Accepted Manuscript

Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system

Mike G. Tsionas, Panayotis G. Michaelides

PII: S0378-4371(17)30364-3

DOI: http://dx.doi.org/10.1016/j.physa.2017.04.060

Reference: PHYSA 18162

To appear in: Physica A

Received date: 22 December 2016 Revised date: 5 April 2017

Please cite this article as: M.G. Tsionas. M.G. Tsionas, P.G. Michaelides. P.G. Michaelides, Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system, *Physica A* (2017), http://dx.doi.org/10.1016/j.physa.2017.04.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HIGHLIGHTS

- We use a novel Bayesian inference procedure for the Lyapunov exponent
- We apply the new technique to daily stock data for a group of six countries
- The interaction between returns and volatility is taken into consideration jointly
- We employ Sequential Monte Carlo techniques
- The evidence shows that there is noisy chaos both before and after the crisis

*Manuscript

Click here to view linked References

Neglected chaos in international stock markets: Bayesian analysis of the joint return-volatility dynamical system

Mike G. Tsionas*and Panayotis G. Michaelides † 30th March 2017

Abstract

We use a novel Bayesian inference procedure for the Lyapunov exponent in the dynamical system of returns and their unobserved volatility. In the dynamical system, computation of largest Lyapunov exponent by traditional methods is impossible as the stochastic nature has to be taken explicitly into account due to unobserved volatility. We apply the new techniques to daily stock return data for a group of six countries, namely USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014 by means of Sequential Monte Carlo for Bayesian inference. The evidence points to the direction that there is indeed noisy chaos both before and after the recent financial crisis. However, when a much simpler model is examined where the interaction between returns and volatility is not taken into consideration jointly, the hypothesis of chaotic dynamics does not receive much support by the data ("neglected chaos").

Key Words: Neglected Chaos; Lyapunov exponent; Neural networks; Bayesian analysis; Sequential Monte Carlo, Global Economy.

^{*}Lancaster University Management School, UK & Athens University of Economics and Business, Greece; Email: m.tsionas@lancaster.ac.uk

m.tsionas@lancaster.ac.uk

†London School of Economics, Systemic Risk Centre, UK & National Technical University of Athens, School of Applied Mathematics and Physics, Greece; Email: pmichael@central.ntua.gr

1 Introduction

Nonlinear models have become popular over the last decades because datasets often seem to exhibit nonlinearities. However, very often significant misspecifications result from ignoring irregular periodicity behaviours and strong dependence upon initial conditions. In this context, it would seem meaningful to test for the presence of chaotic behaviours that have not been already detected yet, in other words to test for "neglected chaos". This would make sure that no functional relationships expressing chaotic behaviors are neglected and that no terms with explanatory power have been left out of the model. Such models, from now on, will be referred to as "neglected chaos" approaches/tests. Meanwhile, an artificial neural network (ANN) could be used to test for neglected chaos, using its universal approximation ability (Hornik et al. 1989), where - technically speaking - the model becomes an augmented feed-forward q-perceptron ANN.

The field of chaos was developed several decades ago in Physics to explain some strange-looking behaviours that lacked order. Practically, it refers to the study of unpredictable behaviours in systems that are inherently complex. According to Lahmiri (2017): "a chaotic system is a random-looking nonlinear deterministic process with irregular periodicity and sensitivity to initial conditions". Up until recently, the various tests for chaotic behavior have been implemented primarily in the fields of Science and Engineering, especially in meteorological and climate change data where noise is usually absent. However, over the last years, chaos has been the subject of research in various fields, including those of economics and finance, where a typical approach in these fields has been that the dominant dynamics are of a stochastic nature, usually described by a given probability function. Relatively recently, some researchers in the field of finance and financial economics, have found some evidence in favour of chaotic dynamics. Mishra et al. (2011) found evidence of chaotic dynamics in the Indian stock market, Yousefpoor et al. (2008) in the Tehran stock market, Kyrtsou and Terraza (2002) in the French CAC 40 index, Çoban and Büyüklü (2009) in the Turkish Lira-USD exchange rate, and Das and Das (2007) in exchange rates. In this context, tests for chaos using ANNs have gained popularity (BenSaïda, 2014, BenSaïda & Latimi, 2013).

In financial time series, however, it is not sufficient to account for a flexible functional form to represent state dynamics. Time-varying conditional variance is a key characteristic of these series and, often, this is ignored or modeled with simple models such as the EGARCH (Lahmiri, 2017). Neverthless, stochastic volatility models (Jacquier et al., 2014) are better suited for financial data but considerably more computationally intensive. In this framework, econophysics tools have become available and are nowadays used for modeling the behaviour of often complex financial systems. For the advantages of these approaches and for relevant applications see, among others, Cajueiro and Tabak (2009), Sensoy (2013), Lahmiri (2015), Morales et al. (2012). In the words of BenSaïda (2014): "[F]ew studies have considered studying the dynamics of financial and economic time series in times of political or economic instability to better understand their behaviour from an econophysics perspective".

In this paper, we consider a bivariate dynamical system consisting of returns and their volatility. Both functional forms are modeled via ANNs and feedback is allowed between returns and volatility. We propose a novel way of computing the largest Lyapunov exponent as the dynamical system is inherenty stochastic due to the presence of stochastic volatility. More precisely, in this work, we test for the presence of noisy chaotic dynamics before and after the 2008 international financial crisis that could be seen as an Early Warning Mechanism (EWM). EWMs are important elements of a carefully designed macroprudential policy that could potentially help reduce the high risk associated with financial and economic crises. In this context, EWMs should not only have good statistical properties and good forecasting performance but also should be based on testing for the existence of chaos. In this work, the importance of testing for chaos lies on the appropriate technique suggested which is based on a bivariate dynamical system of returns and their volatility, which is a crucial requirement for the EWM.

