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A Structural Vector Autoregressive Model of Technical Efficiency and Delays with an 

Application to Chinese Airlines 

 

Mike G. Tsionas, Zhongfei Chen and Peter Wanke 

 

Abstract: This study reports on the performance assessment of Chinese airlines from 2006-

2014 using a stochastic distance function where technical efficiency and a measure of flight 

delays follow a joint structural autoregressive process. This model is used to investigate 

whether technical efficiency causes flight punctuality or the other way around. The model, 

however, yields a non-trivial likelihood function and is not amenable to estimation using least 

squares or standard maximum likelihood techniques. To estimate the model therefore, we 

propose and implement maximum simulated likelihood with importance sampling. The results 

suggest a mutual dependence (feedback) between technical efficiency and delays. Policy 

implications are derived. 
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1. Introduction 

The complexity of air transport operations and their underlying services represents a 

growing study field in light of the innumerous challenges derived from increased airline 

competition and airport (de)regulation verified in the past decades (Graham, 2008). In fact, 

although the need for continuous performance measurement and monitoring is well-

acknowledged by academics and practitioners (Bitzan et al., 2016), there is still room opened 

for including negative externalities imposed to customers when assessing performance levels 

of air transport operations (Assaf et al., 2014). 

This research focuses on the technical efficiency of Chinese airlines by using a novel 

Structural Vector Autoregressive (SVAR) model of technical efficiency and delays built upon 

a stochastic distance function. It differs from previous research on airline efficiency that have 

used several methods such as (i) factor productivity approach (Bauer, 1990; Oum and Yu, 

1995. Barbot et al., 2008); (ii) Stochastic Frontier Analysis or SFA models (Good et al, 1993, 
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Baltagi et al., 1995); (iii) Tornquist total factor productivity index (Coelli et al., 2003; Barbot 

et al., 2008); (iv) Data Envelopment Analysis or DEA models (Merkert and Hensher, 2011; 

Barros et al., 2013; Barros and Peypoch, 2009; Barros and Couto, 2013; Wanke and Barros, 

2016b); and (v) multi-criteria decision-making models such as TOPSIS (Barros and Wanke, 

2015; Wanke et al., 2015). All these papers analyzed airlines from the US (Barros et al., 2013; 

Greer, 2008; Sjögren and Söderberg, 2011), Canada (Bauer, 1990; Assaf, 2009), Europe 

(Distexhe and Perelman, 1994; Greer, 2008; Barros and Peypoch, 2009), Asia (Baltagi et al., 

1995; Wanke et al., 2015), Africa (Barros and Wanke, 2015), and Latin America (Wanke and 

Barros, 2016b).  

Given the relative importance of China to the world economy, it is possible to affirm 

that Chinese airlines consist of a relatively understudied topic. As a matter of fact, only a few 

studies were devoted to this particular industry (Chow, 2010 and Wu et al., 2013; Wanke et 

al., 2015). 

On the other hand, it is worth noting that, within the airline efficiency ambit, DEA-

based studies are the most numerous when compared to the SFA-based methods and other 

minor approaches used (Wanke et al., 2015; Barros and Wanke, 2015; Wanke and Barros, 

2016a, 2016b). This not only replicates a pattern that is found in papers focused on efficiency 

analysis in other industries such as ports and banking (e.g. Wanke et al., 2016a, 2016b), but 

may be also derived by the flexibility provided by DEA models in handling two-stage analysis 

where scores are computed first and statistically tested subsequently. In fact, several different 

issues have been addressed by DEA-based airline research studies in different countries or 

regions. Besides efficiency rankings and slack comparisons, it is possible to point out, for 

instance, that the impacts of network size, ownership, and regulatory measures on the 

performance of the airline industry have been addressed by regressing efficiency scores onto 

contextual or environmental variables (Barros et al., 2013; Barros and Wanke, 2015).  

Recent papers maintain this focus (Wanke and Barros, 2016a, 2016b), although it is 

important to mention that the cross-impact of the quality of the services provided on airline 

efficiency is still understudied. To the best of our knowledge, as regards airline efficiency, 

only Wanke et al. (2015) addressed the issue between quality of the services provided and 

technical efficiency within the ambit of the airline industry in Asia. The authors found a 

positive, albeit weak, relationship between higher levels of service quality and efficiency. This 

result may suggest the existence of a trade-in between operational/financial efficiency and 
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service quality, different from the classical trade-off between efficiency and service where 

higher levels of service are obtained to the detriment of lower levels of efficiency. 

