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Abstract:  20 

Automatic detection and monitoring of freezing injury in crops is of vital 21 

importance for assessing plant physiological status and yield losses. This study 22 
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investigates the potential of hyperspectral techniques for detecting leaves at the stages of 23 

freezing and post-thawing injury, and for quantifying the impacts of freezing injury on 24 

leaf water and pigment contents. Four experiments were carried out to acquire 25 

hyperspectral reflectance and biochemical parameters for oilseed rape plants subjected 26 

to freezing treatment. Principal component analysis and support vector machines were 27 

applied to raw reflectance, first and second derivatives (SDR), and inverse logarithmic 28 

reflectance to differentiate freezing and the different stages of post-thawing from the 29 

normal leaf state. The impacts on biochemical retrieval using particular spectral domains 30 

were also assessed using a multivariate analysis. Results showed that SDR generated the 31 

highest classification accuracy (>95.6%) in the detection of post-thawed leaves. The 32 

optimal ratio vegetation index (RVI) generated the highest predictive accuracy for 33 

changes in leaf water content, with a cross validated coefficient of determination (R
2
cv) 34 

of 0.85 and a cross validated root mean square error (RMSEcv) of 2.4161 mg/cm
2
. 35 

Derivative spectral indices outperformed multivariate statistical methods for the 36 

estimation of changes in pigment contents. The highest accuracy was found between the 37 

optimal RVI and the change in carotenoids content (R
2

CV=0.70 and RMSECV=0.0015 38 

mg/cm
2
). The spectral domain 400-900 nm outperformed the full spectrum in the 39 

estimation of individual pigment contents, and hence this domain can be used to reduce 40 

redundancy and increase computational efficiency in future operational scenarios. Our 41 

findings indicate that hyperspectral remote sensing has considerable potential for 42 

characterizing freezing injury in oilseed rape, and this could form a basis for developing 43 

satellite remote sensing products for crop monitoring. 44 
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1 Introduction 47 

Winter oilseed rape (Brassica napus L.) is an important oilseed crop in China. This 48 

crop is mainly cultivated in the Yangtze River basin. Because of the impact of cold spells, 49 

winter oilseed rape in this region is frequently subjected to freezing injury, which can lead 50 

to a significant decrease in yield and product quality (She et al., 2015; Zhang et al., 2008). 51 

Similar negative impacts of freezing are experienced by many different crop types 52 

globally (Cromey et al., 1998; Lardon & Triboi-Blondel, 1995; Staggenborg & Vanderlip 53 

1996). Freezing injury is a common weather-induced agricultural hazard and refers to 54 

plants suffering from damage when temperatures drop below 0°C. When leaves are 55 

exposed to freezing temperatures, ice crystals are formed between cells. Cellular 56 

dehydration can then occur because of the difference in water potential between the inside 57 

and the outside of the cell, which draws cytoplasmic water from the cell to the growing 58 

mass of extracellular ice. With the decrease in temperature, more water moves from the 59 

cytoplasm to intercellular spaces. Permanent freezing injury is caused when dehydration 60 

extends beyond the tolerance of the plant and/or ice produces mechanical pressure. 61 

Traditionally, monitoring of freezing injury relies on visual surveys by technicians in 62 

the field. This approach is dependent on having staff with sufficient expertise. It is time 63 

consuming and labor-intensive. Thus, a more effective alternative approach is required 64 

for detecting freezing injury in vegetation. Hyperspectral remote sensing has been widely 65 

used as a nondestructive technique to monitor various biotic and abiotic stress factors 66 
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across different spatial scales (Galvao et al., 2011; Liu et al., 2002; Penuelas et al., 1993; 67 

Sankaran et al., 2010; Strachan et al., 2002). As the process of freezing injury tends to be 68 

fast (often within a few hours), it means that if hyperspectral remotely-sensed data are to 69 

be of value in monitoring the process, they need to be acquired at a high temporal 70 

resolution. However, currently available optical satellite data lack the spectral and 71 

temporal resolution required for monitoring freezing injury in real time. Several satellite 72 

missions have been planned to generate suitable data. These include the Geostationary 73 

Coastal and Air Pollution Events (GEO-CAPE) mission from the USA (Board, 2007), 74 

the Geostationary Environment Monitoring Spectrometer (GEMS) mission from Korea 75 

(Bak et al., 2013), and the Sentinel-4 mission from Europe (Berger et al., 2012), which 76 

will provide appropriate datasets multiple times per day. In this study, spectroradiometer 77 

data were acquired in a laboratory setting at the leaf scale to demonstrate the capabilities 78 

for monitoring freezing injury using hyperspectral data, an approach that would provide 79 

a basis for airborne and space-borne monitoring in future when remote sensing data of 80 

higher spatial, spectral and temporal resolutions become available. 81 

At the leaf scale, the spectral reflectance characteristics across the visible (400-750 82 

nm), near-infrared (750-1300 nm) and shortwave-infrared (1300-2500 nm) ranges are 83 

primarily determined by variations in photosynthetic pigment content, leaf structure and 84 

water content (Knipling, 1970; Richardson et al., 2002; Slaton et al., 2001) which can be 85 

strongly impacted by freezing injury (Gausman et al., 1984; Wang et al., 2016; Wang et 86 

al., 2012). Many studies have been carried out on the potential of using hyperspectral 87 

techniques in evaluating the quality and safety attributes of food products (e.g. meat and 88 
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edible fungi) subjected to freeze damage (Gowen et al., 2009; Thyholt & Isaksson, 1997). 89 

Gowen et al. (2009) integrated principal components analysis and linear discriminant 90 

analysis to differentiate between undamaged and freeze-damaged mushrooms using 91 

hyperspectral imaging. Their results indicated that freeze-damaged mushrooms could be 92 

classified with high accuracy (>95%) after only 45 minutes of thawing. Other studies 93 

have used hyperspectral data to estimate the changes in biophysical or biochemical 94 

parameters after freezing injury. Nicotra et al. (2003) examined the impact of freezing 95 

stress on the distribution of photosynthetic pigments in Eucalyptus pauciflora leaves 96 

using a CASI high-resolution hyperspectral imaging system. Their results demonstrated a 97 

considerable spatial variation of chlorophyll content over the surface of the lamina, with 98 

marked decreases in chlorophyll content approaching the margins and tips of the leaves. 99 

However, changes in the hyperspectral characteristics of crops such as oilseed rape during 100 

the freezing injury process are yet to be investigated, and the potential of using 101 

hyperspectral techniques to identify leaf status and monitor biochemical changes remains 102 

unknown. 103 

A variety of different analytical techniques have been used to automatically detect 104 

and classify plant stress from remotely sensed data. Amongst these techniques, support 105 

vector machines (SVMs) are promising machine learning methods which are suitable for 106 

remote sensing applications due to their ability to generalize well even with limited 107 

training samples (Mantero et al., 2005). SVMs have already been used in land cover 108 

classification (Gao et al., 2015; Hong et al., 2015; Zhang et al., 2015), quantifying 109 

vegetation stress (Adjorlolo et al., 2015; Behmann et al., 2014) and land cover change 110 
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detection (Hichri et al., 2013; Hussain et al., 2013; Nemmour & Chibani, 2006). 111 

