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Bari, Dipartimento Interuniversitario di Fisica, Bari, Italy
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20INFN Sezione di Roma and Università di Roma “La Sapienza”, Roma, Italy

21Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

22Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University

of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan

23Kobe University, Kobe, Japan

24Kyoto University, Department of Physics, Kyoto, Japan

25Lancaster University, Physics Department, Lancaster, United Kingdom

26University of Liverpool, Department of Physics, Liverpool, United Kingdom

27Louisiana State University, Department of Physics

and Astronomy, Baton Rouge, Louisiana, U.S.A.
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Recent measurements at the T2K experiment indicate that CP violation in neutrino mixing

may be observed in the future by long-baseline neutrino oscillation experiments. We explore

the physics program of an extension to the currently approved T2K running of 7.8 × 1021

protons-on-target to 20×1021 protons-on-target, aiming at initial observation of CP violation

with 3σ or higher significance for the case of maximum CP violation. With accelerator and

beam line upgrades, as well as analysis improvements, this program would occur before the

next generation of long-baseline neutrino oscillation experiments that are expected to start

operation in 2026.
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I. INTRODUCTION

The discovery of νµ → νe oscillations by the T2K accelerator-based long-baseline

experiment[1, 2] has opened the possibility of observing CP-violation (CPV) in the lep-

ton sector, which would be a crucial hint towards understanding the matter-antimatter

asymmetry of the universe[3]. In neutrino oscillations, CPV can arise from δCP , an ir-

reducible CP-odd phase in the lepton mixing matrix, which can be measured at T2K by

comparing the νµ → νe and ν̄µ → ν̄e oscillation probabilities or by comparing these oscil-

lations with ν̄e disappearance measured by reactors[4–6]. While the current significance

is marginal, T2K measurements with 6.6 × 1020 protons-on-target (POT) hint at maxi-

mum CP violation with δCP ∼ −π
2 and normal mass hierarchy[7]. Recent results from the

NOvA experiment[8], another accelerator-based long-baseline experiment, are consistent

with this picture, though the statistical uncertainties are still large. In this maximal case,

T2K could observe CPV with 90% C.L. sensitivity with the 7.8 × 1021 POT currently

approved by J-PARC and expected by around 2020[9]. Future proposed projects such as

Hyper-Kamiokande[10] and DUNE[11] aim to achieve > 3 σ sensitivity to CPV across a

wide range of δCP on the time scale of 2026 and beyond.

By the time T2K finishes its currently approved running, the J-PARC Main Ring

(MR) beam power is expected to exceed 750 kW. If data-taking is extended until 2026,

when Hyper-Kamiokande and DUNE are expected to start, sensitivity to CPV would

significantly improve with the additional statistics. This would also have the benefit

of establishing higher beam power for the next generation of measurements at Hyper-

Kamiokande from the start.

The T2K collaboration has initiated the study of “T2K-II”, a second phase of the ex-

periment in which more than 3σ sensitivity to CPV can be achieved if δCP ∼ −π
2 and the

mass hierarchy is normal in a five or six year period after the currently approved running.

This would require not only a beam time extension, but additional improvements explored

in this document, including further improvements to the MR beam power, neutrino beam

line upgrades, and analysis developments to improve statistical and systematic uncertain-

ties. We discuss the physics potential resulting from these combined developments.
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FIG. 1: Anticipated MR beam power and POT accumulation vs. calendar year.

II. DATA ACCUMULATION PLAN AND IMPROVEMENT OF EFFECTIVE

STATISTICS

a. Projected MR beam power and POT accumulation The MR beam power has

steadily increased since the start of the operation. In May 2016, 420 kW beam with

2.2×1014 protons-per-pulse (ppp) every 2.48 seconds was successfully provided to the neu-

trino beamline. Discussions with the J-PARC Accelerator Group have resulted in a plan

to achieve the design intensity of 750 kW by reducing the repetition cycle to 1.3 seconds.

This requires an upgrade to the power supplies for the MR main magnets, RF cavities,

and some injection and extraction devices by January 2019. Studies to increase the ppp

are also in progress, with a 2.73 × 1014 ppp-equivalent beam with acceptable beam loss

already demonstrated in a test operation with two bunches.