The data employed consist of stock indices for six major countries, namely: USA, UK, Switzerland, Netherlands, Germany and France, and their corresponding implied volatility indices. The sample covers the period from 15th May 2003 to 25th November 2014 in order to capture the financial crisis.

2 Model

2.1 General

Suppose a time series $\{x_t; t = 1, ..., T\}$ has the representation

$$y_t = f(y_{t-L}, y_{t-2L}, ..., y_{t-mL}) + u_t, \ u_t | \sigma_t \sim N(0, \sigma_t^2), t = 1, ..., T,$$
(1)

where σ_t^2 is the conditional variance, m is the embedding dimension (or the length of past dependence) and L is the time delay. The state space representation is:

$$F: \begin{bmatrix} y_{t-L} \\ y_{t-2L} \\ \vdots \\ y_{t-mL} \end{bmatrix} \rightarrow \begin{bmatrix} y_t = f(y_{t-L}, y_{t-2L}, ..., y_{t-mL}) + \varepsilon_t \\ y_{t-L} \\ \vdots \\ y_{t-(m-1)L} \end{bmatrix}.$$
 (2)

Given initial conditions y_0 and a perturbation $\triangle y_0$ the time series after t periods changes by $\triangle y(y_0, t)$. The Lyapunov exponent is defined as:

$$\lambda = \lim_{\tau \to \infty} \tau^{-1} \ln \frac{|\Delta y(y_0, \tau)|}{|\Delta y_0|},\tag{3}$$

and measures the average exponential divergence (positive exponent) or convergence (negative exponent) rate between nearby trajectories within time horizons that differ in terms of initial conditions by an infinitesimal amount. The Jacobian matrix J at a point χ is

$$J^{t}(\boldsymbol{x}) = \frac{df^{t}(\boldsymbol{\chi})}{d\boldsymbol{\chi}} \tag{4}$$

The Jacobian of the map in (2) is:

$$J_{t} = \begin{bmatrix} \frac{\partial f}{\partial y_{t-L}} & \frac{\partial f}{\partial y_{t-2L}} & \cdots & \frac{\partial f}{\partial y_{t-(m-1)L}} & \frac{\partial f}{\partial y_{t-mL}} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$
 (5)

We write (1) compactly as:

$$y_t = f(\mathbf{x}_t) + u_t, \tag{6}$$

where $\mathbf{x}_t = [x_{t-L}, ..., x_{t-mL}] \in \Re^d$.

The Lyapunov exponent (following Eckmann and Ruelle, 1985) is:

$$\lambda = \lim_{M \to \infty} \frac{1}{2M} \log \nu^*,\tag{7}$$

where ν^* is the largest eigenvalue of matrix $T'_M T_M$, with

$$T_M = \prod_{t=1}^{M-1} J_{M-1},\tag{8}$$

and $M \leq T$ is the block-length of equally spaced evaluation points, and J is the Jacobian matrix of the chaotic map f. One can take $M = T^{2/3}$ (BenSaida, 2014, see also BenSaïda and Latimi, 2013).

In this work, we use Artificial Neural Networks (ANNs) because they can approximate any smooth, nonlinearity, as the number of hidden units gets larger (Hornik, et al. 1989). Actually, it has been shown in Hornik (1991) that ANNs act as global approximations to various functions. For instance, see Michaelides et al. (2015) for an application to banking data. In this work, we approximate the map using a neural network:

$$y_t = \sum_{g=1}^{G} \alpha_g \varphi(\mathbf{x}_t' \boldsymbol{\beta}_g) + u_t, \tag{9}$$

where $\varphi(z) = \frac{1}{1 + \exp(-z)}$, $z \in \Re$ is the sigmoid activation function, and $\beta_g \in \Re^L$, $\forall g = 1, ..., G$. We impose the identifiability constraints $\alpha_1 \leq ... \leq \alpha_G$. Asymptoically normal tests for chaos have been proposed by considering the variance of the Lyapunov exponent which depend on the eigengvalues of matrix $T_M'T_M$. One can assume that the conditional variance follows a stochastic volatility model:

$$\log \sigma_t^2 = \mu + \rho \log \sigma_{t-1}^2 + \varepsilon_t, \ \varepsilon_t \sim iidN\left(0, \omega^2\right). \tag{10}$$

It is well known that even with linear models estimation of (10) is quite difficult. Instead of (9) and (10) we use a more flexible model:

$$y_{t} = \sum_{g=1}^{G_{1}} \alpha_{g} \varphi(\mathbf{x}_{t}' \boldsymbol{\beta}_{g} + \sum_{l=1}^{l_{2}} \gamma_{gl} \sigma_{t-lL_{2}}^{2}) + u_{t}, \ u_{t} | \sigma_{t} \sim N(0, \sigma_{t}^{2}), t = 1, ..., T,$$

$$\log \sigma_{t}^{2} = \sum_{g=1}^{G_{1}} \delta_{g} \varphi(\mathbf{x}_{t}' \boldsymbol{\zeta}_{g} + \sum_{l=1}^{l_{2}} \psi_{gl} \sigma_{t-lL_{2}}^{2}) + \varepsilon_{t}, \ \varepsilon_{t} \sim N(0, \omega^{2}), t = 1, ..., T,$$

$$(11)$$

where L_2 is the time delay for the conditional variance. In this model: i) Returns depend on past values as well as lagged volatilities. ii) Volatility is given by a flexible neural network specification and depends on both past returns and lagged volatility values. We impose the identifiability constraints $\alpha_1 \leq ... \leq \alpha_G$ and $\delta_1 \leq ... \leq \delta_G$.