Therefore, this paper builds upon the existing body of knowledge by presenting a novel 

SVAR model for technical efficiency and delays in the ambit of the Chinese airline industry. 

Not only is China one of the fastest growing areas in the world, which justifies the relevance 

of this study, but this paper also fills a literature gap by presenting and developing a novel 

stochastic distance function where delays—the quality measure used in this research—are 

simultaneously computed with airline technical efficiency scores in a single-stage procedure. 

This is particularly important due to the endogenous nature of some quality metrics: they do 

not only affect the efficiency levels of the productive process, but they are also affected by 

them in a feedback loop. In fact, flight delays are rather studied within the ambit of airport 

operations as an undesirable output by means of DEA and its variants, thus suggesting the 

opportunity to address this phenomena at the airline level using stochastic autoregressive 

models (Yu, 2004; Yu, 2010; Lozano and Gutierrez, 2011; Lozano et al., 2013; Assaf et al., 

2014). 

This research also lends a contribution to the business or practical side or air transport 

operation. From a customer service viewpoint, flight delays not only impose costs on 

passengers but also on airlines, by forcing both to use more resources to accomplish the same 

output: flying in a timely manner (Assaf et al., 2014). In fact, passengers may obtain less value 

from a trip as they are forced to wait out delays in airports, while increasing the potential 

switching decision to move to another airline and negative word of mouth (Gustafsson, 2009; 

Aaker et al., 2004).  

The paper is structured as follows: after this introduction, the background on the 

Chinese aviation industry is presented including a description of the Chinese airlines. The 

literature survey is then presented followed by the methodology section where the SVAR 

model for technical efficiency and delays is further discussed. Section 5 presents the 

discussion of the results. Conclusions are presented in Section 6. 

 

2. Background on Chinese Airlines 

The backgrounds of the Chinese civil aviation industry are depicted in the next 

paragraphs. Similarly to what happened in different countries around the world, the scenario 
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of few airlines that existed decades ago moved from a tight state control and ownership to a 

large number different players embedded in a more flexible regulatory environment. Such huge 

changes over the course of a couple of decades impose the need to assure that the current 

governance/regulatory combination practices lead to the best performance in the air 

transportation industry (Assaf et al., 2014). In fact, as further depicted, it appears that negative 

externalities, such as flight delays, are rapidly increasing in the Chinese airline industry. They 

should be taken into consideration in order to provide an accurate picture in terms the relative 

performance of their companies. The correct acknowledgment of these undesirable effects are 

relevant for the establishment of sound regulatory/governance policies. 

The Chinese civil aviation industry was relatively undeveloped until 1978, at which 

time the government embarked on a policy of reform by opening it up and switching it to a 

market-oriented economy. During the last three decades, China has witnessed the blossoming 

of its economy, increased trade with other countries around the world, and rapid growth of civil 

aviation. The economic globalization and regionalization of production after entering the 

World Trade Organization (WTO) has driven the growth of Chinese aviation business to a 

further wave of development (cf. Figure 1). At present, China has been the second largest 

aviation market in the world in terms of the volumes of passengers and air cargo moved in its 

domestic market since 2007 (Jiang and Zhang, 2016; Chen et al., 2017). 

 

Figure 1: The development of Chinese civil aviation (mil = million) 

The quick development of the airline sector has greatly contributed the prosperity of 

the Chinese civil aviation industry nowadays. However, before the year of 1978, air 

transportation was fully and tightly controlled by the central government under the CAAC, 
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which operated in a military or semi-military style, collaborating with the Air Force of China 

