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Abstract--Micro-electro-mechanical Systems and microfluidics 

are becoming popular solutions for sensing, diagnostics and 

control applications. Reliability and validation of function is of 

increasing importance in the majority of these applications. On-

line testing strategies for these devices have the potential to 

provide real-time condition monitoring information. It is shown 

that this information can be used to diagnose and prognose the 

health of the device. This information can also be used to provide 

an early failure warning system by predicting the remaining useful 

life. Diagnostic and prognostic outcomes can also be leveraged to 

improve the reliability, dependability and availability of these 

devices. This work has delivered a methodology for a 

“lightweight” prognostics solution for a microfluidic device based 

on real-time diagnostics. An oscillation based test methodology is 

used to extract diagnostic information that is processed using a 

Linear Discriminant Analysis based classifier. This enables the 

identification of current health based on pre-defined health levels. 

As the deteriorating device is periodically classified, the rate at 

which the device degrades is used to predict the devices remaining 

useful life. 

Index Terms: Microfluidics, Prognostics and health 

Management, Microelectrodes, Design-for-testability, Machine 

learning algorithms.  

I. INTRODUCTION 

A novel implementation of a prognostics function for a 

microfluidic device based on MEMS technology is presented. 

The term “prognostics” has been defined in various different 

ways depending on context [1], this research considers the 

definition given by ISO13381-1 as the most comprehensive. It 

states that prognostics is not only the prediction of the time to 

failure but also the risk of one or more existing or future failure 

modes [2].  

Studies have revealed some excellent Prognostic and Health 

Management (PHM) solutions that provide deep and detailed 

prognostic capabilities for micro-devices with a high level of 

accuracy.  The use of machine learning [3] and physics based 

prognostics [4] is being actively explored. PHM solutions 

similar to these are designed from the ground up in a device 

specific framework with the prognostics modules being tightly 

coupled with the physics of failure of the device. While these 

PHM systems perform very well in conjunction with their target 

devices, flexibility and wide scale adoption in other MEMS 

devices is quite challenging.  

The onus of most PHM frameworks is to provide prognosis 

at the highest possible confidence level thus providing the most 

reliable Remaining Useful Life (RUL) predictions [5] [6] [7]. 

However, this comes at a cost, be it a heavy processing 

requirement or the aforementioned rigidity or complexity, to 

name two. This work proposes a “Housekeeping” Prognostics 

and Health Management (HPHM) framework that has a 

conservative prognostic mandate. Such a framework caters 

strictly for wear during normal use and evolving faults. This 

affords the usage of simpler models that are easy to adapt, 

implement and use.  

The scope of this HPHM is to predict patterns of low 

intensity failures and drift due to gradual aging and non-

catastrophic faults during normal operation. The advantages 

this capability offers is simplicity and speed of adaption with 

none of the overheads associated with more traditional 

prognostic methodologies. Furthermore, ease of 

implementation and cross-device compatibility makes pure 

hardware realization credible. 

II. OVERVIEW 

The design and performance of a HPHM solution for a 

microfluidics based MEMS sensor chip with embedded micro-

electrodes is presented in this paper. Such devices are 

increasingly being engineered for new areas of application. 

Research is being carried out into embedding microelectrodes 

directly into human bodies [8] [9] [10] and even into the human 

brain [11] [12] [13] [14]. Microelectrode based devices are 

quickly evolving from being temporary and disposable to being 

devices designed for long term use [15]. The development of a 

prognostics framework for such devices is relevant given these 

trends. 

For the purpose of this research, experiments have been 

conducted using a device that is able to mix a reagent and 

analyte and detect conductivity of the product using embedded 

electrodes that line the channel.  

The proposed prognostics model presented in this work is not 

a system level solution. It is classified at component level as its 

focus is limited to the health of the sensing electrodes. The 

electrodes have been shown to be the most critical components 

of the microfluidics chip. They have also been shown to be the 

most vulnerable to failure due to usage and environmental 
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factors. Repeated experiments using similar chips (microfluidic 

chips with electrodes used for sensing) showed electrode failure 

to be the largest root cause of system failure in these types of 

devices followed by blockage and leakage. This is consistent 

with various other studies available in literature [16] [17] [18] 

[19]. 

A diagnostic-prognostics pairing has been proposed for the 

HPHM: 

• Diagnosis: A modified Oscillation Based Testing (OBT) 

technique has been used to provide real time diagnostics. 

This forms the input to the prognostics module. 

• Pre-prognosis: A machine learning algorithm based on a 

Linear Discriminant Analysis (LDA) classifier has been 

used to identify the level of health the sensor is trending 

towards. 

• Prognosis: Periodic health classification is used to process 

the normal wear and aging trend of the chip. This is used 

to calculate the RUL.  

III. BACKGROUND 

Microfluidic devices have distinctive properties when 

compared to other types of MEMS in the context of reliability, 

the main difference being the operational load and 

environmental conditions they are exposed to. There are 

therefore unique challenges associated with a HPHM 

framework for these devices.  

Applications are wide ranging and include “Lab-on-Chip”  

devices were there is an increasing interest in MEMS 

integration due to the improved sensitivity and faster response 

which have been well documented  [20] [21]. Of special interest 

are technologies capable of integrating microfluidics with 

electronic sensing, actuation, control and processing. A number 

of technologies that exist show the capabilities and potential of 

these integrated chips [22].  With their rapid commercialization, 

the need for fault tolerant design with integrated health 

monitoring and health prediction capabilities are gaining 

traction. The examples quoted here have sensing components 

and failure modes similar to the MEMS chips used in this study.  