2.2 Computation of Lyapunov exponent

The Lyapunov exponent for the dynamical system in (11) is difficult to compute as we have a bivariate *stochastic* system whose variance is part of the state vector. We can write

$$y_{t} = \sum_{g=1}^{G_{1}} \alpha_{g} \varphi(\mathbf{x}'_{t} \boldsymbol{\beta}_{g} + \sum_{l=1}^{l_{2}} \gamma_{gl} \sigma_{t-lL_{2}}^{2}) + \sigma_{t} \xi_{t1}, \ \xi_{t1} \sim N(0,1), t = 1, ..., T,$$

$$\log \sigma_{t}^{2} = \sum_{g=1}^{G} \delta_{g} \varphi(\mathbf{x}'_{t} \boldsymbol{\zeta}_{g} + \sum_{l=1}^{l_{2}} \psi_{gl} \sigma_{t-lL_{2}}^{2}) + \omega \xi_{t2}, \ \xi_{t2} \sim N(0,1), t = 1, ..., T.$$

$$(12)$$

The advantage is that σ_t appears explicitly in the first equation. In section 3 we show how likelihood-based inference can be performed for this model. Clearly, however, we cannot ignore ξ_t as in existing approaches to computing the Lyapunov exponent(s).

Our proposal is the following.

- 1. For given parameter values, simulate two values $\boldsymbol{\xi}^* = [\xi_1^*, \xi_2^*]' \sim iidN(0, 1)$. Set $\xi_{t1} = \xi_1^*$ and $\xi_{t2} = \xi_2^*$. In this way, when $\xi_2^* = 0$ (12) is converted to a deterministic multivariate nonlinear state space model.
 - 2. Compute the conditional Lyapunov exponent:

$$\lambda(\boldsymbol{\xi}^*) = \lim_{n \to \infty} n^{-1} \sum_{i=0}^{n-1} \log ||\partial \Phi(\boldsymbol{\chi}_i)/\partial \boldsymbol{\chi}_i||, \tag{13}$$

where $\chi = [y_{t-1}, ..., y_{t-m_1L_1}, \sigma_{t-1}^2, ..., \sigma_{t-m_2L_2}^2]$, $\Phi(\chi)$ represents the right-hand-side of (11), and ||.|| represents the absolute value of the determinant. The Lyapunov exponent is, again, computed as:

$$\lambda(\boldsymbol{\xi}^*) = \lim_{M \to \infty} \frac{1}{2M} \log \nu^*, \tag{14}$$

where ν^* is the largest eigenvalue of matrix $T_M'T_M$, with:

$$T_M = \prod_{t=1}^{M-1} J_{M-1},\tag{15}$$

and $M \leq T$ with $M = T^{2/3}$, and $J_i = \partial \Phi(\chi_i)/\partial \chi_i$.

- 3. Repeat this a large number of times (e.g. several hundreds) and let Ξ^* be the set of simulated values for ξ^* .
 - 4. Finally, as a conservative measure take:

$$\lambda = \min_{\boldsymbol{\xi}^* \in \Xi^*} \lambda(\boldsymbol{\xi}^*). \tag{16}$$

If $\lambda > 0$ then we have noisy chaos but negative λ does not necessarily imply stability and we have to examine the issue in more detail. Since $\boldsymbol{\xi}^*$ follows a bivariate standard normal distribution, simulation is not really necessary as we can take, say, S = 20 different values for ξ_1^* and ξ_2^* in the interval (-3.5, 3.5) which contains almost all probability mass. We would end up with $S^2 = 400$ points at which to evaluate the conditional Lyapunov exponents but the computation is not excessive although we have to repeat it for each SMC draw that is, for every drawn value of the parameters. Of course, nothing precludes to plot $\lambda(\boldsymbol{\xi}^*)$ as a function of ξ_1^* or ξ_2^* or both. This allows us to examine the issue in more detail as there may be values of noise $(\xi_1^*$ and $\xi_2^*)$ that give different results for noisy chaotic versus noisy stable dynamics.

Finally, on various aspects of the computation of Lyapunov exponents, one may also consult Kantz (1994), Rosenstein et al. (1993) and Wolf et al. (1985).

3 Bayesian inference

On the one hand, the complication arising when choosing the parameter values is that low parameters may prevent the neural network from reasonably approximating the specifications. On the other hand, large parameters increase the computational complexity because of the number of coefficients to be estimated (BenSaïda, 2014). This is the reason why we chose to select the parameters based on the (normalized) marginal likelihoods adopted as a strategy. For a discussion of other strategies, see Nychka et al. (1992), BenSaïda and Litimi (2013).

The likelihood function of the model is:

$$\mathcal{L}(\boldsymbol{\theta}; \mathcal{Y}) = (2\pi\omega^{2})^{-T/2} \int_{\Re_{+}^{T}} \prod_{t=1}^{T} (2\pi)^{-1/2} (\sigma_{t}^{2})^{-1} \exp\left\{-\frac{[y_{t} - \sum_{g=1}^{G_{1}} \alpha_{g} \varphi(\mathbf{x}_{t}' \boldsymbol{\beta}_{g} + \sum_{l=1}^{l_{2}} \gamma_{gl} \sigma_{t-lm_{2}}^{2})]^{2}}{2\sigma_{t}^{2}}\right\} \cdot, \\
\exp\left\{-\frac{(\log \sigma_{t}^{2} - \sum_{g=1}^{G} \delta_{g} \varphi(\mathbf{x}_{t}' \boldsymbol{\zeta}_{g} + \sum_{l=1}^{l_{2}} \psi_{gl} \sigma_{t-lm_{2}}^{2}))^{2}}{2\omega^{2}}\right\} d\boldsymbol{\sigma}^{2}, \tag{17}$$

where the parameter vector $\boldsymbol{\theta} = \left[\boldsymbol{\alpha}', \boldsymbol{\beta}', \boldsymbol{\gamma}', \boldsymbol{\delta}', \boldsymbol{\psi}', \boldsymbol{\omega}\right]' \subseteq \Re^p$, $\boldsymbol{\sigma}^2 = [\sigma_1^2, ..., \sigma_T^2]$, and $\mathcal{Y} = [y_1, ..., y_T]$. If $\lambda \geq 0$ then we have (noisy) chaotic dynamics, under a rich structure for the conditional variance, which has been often ignored in practice. We use a flat prior on all parameters:

$$p(\boldsymbol{\theta}) \propto \omega^{-1}$$
. (18)