(Shaw et al., 2009; Wang et al., 2016). After 1978, the government successively established 

six state-owned airline companies 1 , which were separated from the CAAC and reduced 

government intervention. To decrease the monopoly power of the civil aviation industry, some 

new airline companies founded by the local governments or government-owned enterprises 

also entered the market during this stage (Jiang and Zhang, 2016). Meanwhile, the CAAC 

allowed airlines to adopt price discrimination to improve competition in 1997. Foreign 

investment in the civil aviation sector was also permitted. In 2005, the CAAC further 

deregulate the Chinese civil aviation sector and opened it to private investors and the number 

of private airlines has grown rapidly (Wang et al., 2016), including a low-cost carrier. To 

enhance efficiency and competitiveness, market-driven consolidation also took place during 

this period, especially after the Asian financial crisis as well as the global financial crisis that 

broke out since 2007. Through merging and acquisition, the "Big three", i.e. Air China, China 

Southern, and China Eastern, have seized most of the market share in the domestic civil 

aviation sector (Lei and O’Connell, 2011). 

Despite experiencing high-speed development of civil aviation business and great 

improvement on corporate governance of airline companies, the flight delays have been one of 

the major sources of passenger complaints in China, and the civil aviation authority has 

determined to improve the situation (Vlachos and Lin, 2014). As shown by Figure 2, the overall 

punctuality of Chinese civil aviation has significantly dropped down during recent years, 

especially after 2009. Moreover, punctuality has gotten even worse from 2014 to 2015, 

reaching levels lower than 60%. Flight delay is not only one of the main drivers to service 

quality and customer loyalty (Vlachos and Lin, 2014; Zhang et al., 2015), but it also is an 

important indicator suggesting the status and performance of airline companies (Fan et al., 

2014). 

 

                                                           
1 Included Air China, China Eastern Airlines, China Southern Airlines, China Southwest Airlines, China Northwest Airlines, 

and China Northern Airlines.  
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Figure 2: overall punctuality of Chinese civil aviation. 

Sources: WIND database. 

 

3. Literature Review 

Although the civil aviation industry has played an essential role in Chinese economy, 

research on the efficiency of Chinese airline companies is rather limited. Wanke et al. (2015) 

use TOPSIS to assess the performance of the Asian airlines, including several Chinese airline 

companies. Meanwhile, it further applies GLMM-MCMC methods to assess the impact of 

contextual variables on efficiency. The results reveal significant impacts of cost structure, 

ownership type, market positioning, and mileage program offered on efficiency levels. Wang 

et al. (2014) compute the leading Chinese airlines’ productivity and benchmark them against 

major airlines around the world. It finally finds that Chinese airlines’ productivity has improved 

significantly in the past decade, but still lags behind that of industry leaders. Meanwhile, Cui 

and Li (2015) use DEA and the Malmquist index to calculate the civil aviation safety efficiency 

of ten Chinese airline companies from 2008 to 2012, and the Panel Regression Model is used 

to identify the important influencing factors on civil aviation safety efficiency. Wu et al. (2013) 

employ DEA to evaluate the operational efficiency and a bootstrapped truncated regression to 

explore the impact of environmental variables on efficiency of Chinese and non-Chinese 

airlines. However, the research has not considered service quality such as flight delay, etc. 

Furthermore, most of the research just adopts a traditional DEA model to estimate the 

efficiency and covers a small proportion of airline companies in China. 
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Flight delays have been given much attention by some civil aviation management 

scholars (Vlachos and Lin, 2014; Jiang and Zhang, 2016). Fan et al. (2014) employs a 

directional distance function to evaluate the technical efficiency within a joint production 

framework of desirable and undesirable output (i.e. flight delays). However, it only examined 

twenty major Chinese airports from 2006 to 2009, rather than the airline companies.  

In fact, research on Chinese airline efficiency represents a small fraction of the overall 

research produced with respect to airline efficiency in different countries or regions. A 

literature review synthesis is presented in Table 1, which enumerates the objects of analysis 

and the models used in each paper over the last three decades of studies on airline efficiency. 

Taking a closer look within each paper, one can easily note that the most common inputs are 

labor, capital, and materials or capacity, while the most frequent outputs include revenues, 

profits, movements, and passengers. Therefore, in this research and in consonance with 

previous researches, the inputs used are number of employees, total number of planes, and the 

fuel consumed. The outputs are the total number of passengers carried and the total cargo 

transported. Furthermore, it should be noted that thus far no paper has adopted a method that 

simultaneously computes airline efficiency scores considering flight delays in a stochastic 

fashion. Furthermore, except for Wanke et al. (2015), no paper has performed an efficiency 

analysis focusing also on service quality within the ambit of the airline industry, which is an 

additional contribution of this paper.  

