αjm
αji

Zm

}
. (6.3.6)

It is easy to see that the left hand side of the inequality (6.3.6) cannot be equal to Zi as this

would lead to one of the following two contradictions: (i) Zi > Zi if the right hand side of

(6.3.6) is also equal to Zi, (ii) Zi > max{αj1Z1/αji, . . . , αjmZm/αji} > Zi if the right hand

side of (6.3.6) is greater than Zi. Hence, it follows that Xl/αli 6= Zi, i.e., Xl 6= αliZi.

Lemma 10. If αji = 0, for some j ∈ J and i ∈ I, then Pr(Zi = Xj/αji) = 0.

Proof. Trivial.

It follows from Lemma 9 that Xl 6= αliZi, i ∈ I, if cli > cji for some j, l ∈ Ji. Also,

Xj 6= αjiZi for all j ∈ J ci , i ∈ I by Lemma 10. Hence, let us define the following.

Definition. Let M = (mji), i ∈ I and j ∈ J , be an m× p matrix, where

mji =



0, if j ∈ J ci ,

0, if j ∈ Ji and cji > min
l∈Ji\{j}

{cli},

1, otherwise.

This ensures that mji = 1 only for (i, j) pairs where there is non-negative probability of

Xj = αjiZi (using Lemmas 9 and 10).

Definition. For each j ∈ J , let Ij be a subset of I, such that for all i ∈ Ij, mji = 1.

Then, it can be shown that

Pr

(
αjkZk > max

i∈Ij\{k}
(αjiZi)

)
=

αjk∑
i∈Ij αji

, (6.3.7)
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Figure 6.3.2: Simulated sample of Y | X plotted against X1 and X2 with α1· =
(0.1, 0.2, 0.3, 0.4), α2· = (0.4, 0.6, 0, 0) and β = (0.3, 0, 0.4, 0.3). Exponential margins are
used for ease of visualisation.

for k ∈ Ij and each j ∈ J . Let us denote the right hand side of equation (6.3.7) by p
(j)
k

for k ∈ Ij and j ∈ J . Therefore, we can establish that the probability of Xj = αjkZk

is equal to p
(j)
k for k ∈ Ij and j ∈ J . So for each j ∈ J , we can set Zk = Xj/αjk

with probability p
(j)
k . Then, we can simulate the remaining Zi as Fréchet random variables

given that Zi < minJi{Xj/αji}. If Ji = ∅ for some i ∈ I, then we draw Zi independently

from a unit Fréchet distribution. See Algorithm 4 for more details. Figure 6.3.2 shows

an example of a sample from Y | X with α1· = (0.1, 0.2, 0.3, 0.4), α2· = (0.4, 0.6, 0, 0) and

β = (0.3, 0, 0.4, 0.3).

6.4 Inverted max-linear model

Let X
(I)
E and Y

(I)
E represent variables from an inverted max-linear model on exponential

marginal scale. Then, it can be shown that X
(I)
E = 1/X, and similarly, Y

(I)
E = 1/Y , where

X and Y have Fréchet margins and are defined as in model (6.3.1). To simulate from the

conditional distribution Y
(I)
E | X(I)

E , first transform back to Fréchet margins X = 1/X
(I)
E ,
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CHAPTER 6

Algorithm 4 Algorithm for simulating a sample of size N from Y | X for model (6.3.5)

Input: Xj1, . . . , XjN for j ∈ J ;
αji for j ∈ J and i ∈ I;
βi for i ∈ I;

Require:
∑

j αji = 1, ∀i ∈ I;
∑

i βi = 1;
Output: Y1, . . . , YN ;

1: Initialise Zi = 0 for i = 1, . . . ,m, and FOUND.Z = FALSE.
2: for n← 1, N do
3: for all i ∈ I do
4: Set Ji = {j ∈ J : αji 6= 0}.
5: for j ∈ J do
6: Set

cji :=

{
Xjn/αji, for j ∈ Ji,
∞, for j 6∈ Ji.

7: end for
8: end for
9: for all i ∈ I do

10: if minj∈J {cji} = maxj∈J {cji} 6=∞ then
11: Set Zi = Xjn/αji
12: Set FOUND.Z = TRUE
13: end if
14: end for
15: if FOUND.Z = FALSE then
16: for all i ∈ I do
17: for all j ∈ J do
18: Set

mji =


0, if j 6∈ Ji,
0, if j ∈ Ji and cji > min

l∈Ji\{j}
{cli},

1, otherwise.

19: end for
20: end for
21: for j ∈ J do
22: Set Ij = {i ∈ I : mji = 1}.
23: for k ∈ Ij do
24: Set

p
(j)
k =

αjk∑
i∈Ij αji

.