In addition, we have to determine the parameters defined in the previous equations i.e. 9-17, namely $L, L_2, l_1, l_2, m_1, m_2$ and G_1, G_2 . We make the simplifying assumptions $L_1 = L_2 = L$, $l_1 = l_2 = l$, $m_1 = m_2 = m$ and

 $G_1 = G_2 = G$. The posterior distribution is:

$$p(\boldsymbol{\theta}|\mathcal{Y}) \propto \mathcal{L}(\boldsymbol{\theta}; \mathcal{Y}) \cdot p(\boldsymbol{\theta}).$$
 (19)

To perform Bayesian analysis we use a Sequential Monte Carlo / Particle Filtering (SMC/PF) algorithm. See Appendix for technical details. We determine L and G using the maximal value of the marginal likelihood or evidence:

$$\mathfrak{M}(\mathcal{Y}) = \int_{\Re^p} \mathcal{L}(\boldsymbol{\theta}; \mathcal{Y}) \cdot p(\boldsymbol{\theta}) d\boldsymbol{\theta}. \tag{20}$$

The marginal likelihood is a byproduct of SMC (see Technical Appendix).

The data employed consist of stock indices for six countries: USA, UK, Switzerland, Netherlands, Germany and France (S&P 500, FTSE 100, SMI, AEX, DAX and CAC 40), and their corresponding implied volatility indices: VIX, VFTSE, VSMI, VAEX, VDAX-NEW, and VCAC. The volatility indices have thirty days to maturity and reflect the volatility of the respective stock markets. All data are extracted from Bloomberg. The sample covers the period from 15th May 2003 to 25th November 2014 in order to capture the financial crisis.

Our empirical results are summarized in Figure 1 where we present the marginal posterior distributions of λ in the system (11).

Normalized marginal likelihoods for selection of G, L and n are presented in Figure 2. We normalize to 1.0 the value of $\mathfrak{M}(\mathcal{Y})$ when G=1, L=1 or n is equal to its minimal value (10). These figures are drawn (for example) for G assuming L, m and n are at their optimal values.

In Figure 3 we present marginal posterior distributions of λ in (1) or (9) with $\sigma_t = \sigma$. The marginal posterior distributions of λ for the squared residuals from (1) -volatility are presented in Figure 4.

In Figures 5 and 6 we provide the conditional Lyapunov exponent, defined in (13), for the U.S and the U.K, respectively.

Now, regarding the selection of the prior distribution, the strategy of picking a prior distribution that seems to best represent the set of uncertain parameters is a quite difficult task (Insua and Ruggeri, 2000). Hence, in this study, for reasons of robustness, the aforementioned analysis was performed to several empirically plausible priors carefully selected (Berger, 1985). In this framework, a collection of priors was used which that was compatible with our model, as analysed earlier. Based on these alternative priors, the calculated results that have been produced equal to 10,000 were not found to be sensitive to these alternative priors and are available upon request. This is a clear sign that we may proceed, without any hesitation, based on our computations. See further Kass and Wasserman (1996).

4 Discussion

As can be seen in Figure 1, the estimated Lyapunov exponent, based on the marginal posterior distributions, is positive for the estimated system in (11) for all the economies examined in the sample, before and after crisis, which indicates presence of chaos in these series. Also, the multimodality often observed in the posterior distributions of various countries such as France before the crisis, could be seen as an expression of the locally unstable character of the Lyapunov exponent mirroring the economic and financial situation in those countries.

In the meantime, when adopting a simplistic approach where returns and volatility are not considered jointly, the model does not support the presence of chaotic dynamics and especially the presence of noisy volatility. We called this phenomenon "neglected chaos" and we believe that it could have important implications for the development of an early warning device. Also, of note is that the multimodality comment made earlier in the joint estimation, is in force here for the volatility case.

Furthermore, as we have seen, when the number of hidden layers G of the Neural Networks employed gets

larger, the network can approximate any smooth non-linearity. We can see that the number of hidden layers before the crisis is larger than the one after the crisis, implying that more layers were needed to capture the behavior of the economy before the crisis. This finding could be seen as an expression of the unstable character of the economic and financial systems, before the global crisis. Finally, when the character of each equation in the joint system is taken into separate consideration we map the conditional Lyapunov exponent for all the vectors (ksi1*, ksi2*). We can visually infer that for ksi2*=0, and for all the values of ksi1, the behaviour is chaotic before and after the crisis, both for the returns and for the volatilities confirming our previous finding.

In conclusion, our findings show strong evidence that for all the economies investigated the joint return-volatility dynamical system is chaotic both before and after the crisis. Put differently, the dynamics in these series, have not changed dramatically after the crisis, and still remain chaotic.

5 Conclusions and Policy Insights

It cannot be gainsaid that early chaos identification could potentially be useful in policy circles around the world. since a key target of most macroprudential policies is the reduction of systemic risk (e.g. Disyatat, 2010; Borio and Drehmann, 2009). In this context, a very crucial component of the correct policy mix should be based upon carefully designed and easily interpretable EWMs to address the chaotic behaviour of the financial system (e.g. White, 2008). This certainly constitutes a key challenge for policy makers that has not been studied so far in the literature and could end up in a financial crisis. As a result, a well designed EWM could reduce uncertainty and allow for good policy reactions. However, an inability of such models to provide satisfactory results at an early stage, is the fact that they do not, so far, test for chaos which is the expression of a process inherently non-linear, irregular and extremely sensitive to intial conditions (Lahmiri 2017) that is difficult to capture using the standard, already available models. Hence, any quantitative test that wishes to capture the inherent instability of the financial system, especially an early stage, must be able to capture its potential chaotic behaviour.