 

Table 1: Literature review  

Author(s) Focus of analysis and sample 

sizes 

Method(s) used 

Caves et al. (1981) 15 US airlines Multilateral TFP index 

Caves et al. (1984) 9 US airline Translog Cost Frontier 

Schmidt and Sickles 

(1984) 

Largest US airlines Cobb-Douglas Production 

Function 

Bauer (1990) 7 Canadian airlines Translog Cost Frontier 

Gillen et al. (1990) 8 US airlines Translog cost Regression 

Cornwell et al. (1990) 14 US and 27 international 

airlines 

Cobb-Douglas Production 

Frontier 
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Windle (1991) Largest US airlines Multilateral TFP Index and 

Cost Function 

Windle (1991) Largest US airlines Multilateral TFP Index and 

Cost Function 

Good et al. (1993) 9 US, 15 European and 9 Asian 

airlines 

Cobb-Douglas Production 

Frontier 

Distexhe and Perelman 

(1994) 

US and European airlines DEA-CCR and Malmquist 

Index 

Good et al. (1995) US airlines Cobb-Douglas Production 

Frontier and DEA-CCR 

Baltagi et al. (1995) 8 US, 8 European and 7 Asian Translog Variable Cost 

Function 

Oum and Yu (1995) 32 international airlines Multilateral TFP Index 

Coelli et al. (1999) 11 US airlines Translog Production 

Frontier 

Liu and Lynk (1999) 18 international airlines, 20 

international airlines 

Cobb-Douglas Cost; 

Malmquist Productivity 

Index 

 

Inglada et al. (2006) 39 International airlines DEA-BCC and TFP Index 

Barbot et al. (2008) 14 US airlines DEA-BCC and TFP Index 

Greer (2008) 8 US airlines DEA-CCR and Two Stage 

Regression 

Greer (2009) 29 European airlines Malmquist Index 

Barros and Peypoch 

(2009) 

12 US airlines DEA-CCR and two Stage 

regression 

Assaf (2009) 7 Canadian Airlines Stochastic Production 

Bayesian Frontier 

Ouellette et al. (2010) 50 largest airlines Technical Efficiency and 

Allocative Efficiency 

Chow (2010) Chinese airlines, 2003-2007 Efficiency analyzed with 

DEA and Productivity 
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analyzed with Malmquist 

Index 

Sjögren and Söderberg 

(2011) 

18 major UK airlines Input Distance Function 

Merkert and Hensher 

(2011) 

15 US airlines DEA Two Stage 

Barros and Couto (2013) 23 European airlines Malmquist and Luenberger 

Productivity Measures 

Bilotkach and Huschelrath 

(2012) 

Airline alliances  Conceptual Approach 

Barros et al. (2013) 11 USA airlines from 1998 

to 2010 

B-convex DEA Model 

Wu et al. (2013) Chinese airlines, other Asian 

airlines, USA airlines and 

European airlines, 2006-2010 

Efficiency with CCR and 

BCC DEA Model and a 

Second-stage Regression 

explaining efficiency.  

Tavassoli et al. (2014) Iranian airlines in 2010 SBM-NDEA Model 

(Slacks Based Measure 

Network Data Envelopment 

Analysis) 

Lee and Worthington 

(2014) 

Several airlines, 1994-2011 DEA and SFA and Second-

Stage Regression 

Barros and Wanke (2015) African airlines, 2010-2013 TOPSIS and Neural 

Networks in a Two-stage 

Approach 

Wanke et al. (2015) Asian airlines, 2006-2012 TOPSIS and GLMM-

MCMC in a Two-stage 

Approach 

Wanke and Barros (2016) Latin American airlines, 2010-

2014 

Virtual Frontier Dynamic 

DEA and Simplex 

Regression in a Two-stage 

Approach 
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4. Methodology 

4.1. The Data 

        The data on nine selected Chinese airlines were obtained from the Wind 

(www.wind.com.cn/) database and their annual financial reports on the website of Shanghai 

Stock Exchange (www.sse.com.cn) and Shenzhen Stock Exchange (www.szse.cn) for the 

period 2006 to 2014. The descriptive statistics for their productive resources—inputs and 

outputs as depicted in Section 3—and their average flight delays are presented in Table 2. 