Furthermore, SVMs have been used to estimate plant biophysical and biochemical 112 

parameters such as LAI, biomass, pigments and nitrogen contents (Gleason & Im, 2012; 113 

Verrelst et al., 2012; Yang et al., 2011; Zhai et al., 2013). Hence, SVMs hold promise as a 114 

method for characterizing freezing injury in plants using hyperspectral data. 115 

Multi-collinearity is a common problem within hyperspectral data. It results from a 116 

large number of highly correlated wave bands. Some techniques have been proposed to 117 

reduce the redundancy of hyperspectral data for vegetation applications. Principal 118 

component regression (PCR) and partial least square regression (PLSR) can be employed 119 

to solve multi-collinearity problems. Many studies have used these techniques to 120 

construct predictive relationships between spectral data and vegetation parameters 121 

(Adjorlolo et al., 2015; Gonzalez-Fernandez et al., 2015). In order to reduce redundancy 122 

in spectral data, some studies have made a comparison between the full spectrum and 123 

specific spectral domains (ranges) for estimating vegetation parameters from remotely 124 

sensed hyperspectral data using multivariate models (Gonzalez-Fernandez et al., 2015; 125 

Darvishzadeh et al., 2008; Huang & Blackburn, 2011). The results indicate that predictive 126 

models based on specific spectral domains are superior to models based on the full 127 

spectrum. Hence, there is considerable potential for the use of spectral indices, 128 

multivariate regression techniques and optimized spectral domains for assessing freezing 129 

injury in vegetation using hyperspectral data, and this warrants further investigation. 130 

The overall aim of this study is to determine the applicability of leaf spectral 131 

reflectance data for detecting the freezing and post-thawing states of oilseed rape and 132 
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quantifying the biochemical impacts of freezing. The objectives are to (1) characterize the 133 

spectral reflectance of oilseed rape leaves during freezing and post-thawing; (2) identify 134 

appropriate analytical techniques that can be applied to reflectance spectra to differentiate 135 

between normal leaves and leaves at freezing and different stages of post-thawing; (3) 136 

establish predictive models based on leaf spectral reflectance measurements for 137 

quantifying the changes in leaf water content (LWC), chlorophyll a (Chla), 138 

chlorophyll b (Chlb), and carotenoids (Cars) induced by freezing injury. 139 

2 Materials and methods 140 

2.1 Plant culture and experimental design 141 

The experiments were conducted at the Campus Experimental Station of Zhejiang 142 

University. The seeds were a local commercial variety of oilseed rape (Zheyou No.50). 143 

The soil used for this study was paddy soil. The seeds were sown in black plastic pots (18 144 

cm diameter ×16 cm height) on October 13, 2013 and October 20, 2014, and were located 145 

outdoors. The seedlings were thinned to two plants per pot at the 3-leaf stage. Plants were 146 

watered as necessary and fertilizer was applied according to local agronomic practices. 147 

Treatments were carried out at the 8 leaf-stage during the 2013-2014 growing season, 148 

while treatments were carried out at the initial stage of budding during the 2014-2015 149 

growing season. The air temperature profile during the growing period is given in Fig. 1. 150 
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 151 

Fig. 1. Minimum and maximum daily temperatures in Hangzhou, China; (a) between October 2013 152 

and December 2013, and (b) between October 2014 and February 2015. The treatment dates are 153 

indicated by gray vertical bars. Closed and open circles represent maximum and minimum 154 

temperature, respectively.  155 

 Each pot containing two plants was transferred to an Aucma freezer (390L in 156 

Volume). The freezing of plants was executed under conditions of darkness. Air 157 

temperature decreased from laboratory temperature to the lowest temperature range of 158 

-10~-12 ℃ . As the formation of rime on the leaves could affect hyperspectral 159 

measurements in various ways desiccants were applied to reduce the relative humidity 160 

within the freezer during the freezing treatments. Before each measurement, we ensured 161 

that there was no rime/frost on the observed leaf surfaces based on visual observation. 162 

Leaf temperature was monitored at one second intervals by a digital temperature sensor 163 

with a precision of ± 0.5℃（-10℃～+85℃）. The temperature sensor was connected to 164 
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a computer on which a 8-channel temperature data acquisition software was installed to 165 

log data. The time course of leaf temperature during a typical freezing treatment is shown 166 

in Fig. 2. After treatment, the plants were transferred to a light incubator to thaw at 22℃ 167 

day/18℃ night temperatures with an 11 hour photoperiod (7 am–6 am) and light 168 

intensity of 8000 LX.  169 

 170 

Fig. 2. Changes of leaf temperature during freezing treatment. 171 

Experiment 1: Changes in cell structure and water content due to freezing.  172 

To determine the effect of freezing on leaf cell structure and water content, 29 pots 173 

(samples) were used in this study, with 3 pots treated on each day in the morning, 174 

afternoon and night, respectively. A small leaf strip was cut for creating an image of the 175 

cross-section in the symmetric right side of the normal leaf. At the same time, three discs 176 

were cut from the same side of the leaf with a punch to obtain a measurement of water 177 

content. The same procedures were performed on the left side of the leaf 1 hour after the 178 

onset of freezing which was detected as a rapid increase in leaf temperature (Brown et al., 179 
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1974; Burke et al., 1976).  180 

Experiment 2: Spectral changes over different lengths of freezing. 181 

One leaf sample from a plant was first used to acquire reflectance at the normal 182 

state at 8 am. Following the onset of freezing, reflectance of the leaf was measured 183 

repeatedly after 10 min, 30 min, 1 hr and then at 1 hr intervals for 10 hrs. Five different 184 

plants were measured in this way over a period of 5 days with 1 plant per day.  185 

Experiment 3: Spectral changes during the process of post-thawing. 186 

Spectral reflectance was measured initially on a leaf sample in the normal state at 8 187 

pm prior to freezing treatment. When the leaf had been frozen for 1hr, reflectance was 188 

measured again. After subjecting the plant to eleven hours of freezing treatment, thawing 189 

was initiated and the spectral reflectance of the leaf was measured repeatedly after 2, 4, 6, 190 

8, 27, 30, 33, 51, 54 and 57 hrs. Concurrently with each spectral reflectance measurement, 191 

a SPAD chlorophyll meter was used to obtain a relative measure of chlorophyll content. 192 