In this article, we put forward a novel Bayesian preocedure to compute the Lyapunov exponent jointly in the dynamical system of returns and volatility, since its direct computation, based on the already existing methods, was impossible as the stochastic nature had to be taken into consideration. To this end, we applied the new approach to daily stock return data for a selected group of six countries, namely USA, UK, Switzerland, Netherlands, Germany and France, from 2003 to 2014. In this work, we proposed a robust quantitative framework for the detection of chaos, structured upon Artificial Neural Networks (ANN). In fact, this is the first paper in the relevant literature, to the best of our knowledge, which employs ANNs, to capture chaos. Sequential Monte Carlo techniques have been employed for Bayesian inference.

Our findings show clearly that there is indeed noisy chaos both before and after the recent financial crisis. However, interestingly enough, when a much simpler model is examined where the interaction between returns and volatility is not taken into consideration jointly following conventional wisdom, the hypothesis of chaotic dynamics does not receive much support by the data, a situation that we call "neglected chaos" and could have important implications.

TECHNICAL APPENDIX

Particle filtering

The particle filter methodology can be applied to state space models of the general form:

$$y_T \sim p(y_t|x_t), \ s_t \sim p(s_t|s_{t-1}),$$
 (A.1)

where s_t is a state variable. For general introductions see Gordon (1997), Gordon et al. (1993), Doucet et al. (2001) and Ristic et al. (2004).

Given the data Y_t the posterior distribution $p(s_t|Y_t)$ can be approximated by a set of (auxiliary) particles $\left\{s_t^{(i)}, i=1,...,N\right\}$ with probability weights $\left\{w_t^{(i)}, i=1,...,N\right\}$ where $\sum_{i=1}^N w_t^{(i)} = 1$. The predictive density can be approximated by:

$$p(s_{t+1}|Y_t) = \int p(s_{t+1}|s_t)p(s_t|Y_t)ds_t \simeq \sum_{i=1}^N p(s_{t+1}|s_t^{(i)})w_t^{(i)}, \tag{A.2}$$

and the final approximation for the filtering density is:

$$p(s_{t+1}|Y_t) \propto p(y_{t+1}|s_{t+1})p(s_{t+1}|Y_t) \simeq p(y_{t+1}|s_{t+1}) \sum_{i=1}^{N} p(s_{t+1}|s_t^{(i)}) w_t^{(i)}.$$
(A.3)

The basic mechanism of particle filtering rests on propagating $\left\{s_t^{(i)}, w_t^{(i)}, i=1,\ldots,N\right\}$ to the next step, viz. $\left\{s_{t+1}^{(i)}, w_{t+1}^{(i)}, i=1,\ldots,N\right\}$ but this often suffers from the weight degeneracy problem. If parameters $\theta \in \Theta \in \Re^k$ are available, as is often the case, we follow Liu and West (2001) and parameter learning takes place via a mixture of multivariate normals:

$$p(\theta|Y_t) \simeq \sum_{i=1}^{N} w_t^{(i)} N(\theta|a\theta_t^{(i)} + (1-a)\bar{\theta}_t, b^2 V_t),$$
 (A.4)

where $\bar{\theta}_t = \sum_{i=1}^N w_t^{(i)} \theta_t^{(i)}$, and $V_t = \sum_{i=1}^N w_t^{(i)} (\theta_t^{(i)} - \bar{\theta}_t) (\theta_t^{(i)} - \bar{\theta}_t)'$. The constants a and b are related to shrinkage and are determined via a discount factor $\delta \in (0,1)$ as $a = (1-b^2)^{1/2}$ and $b^2 = 1 - [(3\delta - 1)/2\delta]^2$. See also Casarin and Marin (2007).

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide the Particle Metropolis-Hastings (PMCMC) technique which uses an unbiased estimator of the likelihood function $\hat{p}_N(Y|\theta)$ as $p(Y|\theta)$ is often not available in closed form.

Given the current state of the parameter $\theta^{(j)}$ and the current estimate of the likelihood, say $L^j = \hat{p}_N(Y|\theta^{(j)})$, a candidate θ^c is drawn from $q(\theta^c|\theta^{(j)})$ yielding $L^c = \hat{p}_N(Y|\theta^c)$. Then, we set $\theta^{(j+1)} = \theta^c$ with the Metropolis - Hastings probability:

$$A = \min \left\{ 1, \ \frac{p(\theta^c)L^c}{p(\theta^{(j)}L^j} \frac{q(\theta^{(j)}|\theta^c)}{q(\theta^c|\theta^{(j)})} \right\},\tag{A.5}$$

otherwise we repeat the current draws: $\{\theta^{(j+1)}, L^{j+1}\} = \{\theta^{(j)}, L^j\}$.