 

Table 2: Descriptive statistics for the Chinese airlines productive resources and delays (*) 

Variables Min Max Mean SD CV 

number of employees 131.000 97548.000 16875.436 26047.884 1.544 

fuel (tons) 793.000 5729424.000 967390.376 1442100.269 1.491 

number of planes 2.000 500.000 96.368 136.178 1.413 

cargo (tons) 436.300 1146728.900 215710.920 289183.463 1.341 

number of passengers 0.000 70611294.000 14287796.735 18966695.253 1.327 

delay (proportion being on time, %) 43.037 85.093 71.706 10.467 0.146 

(*) Readers should note that Donghai Airlines and China Post Air do not operate passenger traffic, which is why the minimal number of 

passengers is zero. 

4.2. Econometric Model 

The first model is a standard output distance function of the form: 

( , ) 1,D x y                                                                                                                                (1) 

where Kx R   denotes the inputs and My R   denotes the outputs in log form. Using linear 

homogeneity with respect to outputs and introducing and error term along with technical 

inefficiency, we have: 

1, ( 1),
, , 1,..., , 1,..., ,

it it it it it
y f y x v u i n t T                                                             (2) 

where 
( 1), 2, ,

,...,
it it M it

y y y , 
it
v  is an error term, 0

it
u  denotes technical inefficiency. 

Suppose 
p

it
z R is a vector of environmental variables such as those related to quality, delay, 

etc. In the standard approach, one either makes u a function of z or regresses z on estimated u. 

The latter approach is known to yield biased estimates while the former is too restrictive 
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(Kumbhakar and Lovell, 2000). In Model I we assume: 2
0 1

~ ,
it it u
u N a a z . In particular, 

we assume p = 1 and z is delay, which is a measure of quality.  

In Model II we use a more elaborate model to investigate the direction of causality between 

delays and technical inefficiency using a dynamic model, which is estimated along with (2). 

The dynamic model has the following form: 

10 11 , 1 1 , 11 ,10 1 1 , ,1
... ,

it i t L i t L it i t L i t L it
z c z z u u u                                (3) 

20 21 , 1 2 , 21 , 1 2 , ,0 22
... ,

it it i t L i t L i t L i t L it
u c z z z u u                              (4) 

where 
,1 ,2
,

it it it
 is an error term. This system is a structural vector autoregression 

(SVAR) relating technical inefficiency and delays. Apart from that, we complete (2) using a 

reduced form equation for ( 1),it
y  as follows: 

( 1), ( 1),
,

it x it w it z it it
y x w z 1                                                                              (5) 

 where 
q

it
w R  is  a vector of exogenous variables (firm and time dummies), 

x
 is an 

M K   matrix, 
w

 is an M q  matrix, 
z
 is a scalar coefficient, and 1  is a vector of ones 

in 1MR . 

The endogenous variables are 1,it
y , ( 1),it

y  , 
it
z  and 

it
u . We assume that inputs are 

predetermined as we use an output distance function.  The Jacobian of transformation in the 

system consisting of (2), (3), (4), and (5) is 

20 10
1 .J                                                                                                                        (6) 

If we assume 

2~ 0,
it v
v iidN , 

2
~ (0, )

it
iidN , ( 1), 1

~ (0, )
it M
iidN   

and these error terms are mutually independent, the likelihood function of the system consisting 

of (2), (3), (4), and (5) is given by: 
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2

2/2 /22 1
1, ( 1), 20 101 12

1/2 /2 11
2

( 1)/2 /2 11
( 1), ( 1),2

; 2 exp ( , ) 1

2 exp ( ) ( )

2 exp ,

nT
v

nT nTn T

v it it it iti tR

nT

it it

M nT

it it it x it

L Y y f y x u

y W y W du

 (7) 

where 10 11 , 1 1 , 10 11 , 1 1 ,

20 20 21 , 1 2 , 21 , 1 2 , ,2

...