Based on these developments, MR beam power prospects were updated and presented

in the accelerator report at the last PAC in July 2015[12] and anticipated beam power of

1.3 MW with 3.2×1014 ppp and a repetition cycle of 1.16 seconds were presented[13, 14].

A possible data accumulation scenario is shown in Fig. 1, where 5 months of neutrino

beam operation each year and realistic running time efficiency are assumed. We expect

to accumulate 20 × 1021 POT by JFY2026 with 5 months of operation each year and by

JFY2025 with 6 months of operation each year.

b. Beamline upgrade The beam intensity in the current neutrino beam facility is

limited to 3.3 × 1014 ppp by the thermal shock induced by the beam on the target and

beam window. The MR power upgrade plan allows 1.3 MW beam operation without



8

increasing the ppp. However, the beamline cooling capacity for components like the target

and helium vessel is sufficient for up to 750 kW; these would need to be upgraded to accept

1.3 MW beam operation.

The T2K horns were originally designed to be operated at 320 kA current, but so far

have been operated at 250 kA because of a problem with the power supplies. The upgrades

required for 320 kA operation will be implemented in stages and will be completed by 2019.

Horn operation at 320 kA gives a 10% higher neutrino flux and also reduces contamination

of the wrong-sign component of neutrinos (i.e., anti-neutrinos in the neutrino beam mode

or neutrinos in the anti-neutrino beam mode) by 5-10%.

c. Improved Super-K Sample Selection The current efficiency to select oscillated νe

CC events in the 22.5 kt fiducial volume at Super-K is 66%. The inefficiency results from

targeting events with a single Cherenkov ring from the outgoing lepton without additional

rings or decay electrons arising from pions that may be produced in the interaction. Recent

developments in multi-ring event reconstruction will enable us to identify and reconstruct

νe CC π±/0 interactions, leading to higher effective efficiency for the νe CC selection.

Reoptimization of other selection criteria are also being investigated.

Improvements to the single-ring µ-like selection used to identify νµ CC events will

enhance T2K’s sensitivity to θ23 and ∆m2
32 and subsequently CP violation through the

improved constraint on these parameters. We expect to reduce the NCπ+ contamination

in this sample by more than 50% in the region where the oscillation effect is maximal.

As with the νe, a dedicated multi-ring νµ CCπ+ reconstruction is under development,

potentially allowing up to 40% more νµ CC events to be used in the oscillation analyses.

Finally, the fiducial volume definition for both selections will be improved to accept

well-reconstructed events near the edge of the detector that are currently rejected. This

is expected to add 10-15% more events while maintaining sufficient control of external

backgrounds entering the tank.

Taken together, these improvements can potentially increase the νe and νµ CC event

samples identified at Super-K by up to 40%.

d. Short Summary We expect to accumulate an integrated 20×1021 POT when T2K

running is extended by five to six years. Effective statistics per POT for CP violation

studies will be improved by up to 50% by analysis improvements and beamline upgrades.

The number of events expected at the Super-K far detector for an exposure of 20×1021

POT with a 50% statistical improvement is given in Table I assuming either true δCP = 0
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TABLE I: Number of events expected to be observed at the far detector for

10× 1021 POT ν- + 10× 1021 POT ν̄-mode with a 50% statistical improvement.

Assumed relevant oscillation parameters are: sin2 2θ13 = 0.085, sin2 θ23 = 0.5,

∆m2
32 = 2.5× 10−3 eV2, and normal mass hierarchy (MH).

Signal Signal Beam CC Beam CC

True δCP Total νµ → νe ν̄µ → ν̄e νe + ν̄e νµ + ν̄µ NC

ν-mode 0 467.6 356.3 4.0 73.3 1.8 32.3

νe sample −π/2 558.7 448.6 2.8 73.3 1.8 32.3

ν̄-mode 0 133.9 16.7 73.6 29.2 0.4 14.1

ν̄e sample −π/2 115.8 19.8 52.3 29.2 0.4 14.1

Beam CC Beam CC Beam CC νµ → νe+

Total νµ ν̄µ νe + ν̄e ν̄µ → ν̄e NC

ν-mode νµ sample 2735.0 2393.0 158.2 1.6 7.2 175.0

ν̄-mode ν̄µ sample 1283.5 507.8 707.9 0.6 1.0 66.2

or −π/2.

III. IMPROVEMENT OF SYSTEMATICS

Systematic errors are categorized based on their source into neutrino flux, neutrino

interaction model, and detector model uncertainties. The uncertainties in the neutrino

flux and interaction model are first constrained by external measurements and then further

constrained by a fit to data from the ND280 near detector.