In addition, the SPAD values of the leaf in supercooled and frozen states were also 193 

measured. The measurement of 26 samples, with 4 pots per day, required a total of 8 194 

days. 195 

Experiment 4: Changes in biochemical parameters following thawing. 196 

The spectral reflectance of a leaf in the normal state was measured initially on the 197 

left side of the midrib at 8 pm. At the same time, water and pigment contents were 198 

measured on the symmetric right side of the leaf by destructive sampling. The plant was 199 

then put into the freezer and treated for eleven hours. After post-thawing for two hours in 200 

the light incubator, spectral reflectance, water and pigment contents were measured on the 201 
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left side of the midrib of the leaf. The same procedures were implemented for other leaf 202 

samples after post-thawing for 2-58 hrs with an increment of two hours until the leaf 203 

became air-dry in the incubator. Three leaves were measured at each time. We expressed 204 

the variations in the biochemical parameters as the difference (Δ) between pre and post 205 

treatment, which can effectively eliminate the effect of different leaf samples and time 206 

variation. The measurement of 29 plants, with 6 pots per day, required a total of 6 days.  207 

2.2 Measurement of leaf reflectance  208 

Leaf reflectance was measured using a FieldSpec
 
3 spectroradiometer (Analytical 209 

Spectral Devices, Boulder, USA) for Experiments 2-4 in 2015. This instrument has a 210 

spectral range from 350 to 2500 nm, with a 1.4 nm sampling interval between 350 and 211 

1000 nm and 2 nm sampling interval between 1000 and 2500 nm. The spectral 212 

resolution of the FieldSpec
 
3 is 3 nm for the region 350-1000 nm and 8 nm for the region 213 

1000-2500 nm. The fiber-optic probe of the spectroradiometer was routed into the 214 

freezer so that leaf reflectance measurements could be performed while plants were 215 

undergoing treatment, thereby avoiding any disruption to treatment caused by the 216 

removal of plants from the freezer for reflectance measurements. The probe was 217 

positioned to look down vertically from a height of 3 cm above the leaf, giving a field of 218 

view of 1.3 cm
2
 at the leaf surface. When measuring leaf reflectance at a particular state, 219 

the irradiance incident upon each leaf was first measured by obtaining a radiance 220 

spectrum of a white Spectralon panel (Labsphere, North Sutton). The leaf to be 221 

measured was then fixed on a lifting platform covered in black cardboard with a round 222 

hole of 3 cm in diameter and the leaf was kept at the same height as the white panel 223 
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surface by adjusting the platform. This setup ensured that the same area of each leaf was 224 

repeatedly measured. In order to minimize the impact of background reflectance, a black 225 

cover of 2％ reflectance was used as the background beneath the leaf. The light source 226 

was a 50W quartz halogen lamp which was turned on for the short duration of the 227 

reflectance measurements and had no discernable effect on leaf temperature. The angle 228 

between the leaf surface and the incident beam was 45°. The interior of the freezer was 229 

coated with black material to avoid scattered ambient light. The % reflectance of the leaf 230 

was calculated by dividing the leaf radiance by that of the white panel, applying a 231 

correction factor for the panel reflectance properties. Ten spectra were recorded and then 232 

averaged to represent the leaf reflectance. 233 

2.3 Measurement of biochemical variables  234 

2.3.1 Chlorophyll and carotenoid contents 235 

In order to acquire the time-series information on chlorophyll content during 236 

freezing injury, we employed a nondestructive approach using a SPAD (Minolta, Inc.) to 237 

measure the relative chlorophyll content. SPAD readings were taken six times at the leaf 238 

margin and their average was considered as the SPAD value of the leaf. 239 

For estimating the absolute changes in pigment content, for each leaf sample, three 240 

leaf discs (totaling 1.69 cm
2
) were obtained using a hole punch, which were then cut into 241 

thin strips using scissors. These strips were extracted with 80% acetone in the dark till 242 

turning white. The absorbance of the supernatant was measured at 470, 646.8 and 663.2 243 

nm with a spectrophotometer (Model UV2550, Shimadzu Corporation, Tokyo, Japan). 244 

The contents of chlorophyll a, chlorophyll b and carotenoids were determined using the 245 
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formulae of Lichtenthaler (1987).  246 

2.3.2 Leaf water content 247 

For each leaf sample, three leaf discs were obtained for the measurement of water 248 

content. The fresh weight was measured, after which the discs were dried to a constant 249 

mass in an oven at a temperature of 70°C. The leaf water content (LWC) was calculated as 250 

follows: 251 

LWC= (FM- DM)/A                             (1) 252 

where, FM is the leaf fresh mass (g), DM is the oven dry leaf mass (g), and A is the area of 253 

three leaf discs (cm
2
). 254 

2.4 Leaf histology 255 

To examine the cellular structure of normal and frozen leaves, some small strips 256 

(approximately 1 mm × 7 mm) were cut from the leaf samples. The specimens were fixed 257 

immediately with 3% glutaraldehyde in a 0.015 mol/L phosphate buffer (pH6.9) then air 258 

in the strips was pumped out using a syringe until the sections sank to the bottom of a 259 

Penicillin bottle. The specimens were put in the refrigerator for more than four hours at 260 

4℃. After that, the strips were washed three times in phosphate buffer (0.1M, pH7.0) for 261 

15 min at each time. The strips were fixed again using 1% OsO4 in phosphate buffer 262 

(0.1M, pH7.0) for 1-2 hrs, and then washed three times in the same way. The dehydration 263 

process was conducted using a graded ethanol series (30%, 50%, 70%, 80%, 90%, 95%, 264 

100%) for 15-20 min at each step, and the strips were embedded with Spurr resin 265 

following Li and Zhang (2003). Sections of 3-4 µm thickness were sliced using the glass 266 

blade on LEICA EM UC7 Ultratome and stained with 0.5% toluidine blue in 0.1% sodium 267 
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carbonate buffer (pH9.0) for light microscopy, and uranyl acetate and alkaline lead citrate 268 

for transmission electron microscopy. Images of the sections were taken using a light 269 

microscope (400 × magnification) and a digital camera.  270 

2.5 Data analysis 271 

From all leaf reflectance spectra collected, the wavelength range between 400 nm 272 

and 2400 nm was retained for analysis due to high noise levels at both ends of the spectra. 273 

The original spectra were then smoothed using a Savitzky–Golay filter with 15 sample 274 

points and a second order polynomial (Savitzky & Golay, 1964). The atmospheric water 275 

absorption wavebands located at 1350-1480 nm and 1780-1990 nm were also removed 276 

from the spectra before further analysis.  277 

2.5.1 Spectral data manipulation 278 

To quantify changes in spectral shape and magnitude with time, we computed the θ 279 

and D indices as described by (Price, 1994): 280 
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where, λi is the wavelength at band i, N is the number of bands, Ss is the sample 283 

spectrum, and Sr is the reference spectrum which is a constant set at 1, representing the 284 

maximum of reflectivity. The θ value represents the angle between the reference and the 285 
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sample spectrum, calculated using a vector dot product. The D value calculates the root 286 

mean square difference between the sample spectrum reflectance amplitude and the 287 

reference spectrum amplitude. 288 

The θ and D indices were calculated for the following wavelength regions: 400 to 289 