...
it i t L i t L it i t L i t L

it
it it i t L i t L i t L i t L it

z c z z u u u

u c z z z u u
, 

, , , , ,
it it it it x w z
W x w z 1 , and the integration is with respect to 

nT
it
u Ru . 

Here, dR  is the entire parameter vector and Y denotes the data. The multivariate 

integration is quite complicated because of the dynamic dependence in (3a) and (3b). A 

standard translog for flexibility was chosen for the functional form ( 1),
( , )

it it
f y x . 

To maximize (6) we use importance sampling followed by a Gauss-Newton numerical 

maximization procedure. Importance sampling is based on the idea that when we must compute 

an integral of the form ( )I L du u  we can always write it in the form: 

 
( )
( ) ,

( )

L
I q d

q

u
u u

u
          (8) 

where ( )q u  is an importance density. If a sample of random numbers 
( ), 1,...,s s Su  can be 

drawn from the importance density2, then 
( )

1

( )1

( )

( )

s
S

ss

L
I S

q

u

u
 . To construct our importance 

density, we use a multivariate truncated normal distribution ,nTNu m V  and we optimize 

,m V  so that it is as close to (6) as possible in the Kullback-Leibler sense, so we first solve the 

problem: 

                                                           

2 Although the sample size is relatively small, we did not notice any convergence issues. In fact, the small sample 

results in faster convergence due to our use of a conjugate gradient algorithm. Convergence was facilitated, by a 

choice of initial conditions using 10,000 random searches to obtain good starting values before initializing the 

conjugate gradient algorithm. 
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( )
1

( )1,

( ) ( )
min : ( )log log ,

( ) ( )

s
S

ss

q q
q d S

L Lm V

u u
u u

u u
  (9) 

where 
( ), 1,...,s s Su  is a sample from ( )q u , the density of ,nTN m V  in this instance, 

and ( )L u  is the integrand in (6).  

It is worth mentioning that the proposed model is a novel one that couples a distance 

function with a vector autoregressive model for technical inefficiency and a vector of covariates 

z. This removes the assumption that technical inefficiency is static as we adopt a dynamic 

framework and it relates it explicitly, and in a dynamic way, to certain covariates z. The 

traditional model simply assumes that technical inefficiency is i.i.d. In other contexts, 

inefficiency has been assumed to depend on certain covariates (Battese–Coelli model) and, 

finally, there are the Tsionas (2002, 2006) models where technical inefficiency follows an 

autoregressive scheme. Here, we nest all these models by proposing a novel SVAR model for 

z and technical inefficiency to compute impulse response functions, which is what we really 

need in our context. Codes were developed in Fortran 77. 

 

5. Analysis and Discussion of Results 

The technical efficiency levels calculated for nine selected Chinese airlines from 2006 to 

2014, using the SVAR model for the technical efficiency and delays (model II), are given in 

Figure 3, which also depicts the scores computed for the traditional stochastic distance function 

(model I). These results suggest that the discriminatory power of the SVAR model is higher 

than those observed in traditional stochastic models because their scores are lower. While in 

model I average scores for technical efficiency are higher and appear to be increasing over the 

course of time, when the effect of delays is simultaneously considered in the variance of the 

residuals, technical efficiency scores are not only deflated, but also remain fluctuating around 

0.60. 
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Figure 3. Average efficiency over time. 

        As regards the cause-effect relationship between technical efficiency and flight delays, 

the impulse responses presented in Figure 4 reveal a mutual dependence (feedback) between 

both variables. Putting it into other words, higher efficiency levels (lower technical 

inefficiency) are correlated with lower delays, although no possible claim can be made with 

respect to which variable is the cause and which one is the effect. This being the case, the 

underlying proposition of this study is related to the fact that higher airline efficiency levels 

present a positive impact on operational planning and execution on a daily-basis, which in turn, 

by presenting lower delays, contributes with a better asset utilization to meet demand needs. 

That is, lower delays contribute to a better match between productive resources and 

consumption, thus contributing to higher efficiency levels. 
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Figure 4. Generalized impulse response functions of zt and ut. 