25: end for
26: end for
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CHAPTER 6

Algorithm 4 Algorithm for simulating a sample of size N from Y | X for model (6.3.5)
(continued)

27: for j ∈ J do
28: Draw u ∼ Unif(0, 1).
29: for k ∈ Ij do

30: if u <
∑k

l=1 p
(j)
l then

31: Set Zk = Xjn/αjk
32: end if
33: end for
34: end for
35: end if
36: if FOUND.Z = TRUE then
37: for all i ∈ I do
38: if Zi = 0 then
39: if Ji 6= 0 then
40: Simulate Zi |(Zi < minJi{Xjn/αji}) as follows,
41: Begin
42: Set p = e−1/minJi{Xjn/αji}

43: Draw ZU ∼ Uniform(0, p)
44: Set Zi = −1/ log(ZU )
45: End
46: else
47: Draw Zi ∼ Fréchet independently.
48: end if
49: end if
50: end for
51: end if
52: Set Yn = max

i=1,...,m
{βiZi}.

53: end for
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Figure 6.4.1: Simulated sample of Y
(I)
E | X(I)

E plotted against X
(I)
E on Exponential margins

for the inverted version of the model in Example 6.3.1.

then follow Algorithm 3 to simulate Y | X. Finally, transform back to the inverted model

using Y
(I)
E = 1/Y . Figure 6.4.1 shows a simulated sample of Y

(I)
E | X(I)

E for the inverted

version of the model in Example 6.3.1.

6.5 Mixture model

In Chapter 5 we have introduced the following bivariate mixture distribution that combines

a max-linear model with an inverted max-linear model:

XM

YM

 =



XE

YE

 with probability δ

X
(I)
E

Y
(I)
E

 with probability 1− δ

(6.5.1)

where δ ∈ [0, 1], and (XE , YE) and (X
(I)
E , Y

(I)
E ) represent a max-linear model and an inverted

max-linear model, respectively, on exponential margins. In this section we will show how to
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Figure 6.5.1: Simulated sample of YM | XM plotted against XM on Exponential margins
for model (6.5.1) with parameters as in example (6.3.1). Left panel: δ = 0.2; right panel:
δ = 0.8.

simulate from the conditional distribution of YM | XM .

First, we draw a random variable u from a Uniform(0,1) distribution. Since XM comes

from the max-linear part of the model with probability δ (i.e. XM = XE), if u < δ,

we transform XE to Fréchet margins using X = −1/ log(1 − exp(−XE)). Then, we use

Algorithm 3 to simulate Y | X, and transform to exponential margins to obtain YM = YE =

− log(1− e−1/Y ). If u > δ, then XM comes from the inverted max-linear part of the model,

hence we follow the procedure described in Section 6.4 to simulate Y
(I)
E | X(I)

E and hence,

obtain YM = Y
(I)
E . Figure 6.5.1 shows simulated samples from YM | XM for different δ

values, for a mixture of the max-linear model in Section 6.3.1 and its inverted version. It

can be seen that for δ = 0.2 the inverted max-linear part is more prominent, whereas for

δ = 0.8 the max-linear part is.
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Chapter 7

Conclusions

In this final chapter, the main contributions of this thesis are summarised, followed by a

discussion of possible directions for further work.

7.1 Outcomes of thesis

The aim of this thesis was to develop methods for assessing and modelling extremal depend-

ence for spatial applications. In the following we summarise the main results of the thesis

and outline how these results contribute to achieving the aims of the thesis.

As described in Chapter 1, it is difficult to determine with reasonable certainty whether

data are asymptotically dependent (AD) or asymptotically independent (AI). This presents

a problem, as most models for spatial extremes assume either AD or AI, with very few

models able to capture both dependence classes. An important outcome of this thesis

is the development of novel diagnostic tools that aid decision making in model selection.

Results in Chapter 3 show that standard measures for extremal dependence give conflicting

results for finite sample sizes. We found that supplementing these measures with a measure

for dependence in the body of the data improves diagnostic performance. Applying this

diagnostic method to a North Sea significant wave height data set showed that these data
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are consistent with AD for shorter distances, with dependence decreasing with distance,

however for sites further apart AI was found to be more appropriate. We also found that

data located along straight-line strips with different orientations appear to have different

extremal dependence structures.

Chapter 4 followed on from Chapter 3, further investigating the effect of direction on ex-

tremal dependence. We used composite likelihood methods to fit various spatial AI and

AD models to wave height data at locations along straight-line strips with different orient-

ations. This allowed us to systematically test directional features of the models. All model

fits suggested that extremal dependence varies smoothly with the orientation of the strips

and that extremal dependence is strongest along strips with an approximately west to east

orientation. In the North Sea storms that produce the largest waves typically travel in a

north to south direction, so our results suggest that dependence is strongest along the storm

front rather than in the storm direction.