2400 nm (full spectrum: VIS, NIR, and SWIR), 400 to 750 nm (visible), 751 to 1000 nm 290 

(near infrared 1), 1001 to 1350 nm (near infrared 2), 1351 to 1800 (short-wave infrared 291 

1), and 1801 to 2400 nm (short-wave infrared 2). The near infrared and the short-wave 292 

infrared were divided according to the wavelength limits of individual detectors within 293 

the FieldSpec
 
3 instrument. 294 

2.5.2 Techniques for classification 295 

In addition to using raw spectral reflectance (Raw), the first derivative (FDR), 296 

second derivative (SDR) and the inverse logarithm (Log (1/Raw)) of raw reflectance 297 

were calculated for discriminating normal leaves from freezing and post-thawing leaves. 298 

Derivative techniques can eliminate background signal and separate closely related 299 

absorption features (Demetriadesshah et al., 1990). Log (1/Raw) can enhance differences 300 

in spectral features in the visible range and reduce the effect of multiplicative factors 301 

(Clark & Roush, 1984). We then identified reflectance data that had significant 302 

differences between leaves in the normal and freezing 1 hour states and those at different 303 

phases of post-thawing by performing mixed effect model analysis with multi-means 304 

comparison for all wavebands in the Raw spectra and the various spectral 305 

transformations. The nlme package in R software was used to establish the linear mixed 306 

effect model and multiple comparisons were conducted using the lsmeans package. 307 
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Wavebands with a p-value <0.05 were selected as initial candidates. In the final 308 

procedure, principal components were used as inputs variables in the SVMs (see section 309 

2.5.3) and the number of principal components used was determined according to the 310 

criteria of cumulative contribution >90%. 311 

2.5.3 Techniques for retrieval 312 

For the retrieval of LWC, five different spectral domains were tested (Table 1). The 313 

first was the full spectrum with the atmospheric water vapor absorption wavelengths 314 

removed, as these wavelengths cannot be used in space-borne remote sensing. The other 315 

four regions were selected based on the description of Jensen (2006), where it was found 316 

that the shortwave infrared intervals appear to be more sensitive to changes in plant 317 

moisture content than the visible or near infrared portions of the spectrum. For the 318 

retrieval of Chla, Chlb and Cars, two domains were tested (Table 1). The first domain 319 

was selected by removing atmospheric water absorption wavelengths, while the other was 320 

based on the results of Huang & Blackburn (2011) which showed that the spectral 321 

wavelength domain 400-900 nm is optimal for quantifying leaf chlorophyll concentration. 322 

These spectral domains have been tested and selected in the aforementioned articles and 323 

we intended to verify their utility in our study.  324 

Table 1. Spectral domains tested for biochemical parameters estimation. 325 

Parameter Spectral domain 

LWC 400-2400 nm, 400-750 nm 

 

751-1349 nm, 1481-1779 nm 

 

1991-2400 nm 
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Chla, Chlb, Cars 400-2400 nm, 400-900 nm 

We used two methods to estimate the changes in leaf traits based on leaf spectral 326 

properties. The first approach correlated spectral vegetation indices (VIs) and measured 327 

biophysical parameters. This method has an advantage of fast processing speed. We 328 

chose two of the most widely used vegetation indices: ratio index (Jordan, 1969) and 329 

normalized difference vegetation index (Rouse et al., 1974) for the estimation of 330 

biophysical parameters. To determine the optimal narrow band index, all possible 331 

combinations of two bands were calculated and the combination that produced the 332 

highest coefficient of determination (R
2
) with leaf biophysical parameters was identified.  333 

The first derivative reflectance was used to optimize the VIs for LWC and pigment 334 

content estimation as it exhibited the stronger relationship with the change in 335 

biochemical parameters than raw reflectance.  336 

In the second approach, the statistical methods PCR, PLSR and SVMs, which 337 

exploit information from the full leaf spectrum, were examined. PCR reduces data 338 

redundancy by transforming a set of highly correlated variables into a new set of 339 

uncorrelated principal components variables (Ye et al., 2008). Both the PCR and PLSR 340 

methods have similar structures and are able to avoid the multi-collinearity problem. 341 

Whereas PCR performs the decomposition on the spectral data alone, PLSR uses the 342 

response variable information during the decomposition process and performs the 343 

decomposition on both the spectral data and the response variable simultaneously (Inoue 344 

et al., 2012). For PCR, the number of PCs was chosen based on two methods (Mirzaie et 345 

al., 2014): (1) percent variance explained in the spectral data and (2) cross-validated 346 
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RMSE (root mean square error). For PLSR, a leave-one-out cross-validation was 347 

employed to determine the number of factors by setting the condition that adding an extra 348 

factor must reduce the cross-validated RMSE by >2% (Kooistra et al., 2004). The PCR 349 

and PLSR analyses were performed using the pls (Mevik & Wehrens, 2007) package 350 

developed in R software (version 3.3.0; Team 2014). 351 

SVMs are a supervised machine learning method. The basic theory behind SVMs is 352 

to seek the optimal separating hyperplane with the maximum margin, which is the goal 353 

of statistical learning theory. In contrast to parametric regression methods in which 354 

explicit relationships between spectral observations and biophysical variables are 355 

obtained, SVMs provide excellent generalization capabilities, are fast, robust to high 356 

input space dimensions and low numbers of samples. SVMs provide sparse solutions 357 

where only the most relevant samples of the training data are weighted, resulting in low 358 

computational cost and memory requirements. We performed a C-SVC (support vector 359 

classification) by minimizing the following objective function (Boser, 1992; Cortes & 360 

Vapnik, 1995): 361 

minω,b,ɛ       
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where, ω and b represent the normal vector and bias of the hyperplane, respectively. xi 364 

ϵR
n
 is an m-dimensional feature vector, yi ϵ[-1,1] is the class label, i=1,…,n. C >0 is 365 

penalty value and ξi ϵR
n
 is the slack variable that indicates the distance the sample is 366 

from the hyperplane passing through the support vectors of the class to which the sample 367 
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belongs, and Φ(xi) is the mapping function. In addition, we performed an ɛ-SVR 368 

(support vector regression) for inversion applications, which minimizes the following 369 

error function (Vapnik, 1998): 370 

              minω,b,ξ, ξ*    
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where, Zi ϵR
1
 is the target output and ɛ is the insensitive loss function that controls the 375 

approximation error. Given the nonlinear problems, we used the radial basis kernel 376 

function (RBF) to map the feature vectors into a high dimensional space. The RBF has 377 

been shown to be particularly effective in remote sensing applications (Foody & Mathur, 378 

