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Abstract
Virtual Machines (VMs) with Just-In-Time (JIT) compilers
are traditionally thought to execute programs in two phases:
first the warmup phase determines which parts of a pro-
gram would most benefit from dynamic compilation and JIT
compiles them into machine code; after compilation has oc-
curred, the program is said to be at peak performance. When
measuring the performance of JIT compiling VMs, data col-
lected during the warmup phase is generally discarded, plac-
ing the focus on peak performance. In this paper we first run
a number of small, deterministic benchmarks on a variety of
well known VMs, before introducing a rigorous statistical
model for determining when warmup has occurred. Across
3 benchmarking machines only 43.3–56.5% of (VM, bench-
mark) pairs conform to the traditional view of warmup and
none of the VMs consistently warms up.

1. Introduction
Many modern languages are implemented as Virtual Ma-
chines (VMs) which use a Just-In-Time (JIT) compiler to
translate ‘hot’ parts of a program into efficient machine code
at run-time. Since it takes time to determine which parts of
the program are hot, and then compile them, programs which
are JIT compiled are said to be subject to a warmup phase.
The traditional view of JIT compiled VMs is that program
execution is slow during the warmup phase, and fast after-
wards, when a steady state of peak performance is said to
have been reached (see Figure 1 for a simplified view of
this). This traditional view underlies most benchmarking of
JIT compiled VMs, which usually require running bench-
marks several times within a single VM process, discarding
any timing data collected before warmup is complete, and
reporting only peak performance figures.

The fundamental aim of this paper is to test the follow-
ing hypothesis, which captures a constrained notion of the
traditional view of warmup:
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Figure 1: The traditional view of warmup: a program starts
slowly executing in an interpreter; once hot parts of the pro-
gram are identified, they are translated by the JIT compiler
to machine code; at this point warmup is said to have com-
pleted, and a steady state of peak performance reached.

H1 Small, deterministic programs exhibit traditional warmup
behaviour.

We present a carefully designed experiment where a number
of simple benchmarks are run on seven VMs and GCC
for a large number of in-process iterations and repeated
using fresh process executions (i.e. each process execution
runs multiple in-process iterations). We also introduce the
first automated approach to determining when warmup has
completed, based on statistical changepoint analysis.

While our results show that some benchmarks on some
VMs run as per the traditional view, many surprising cases
exist: some benchmarks slowdown rather than warmup;
some never hit a steady state; and some perform very differ-
ently over different process executions. Of the seven VMs
we looked at, none consistently warms up.

Our results clearly invalidate Hypothesis H1, showing
that the traditional view of warmup is no longer valid (and,
perhaps, that it may not have held in the past). This is of
importance to both VM developers and users: much prior
VM benchmarking is likely to be partly misleading: and it
is likely to have allowed some ineffective, and perhaps some
deleterious, optimisations to be included in production VMs.

In order to test Hypothesis H1, we first present a carefully
designed experiment (Section 3). We then introduce a new
statistical method for automatically classifying benchmarks’
warmup style, and present steady-state in-process iteration
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times (when possible) based upon the classifications (Sec-
tion 4). After presenting the results from our main experi-
ment (Section 5), we run a smaller experiment to understand
whether JIT compilation and Garbage Collection (GC) are
responsible for unusual warmup patterns (Section 5.3). As a
useful side bonus of our main experiment, we present data
for VM startup time: how long it takes until a VM can start
executing any user code (Section 6).

We present supporting material in the Appendix: we show
that our statistical method can be applied to the DaCapo
and Octane benchmark suites, both run in a conventional
manner (Appendix A); and we present a curated series of
plots of interesting data (Appendix C). A separate document
contains the complete plots of all data from all machines.

The repeatable experiment we designed, as well as the
specific results used in this paper, can be downloaded from:

Blinded for submission

2. Background
Figure 1 shows the traditional view of warmup. When a
program begins running on a JIT compiled VM, it is typ-
ically (slowly) interpreted; once ‘hot’ (i.e. frequently exe-
cuted) loops or methods are identified, they are dynamically
compiled into machine code; and subsequent executions of
those loops or methods use (fast) machine code rather than
the (slow) interpreter. Once machine code generation has
completed, the VM is said to have finished warming up, and
the program to be executing at a steady state of peak perfor-
mance.1 While the length of the warmup period is dependent
on the program and JIT compiler, all JIT compiling VMs as-
sume this performance model holds true [12].