The uncertainty on the total predicted number of events in the Super-K samples encap-

sulates the first order impact of systematic errors on the oscillation parameter measure-

ments and the current sizes are summarized in Table II. The CP phase δCP is measured

through the difference in the oscillation probabilities for νµ → νe and ν̄µ → ν̄e. Hence,

we also show the uncertainty on the ratio of expected νe/ν̄e candidates at Super-K with

neutrino (ν) and antineutrino (ν̄) beam mode.

The uncertainty from oscillation parameters not measured by T2K-II is negligible for

νµ/ν̄µ events at SK in the νµ/ν̄µ disappearance measurements. The 4% uncertainties

on the νe/ν̄e samples arise mainly from the precision of the θ13 measurement by reactor
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TABLE II: Errors on the number of predicted events in the Super-K samples from

individual systematic error sources in neutrino (ν mode) and antineutrino beam mode (ν̄

mode). Also shown is the error on the ratio 1Re events in ν mode/ν̄ mode. The

uncertainties represent work-in-progress for T2K neutrino oscillation results in 2016.

δNSK/NSK (%)

1-Ring µ 1-Ring e

Error Type ν mode ν̄ mode ν mode ν̄ mode ν/ν̄

SK Detector 4.6 3.9 2.8 4.0 1.9

SK Final State & Secondary Interactions 1.8 2.4 2.6 2.7 3.7

ND280 Constrained Flux & Cross-section 2.6 3.0 3.0 3.5 2.4

σνe/σνµ , σν̄e/σν̄µ 0.0 0.0 2.6 1.5 3.1

NC 1γ Cross-section 0.0 0.0 1.4 2.7 1.2

NC Other Cross-section 0.7 0.7 0.2 0.3 0.1

Total Systematic Error 5.6 5.5 5.7 6.8 5.9

External Constraint on θ12, θ13, ∆m2
21 0.0 0.0 4.2 4.0 0.1

experiments(sin2(2θ13) = 0.085 ± 0.005)[15]. However, this uncertainty is correlated be-

tween ν and ν̄ beam mode samples and its impact on the observation of a CP asymmetry

in T2K data is small.

As will be described in Sec. IV, the current systematic errors, if they are not improved,

will significantly reduce the sensitivity to CP violation with the T2K-II statistics. Any

improvement on the systematics would enhance physics potential. Here, we describe pro-

jected improvements.

e. Neutrino Flux The neutrino flux prediction[16] uncertainty is currently dominated

by uncertainties on the hadron interaction modelling in the target and surrounding mate-

rials in the neutrino beamline and by the proton beam orbit measurement. These errors

can be represented as an absolute flux uncertainty relevant for neutrino cross section mea-

surements, and an extrapolation uncertainty which impacts oscillation measurements. At

the peak energy (∼ 600 MeV), these are currently ∼ 9% and ∼ 0.3% , respectively. Fur-

ther improvement is expected with the incorporation of the T2K replica target data from

NA61/SHINE, improvements in the beam direction measurement, and improved usage of

the near detector measurements, to achieve ∼ 6% uncertainty on the absolute flux.
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f. Near Detector measurement Currently, detector-related systematic uncertainties

of ∼ 2% have been achieved in νµ/ν̄µ charged-current samples selected in ND280. Some

uncertainties, such as those related to reconstruction efficiencies and backgrounds, may

be reduced by further effort and development. By far the largest uncertainty, however,

arises from pion secondary interaction uncertainties, which may be reduced by external

measurements or by studying pion interactions within ND280 itself. With additional

data, we expect to reduce this uncertainty and achieve ∼ 1% overall systematic error in

the ND280 samples.

g. Neutrino Interaction T2K has engaged in continuous development and improve-

ment of neutrino-nucleus interaction modelling[17, 18], including effects arising from nu-

cleon correlations[19, 20] and final state interaction of hadrons within the target nucleus.

These models are further constrained by the near detector, but the constraints are limited

by differences in the neutrino energy spectrum and acceptances between the near detector

and Super-K.