This research specifically targets the development of 

microfluidic MEMS devices with embedded electrodes because 

there are a number of interesting applications, in addition to 

those cited above that require the interfacing of microfluidic 

structures to electronic circuitry [23]. This provides the 

opportunity for electronic sensing, actuation and processing. 

The integration with electronics provides a platform for a 

prognostics processing unit which would not otherwise be 

possible. 

A. Reliability and Failures 

The reliability of Bio-MEMS devices is yet to be established 

as is microfluidics in general that is currently limited in 

industrial uptake. A number of public bodies are, however, 

committed to accelerating uptake of these technologies [24].  

Failures in Microfluidic devices have been identified to be 

unique [25] due to direct contact of their components with 

fluids, i.e. liquid bio-chemical assays. In addition to 

degradation due to direct contact, failure mechanisms including 

blockages and fouling are significant and sensitive to the 

density and/or viscosity of the liquids. The chip used in this 

research demonstrated two levels of failure; 

• Blockage of and sedimentation on the electrode 

surface. 

• Deterioration and aging due to normal use. 

IV. FAULT MODEL 

Electrode degradation causes significant loss in monitoring 

ability, especially in MEMS device based sensing of cellular 

level specimens. The development of embedded test methods 

based on OBT [26] [27]  forms an important contribution to the 

prognostic methodology proposed. The experiments conducted 

in this research validated the premise that the electrodes are the 

key target for a first-generation prognostics solution for 

electrode based microfluidics.  

A. Embedded Electrodes – Failure Mechanisms and Failure 

Modes 

Electrode failure involves either:  

• Catastrophic Failure (leading to complete loss of 

operational functionality). 

• Gradual Degradation causing a deviation in normal 

parameter drift associated with operational wear and 

tear. 

 

Three main fault mechanisms have been observed in the 

electrodes of the MEMS chips that were used in this work. They 

are: 

• Degradation due to surface material loss. This is due 

to ion loss in the mixture that surrounds the electrodes. 

• Settling and sometimes scaling of bio-chemical matter 

on the electrode surface that is not always removed by 

cleaning. 

• Minor damage due to the cleaning process. Ideally, the 

electrode structures should be cleaned immediately 

after every test cycle because residual bio-chemical 

specimens may be impossible to remove after a delay 

due to electrolyte evaporation. 

 

The failure modes associated with the electrodes after 

degradation: 

• Marked increase in the impedance / decrease in 

admittance of the electrode. 

• A fluctuation in the bio-fluidic interface capacitance 

of the electrode. 

• A reduction in the Signal to Noise Ratio (SNR) in the 

signal extracted from the electrodes. 

 

The OBT is leveraged in this work to non-intrusively extract 

the admittance and capacitance of the electrode over a specified 

bandwidth, at a given concentration of the specimen being 

tested and a specific flow rate of the reagents. These health 

sensitive features form the input to the classifier that, in turn, is 

able to compute the health level of the electrodes under test. 
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V. OSCILLATION BASED TEST (OBT) DIAGNOSTICS 

The proposed HPHM framework consists of two 

subcomponents as described in section 2, i.e. the OBT self-test 

based diagnostics and the LDA based prognostics. The output 

of the diagnostic forms the input to the prognostics module. 

This section will discuss the diagnostics in some detail. 

In OBT, the system being tested is designed to operate at 

specific oscillation frequencies. This oscillation frequency is a 

function of the material properties and physical structure of the 

system. Faults can be identified because they cause a deviation 

in the oscillation frequency from its nominal value. One of the 

earlier adaptions of this method to test analogue integrated 

circuits was presented by B Kaminska et al [28]. The validity 

of this technique has been verified as a test method for 

operational amplifiers and analogue to digital converters. 

The authors of this paper previously demonstrated a scheme 

for effective degradation monitoring of electrodes within 

microfluidics systems using OBT [26] [27]. The solution was 

based on fault modelling and impedance analysis of the 

interface between the electrode and the electrolyte. The method 

has also been evaluated within a MEMS based system through 

work on a monolithic magnetometer [29]. The potential for 

using OBT in a DNA sensor array has also been researched [30] 

where both the sensing and test modes can be realised in an 

oscillation based structure. Some DNA sensors that employ 

micro-electrodes are similar to the chip used in these 

experiments. The potential of OBT in such DNA sensors has 

been explored [31]. It has been observed that normal sensing 

operation results in the hybridized DNA strands deposited on 

the electrodes causing the displacement of ions from the surface 

which results in a considerable change in the interface 

capacitance of the electrical double layer. OBT converts this 

varying capacitance to a frequency as a means of testing the 

integrity and state of operational health of the electrode.  

A. Experimental Setup 

The experiments to extract health data from physical devices 

were based on microfluidic mixing chips using electrode based 

sensing. A picture and a schematic of one such chip is shown in 

Fig 5.1. Two liquid specimens are pumped into the chip which 

are mixed in the mixing chamber. The resultant electrolyte is 

analysed via electrolysis when the solution is exposed to a pair 

of electrodes lined within the outgoing microchannel.  