2004) and is defined as: 379 

                 0,exp
2

,











   xxxx jiK

ji
            (8) 380 

where, γ is a parameter that controls the width of the kernel and xj is the unknown 381 

feature vector. The accuracy of SVMs is dependent on the magnitude of the parameters 382 

C and γ. The latter is inversely proportional to the Gaussian kernel width which 383 

determines the computing window of the RBF kernel matrix, while the former controls 384 

the penalty associated with training samples which lie on the wrong side of the decision 385 

boundary. We optimized these two parameters with a five cross-validated grid search 386 

method to avoid over-fitting. The range of C and γ were both [-10, 10] and the steps 387 

used were 0.5 for both SVC and SVR applications. The LIBSVM 3.20 toolbox (Chang & 388 
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Lin, 2011) was used for the SVMs analyses in the MATLAB environment. 389 

2.5.4 Accuracy evaluation and model performance 390 

Overall accuracy and Kappa coefficient which are the most commonly used indices 391 

for accuracy assessment of remote sensing data (Foody, 2002) were chosen to evaluate the 392 

accuracy of SVMs for identifying the status of leaves during freezing injury. 393 

Approximately, 75% of the samples were used to train the SVMs and the 25% remaining 394 

was used for validation. The whole data set was randomly divided 100 times for repeated 395 

accuracy assessments and the average values for the indices were used for accuracy 396 

evaluation. To evaluate and compare the predictive models for leaf water and pigments, 397 

R
2
, RMSE and relative error (RRMSE that is RMSE divided by the sample mean) were 398 

used as indicators for this study. The method used for model validation was the 399 

leave-one-out cross-validation.  400 

3 Results and discussions 401 

3.1 Biochemical analysis 402 

A paired-sample t-test showed that there was no significant difference in water 403 

content between normal and frozen leaves (p=0.648, α=0.05). Fig. 3 shows the changes 404 

in SPAD values for oilseed rape leaves at the stages of supercooling, freezing and 405 

post-thawing. As indicated in this figure, the paired-sample t-test also confirmed that 406 

there was no significant difference in relative chlorophyll content between normal and 407 

frozen leaves (p=0.056, α=0.05). However, there was a significant decline in relative 408 

chlorophyll content after 2 hours of post-thawing. As post-thawing progressed, the 409 

SPAD values became more variable across the samples tested. This was due to the wide 410 
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uncertainty in SPAD measurements.  411 

 412 

Fig. 3. Average SPAD values of oilseed rape leaves at the normal, supercooling, 1hr of freezing and at 413 

different hours of post-thawing. The bars represent ± 95% confidence interval (CI) (n=26). 414 

3.2 Structural changes of mesophyll cells 415 

Cross-sections of normal and freeze-damaged oilseed rape leaves are presented in 416 

Fig. 4. In the normal leaf, the mesophyll cells are turgid and the chloroplasts are arranged 417 

along the cell walls (Fig. 4a). A more detailed electron micrograph is shown in Fig. 4c. 418 

When plant tissues are subjected to freezing temperatures, ice commonly forms in the 419 

intercellular spaces due to the higher freezing point than that in the cytoplasm (Croser et 420 

al., 2003; Xin & Browse, 2000). Because of ice formation, the water potential outside the 421 

cell drops, which can lead to cellular dehydration and therefore, cell collapse (Guy, 1990). 422 

This effect is demonstrated in Fig. 4b for the freeze-damaged leaf, where cell walls have 423 

become irregular and the proportion of intercellular air-spaces has increased due to cell 424 

contraction. The internal structures of cells such as organelles and plasma membrane have 425 

been severely disrupted (Fig. 4d). 426 
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 427 

Fig. 4. Light microscopic images (a, b) and transmission electron micrographs (c, d) showing 428 

transverse section of normal (a, c) and freeze-damaged (b, d) oilseed rape leaves. 429 

3.3 Leaf spectral reflectance 430 

Changes in the spectral reflectance of leaves during freezing are depicted in Fig. 5a. 431 

It can be observed that reflectance decreases gradually with the duration of freezing. The 432 

water absorption features shifted gradually to longer wavelengths until all the water inside 433 

the leaf became frozen. D and θ, calculated from different wavelength intervals revealed 434 

the temporal trends of local spectral domains (Fig. 6 (a-f)). D gradually increased over 435 

time for all wavelength domains until the values remained relatively constant. θ values 436 

were generally constant for most of the spectral range except SWIR1 which increased at 437 

first then remained constant after 30 min of freezing. Increasing D values represents a 438 

decrease in reflectance magnitude, while decreasing θ represents a flattening of the 439 

spectral shape. 440 
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Because the SPAD values and water content displayed no significant changes 441 

between normal and frozen leaves (see section 3.1), we surmised that the changes in 442 

reflectance were mainly attributable to modifications in cellular structure. As seen from 443 

the microscopy (Fig. 4), freezing injury was manifested as a disruption of cell wall 444 

configuration, increase in intercellular spaces and disintegration of cell contents which are 445 

likely to result in alterations of the refractive index within the leaf and a decrease in 446 

scattering of incident light. These changes contributed to the decrease of leaf reflectance 447 

throughout the spectrum. Because the peaks in the absorption coefficient of ice are at 448 

longer wavelengths than those of liquid water (Green et al., 2006), the positions of the 449 

water absorption features in leaf reflectance spectra shift to longer wavelengths when leaf 450 

water is transformed into ice upon freezing. In the case of the first strong water absorption 451 

feature, the wavelength corresponding to the minimum reflectance moved from 1456 nm 452 

to 1486 nm as leaves moved from the normal state to being frozen for 10 minutes. After 453 

the leaves were frozen for an hour, the movement of the water absorption feature became 454 

much smaller (<5 nm). As we can see from Fig. 5a, a spectral peak at about 750 nm 455 

occurred on the near-infrared shoulder for the frozen leaves. This phenomenon is related 456 

to chlorophyll fluorescence (Gamon & Surfus, 1999) which is induced by a sudden 457 

conversion of plant tissues from dark-adapted to high light conditions within a few 458 

seconds, which is an indicator of photosynthetic performance (Gamon et al., 1990). As 459 

the control plants were not incubated in the dark before the reflectance measurements 460 

this peak was not detectable for the controls. 461 

Fig. 5b reveals the changes in the reflectance of oilseed rape leaves during 462 
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post-thawing. In contrast to the frozen leaves, the water absorption features in the spectra 463 

of post-thawed leaves returned to their initial wavelength positions, as in the normal leaf. 464 