Hall, Pitt and Kohn (2014) propose an auxiliary particle filter which rests upon the idea that adaptive particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer particles that the standard particle filtering algorithm to approximate $p(Y|\theta)$. From Pitt and Shephard (1999) we know that auxiliary particle filtering can be implemented easily once we can evaluate the state transition density $p(s_t|s_{t-1})$. When this is not possible, Hall, Pitt and Kohn (2014) present a new approach when, for instance, $s_t = g(s_{t-1}, u_t)$ for a certain disturbance. In this case we have:

$$p(y_t|s_{t-1}) = \int p(y_t|s_t)p(s_t|s_{t-1})ds_t,$$
(A.6)

$$p(u_t|s_{t-1};y_t) = p(y_t|s_{t-1},u_t)p(u_t|s_{t-1})/p(y_t|s_{t-1}).$$
(A.7)

If one can evaluate $p(y_t|s_{t-1})$ and simulate from $p(u_t|s_{t-1};y_t)$ the filter would be fully adaptable (Pitt and Shephard, 1999). One can use a Gaussian approximation for the first-stage proposal $g(y_t|s_{t-1})$ by matching the first two moments of $p(y_t|s_{t-1})$. So in some way we find that the approximating density $p(y_t|s_{t-1}) = N\left(\mathbb{E}(y_t|s_{t-1}), \mathbb{V}(y_t|s_{t-1})\right)$. In the second stage, we know that $p(u_t|y_t,s_{t-1}) \propto p(y_t|s_{t-1},u_t)p(u_t)$. For $p(u_t|y_t,s_{t-1})$ we know it is multimodal so suppose it has M modes are \hat{u}_t^m , for $m=1,\ldots,M$. For each mode we can use a Laplace approximation. Let $l(u_t) = log\left[p(y_t|s_{t-1},u_t)p(u_t)\right]$. From the Laplace approximation we obtain:

$$l(u_t) \simeq l(\hat{u}_t^m) + \frac{1}{2}(u_t - \hat{u}_t^m)' \nabla^2 l(\hat{u}_t^m)(u_t - \hat{u}_t^m). \tag{A.8}$$

Then we can construct a mixture approximation:

$$g(u_t|x_t, s_{t-1}) = \sum_{m=1}^{M} \lambda_m (2\pi)^{-d/2} |\Sigma_m|^{-1/2} \exp\left\{\frac{1}{2} (u_t - \hat{u}_t^m)' \Sigma_m^{-1} (u_t - \hat{u}_t^m)' \right\},$$
(A.9)

where $\Sigma_m = -\left[\nabla^2 l(\hat{u}_t^m)\right]^{-1}$ and $\lambda_m \propto \exp\left\{l(u_t^m)\right\}$ with $\sum_{m=1}^M = 1$. This is done for each particle s_t^i . This is known as the Auxiliary Disturbance Particle Filter (ADPF).

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a proposal for s_t directly from the measurement density $p(y_t|s_t)$ although Hall, Pitt and Kohn (2014) are quite right in pointing out that the state equation can be very informative.

In the standard particle filter of Gordon et al. (1993) particles are simulated through the state density $p(s_t^i|s_{t-1}^i)$ and they are re-sampled with weights determined by the measurement density evaluated at the resulting particle, viz. $p(y_t|s_t^i)$.

The ADPF is simple to construct and rests upon the following steps:

For t = 0, ..., T-1 given samples $s_t^k \sim p(s_t|Y_{1:t})$ with mass π_t^k for k = 1, ..., N.

- 1) For k = 1, ..., N compute $\omega_{t|t+1}^k = g(y_{t+1}|s_t^k)\pi_t^k, \ \pi_{t|t+1}^k = \omega_{t|t+1}^k / \sum_{i=1}^N \omega_{t|t+1}^i$.
- 2) For k = 1, ..., N draw $\tilde{s}_t^k \sim \sum_{i=1}^{N} \pi_{t|t+1}^i \delta_{s_t}^i (ds_t)$.
- 3) For k = 1, ..., N draw $u_{t+1}^k \sim g(u_{t+1}|\tilde{s}_t^k, y_{t+1})$ and set $s_{t+1}^k = h(s_t^k; u_{t+1}^k)$.
- 4) For k = 1, ..., N compute

$$\omega_{t+1}^k = \frac{p(y_{t+1}|s_{t+1}^k)p(u_{t+1}^k)}{g(y_{t+1}|s_t^k)g(u_{t+1}^k|\tilde{s}_t^k,y_{t+1})}, \pi_{t+1}^k = \frac{\omega_{t+1}^k}{\sum_{i=1}^N \omega_{t+1}^i}.$$
(A.10)

It should be mentioned that the estimate of likelihood from ADPF is:

$$p(Y_{1:T}) = \prod_{t=1}^{T} \left(\sum_{i=1}^{N} \omega_{t-1|t}^{i} \right) \left(N^{-1} \sum_{i=1}^{N} \omega_{t}^{i} \right). \tag{A.11}$$

Particle Metropolis adjusted Langevin filters

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis adjusted Langevin algorithm (MALA). In Sequential Monte Carlo we are interested in approximating $p(s_t|Y_{1:t}, \theta)$. Given that:

$$p(s_t|Y_{1:t},\theta) \propto g(y_t|x_t,\theta) \int f(s_t|s_{t-1},\theta)p(s_{t-1}|y_{1:t-1},\theta)ds_{t-1},$$
 (A.12)

where $p(s_{t-1}|y_{1:t-1},\theta)$ is the posterior as of time t-1. If at time t-1 we have a set set of particles $\{s_{t-1}^i, i=1,\ldots,N\}$ and weights $\{w_{t-1}^i, i=1,\ldots,N\}$ which form a discrete approximation for $p(s_{t-1}|y_{1:t-1},\theta)$ then we have the ap-

proximation:

$$\hat{p}(s_{t-1}|y_{1:t-1},\theta) \propto \sum_{i=1}^{N} w_{t-1}^{i} f(s_{t}|s_{t-1}^{i},\theta). \tag{A.13}$$

See Andrieu et al. (2010) and Cappe at al. (2005) for reviews. From (A.13) Fernhead (2007) makes the important observation that the joint probability of sampling particle s_{t-1}^i and state s_t is:

$$\omega_t = \frac{w_{t-1}^i g(y_t | s_t, \theta) f(s | s_{t-1}^i, \theta)}{\xi_t^i q(s_t | s_{t-1}^i, y_t, \theta)},$$
(A.14)

where $q(s_t|s_{t-1}^i,y_t,\theta)$ is a density function amenable to simulation and

$$\xi_t^i q(s_t | s_{t-1}^i, y_t, \theta) \simeq c g(y_t | s_t, \theta) f(s_t | s_{t-1}^i, \theta),$$
(A.15)

and c is the normalizing constant in (A.12).