The experiments utilised a microfluidic platform which can 

be used to demonstrate a number of sensing, mixing and 

separating experiments, a schematic of which is shown in Fig 

5.2 and pictures of which are shown in Fig 5.3 and Fig 5.4. The 

setup consists of a base board that can host the chip via 

connectors and fluidic interfaces. Standard lithographic and 

machining processes have been used to etch the micro channels 

in both the chip and the base-board that are constructed of Poly-

methyl methacrylate (PMMA), acrylic glass and SU-8 

photoresist.    

The platform consists of a pair of microfluidic precision 

pumps, an impedance analyser, base-board mounted 

microscope as well as the control software. The pumps can 

control the bi-directional flow rate of the liquids accurately and 

quantifiably down to the -meter per minute flow rate. 

  

 
Fig. 5.1: Pictures of the chip on the left and the schematic on the right 

 
Fig. 5.2: Schematic of the Setup [27] 

 
Fig. 5.3: Experimental Setup: the Wayne Kerr Precision Impedance 

Analyser 6500 

 
Fig. 5.4: Experimental Setup: The testing base-board, pumps, chip and 

digital microscope 

 

The mixing chip shown in Fig 5.1 is made of SU-8. It has two 

inlets A and B, a mixing chamber and an outlet C. The chip is 

connected to the base board with the inlets and outlet connected 

to pipes at special joints with fluidic seals. It features two 

functional sections, the “Delay Channel” (DC) and the “Sensing 

Chamber” (SC).  The DC is used to allow two input chemicals 

enough time and mutual exposure for the desired reaction to 

complete between them. The contours in the DC are used to 

introduce turbulence in the fluid flow. The serpentine channel 

ensures even mixing of the two species [32] [33]. Prior to 
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injection into the sensing chamber. The Channel is 150 m wide 

and 75 m deep. The total length of the DC is 9 cm. A channel 

length above 1 cm in a mixing chamber with the dimensions 

used here to induce turbulence is considered to be sufficient to 

ensure a mixing index of above 0.95 [34], even for low 

Reynolds number (≥1). During experiments, mixing efficiency 

was observed to be above 90% at 1 L/min flow rates which 

dropped to below 50% at 6 L/min. The total volume of the DC 

is approximately 1.0124 L. 

The sensing chamber has been fabricated with two Nickel 

electrodes with two arms each, one on top of the other. The 

electrode arms are 0.25 mm thick and 2.15 mm long. They 

overlap each other with a distance approximating the height of 

the chamber. The SC is as deep as the DC but is 2.35 mm wide 

and 5 mm long.  

A software controller written in LABVIEW is used to control 

the flow of the reagents. The precision pumps connected to the 

PC serially via RS232 interface are controlled using this 

software controller. The software controller can control the 

pumps individually. Based on the flow orientation required and 

diameter of the reagent filled syringes that are used to feed the 

pumps, different flow rates can be maintained on each 

individual pump. 

The experiment involves pumping in 0.1 M NaOH at an 

infusion rate of 1 L/min throughout the test at room 

temperature. The second pump introduces 0.1 M HCl at initially 

0.1 L/min, gradually increasing at discrete intervals until 

matching the flow rate of NaOH. This is done to ensure that the 

HCl solution does not contaminate the sensing chamber. These 

flow rates were chosen to ensure optimal mixing of the reagents 

in the DC. This was validated by introducing solutions into the 

chip with coloured agents and observing their diffusion visually 

under the microscope.  

Experiments were designed to conclude after a maximum of 

5 hours. Healthy chips are exposed to multiple cycles, with a 

cleaning session preceding each test cycle. It has been observed 

that the electrical characteristics of the Nickel electrodes start 

deviating from expected behaviour after the 3 hour mark of the 

first cycle, indicating a deterioration of the electrode surface. 

The objective of the experiment is to test the conductivity of 

the resulting fluid at different flow rates and sensing its 

composition based on its electrical properties. The 

measurements are observed directly from a Wayne Kerr 

Precision Impedance Analyser 6500 that is connected to the 

electrodes. As mentioned before, the flow rates are controlled 

using the LABVIEW controller, though they can also be 

manipulated directly on the pumps, albeit, with a lesser degree 

of sensitivity. 

B. Results & Observations 

The primary objective of the experiments was to generate 

data to train and test the prognostics module. For this purpose, 

the experiments were designed keeping the needs of the 

prognostics module in mind. This is reflected in the discussion 

about the experimental stages as follows:  

1) Experimental Stages 

The prognostics solution uses machine learning engines. A 

machine learning classifier needs to be trained using 

experimental data and needs to be experimentally tested after it 

is trained. Consequently, the experiments were divided into two 

similar but distinct phases, namely; 

• Training Data Collection: Diagnostic data was 

generated by OBT. This was a set of parameters 

representing the known health of electrodes at various 

stages of degradation and aging.  This data was then 

used to train a number of supervised machine learning 

classifiers. Based on this training, the prognostics 

system is able to compute the health of the electrodes 

and over a period of time (typically 5-10  cycles of 

observation) to predict the RUL of the system based 

on its current and historical health status. The 

frequency of these observations depends on the 

volatility of the system under observation. The 

prognostics module presented in this research has been 

discussed in detail in section 6.2. The training depends 

on but is not limited to: 

o The design of the fault model and 

identification of the most significant 

parameters. 

o The quality and reliability of data. 

o The volume of the data. 

• Testing: Here, healthy chips were again used to take 

measurements on the solution while known patterns of 

operational wear and aging were simultaneously 

applied to the electrodes. In this round of experiments, 

the wear predictions of the “trained” system were 

observed and compared with the “actual” wear of the 

electrodes. 