Leaf reflectance for all spectral intervals at 2 hours of post-thawing decreased 465 

significantly relative to control leaves (Fig. 6 (g-l)). Reflectance in the visible region 466 

decreased at first, then remained constant, and rapidly increased after 30 hours of 467 

post-thawing. Reflectance generally decreased in the NIR1 region, whereas in the NIR2 468 

region it increased with the duration of post-thawing. For both SWIR1 and SWIR2 469 

domains, D and θ gradually decreased over time after 2 hours of post-thawing. At that 470 

stage of post-thawing, the water absorption bands at 970 nm, 1200 nm, 1450 nm and 1940 471 

nm virtually disappeared and the dry matter absorption features became more prominent, 472 

such as those for lignin, cellulose, starch and protein at 1690 nm , 1900 nm, 2130 nm and 473 

2300 nm (Curran, 1989). Such findings concur with Carter (1991), who demonstrated that 474 

a water deficit can alter cell structure and chemistry such that the leaf reflectance 475 

throughout the 400-2500 nm wavelength range can be affected.  476 

 477 

Fig.5. Response of leaf reflectance spectra at different phases of freezing injury:  (a) changes in 478 

average reflectance with freezing; (b) changes in average reflectance with post-thawing. N, F and PT 479 

represent normal, freezing and post-thawing in the Legend. Wavelength regions are marked by 480 
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vertical dashed lines. The total sample sizes are 5 and 26, respectively.  481 

 482 

Fig. 6. Change in indicesθand D; (a-f) during freezing, and (g-l) post-thawing. N represents normal 483 

state, F-digit denotes the duration of freezing, PT-digit means the time of post-thawing. Bars 484 

represent 95% confidence interval. 485 

3.4 Identification of freezing and the different stages of post-thawing  486 

The identification of leaves frozen for 1hr was effective with an overall 487 

accuracy >97.0% for various spectral transformations while the raw reflectance had 488 

relatively lower classification accuracy with an overall accuracy of 72.8% (Table 2). 489 

These results indicate that the derivative and logarithmic transformations of spectral 490 

reflectance were helpful for improving the identification of leaf states during freezing. 491 
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Although freezing changes water mobility in plant tissues and potentially also pigment 492 

content and composition, these are not necessarily lasting effects and some plants could 493 

possibly recover. In order to determine whether freezing injury continues, we need to 494 

identify further the different stages of post-thawing.  495 

Table 2 shows the accuracy with which it is possible to discriminate between 496 

normal leaves and leaves that have undergone different durations of post-thawing. The 497 

lowest overall classification accuracy for all post-thawing durations is 93.0% based on 498 

raw reflectance. These high levels of classification accuracy are due to the fact that the 499 

spectral reflectance is significantly different between normal oilseed leaves and those at 500 

all stages of post-thawing (see Fig. 5b). In this study, leaves measured in the 2014-2015 501 

growing season all became dry and yellow after 3 days of post-thawing. This is 502 

attributable to the long duration of freezing treatment (11 hours) and the rapid decrease 503 

and subsequent increase in temperature. The heavy freezing injury resulted in large 504 

variations of the raw reflectance during post-thawing, thus the classification accuracy 505 

was high when using raw reflectance.  506 

However, SDR spectra were most effective for discriminating post-thawing leaves 507 

with an overall accuracy >95.6%. The overall accuracy based on SDR first reached 508 

100% after 33 hrs of post-thawing relative to the other two spectral transformations. The 509 

reason for the differences among different transformed spectra types may be that the 510 

SDR can better distinguish the similar original spectra by separating the local region 511 

with different curvature into several groups (Tsai & Philpot, 1998).  512 

 513 
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Table 2. Classification results for the discrimination of normal leaves from leaves at different stages 514 

of post-thawing based on raw reflectance and its spectral transformations. OA and KC are overall 515 

accuracy and kappa coefficient, respectively. F-digit denotes the duration of freezing, PT-digit means 516 

the time of post-thawing. 517 

State (hour) F-1 PT-2 PT-4 PT-6 PT-8 PT-27 PT-30 PT-33 PT-51 PT-54 PT-57 

Raw_OA(%) 72.8 95.0 95.6 97.0 95.6 94.9 95.9 96.1 94.6 93.0 97.9 

Raw_KC 0.46 0.90 0.91 0.94 0.91 0.90 0.92 0.92 0.89 0.86 0.96 

FDR_OA(%) 98.1 95.3 96.1 96.4 95.9 97.9 98.1 97.9 98.3 98.3 99.5 

FDR_KC 0.96 0.91 0.92 0.93 0.92 0.96 0.96 0.96 0.97 0.97 0.99 

SDR_OA(%) 99.6 96.2 95.6 97.9 98.4 98.0 99.0 100.0 100.0 100.0 100.0 

SDR_KC 0.99 0.92 0.91 0.96 0.97 0.96 0.98 1.00 1.00 1.00 1.00 

Log(1/Raw)_OA(%) 97.0 92.7 95.5 96.2 96.1 96.3 97.1 97.9 100.0 100.0 100.0 

Log(1/Raw)_KC 0.94 0.85 0.91 0.92 0.92 0.93 0.94 0.96 1.00 1.00 1.00 

3.5. Monitoring freezing injury based on the retrieval of leaf biochemical 518 

parameters from reflectance spectra 519 

3.5.1 Quantification of biochemicals using hyperspectral vegetation indices 520 

The optimal band combinations and their R
2
 values are described in Table 3. Using 521 

the 1314 nm and 1642 nm bands, RVI (R
2
=0.87) had a stronger linear relationship with 522 

ΔLWC than NDVI (0.81) using bands at 1135 and 1697 nm. Similarly, RVI had higher 523 

R
2
 values (0.68, 0.57, 0.73) than NDVI (0.64, 0.56, 0.65) for ΔChla, ΔChlb, ΔCars, 524 

respectively. In previous studies the techniques used here has been applied to find the 525 

optimal combination of wavebands using various types of spectral indices for estimating 526 
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leaf Chla, Chlb (Yu et al., 2014) and water content (Yi et al., 2013), and canopy biomass 527 

and LAI (Thenkabail et al., 2000) from a number of species. This study confirms that the 528 

method can provide a fast overview of thousands of wavelength combinations and make 529 

possible the detection of wavelengths of interest for further analysis. 530 

Linear regression models were constructed between the optimal spectral indices and 531 

biochemical parameters. The optimal RVI had the highest accuracy in predicting LWC 532 

with values of 0.85 for R
2

CV and 2.4161 for RMSECV. Ceccato et al. (2002) demonstrated 533 

that the SWIR region is sensitive to equivalent water thickness (EWT) but cannot be 534 

used alone to retrieve EWT because two other leaf parameters (internal structure and dry 535 

matter) also influence leaf reflectance in the SWIR. A combination of SWIR and NIR 536 