In the MALA algorithm of Roberts and Rosenthal $(1998)^1$ we form a proposal:

$$\theta^c = \theta^{(s)} + \lambda z + \frac{\lambda^2}{2} \nabla \log p(\theta^{(s)}|Y_{1:T}), \tag{A.16}$$

where $z \sim N(0, I)$ which should result in larger jumps and better mixing properties, plus lower autocorrelations for a certain scale parameter λ . Acceptance probabilities are:

$$a(\theta^{c}|\theta^{(s)}) = \min\left\{1, \frac{p(Y_{1:T}|\theta^{c})q(\theta^{(s)}|\theta^{c})}{p(Y_{1:T}|\theta^{(s)})q(\theta^{c}|\theta^{(s)})}\right\}. \tag{A.17}$$

Using particle filtering it is possible to create an approximation of the score vector using Fisher's identity:

$$\nabla \log p(Y_{1:T}|\theta) = E\left[\nabla \log p(s_{1:T}, Y_{1:T}|\theta)|Y_{1:T}, \theta\right], \tag{A.18}$$

which corresponds to the expectation of:

$$\nabla \log p(s_{1:T}, Y_{1:T}|\theta) = \nabla \log p(|s_{1:T-1}, Y_{1:T-1}|\theta) + \nabla \log g(y_T|s_T, \theta) + \nabla \log f(s_T|s_{T-1}, \theta),$$

over the path $s_{1:T}$. The particle approximation to the score vector results from replacing $p(s_{1:T}|Y_{1:T},\theta)$ with a particle approximation $\hat{p}(s_{1:T}|Y_{1:T},\theta)$. With particle i at time t-1 we can associate a value $\alpha_{t-1}^i = \nabla \log p(s_{1:t-1}^i, Y_{1:t-1}|\theta)$ which can be updated recursively. As we sample κ_i in the APF (the index of particle at time t-1 that is propagated to produce the *i*th particle at time t) we have the update:

$$\alpha_t^i = a_{t-1}^{\kappa_i} + \nabla \log g(y_t | s_t^i, \theta) + \nabla \log f(s_t^i | s_{t-1}^i, \theta). \tag{A.19}$$

To avoid problems with increasing variance of the score estimate $\nabla \log p(Y_{1:t}|\theta)$ we can use the approximation:

$$\alpha_{t-1}^i \sim N(m_{t-1}^i, V_{t-1}).$$
 (A.20)

¹The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters n is large. This happens because the scaling parameter λ is $O(n^{-1/2})$ for Random-Walk-Metropolis but it is $O(n^{-1/6})$ for MALA. See Roberts et al. (1997) and Roberts and Rosenthal (1998).

The mean is obtained by shrinking α_{t-1}^i towards the mean of α_{t-1} as follows:

$$m_{t-1}^{i} = \delta \alpha_{t-1}^{i} + (1 - \delta) \sum_{i=1}^{N} w_{t-1}^{i} \alpha_{t-1}^{i}, \tag{A.21}$$

where $\delta \in (0,1)$ is a shrinkage parameter. Using Rao-Blackwellization one can avoid sampling α_t^i and instead use the following recursion for the means:

$$m_{t}^{i} = \delta m_{t-1}^{\kappa_{i}} + (1 - \delta) \sum_{i=1}^{N} w_{t-1}^{i} m_{t-1}^{i} + \nabla \log g(y_{t}|s_{t}^{i}, \theta) + \nabla \log f(s_{t}^{i}|s_{t-1}^{\kappa_{i}}, \theta), \tag{A.22}$$

which yields the final score estimate:

$$\nabla \log \hat{p}(Y_{1:t}|\theta) = \sum_{i=1}^{N} w_t^i m_t^i. \tag{A.23}$$

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking $\delta=0.95$. Furthermore, they show the important result that the algorithm should be tuned to the asymptotically optimal acceptance rate of 15.47% and the number of particles must be selected so that the variance of the estimated log-posterior is about 3. Additionally, if measures are not taken to control the error in the variance of the score vector, there is no gain over a simple random walk proposal.

Of course, the marginal likelihood is:

$$p(Y_{1:T}|\theta) = p(y_1|\theta) \prod_{t=2}^{T} p(y_t|Y_{1:t-1}, \theta),$$
(A.24)

where

$$p(y_t|Y_{1:t-1},\theta) = \int g(y_t|s_t) \int f(s_t|s_{t-1},\theta) p(s_{t-1}|Y_{1:T-1},\theta) ds_{t-1} ds_t,$$
(A.25)

provides, in explicit form, the predictive likelihood.

References

Andrieu, C., and G.O. Roberts. (2009) The pseudo-marginal approach for efficient computation. Ann. Statist., 37, 697–725.

Andrieu, C., A. Doucet, and R. Holenstein (2010), "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society: Series B, 72, 269–342.

Ben
Saïda, A. (2014). Noisy chaos in intraday financial data: Evidence from the American index. Applied Mathematics and Computation 226, 258-265.

BenSaïda, A., H. Litimi (2013). High level chaos in the exchange and index markets, Chaos Solitons Fractals 54 (2013) 90–95.

Berger, J.O., 1985. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York, NY.

Borio, C., Drehmann, M., 2009. Assessing the risk of banking crises – revisited. BIS Q. Rev. (March), 29–46. D.O. Cajueiro, B.M. Tabak, Testing for long-range dependence in the Brazilian term structure of interest rates, Chaos Solitons Fractals 40 (2009) 1559–1573.

Cappé, O., E. Moulines, E., and T. Rydén (2005). Inference in Hidden Markov Models. Springer, Berlin.