We will continue to engage in model developments and comparisons with ND280 and

externally published measurements. Combined with the recent incorporation of neutrino

interactions on the water targets and future improvements to the phase space coverage of

the ND280 measurements, systematic errors, and flux prediction uncertainties, we expect

to reduce the flux and cross section systematics. The large sample of νe/ν̄e events in ND280

with the additional running will also allow us to improve the uncertainties arising from

uncertainties in the ratios σνe/σνµ and σν̄e/σν̄µ [21]. In addition, a task force was formed

by the collaboration in 2015 to investigate the prospect and need of ND280 upgrade.

h. Super-K Systematics Improvement The current Super-K detector systematic er-

rors are determined mainly by a fit to the Super-K atmospheric neutrino data and con-

straints on the energy scale uncertainty from cosmic muon control samples. The atmo-

spheric neutrino fit will be updated to include the cross section modelling from the T2K

data. Longer-term improvements would utilize calibration, entering muon, and decay elec-

tron data to constrain fundamental detector parameters, rather than fitting neutrino data,

which is susceptible to atmospheric flux and neutrino cross section uncertainties. The ex-

pected improvement to the Super-K detector uncertainties is under study. The secondary

interaction and final state interaction systematic errors uncertainties will also benefit from

the ND280 and external pion interaction measurements and neutrino interaction model

development.
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i. Short Summary The current systematic error on the far detector prediction is 5.5

to 6.8%. Considering the present situation and projected improvements, we consider that

4% systematic error is a reachable and reasonable target for T2K-II. In what follows, this

improvement in systematic error is modelled by scaling the covariance matrix that reflects

the current systematic error to obtain an uncertainty in the far detector prediction that is

2/3 its current size. Whether a near detector upgrade is needed to achieve this goal will

be investigated in one year time scale.

IV. EXPECTED PHYSICS OUTCOMES

j. CP violation and precise determination of ∆m2
32 and sin2 θ23

We assume that the full T2K-II exposure is 20×1021 POT taken equally in ν-mode and

ν̄-mode. Further optimization of the running ratio between ν-mode and ν̄-mode will be

pursued in the future. Sensitivities were initially calculated with the current T2K (2016

oscillation analysis) event rates and systematics, and the effect of the enhancements from

beam line and analysis improvements was implemented by a simple scaling. Assumed

relevant oscillation parameters are: sin2 2θ13 = 0.085, sin2 θ23 = 0.5, ∆m2
32 = 2.5 × 10−3

eV2, and normal mass hierarchy (MH). Cases for the current 90% C.L. edges of sin2 θ23

i.e. 0.43 and 0.6 are also studied.

The sensitivity to CP violation (∆χ2 for resolving sin δCP 6= 0) plotted as a function of

true δCP is given in Fig. 2 for the full T2K-II exposure with a 50% statistical improvement

and a reduction of the systematic uncertainties to 2/3 of its current magnitude. When cal-

culating sensitivities, the values of sin2 θ23, ∆m2
32, and δCP are assumed to be constrained

by the T2K-II data only, while sin2 2θ13 is constrained by sin2 2θ13 = 0.085± 0.005[15].

Several experiments (JUNO[22], NOvA[23], ORCA[24], PINGU[25]) are expected or

plan to determine the mass hierarchy before or during the proposed period of T2K-II.

Hence both MH-unknown and -known cases are shown in Fig. 2. The fractional region

for which sin δCP = 0 can be excluded at the 99% (3σ) C.L. is 49% (36%) of possible

true values of δCP assuming the improved systematic errors and that the MH has been

determined by an outside experiment. If systematic errors are eliminated completely, the

fractional region where CPV can be resolved by 99% (3σ) becomes 51% (43%). More

details of coverage at different values of sin2 θ23 can be found in Table III.
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TABLE III: Table of δCP fractional coverages (%) with three options of systematic

treatment: no systematic error (statistical only), 2016 systematics and improved

systematics. The coverages are calculated at three different values of sin2 θ23 (0.43, 0.5,

and 0.60) and it is assumed that the MH has been determined by an outside experiment.

sin2 θ23 = 0.43 sin2 θ23 = 0.50 sin2 θ23 = 0.60

—– 99% C. L. 3σ 99% C. L. 3σ 99% C. L. 3σ

Stat. Only 57.5 47.9 53.3 43.1 49.1 36.7

2016 systematics 45.6 28.3 41.6 20.5 34.7 5.2

Improved systematics 51.5 39.7 48.6 36.1 41.8 23.9
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an outside experiment.

FIG. 2: Sensitivity to CP violation as a function of true δCP for the full T2K-II exposure

of 20× 1021 POT with a 50% improvement in the effective statistics, a reduction of the

systematic uncertainties to 2/3 of their current size, and assuming that the true MH is

the normal MH.