 

The experiment utilised a 50 mV electrode stimulus at the 1 

KHz and 50 MHz frequency ranges. Hundreds of readings were 

observed and recorded for the mixing for a range of flow rates 

that were increased in discrete steps. The flow rate is important 

as the speed of the fluid flow has a bearing on the quality and 

consistency of product. The rate of flow should be sufficiently 

slow for  proper mixing to take place before the mixture passes 

the electrode. This is due to the low Reynolds numbers involved 

and the dominance of diffusion in the mixing process given 

laminar flow.  

After recording sufficient readings over different flow rates 

and consequently different chemical constitutions, the 

electrodes were artificially degraded using 5V pulses and the 

experiments repeated. The deterioration achieved  tracked the 

normal degradation process albeit at a highly accelerated rate.  

The impedance analyser was connected to both electrodes for 

impedance measurements. The measurements were taken 

periodically within the stress program. The period of the stress 

pulse was 20 s with a stress program duration of 140 s.  
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Fig. 5.5: [Impedance Analyser screen-grab] (a) Shows an output for a healthy 

electrode, where the blue curve is the admittance and the yellow curve is the capacitance 

of the electrode. (b) Shows the same electrode after induced aging. The change in both the 

admittance and capacitance is evident 

 

This experiment was repeated over a batch of chips. Data in 

excess of 32 thousand samples was gathered. That volume of 

data was calculated to be reasonably sufficient for the effective 

training of the offline system. 

2) Data Analysis 

OBT was used to extract the following three electrical 

parameters (1 input and 2 output parameters)  

• Frequency (Hz) – (input) 

• Admittance (S) – (output) 

• Capacitance (F) – (output) 

The mechanical deterioration of the electrodes manifested in 

changes in these electrical properties. This is evident from two 

sets of observations seen in Fig 5.5 and two overlapped 

observations seen in Fig 5.6. These are actual screenshots 

captured from the Wayne Kerr Precision Impedance Analyser 

6500. 

A closer look at the shorter ranges for admittance and 

capacitance can be seen in Fig 5.7 and Fig 5.8 respectively. 

Each of these figures shows observations at 4 different levels of 

health. These 4 levels of health formed the basis of the 4-class 

health classifier that the prognostics module uses to identify 

levels of health and their rates of deterioration. 

 

Fig. 5.6: [Impedance Analyser screen-grab] This is a superimposed (held) 

observation of the same electrode at two different level of health. The graph 

is showing both the admittance (left blue y-axis) and capacitance (right 

yellow y-axis) over a frequency range. The change in both admittance and 

capacitance is evident from the observations. Similar observations allowed 

us to limit the experiments to a narrow band of frequencies where these 

changes were most significant. 

 
Fig. 5.7: Sample Admittance at different levels of health over the selected 

frequency range (Dark-blue:1, green:2, red:3 and light-blue:4) 

 

 
Fig. 5.8: Sample capacitance at different levels of health over the 

selected frequency range (Dark-blue:1, green:2, red:3 and light-blue:4) 

VI. PROGNOSTICS 

The prognostics module comprises of two algorithms: 

• The first algorithm is the classifier that identifies the 

current health of the system in quantifiable terms. 

• The second algorithm uses the series of classifier 

outputs (i.e. the state of health) and predicts the future 

health of the electrodes based on their changing health. 

It only predicts the deterioration in health (as there is 
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no conceivable scenario where the health of the 

electrode would ever improve).  

•  

A summary of the life cycle of a generic prognostics system 

is given in Fig 6.1. 

A. The LDA based classifier 

In the previous section, we have seen that the OBT is able to 

convey reliable data about the capacitance and conductance 

across electrodes at given frequencies. This information cannot 

be used in isolation as the capacitance or conductance at any 

given frequency also depends on the constituency and the flow 

rate of the fluid. In this work, this quantification has been 

achieved using a classification technique.  

 
Fig. 6.1: Prognostics System Flow 

Classification techniques have been extensively used in the 

areas of machine learning and statistics. These techniques have 

found wide range of usage in the field of information 

technology, specifically in the areas of pattern classification and 

image recognition [35]. Many such techniques have matured 

over time and are currently industry standards and are known 

as classifiers.  

Linear Discriminant Analysis (LDA) is one well established 

classification technique. LDA has found application in the areas 

of banking, financial market predictions, face recognition and 

studies of epidemiological trends [36] [37] [38]. The basic idea 

of an LDA classification is to find a transformation for a sample 

of features that allows for a linear discrimination between 

classes. Generally speaking, any classifier is an algorithm that 

is able to distinguish and classify an entity based on certain 

features. In the context of the sensor under study, electrodes can 

be classified in terms of their health “class”, from within a set 

of predefined discrete health classes. Health determining 

features need to reflect the device health. As indicated in the 

previous section, the features in this study are frequency, 

capacitance and conductance. 

Even though LDA are traditionally binary classifiers (i.e. 

they can be used to differentiate between two classes only), they 

have evolved to accommodate multi-class identification. 

Literature, especially that pertaining to pattern recognition has 

firmly established that the LDAs can easily be extend to a multi-

class cases [38] and have been successfully used in many 

recognition tasks [39].  