Benchmarking of JIT compiled VMs typically focusses
on peak performance, partly due to an assumption that
warmup is both fast and inconsequential to users. The
methodologies used are typically straightforward: bench-
marks are run for a number of in-process iterations within
a single VM process execution. The first n in-process itera-
tions (typically a small value such as 5) are then discarded,
on the basis that warmup should have completed in that pe-
riod, whether or not it has actually done so.

A more sophisticated VM benchmarking methodology
was developed by Kalibera & Jones [11, 12]. After a specific
VM / benchmark combination has been run for a small
number of process executions, a human must determine at
which in-process iteration warmup has occurred. A larger
number of VM process executions are then run, and the
previously determined cut-off point applied to each process’s
iterations. The Kalibera & Jones methodology observes that
some benchmarks do not obviously warm up; and that others

1 The traditional view applies equally to VMs that perform immediate
compilation instead of using an interpreter, and to those VMs which have
more than one layer of JIT compilation (later JIT compilation is used for
‘very hot’ portions of a program, trading slower compilation time for better
machine code generation).

follow cyclic patterns post-warmup (e.g. in-process iteration
m is slow, m + 1 is fast, for all even values of m > n). In
the latter case, the Kalibera & Jones methodology requires
a consistent in-process iteration in the cycle (ideally the first
post-warmup iteration) be picked for all process executions,
and used for statistical analysis.

Despite its many advances, the Kalibera & Jones method-
ology’s reliance on human expertise means that it cannot
provide a fully repeatable way of determining when warmup
has completed. Because of this “determining when a system
has warmed up, or even providing a rigorous definition of
the term, is an open research problem” [17].

3. Methodology
To test Hypothesis H1, we designed an experiment which
uses a suite of micro-benchmarks: each is run with 2000 in-
process iterations and repeated using 10 process executions.
We have carefully designed our experiment to be repeatable
and to control as many potentially confounding variables
as is practical. In this section we detail: the benchmarks
we used and the modifications we applied; the VMs we
benchmarked; the machines we used for benchmarking; and
the Krun system we developed to run benchmarks.

3.1 The Micro-benchmarks
The micro-benchmarks we use are as follows: binary trees,
spectralnorm, n-body, fasta, and fannkuch redux from the
Computer Language Benchmarks Game (CLBG) [3]; and
Richards. Readers can be forgiven for initial scepticism
about this set of micro-benchmarks. They are small and
widely used by VM authors as optimisation targets. In gen-
eral they are more effectively optimised by VMs than av-
erage programs; when used as a proxy for other types of
programs (e.g. large programs), they tend to overstate the ef-
fectiveness of VM optimisations (see e.g. [16]). In our con-
text, this weakness is in fact a strength: small, deterministic,
and widely examined programs are our most reliable means
of testing Hypothesis H1. Put another way, if we were to run
arbitrary programs and find unusual warmup behaviour, a
VM author might reasonably counter that “you have found
the one program that exhibits unusual warmup behaviour”.

For each benchmark, we provide versions in C, Java,
JavaScript, Python, Lua, PHP, and Ruby. Since most of these
benchmarks have multiple implementations in any given lan-
guage, we picked the versions used in [6], which represented
the fastest performers at the point of that publication. We
lightly modified the benchmarks to integrate with our bench-
mark runner (see Section 3.5). For the avoidance of doubt we
did not interfere with any VM’s GC (e.g. we did not force a
collection after each iteration).

3.1.1 Ensuring Determinism
User programs that are deliberately non-deterministic pro-
grams are unlikely to warm-up in the traditional fashion. We
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therefore wish to guarantee that our benchmarks are, to the
extent controllable by the user, deterministic: that they take
the same path through the Control Flow Graph (CFG) on all
process executions and in-process iterations.2

To check whether the benchmarks were deterministic at
the user-level, we created versions with print statements
at all possible points of CFG divergence (e.g. if statements’
true and false branches). These versions are available in our
experimental suite. We first ran the modified benchmarks
with 2 process executions and 20 in-process iterations, and
compared the outputs of the two processes. This was enough
to show that the fasta benchmark was non-deterministic in
all language variants, due to its random number generator
not being reseeded. We fixed this by moving the random seed
initialisation to the start of the in-process iteration main loop.