The expected evolution of the sensitivity to CP violation (∆χ2 for resolving sin δCP 6= 0)

as a function of POT assuming that the T2K-II data is taken in roughly equal alternating

periods of ν-mode and ν̄-mode (with true normal MH and δCP = −π/2) is given in Fig. 3.

The expected 90% C.L. contour for ∆m2
32 vs sin2 θ23 for the full T2K-II exposure

is shown in Fig. 4. The expected 1σ precision on sin2 θ23 is ∼ 1.7◦(∼ 0.7◦) assuming

sin2 θ23 = 0.5 (sin2 θ23 = 0.43, 0.6), and the expected precision on ∆m2
32 is ∼1% assuming

the true oscillation parameters given above and true δCP = −π/2.

k. Neutrino Interaction Studies

The additional run time of T2K-II will provide improved measurements of neutrino and
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FIG. 3: Sensitivity to CP violation as a function of POT with a 50% improvement in the

effective statistics, assuming the true MH is the normal MH and the true value of

δCP = −π/2. The plot on the left compares different true values of sin2 θ23, while that

on the right compares different assumptions for the T2K-II systematic errors with

sin2 θ23 = 0.50.
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FIG. 4: Expected 90% C.L. sensitivity to ∆m2
32 and sin2 θ23 with the 2016 systematic

error. The current POT corresponds to 6.9× 1020 POT ν-mode + 4.0× 1020 POT

ν̄-mode. For the ultimate T2K-II exposure of 20× 1021 POT, a 50% increase in effective

statistics is assumed.

antineutrino scattering, which probe nuclear structure through the axial vector current;

these data sets may be used to solve long-standing experimental disagreements seen in

previous measurements. The reduced uncertainties of the neutrino/antineutrino flux, in-

creased statistical samples, and improvements to the acceptance of the T2K detectors

will enable more detailed kinematic measurements to be made for interaction channels

already measured by T2K, including studies of nuclear effects relevant for quasi-elastic
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and single pion resonance channels and measurements on water. T2K also has near detec-

tors placed in two different locations; combined measurements of these detectors provide

unique information about the energy dependence of neutrino interactions.

With T2K-II, there are two opportunities for neutrino interaction studies which are

otherwise limited by statistical uncertainty. First are measurements of neutrino interac-

tions in the argon gas of the TPCs, where a very low threshold for tracking (below what

can be achieved with liquid argon detectors) can provide unique information about proton

multiplicity in neutrino-nucleus interactions. Approximately 10,600 ν-Ar and 1,900 ν̄-Ar

interactions are expected. Second, with expected datasets of 8,000 νe CC and 2,000 ν̄e CC

candidates, the differences between electron and muon neutrino interactions can be stud-

ied; these differences are an important source of systematic uncertainty for CP violation

measurements.

l. Non-standard Physics Studies

The high statistics at T2K-II would enable world-leading searches for various physics

beyond the standard model. The combination of accelerator-based long-baseline mea-

surements with νµ/ν̄µ beams and reactor measurements with ν̄e flux may give redundant

constraints on (∆m2
32, sin

2 θ23, δCP ). Any inconsistency among these measurements would

indicate new physics such as unitarity violation in the three-flavor mixing, sterile neutrinos,

non-standard interactions, or CPT violation. With measurements at the near detectors,

one could search for, for example, sterile neutrinos introduced to account for the LSND[26]

or reactor anomalies[27], non-standard interactions in neutrino production or interaction,

heavy sterile neutrino decay, and neutrino magnetic moments larger than the standard

model prediction. Sidereal time dependence of the event rate either at the near detector

or Super-K can be used to search for Lorentz violation[28].

Since neutrino mass likely originates from physics at very high energy scales (&

1014 GeV), new physics at these energy scales could produce effects of comparable size

to neutrino oscillation. Redundant and precise measurements of neutrino oscillation are

equally compelling and complementary to precision searches at colliders for new physics

at the TeV scale.



V. SUMMARY

The prospect of the accelerator intensity and beamline upgrades togehter with analysis

improvements are discussed based on the running experience. The extended running of

the T2K experiment from 7.8 × 1021 protons-on-target to 20 × 1021 protons-on-target

enables exploration of CP violation in a wide range of δCP with 99%C.L., to reach 3σ or

higher sensitivity for the case of maximum CP violation, to precisely determine oscillation

parameters, and to search for possible new physics. This program would occur before

the next generation of long-baseline neutrino oscillation experiments that are expected to

start operation in 2026.
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