(only influenced by these two parameters) is necessary to retrieve EWT at leaf level. In 537 

our study, although the strong water absorption bands were removed, the selected 538 

wavelengths were still located in the NIR and SWIR regions. Reflectance at 1135 and 539 

1314 nm had strong linear relationships with LWC (r=-0.88, -0.88, p<0.01) whereas 540 

reflectance at 1697 and 1642 nm had relatively lower correlations with LWC (r=-0.44, 541 

-0.38, p<0.05). Danson et al. (1992) also obtained a similar finding that the first 542 

derivative of the reflectance spectrum at wavelengths corresponding to the slopes on the 543 

edges of the water absorption bands was highly correlated with leaf water content and 544 

insensitive to differences in leaf structure. In this study, the optimal RVI has a stronger 545 

relationship with water than any single reflectance band between 400 to 2400 nm, where 546 

the maximum R
2
 value was 0.85 for reflectance at 1339 nm. 547 

For estimating the changes of pigment content, the optimal RVI provided a higher 548 
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predictive accuracy than the optimal NDVI (Table 3). The chlorophylls have strong 549 

absorption peaks in the red and blue regions of the spectrum. Since the blue peak 550 

overlaps with the absorption of carotenoids, it is not generally used for the estimation of 551 

chlorophyll content. Maximum absorption in the red region occurs between 660 and 680 552 

nm (Sims & Gamon, 2002). However, reflectance at these wavelengths has not proved 553 

as useful for predicting chlorophyll content as reflectance at slightly longer or shorter 554 

wavelengths. This is because, relatively low chlorophyll contents are sufficient to 555 

saturate absorption in the 660–680 nm region. Blackburn (1998) noted that reflectance 556 

along the wings of pigment absorption features are optimal in this context as they do not 557 

reach saturation but remain sensitive through a range of pigment concentrations and are 558 

not convoluted by other pigments. Estimation of leaf carotenoid content from reflectance 559 

is much more difficult than estimation of chlorophyll because of the overlap between the 560 

chlorophyll and carotenoid absorption peaks and the higher concentration of chlorophyll 561 

than carotenoid in most leaves. However, there was a higher predictive accuracy for 562 

Cars (RRMSEcv=0.3305) in our study compared to Chla, Chlb (RRMSEcv=0.6724, 563 

1.4087). This is because the coefficient of determination between time and ΔCars is 0.49 564 

during the post-thawing while the R
2
 values of Chla (0.40), Chlb (0.18) during the 565 

post-thawing were relative lower. The optimal wavelength obtained by empirical 566 

methods such as regression can be affected by various factors including species, unit and 567 

range of pigment concentrations, data acquisition and preprocessing methods, and this 568 

may account for some of the disparities between the results presented in different papers. 569 

Overall, the results in this study indicate that vegetation indices have the potential to 570 



30 
 

 

estimate the changes in biochemical parameters that result from freezing injury. 571 

Table 3. The optimal band positions for each type of spectral vegetation index and cross-validation 572 

results for the accuracy of derived estimates of biochemical contents from the optimal indices. 573 

VIs 

Band position and R
2
 values Cross-validated statistics 

R
2
 λ1 λ2 R

2
cv 

RMSEcv  

(mg/cm
2
) 

RRMSEcv 

LWC 

      

NDVI 0.81 1135 1697 0.78 2.9400 0.2208 

RVI 0.87 1314 1642 0.85 2.4161 0.1814 

Chla 

      

NDVI 0.64 553 636 0.58 0.0044 0.7289 

RVI 0.68 641 1295 0.65 0.0041 0.6724 

Chlb 

      

NDVI 0.56 2110 2286 0.46 0.0013 1.5368 

RVI 0.57 696 2155 0.53 0.0012 1.4087 

Cars 

      

NDVI 0.65 648 676 0.61 0.0018 0.3791 

RVI 0.73 641 959 0.70 0.0015 0.3305 

3.5.2 Quantification of biochemicals using multivariate statistical models 574 

3.5.2.1 Changes in leaf water content 575 

The predictive accuracy of models for deriving LWC from leaf reflectance spectra 576 

using different multivariate techniques is summarized in Table 4. PLSR and PCR 577 
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performed better than SVMs for the first four spectral domains while the three techniques 578 

had similar estimation accuracies in the 1991-2400 nm regions. Although PLSR has an 579 

advantage over PCR in theory, in most situations, the methods achieve similar prediction 580 

accuracies and PCR usually needs more latent variables than PLSR (Mevik & Wehrens, 581 

2007). The quality of SVMs models depends on the selection of kernel functions and the 582 

proper setting of hyper-parameters and kernel parameters. Whereas existing sources on 583 

SVMs regressions (Smola et al., 1998; Vapnik, 1998) give some recommendations on 584 

appropriate settings of SVMs parameters, there is no general consensus and there are 585 

many contradictory opinions. In this study, we used the most widely used grid search 586 

method to optimize the parameters by artificially specifying the parameters range. Some 587 

advanced intelligent optimization algorithms may improve the performance of SVMs 588 

such as the genetic algorithm, particle swarm optimization and the simulated annealing 589 

algorithm, and these approaches may be worthy of future investigation in the context of 590 

this research problem. 591 

Amongst the five specific spectral domains tested, the best predictive accuracy for 592 

LWC was achieved by using the full spectrum (with atmospheric water absorption 593 

bands removed) using PLSR and PCR, which produced the same R
2
cv value of 0.85 and 594 

the same RMSEcv of 2.4408 (Table 4). The predicted accuracy of LWC using only the 595 

751-1349 nm spectral domain in PLSR and PCR was second to the full spectrum with 596 

R
2
cv and RMSEcv values of 0.81 and 2.7272, respectively. The SWIR wavelength 597 

intervals 1481-1779 nm and 1991-2400 nm were superior to the visible region but 598 

inferior to the NIR region. The reason for this was that the strong water absorption bands 599 
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were removed from spectra before analysis in this study. From the perspective of 600 

multivariate statistical analysis, the full spectrum domain was optimal for retrieving 601 

water content. The optimal sub-spectral region needs further exploration, in order to 602 

improve the computational efficiency. 603 

Table 4. Cross-validation statistics for predictive models in deriving LWC from leaf spectral 604 

reflectance using three multivariate analysis techniques and three different spectral domains. 605 

Spectral domains Method R
2
cv RMSEcv (mg/cm

2
) RRMSEcv 

400-2400 nm PLSR 0.85 2.4408 0.1833 

 

PCR 0.85 2.4408 0.1833 

 

SVMs 0.72 3.3699 0.2531 

400-750 nm PLSR 6.0E-04 6.5594 0.4926 

 

PCR 4.7E-02 6.4424 0.4838 

 

SVMs 3.5E-05 7.6421 0.5739 

751-1349 nm PLSR 0.81 2.7272 0.2048 

 

PCR 0.81 2.7272 0.2048 

 