For spatial applications it is desirable to have a model that can capture both the short

and long range dependence in the data. Existing models that attempt to model both

AD and AI are difficult to implement in practice due to their complexity and restrictions

in the forms of AD and AI they can model. In Chapter 5 we introduced a family of

bivariate distributions, with simple multivariate extensions, that exhibits all the required

features of short, medium and long range extremal dependence. To construct this model

we used the bivariate max-linear model as the building block. We introduced two bivariate

distributions that are derived from a max-linear model and an inverted max-linear model,

respectively. We also show a way of combining these two models that provides a flexible

approach to modelling extremal dependence that has both AI and AD components. This

class of models has the potential to be useful in spatial applications, as it allows modelling

of a wide range of dependence structures. In Chapter 5 we studied mathematically the

extremal structure of this class of models using a new radial-angular representation. As

these models put mass on rays and on lines, there are clear limitations to deriving very
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specific inference from them, so in their current form these models are not immediately

applicable in practice. However, in Section 7.2 we show that they make a strong building

block for more practically reasonable models. Unconditional simulation from these models

is straightforward using existing methods. We give algorithms for conditional simulation in

Chapter 6.

7.2 Directions for further work

The class of models introduced in Chapter 5 put mass on rays and lines, which is incon-

sistent with most data applications where an assumption of a joint density everywhere is

reasonable. Consequently, if these models are fitted using likelihood/Bayesian-based infer-

ence they would need almost as many parameters as data points to get a reasonable fit as

each line of mass can only explain one data point. Therefore, as currently set up, these

are not parsimonious models for likelihood inference but can be used as building blocks

for future parsimonious model development. Alternatively, such models can be fitted using

other inference criteria which do not depend on the mass on rays/lines, such as moment

based methods.

Here we will outline an extension of the models described in Chapter 5 that makes likelihood

inference parsimonious, and also makes the model more realistic for practical applications

by removing mass from being exactly on lines and rays. For simplicity, let us consider a

simple case of the max-linear model given in expression (5.1.3) in Chapter 5. Let m = 4

and α4 = β3 = 0, giving,

XF = max{α1Z1, α2Z2, α3Z3}, (7.2.1)

YF = max{β1Z1, β2Z2, β4Z4},

where 0 6 αi, βi 6 1 for all i = 1, . . . , 4, Σ4
i=1αi = 1, Σ4

i=1βi = 1, and Zi ∼ i.i.d. Fréchet, i =
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Figure 7.2.1: Bivariate simulations from the max-linear model given in (7.2.1) with αi and
βi, i = 1, 2, 3, simulated from a Dirichlet process with parameters (a) (25, 10, 100) and (10,
25, 100), (b) (25, 10, 10) and (10, 25, 10), (c) (25, 10, 1) and (10, 25, 1). The margins have
been transformed to exponential.

1, . . . , 4. For fixed αi and βi values this model gives mass on two lines for the transformed

max-linear model (5.1.6), and mass on two rays for the inverted max-linear model (5.1.7).

Now, let α = (α1, α2, α3) and β = (β1, β2, β4) be independent random variables from two

Dirichlet distributions of order three with parameters dα and dβ, respectively. Hence, in

this set up, α and β are latent parameters of the model.

To simulate from this model with known dα and dβ parameter, first draw α and β from

the distributions Dirichlet(dα) and Dirichlet(dβ), respectively. Then simulate Z1, . . . , Z4

as i.i.d. Fréchet random variables, and calculate (XF , YF ) using (7.2.1). From (XF , YF )

then we can obtain samples from the transformed max-linear and the inverted max-linear

models using the transformations given in Chapter 5. Some example simulations from the

transformed max-linear model are given on Figure 7.2.1. First note that there is no mass

exactly on lines, but points are still clustered around two lines. The underlying Dirichlet

distribution parameters determine how spread out the points are. Similar simulations can be

performed also from the other two models described in Chapter 5, the inverted max-linear

model and the mixture model. Since there is no longer mass on lines or rays, likelihood

inference is now possible for these models.

For spatial applications, it is possible to let dα and dβ vary with distance, and hence, the
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model captures a wide range of extremal dependence structures, from AD for sites close

by, with dependence decreasing with distance, to AI for sites further apart. Further work

therefore involves fitting this model and its extensions with both AD and AI dependence

structure over locations with a range of separation distances.
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