 

       We found it necessary to use two lags after using a BIC criterion. Our estimates of (3) and 

(4) are provided in Table 3. We see that current-period effects estimated at 0.368 and 0.144 are 

statistically significant indicating that there is a feedback effect between inefficiency and 

quality. It is well known that in SVAR systems the parameters do not have structural 

interpretation, so we resort to generalized impulse response functions provided in Figure 4. The 

off-diagonal generalized impulse responses show a) the effect of a one-standard-deviation 

shock in Z on inefficiency (upper left graph) and b) the effect of a one-standard-deviation shock 

in inefficiency on Z. Both effects are statistically significant as shown by the 95% error bands. 

Specifically, the effect of Z on inefficiency is positive and significant for up to two periods and 

declines over time. The effect of inefficiency on Z lasts 4-5 years, it is positive, and statistically 

significant. 

      Findings suggest, ceteris paribus, the existence of an inertia that may be verified in 

continuous improvement actions. For instance, airport level measures for reducing flight delays 
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may only produce effective results on airline technical efficiency levels in a couple of years. 

The reverse may also be true, should the airlines adopt benchmarking levels for improving their 

productive resources in light of the best practices. It may take a couple of years until flight 

delays can be reduced. Differential measures such as financial incentives could be adopted in 

airport fares and ticket fees to ensure flight punctuality. New flight control and navigation 

technologies could be adopted in Chinese airports to allow landings and take-offs on foggy 

days, thus speeding-up the materialization of the trade-in between technical efficiency and 

reduction in flight delays. 

 

Table 3: Results for the structural vector auto-regressive model (standard errors – SE - are 

given within brackets in the subsequent line) 

 U equation Z equation 

Ut-1  0.664  2.301 

  (0.113)  (0.365) 

Ut-2 -0.243  0.402 

  (0.13303)  (0.43090) 

Zt  0.368 --- 

  (0.127)  

Zt-1  0.021   0.670 

  (0.03506)  (0.114) 

Zt-2 -0.026 -0.277 

  (0.03919)  (0.127) 

Zt 0.023 --- 

  (0.029)   

Ut --- 0.144 

  (0.044) 

 

 

6. Conclusions 
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       This paper presents an analysis of the efficiency of Chinese airlines during 2006-2014 

using a novel SVAR model for technical efficiency and delays. This model makes it possible 

to compute simultaneously the impact of delays on the residuals of the stochastic distance 

function, thus presenting a higher discriminatory power, with technical efficiency scores less 

biased towards one. Results suggest a mutual dependence relationship between airline technical 

efficiency scores and delays, thus building upon scant previous papers that addressed this issue, 

treating delays as an undesirable output within the ambit of airport operations.  

 A failure to include flight delays in airline operations planning may lead to wrong 

decisions in terms of how much outputs to produce (passengers and cargoes to carry), when to 

produce them, and how to produce them, yielding higher operational costs to the airlines and 

lower service levels to its customers. For instance, airlines may decide upon a wrong 

combination between capital (number of planes) and labor (number of employees), which 

would have been different if delays were taken into consideration. Flight delays do not only 

keep airlines stuck on the ground but also require additional ground personnel more intensively 

to manage customer expectations and relocate passengers to upcoming flights. 

Putting the last paragraph into other words, the impact on policy implications suggests 

that managers and regulators should pay more attention to flight delays when benchmarking 

the performance of airline companies. In the air transport operations, passenger and cargo 

transportation will be inevitably associated with flight delays. It is necessary to take account of 

it so as to improve the unbiased estimation of technical efficiency of airlines and to depict how 

their scores fluctuate more precisely over the course of time within and between airlines. 

Additionally, considering the impact of flight delays into the input/output mix will not only 

help in optimizing airline resource allocation but also in designing customer service measures 

to remediate the loss of utility caused by them.  

As regards the focus of this research, it is possible to affirm that, during recent years, 

the overall efficiency of Chinese airline companies has tended to decline due to flight delays, 

hence, the Chinese airline companies should work on plans to stimulate flight punctuality 

improvement. More research is still needed to further confirm the present conclusions in this 

paper. Some alternative research venues may include the analysis of contextual variables, 

assessing how they impact the relationship between efficiency and delays in light of different 

ownership structures, focus on passenger transportation, fleet mix etc. 
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