SVMs 0.72 3.6441 0.2737 

1481-1779 nm PLSR 0.74 3.2321 0.2427 

 

PCR 0.69 3.5293 0.2651 

 

SVMs 0.62 3.9674 0.2979 

1991-2400 nm PLSR 0.54 4.3279 0.3250 

 

PCR 0.56 4.2605 0.3200 

 

SVMs 0.55 4.3614 0.3275 
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3.5.2.2 Changes in the concentrations of leaf pigments 606 

The predictive accuracy of models for deriving Chla, Chlb and Cars from leaf 607 

reflectance spectra using different multivariate techniques is summarized in Table 5. For 608 

both spectral domains that were tested, PLSR and PCR had similarly high predictive 609 

accuracies for Chla and Chlb. For Cars, PLSR and PCR exhibited similar predictive 610 

accuracies when applied to the 400-900 nm domain, whereas for the 400-2400 nm domain, 611 

PLSR had a higher predictive accuracy than that of PCR. When comparing the predictive 612 

ability of the SVMs to the aforementioned methods, it can be observed that the PLSR 613 

method produced superior predictive accuracies over SVMs for all leaf pigments for both 614 

spectral domains. SVMs only achieved superiority over the PCR method in the estimation 615 

of Cars when applied to the 400-900 nm spectral domain. Different methods displayed 616 

different levels of effectiveness in the estimation of different biochemical parameters 617 

which may be due to variations in the applicability of each algorithm. Similar to the 618 

vegetation index results, the estimation accuracies for Chlb were poor for all three 619 

methods and two spectral domains. This is likely due to the changes in Chlb during 620 

post-thawing being minimal (R
2
 = 0.18).  621 

The estimation accuracy of each technique in the spectral domain 400-900 nm 622 

outperformed the full spectrum for the prediction of all three pigments. Although this 623 

optimal domain was only proposed for chlorophylls in the study of Huang & Blackburn 624 

(2011), this domain is still optimal for all the individual pigments in our study using the 625 

three multivariate regression techniques. This confirms that the 400-900 nm region is 626 

most informative for the estimation of leaf pigment content.  627 
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Table 5. Cross-validation statistics in deriving Chla, Chlb and Cars from leaf spectral reflectance 628 

using three multivariate analysis techniques and two different spectral domains.  629 

Variable Method 

Spectral domains 

400-2400 nm 400-900 nm 

R
2
cv 

RMSEcv  

(mg/cm
2
) 

RRMSEcv R
2
cv 

RMSEcv  

(mg/cm
2
) 

RRMSEcv 

Chla PLSR 0.29 0.0060 0.9836 0.36 0.0056 0.9254 

PCR 0.30 0.0062 1.0171 0.36 0.0056 0.9254 

SVMs 0.09 0.0070 1.1560 0.33 0.0058 0.9452 

Chlb PLSR 0.05 0.0019 2.1668 0.06 0.0018 2.0599 

PCR 0.05 0.0019 2.1668 0.06 0.0018 2.0599 

SVMs 0.06 0.0021 2.4141 0.01 0.0020 2.2723 

Car PLSR 0.41 0.0023 0.4883 0.46 0.0021 0.4508 

PCR 0.21 0.0031 0.6638 0.46 0.0021 0.4508 

SVMs 0.38 0.0023 0.4824 0.47 0.0021 0.4450 

4. Conclusions 630 

In this study, we analyzed the changes in the spectral reflectance of oilseed rape 631 

leaves that were subjected to freezing and post-thawing processes. We explored the 632 

potential for using changes in spectral reflectance to detect the different stages of the 633 

freezing and post-thawing processes, and to quantify the biochemical impacts of freezing 634 

injury. The main findings are summarized as follows: 635 

(1) The reflectance of leaves shows a significant decrease during freezing and then 636 



35 
 

 

remains constant across the optical spectrum as the freezing period continues. The 637 

most significant spectral characteristic is that water absorption features shift towards 638 

longer wavelengths, which is caused by the change of state of leaf water from liquid 639 

to solid.  640 

(2) In the process of post-thawing, the changes in spectral reflectance of leaves can 641 

mainly be attributed to the changing water content of the leaf and the subsequent 642 

changes in pigment content and cellular structure. 643 

(3) SDR spectra exhibited the highest potential for discriminating leaves at different 644 

stages of post-thawing from normal leaves.  645 

(4) Derivative spectral indices formulated using optimized narrow wavebands were 646 

most effective in quantifying the changes in pigment and water contents of leaves 647 

subjected to freezing injury.  648 

(5) In freezing injured leaves, the spectral domain 400-900 nm is optimal for 649 

developing predictive models of pigment contents. Therefore, selection of this 650 

spectral domain for analysis could reduce redundancy and increase computational 651 

efficiency in future operational remote sensing scenarios. 652 

This study focused on oilseed rape at the leaf scale in a laboratory setting. The results 653 

provide evidence to establish the use of spectral reflectance for identifying different 654 

stages of freezing injury in crops and quantifying the biochemical impacts of the process. 655 

Further work is now needed to develop this capability by investigating freezing injury in 656 

other crop species at the canopy and field scales using airborne and spaceborne 657 

hyperspectral remotely-sensed data. Such developments have a considerable potential to 658 
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improve the monitoring and loss evaluation of freezing injury in crops when remotely 659 

sensed data of sufficiently high spatial, temporal and spectral resolution are available. 660 
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List of Figure Captions 842 

Fig. 1. Minimum and maximum daily temperatures in Hangzhou, China; (a) between 843 

October 2013 and December 2013, and (b) between October 2014 and February 2015. 844 

The treatment dates are indicated by gray vertical bars. Closed and open circles represent 845 

maximum and minimum temperature, respectively.  846 

Fig. 2. Changes of leaf temperature during freezing treatment.  847 

Fig. 3. Average SPAD values of oilseed rape leaves at the normal, supercooling, 1hr of 848 

freezing and at different hours of post-thawing. The bars represent ± 95% confidence 849 

interval (CI) (n=26). 850 

Fig. 4. Light microscopic images (a, b) and transmission electron micrographs (c, d) 851 

showing transverse section of normal (a, c) and freeze-damaged (b, d) oilseed rape leaves. 852 

Fig.5. Response of leaf reflectance spectra at different phases of freezing injury:  (a) 853 

changes in average reflectance with freezing; (b) changes in average reflectance with 854 
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post-thawing. N, F and PT represent normal, freezing and post-thawing in the Legend. 855 

The total sample sizes are 5 and 26, respectively.  856 

Fig. 6. Change in indices θ and D; (a-f) during freezing, and (g-l) post-thawing. N 857 

represents normal state, F-digit denotes the duration of freezing, PT-digit means the time 858 

of post-thawing. Bars represent 95% confidence interval. 859 
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