Fisher’s LDA (FLD) [40], which produces discriminative 

feature transforms as a set of eigenvectors, is an established 

standard in the domain of pattern recognition. FLD can be 

easily extended to multi-class cases via multiple discriminant 

analysis [41]. In fact, discriminant analysis has been widely 

used in this way in pattern recognition problems, and its use in 

reducing facial recognition problems is well documented [42]. 

This has been the motivation to use discriminant analysis for 

multiple distinct binary classifications. 

LDA is a “supervised learning” classification technique. This 

implies that the system has to be trained under “supervision” to 

“learn” how to distinguish between classes. This process is 

known as training and is a critical part of LDA. The quality and 

comprehensiveness of training data can affect the quality of 

performance (class identification). 

A collection of feature samples representing known values of 

health are used as training data. Ideally, all classes of health are 

represented comprehensively. For the initial tests, 4 levels of 

electrode health were defined. The 4 classes being: 

1. Healthy - health level 1 

2. Somewhat healthy  - health level 2 

3. Somewhat sick - health level 3 

4. Sick - health level 4 

 

Although these 4 levels of health have been chosen for this 

demonstrator, the system can be scaled to accommodate finer 

degrees of health. 

A batch of chips were tested at different (four) levels of 

electrode health. The corresponding values for frequency, 

capacitance and conductance for each observation were logged. 

A total of 32000 samples of known health were collected. 

Subsets of this data were used for both training and validation 

of the system. A subset of the actual “training data” can be seen 

in Table I. A summary of the “training data” set is shown in 

Table II. The training data consists of data collected for known 

health at different flow rates and fluid concentrations. The 

behavioural input allows the classifier to correctly identify 

levels of health at the flow rates and concentration levels at 

which the data was generated. 
Table I  Training Data Sample Subset 

Frequency 

(Hz) 

Conductance 

(S) 

Capacitance 

(F) 

Health 

… … …  

109892 0.0071345 2.95E-09 1 

122583 0.0072786 2.42E-09 1 

136740 0.0074053 1.97E-09 1 

152532 0.0075154 1.59E-09 1 

12213.7 0.0046113 2.27E-09 2 

… … … … 

… … … … 

122583 0.0050376 2.02E-09 3 

152532 0.005246 1.37E-09 3 

170147 0.0053308 1.11E-09 3 

189797 0.0054034 9.02E-10 3 
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189797 0.0045589 1.13E-09 4 

211716 0.0046586 9.33E-10 4 

236166 0.0047454 7.66E-10 4 

… … … 4 
 

 
Table II    Summary of the training data 

 Frequency 

(Hz) 

Conductance 

(S) 

Capacitance (F) 

Total    

Mean 25497.9 0.001930322 1.54261E-08 

Max 51134.8 0.005555673 3.702E-08 

Min 9925.47 0.000425188 5.99685E-09 

Class 1    

Mean 25488.38 0.003049 2.22E-08 

Max 51134.8 0.005556 3.7E-08 

Min 9925.47 0.001106 8.8E-09 

Class 2    

Mean 25488.38 0.001887939 1.49E-08 

Max 51134.8 0.003609023 2.36E-08 

Min 9925.47 0.000664003 6.65E-09 

Class 3    

Mean 25488.38 0.001535 1.33E-08 

Max 51134.8 0.003059 2E-08 

Min 9925.47 0.000529 6.66E-09 

Class 4    

Mean 25488.38 0.001247 1.13E-08 

Max 51134.8 0.002537 1.662E-08 

Min 9925.47 0.000425 6.00E-09 
 

 

A scatter plot of the training data can be seen in Fig 6.2. Even 

though we can see a fine separation in the data at different levels 

of health, we can see in Fig 6.3 there is an overlap between 

health levels. The LDA seeks to: 

• Further increase the separation between the classes. 

• Reduce the dimension of the feature set for ease in 

prognostics computations. 

A number of LDA classifiers were trained using subsets of 

the master training data. Other subsets from within were used 

to validate classification performance.  

The following section details the training process. An evenly 

distributed subset of 1000 samples was used for one training 

session (n = 1000). The samples were divided evenly to 

represent each class (i.e. 250 samples for each health level, 

ordered by the health, as seen in Table I) 

The matrix for the samples is represented as X and the 

corresponding health values by the matrix H in the following 

expression: 

𝑋 =  [

𝑥1𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
⋯ 𝑥1𝑐𝑎𝑝𝑐𝑖𝑡𝑎𝑛𝑐𝑒

⋮ ⋱ ⋮
𝑥1000𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

⋯ 𝑥1000𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒

] , 𝐻 =























4

...

...

1

1

  

 

 
Fig. 6.2: 3D Scatter plot of raw data samples collected at different 

stages of induced (and known) aging, red being healthy and cyan being 

the least healthy from the group 

 
Fig. 6.3: Zoomed in view of the 3D scatter matrix in Fig 6.2. Even 

though the data is quite clean for raw data, 100% separation is not 

attainable as evident from the graph. 

Where H is a [1x1000] matrix corresponding to the 1000 

known samples used in one training session. The typical data in 

matrix X is derived from the master sample space which has 

been summarized in Table II. 

The first step was the calculation of means of all the features 

w.r.t classes i.e. means of all values of x for frequency at health 

1 … health 4 individually, and so on for the rest of the features.  