Casarin, R., J.-M. Marin (2007). Online data processing: Comparison of Bayesian regularized particle filters. University of Brescia, Department of Economics. Working Paper n. 0704

Katherine Kyrtsou, Michel Terraza, Stochastic chaos or ARCH effects in stock series?: A comparative study, International Review of Financial Analysis, Volume 11, Issue 4, 2002, Pages 407-431.

Gürsan Çoban, Ali H. Büyüklü, Deterministic flow in phase space of exchange rates: Evidence of chaos in filtered series of Turkish Lira–Dollar daily growth rates, Chaos, Solitons & Fractals, Volume 42, Issue 2, 30 October 2009, Pages 1062-1067.

Das, A., P. Das (2007). Chaotic analysis of the foreign exchange rates, Appl. Math. Comput. 185, 388–396. Disyatat, P., 2010. Inflation targeting, asset prices, and financial imbalances: contex-tualizing the debate. J. Financ. Stab. 6 (3), 145–155.

Doucet, A., N. de Freitas, and N. Gordon (2001). Sequential Monte Carlo Methods in Practice. New York: Springer.

Eckmann, J. D. Ruelle (1985) Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 (3) (1985) 617–656.

Fearnhead, P. (2007). Computational methods for complex stochastic systems: a review of some alternatives to MCMC. Statistics and Computing, 18(2):151-171.

Flury, T., and N. Shephard, (2011) Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models. Econometric Theory 27, 933-956.

Gordon, N.J. (1997). A hybrid bootstrap filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems 33: 353–358.

Gordon, N.J., D.J. Salmond, and A.F.M. Smith (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE-Proceedings-F 140: 107-113.

Hall, J., M.K. Pitt, and R. Kohn (2014). Bayesian inference for nonlinear structural time series models. Journal of Econometrics 179 (2), 99–111.

Holger Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series, Physics Letters A, Volume 185, Issue 1, 1994, Pages 77-87,

Kurt Hornik, Maxwell Stinchcombe, Halbert White, Multilayer feedforward networks are universal approximators, Neural Networks, Volume 2, Issue 5, 1989, Pages 359-366

Kurt Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, Volume 4, Issue 2, 1991, Pages 251-257,

Jacquier, Eric, Nicholas G. Polson, and Peter E. Rossi, 1994, Bayesian analysis of stochastic volatility models, Journal of Business and Economic Statistics 12, 371{417

Insua, D.R., Ruggeri, F., 2000. Robust Bayesian Analysis, Lecture Notes in Statistics. Springer-Verlag, New York, NY.

Kass, R.E., Wasserman, L.A., 1996. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 91, 1343–1370.

Kyrtsou, C., and Terraza, M., (2002): Stochastic chaos or ARCH effects in stock series? A comparative study, International Review of Financial Analysis, Vol.11 (4), pp. 407-431.

Lahmiri, S (2015). Long memory in international financial markets trends and short movements during 2008 financial crisis based on variational mode decomposition and detrended fluctuation analysis, Physica A 437 130–138.

Lahmiri, S. (2017). A study on chaos in crude oil markets before and after 2008 international financial crisis. Psysica A 466, 389-395.

Liu, J., M. West (2001). Combined parameter and state estimation in simulation-based filtering. In: Doucet, A., de Freitas, N., Gordon, N. (Eds.), Sequential Monte Carlo Methods in Practice. Springer-Verlag.

Panayotis G. Michaelides, Efthymios G. Tsionas, Angelos T. Vouldis, Konstantinos N. Konstantakis (2015), Global approximation to arbitrary cost functions: A Bayesian approach with application to US banking, European Journal of Operational Research, Volume 241, Issue 1, Pages 148-160.

Ritesh Kumar Mishra, Sanjay Sehgal, N.R. Bhanumurthy, A search for long-range dependence and chaotic structure in Indian stock market, Review of Financial Economics, Volume 20, Issue 2, May 2011, Pages 96-104.

- R. Morales, T. Di Matteo, R. Gramatica, T. Aste, Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series, Physica A 391 (2012) 3180–3189.
- D.B. Nelson, Conditional heterosked asticity in asset returns: A new approach, Econometrica 59 (1991) 347-370.
- Nemeth, C., Chris Sherlock, P. Fearnhead (2014). Particle Metropolis adjusted Langevin algorithms for state-space models. Pre-print arXiv:1412.7299v3.
- D. Nychka, S. Ellner, R.A. Gallant, D. McCaffrey, Finding chaos in noisy system, J. R. Stat. Soc. Ser. B 54 (2) (1992) 399–426.
- Pitt, M.K., R.S. Silva, P. Giordani, and R. Kohn (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econom. 171(2), 134–151.
- B. Ristic, S. Arulampalam, and N. Gordon (2004). Beyond Kalman Filters: Particle Filters for Applications. Norwood, MA: Artech House.
- Rosenstein MT, Collins JJ, De Luca CJ (1993), A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Set, Physica D Nonlinear Phenomena 65(1-2):117-134 May 1993
- A. Sensoy, Effects of monetary policy on the long memory in interest rates: Evidence from an emerging market, Chaos Solitons Fractals 57 (2013) 85–88.
- White, W.R., 2008. Past financial crises, the current financial turmoil and the need for a new macrofinancial stability theory. J. Financ. Stab. 4 (4), 307-312.
- Alan WOLF, Jack B. SWIFT, Harry L. SWINNEY and John A. VASTANO (1985), DETERMINING LYA-PUNOV EXPONENTS FROM A TIME SERIES, Physica 16D: 285-317.
- P. Yousefpoor, M.S. Esfahani, H. Nojumi, Looking for systematic approach to select chaos tests, Applied Mathematics and Computation, Volume 198, Issue 1, 15 April 2008, Pages 73-91.