𝑚𝑖 =  [

𝜇𝜔𝑖 (𝑓𝑟𝑒)

𝜇𝜔𝑖 (𝑐𝑜𝑛)

𝜇𝜔𝑖 (𝑐𝑎𝑝)

]  𝑤ℎ𝑒𝑟𝑒  𝑖

= 1, 2, 3, 4 (𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ) 

In the above expression, mi is the mean vector. The contents 

of this matrix are referenced in Table II. 

1) LDA Training 

At this point we are ready to train the data. As we are using 

FLD, we are expecting a transformation with the following 

outcome: 

• A scatter matrix where with minimal spread within a 

class and maximum spread between classes. 
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• A scatter matrix which allows linear discrimination 

between classes. 

• Information about possible dimensionality reduction 

i.e. identification of features that do not have 

significant say in classification. These features can be 

disregarded in the actual classification.  

FLD requires us to compute two kinds of matrices, namely; 

the within-class (SW) and inter-class (SB) scatter matrices.  

The within-class (SW) scatter matrix is computed as follows: 

𝑆𝑊 = ∑ 𝑆𝑖                𝑤ℎ𝑒𝑟𝑒 

4

𝑖=0

 

𝑆𝑖 =  ∑ (𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)𝑇

250

𝑥∈𝐷𝑖

 

Which is calculated for all features within each class 

individually using the relevant value of 𝑚𝑖 computed earlier. In 

our case, the Sw was a [3x3] matrix. 

The [3x3] inter-class (SB) scatter matrix is calculated as 

follows: 

 𝑆𝐵 =  ∑ 2504
𝑖=0 (𝑚𝑖 − 𝑀)(𝑚𝑖 − 𝑀)𝑇             

 𝑤ℎ𝑒𝑟𝑒 

𝑀 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑎𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑒𝑠  
The matrix A is calculated using the SW &

 SB matricies as 

follows: 

𝐴 =  𝑆𝑊
−1𝑆𝐵  

The eigenvectors and eigenvalues for matrix A are defined 

by the following expression: 

𝐴𝑣 =  𝜆𝑣      𝑤ℎ𝑒𝑟𝑒  
𝑣 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

𝜆 = 𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 

2) Feature Reduction 

The Eigenvectors and their eigenvalues are used to project 

the data into a new feature subspace. The resulting new feature 

subspace separated the health classes very cleanly.  

It is important to note that eigenvectors with the lowest 

eigenvalues bear the least amount of information about data 

distribution. Any eigenvector with an eigenvalue significantly 

smaller than other eigenvalues can be ignored with minimal 

effect on the classification. In our experiments, one eigenvector 

had a significantly lower eigenvalue (close to 1% compared to 

the first and the second). This allowed us to drop this feature 

and use a simpler feature set for our classification. After 

dropping the third eigenvector, we were able to make our 

reduced [3x2] transformation matrix W. The resulting reduced 

W matrix can be seen in Table III.  

 
 

Table III   Reduced W matrix 

-1.71378E-13 8.06294E-13 

7.9789E-06 -6.00638E-06 

1 1 
 

 

At this point we were able to derive our trained classifier Y 

with the following expression: 

Y = X.W 

Y is the [1000x2] weighted matrix that will be used to 

classify any incoming data. The scatter plot of the Y matrix can 

be seen in Fig 6.4. The stated objectives for the classifier were 

a reduction in feature dimension and an increase in data 

separation. It is evident from the figure that these objectives 

have been achieved. 
 

Table IV  Summary of reduced Y-Matrix reduced to two feature 

dimensions. Total number of determination sets 16000, with 4000 

representing each class (1-4) 

 Feature 1 Feature 2 

Total   

Mean 2.65E-08 2.44E-08 

Max 4.51E-08 3.84E-08 

Min 1.55E-08 1.51E-08 

Class 1   

Mean 4.22E-08 2.44E-08 

Class 2   

Mean 2.56E-08 2.42E-08 

Class 3   

Mean 2.11E-08 2.46E-08 

Class 4   

Mean 1.69E-08 2.44E-08 
 

 

In this particular instance, a level of separation has been 

achieved where feature 2 can be discarded without 

compromising the performance of the classifier. The decision 

to discard a feature as such can only be made after the extra 

features have been reduced by the feature reduction algorithm. 

In this case, the resultant classes can be identified using feature 

1 alone. However, this is often not the case.  

3) Classifier Usage 

Input to the prognostics engine is a vector with three values 

corresponding to the chosen feature set, i.e. frequency, 

capacitance and conductance (X’). The sample is transformed 

into the reduced feature space by computing a dot product with 

the W matrix (Table III) after subtracting the (total) mean 

matrix M from it. We obtain the transformed Y’’ as follows: 

X”= X’-M (where M is the total mean) 

Y”= X”.W 

Y” is a [1x2] matrix representing a point in a two dimensional 

plane representing the sample to be classified. 

The Euclidian distance between Y” and the mean of each 

class is measured to determine which class X’ belongs to.  

A number of samples with known levels of health are fed to 

the classifier. The classification output is compared to their 

actual health to validate the performance of the classifier. This 

is discussed in some detail in the next section. 

 

4) Classifier Validation 

The measure of confidence in a classifier is the ratio between 

the “true positives” with the “false positives”. 

The program to validate the classifier used a subset of 1000 

strong “testing samples” at each instance of the test. The 

classifier was subjected to multiple validation tests. The test 

samples were similar to the one shown in Table I but exclusive 

to the subset used to train the classifier. The health of each 
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testing sample was also part of the input. i.e. the class (health) 

of the testing samples is known. This is the reference for 

comparison to the classifier output. The performance of the 

classifier has been represented in the form of a confusion matrix 

shown in Table V. This is a map comparing input health (Actual 

<class>) to classifier output (Predicted <class>). 
Table V Confusion Matrix for one instance of a 1000 sample validation 

matrix 

N=1000 Predicted 1 Predicted 2 Predicted 3 Predicted 4 

Actual 1 249 1 0 0 

Actual 2 1 247 2 0 

Actual 3 0 2 242 6 

Actual 4 0 0 7 243 
 

 

The job of the classifier is to assign every test sample to the 

correct class. If a sample that belongs to class C is assigned 

class C, the event is known as a “true positive” (TP) with  

Fig. 6.4: The trained data that has been reduced to 2 Feature Dimensions shows a 

clear separation between classes of health. The right most (cyan) representing health-1 

to the left most (blue) representing health-4. This is a representation of the final 16000 

sample classifier output. 

 

respect to C. False positives (FP) with respect to C are the 

samples that are assigned to C but in fact, belong to another 

class. The corresponding True Positives (TP), True Negatives 

(TN), False Positives (FP) and False Negative (FN) scores are 

given in Table VI.  
Table VI  Class prediction confidence matrix 

 Class 1 Class 2 Class 3 Class 4 

TP 249 247 242 243 

TN 749 747 741 744 

FP 1 3 9 6 

FN 1 3 8 7 
 

 

The accuracy of the classifier is the percentage of correctly 

predicted labels divided by all predictions. Two further 

measures to evaluate classifier performance are precision and 

recall. 

Precision for a class C can be represented as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝐶 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑃𝐶
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =
𝑇𝑃𝑐

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑜𝑓 𝐶 
 

 

While the recall for a class can be represented as: 

𝑟𝑒𝑐𝑎𝑙𝑙𝐶 =
𝑇𝑃𝐶

𝑇𝑃𝐶 + 𝐹𝑁𝐶
 

𝑟𝑒𝑐𝑎𝑙𝑙𝑐 =
𝑇𝑃𝑐

𝑇𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝐶
 

The average accuracy of the LDA classifier across all classes 

for this validation test was found to be 98.1%. Similarly the 

average precision and recall were also 98.1%. A number of 

validation runs provided similar classification performance. 

Even as the number of test samples was increased to 16000 

(with uneven class distribution), none of the performance 

variables went below 95%. 

5) Conclusion 

So far, a 4 (health) class system has been discussed. In later 

experiments the number of classes was increased to 16 levels of 

health. It was observed that the system input had to be restricted 

to a shorter spectrum and at a higher resolution to achieve an 

acceptable level of separation between features identifying the 

classes. Consequently, the average accuracy of the 

classification deteriorated to 82.61%. 

A variety of robust and mature methodologies for 

classifications and feature reduction are being used in various 

fields today. These experiments serve to present the potential to 

identify the health of a device using one such technique. This 

research presents the idea that classification methods can be 

used to facilitate the automatic diagnosis and prognosis of 

components under test using a programmable chip.  

B. End of Life Predictor 

The classification data was used to identify the health of the 

electrodes as they changed. This change in the health was 

logged over time and a quadratic linear algorithm was applied 

to predict the prognostic data. This data was compared with a 

predefined “total failure” threshold. Based on the rate and 

amount of change, the system was able to make predictions 

about the remaining useful life of the system within a 

reasonable horizon.  

In normal operation, a periodic OBT self-test is initiated. 

Each iteration of this test generates a data set consisting of 

values for input: frequency, capacitance and conductance. This 

is reduced to a [1x2] matrix using the W matrix in Table III. The 

resulting Y” value is analyzed against the means of the 4 

individual health classes of the classifier data. This classifier 

data is the reduced 2 feature data set summarized in Table IV. 

The Euclidean distance(s) between the observed sample and 

mean of each class is measured. The sample is labelled to the 

class whose mean the sample is at the minimum distance to. All 

the analytical data of interest is logged at every point of 

observation. This includes, but is not limited to: 

• The reduced 2 feature set of observed data 

• The assigned class of the observed sample 

• The Euclidean distance(s) between the sample and 

mean of each class 

• The percentage distance between the two nearest 

classes, relative to the nearest class (dn being the 

distance from the nearest class and ds that from the 

second nearest). governed by the following 

expression: 

o 𝑃 =  (
𝑑𝑛

𝑑𝑛+𝑑𝑠
) ×100 
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The prognostic module has been designed for a two feature 

system. This program has access to the observations that are 

logged. This log of observed and processed data forms the basis 

of the quadratic predictor at the heart of the prognostic engine. 

In its current version, the prognostics engine observes samples 

every 10 clock cycles and does not start to operate before the 

first 50 clock cycles (5 cycles of observation). As the system 

deteriorates, the sample moves from better health, to worse. 

This is reflected in subsequent observations and their distances 

from class means available in the log. 

The module subjects the observed values to quantized 

normalization to bring them in alignment. Each adjusted 

observation 𝑃𝑛 can be represented as follows: 

𝑃𝑛 = 𝐶 − 𝑡 + √((𝑃
100⁄ ) − 𝑡)

2
 

Where 

C = assigned class 

P = percentage distance 

t = trend {
0 𝑖𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑛𝑠 𝑡𝑜 𝑎 ℎ𝑒𝑎𝑙𝑡ℎ𝑖𝑒𝑟 𝑐𝑙𝑎𝑠𝑠
1 𝑖𝑓 𝑜b𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑎𝑛𝑠 𝑡𝑜 𝑢𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑐𝑙𝑎𝑠𝑠

 

0 ≤ 𝑃𝑛 ≤ (max(𝐶 𝑣𝑎𝑙𝑢𝑒) + 1) 

In the 4-class paradigm, the prognostic program filters out 

any value above 4 by default. Any 𝑃𝑛 value above 4 represents 

an event past system failure, and is hence, useless.  

The 𝑃𝑛  values always move from their first observation 

towards 4 as the device ages and performance degrades. As 

successive changes in health are stored, this historical data is 

used to derive a health trend over time (observation cycle 

numbers), which in turn is extrapolated to predict the time when 

the system will reach total failure. The point of observation 

where 𝑃𝑛 crosses 4 is considered to be the time of actual failure.   

Several tests were performed to test this algorithm and the 

health predictions at various points were observed. These were 

then compared to eventual points of failure. An example of 

some failure predictions over a sequence of tests for a system 

which was artificially and drastically aged are shown in Table 

VII. 

Data generated from the program has been imported to 

MATLAB to produce the graphical representations shown in 

Fig 6.5. 

 

 

 

 
Fig. 6.5: Each graph is representing the Pn values of each observation (red 

dot), the corresponding class assignments (blue dot) and the predictor (green 

curve) that is used to identify predicted End of Life (EoL). The diagrams 

represent observations at 

(a) 150 cycles where the EoL prediction is the 215.2 cycle mark (b) 200 cycles 

where the EoL prediction is the 258.6 cycle mark (c) 240 cycles where the EoL 

prediction is the 278.8 cycle mark and (d) 270 cycles where the system is about to 

fail 

 

 

Table VII   End of Life (EoL) predictions at various points of Prognosis 

Cycle of prediction Predicted EoL 

150 218.18 

200 258.60 

240 278.78 

270 278.78 
 

In the example that has been presented, the electrodes were 

aggressively aged. Normal prognostics tests were performed 

over a significantly larger volume of data.  

These experiments present a blueprint laying out the 

foundations for the development of a prognostics system for a 

MEMS device. The algorithm is scalable enough to be refined 

to provide prognostics over larger horizons with minimal 

overhead.  

The use of a light weight and simple predictor allowed the 

prognostics module to be implemented with low processing 

overhead and reasonable memory requirements. This translates 
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to a potential for the system to be realized for embedded 

systems. However, this system operates based on the 

assumption that the health will only deteriorate. This suits the 

mandate of a “house-keeping” prognostics framework. 

Over the course of numerous tests on the chips, the 

prognostics module achieved an average accuracy of next class 

prediction with over 98% accuracy and an EoL prediction with 

over 99% accuracy at a prognostic horizon of 100 cycles of 

observations (1000 clock cycles). The EoL prediction held this 

accuracy only for gradual deterioration which is consistent with 

wear in normal operation and aging. 

VII. CONCLUSION 

The principle outcome of this research is a proof of concept 

design for a housekeeping prognostics health management 

solution for MEMS sensors. This is significant as there is very 

little published work that provides health prediction for MEMS 

devices.  

This work has introduced the concept of “housekeeping” 

prognostics. The “housekeeping” paradigm has conservative 

accuracy to enable its realization in a resource constraint 

framework common to MEMS. At the same time it delivered 

the potential for an unprecedented reduction in maintenance 

overheads. This research validated the viability of integrating 

prognostics in MEMS by demonstrating the use of simplified 

statistical prognostics techniques in MEMS sensors in the case 

study presented. While the techniques applied are well 

established in the fields of finance, computing and image 

processing, they had not been used to predict the future health 

trends in MEMS artefacts before. 

In the case study, systems were tested using experiments that 

gradually aged embedded electrodes (being the single most 

critical components of the MEMS sensor under test). The usage 

degradation and aging processes were electrically self-induced 

and controlled. The decay process represented a gradual drift in 

health as the prognostic system was designed to detect and 

predict a deterioration of this nature. This is satisfactory as far 

as the requirements of a “housekeeping” prognostics module 

are concerned. The consequent light weight processing allowed 

for the integration of such housekeeping PHMs at a relatively 

low overhead. However, the PHM is not designed to predict 

sudden and catastrophic failures.  

It was observed that the PHM was consistent with its 

requirements and design, i.e. while it was able to predict the 

RUL with gradual aging and drift due to failure; it was unable 

to respond or detect abrupt or rapid failures. The prognostics 

module predicted the projected levels of gradual aging of the 

electrode sensors after 5 cycles of observation (50 clock cycles) 

with good accuracy.  

The challenge of meaningful identification of electrode 

health was successfully achieved using LDA classifiers with 

minimal overlaps. The log of this health data formed input to 

the Linear Predictor that was able to predict the future health of 

the system.  

The scope of this PHM is aging and does not cater for 

systems that are susceptible to sudden failures leading to critical 

faults. This research proposes the use of these “intermediate-

level” prognostic capabilities that may not be fully featured as 

more complex PHM systems but still provide a significant 

advantage in the reliability and maintenance of MEMS devices. 

These experiments open up the possibilities to study patterns 

of abnormal behaviour to predict reliability based on anomalous 

health patterns. This is critical for systems that may functionally 

be in a state of degradation without triggering the flags or 

markers that identify a system to be progressing towards a fatal 

state. 
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