In order to understand the effects of compilation non-
determinism, we then compiled VMs and ran our modified
benchmarks on two different machines. We then observed
occasional non-determinism in Java benchmarks. This was
due to the extra class we had added to each benchmark to
interface between it and the benchmark runner: sometimes,
the main benchmark class was lazily loaded after benchmark
timing had started in a way that we could observe. We solved
this by adding an empty static method to each benchmark,
which our extra classes then call via a static initialiser, guar-
anteeing that the main benchmark class is eagerly loaded.
Note that we do not attempt to eagerly load other classes:
lazy loading is an inherent part of the JVM specification,
and part of what we need to measure.

3.2 Measuring Computation and Not File Performance
By their very nature, micro-benchmarks tend to perform
computations which can be easily optimised away. While
this speaks well of optimising compilers, benchmarks whose
computations are entirely removed are rarely useful [17]. To
prevent optimisers removing such code, many benchmarks
write intermediate and final results to stdout. However,
this then means that one starts including the performance
of file routines in libraries and the kernel in measurements,
which can become a significant part of the eventual measure.

To avoid this, we modified the benchmarks to calculate
a checksum during each in-process iteration. At the end of
each in-process iteration the checksum is compared to a pre-
determined value; if the comparison fails then the incorrect
checksum is written to stdout. Using this idiom means
that optimisers can’t remove the main benchmark code even
though no output is produced. We also use this mechanism to
give some assurance that each language variant is perform-
ing the same work, as we use a single checksum value for
each benchmark, irrespective of language.

2 Note that non-determinism beyond that controllable by the user (i.e. non-
determinism in low-level parts of the VM) is part of what we need to test
for Hypothesis H1.

3.3 VMs under investigation
We ran the benchmarks on the following language imple-
mentations: GCC 4.9.3; Graal #9405be47 (an alternative
JIT compiler for HotSpot); HHVM 3.14.0 (a JIT compiling
VM for PHP); JRuby+Truffle #170c9ae6; HotSpot 8u72b15
(the most widely used Java VM); LuaJIT 2.0.4 (a tracing
JIT compiling VM for Lua); PyPy 5.3.0 (a meta-tracing
JIT compiling VM for Python 2.7); and V8 5.1.281.65 (a
JIT compiling VM for JavaScript). A repeatable build script
downloads, patches, and builds fixed versions of each VM.
All VMs were compiled with GCC/G++ 4.9.3 (and GC-
C/G++ bootstraps itself, so that the version we use compiled
itself) to remove the possibility of variance through the use
of different compilers.

On OpenBSD, we skip Graal, HHVM, and JRuby+Truffle,
which have not yet been ported to it. We skip fasta on
JRuby+Truffle as it crashes; and we skip Richards on HHVM
since it takes as long as every other benchmark on every
other VM put together.

3.4 Benchmarking Hardware
With regards to hardware and operating systems, we made
the following hypothesis:

H2 Moderately different hardware and operating systems
have little effect on warmup.

We deliberately use the word ‘moderately’, since significant
changes of hardware (e.g. x86 vs. ARM) or operating system
(e.g. Linux vs. Windows) imply that significantly different
parts of the VMs will be used (see Section 7).

In order to test Hypothesis H2, we used three benchmark-
ing machines: Linux4790K, a quad-core i7-4790K 4GHz,
24GB of RAM, running Debian 8; Linux4790, a quad-core
i7-4790 3.6GHz, 32GB of RAM, running Debian 8; and
OpenBSD4790, a quad-core i7-4790 3.6GHz, 32GB of RAM,
running OpenBSD 5.8. Linux4790K and Linux4790 have the
same OS (with the same updates etc.) but different hardware;
Linux4790 and OpenBSD4790 have the same hardware (to the
extent we can determine) but different operating systems.

We disabled turbo boost and hyper-threading in the BIOS.
Turbo boost allows CPUs to temporarily run in an higher-
performance mode; if the CPU deems it ineffective, or if its
safe limits (e.g. temperature) are exceeded, turbo boost is re-
duced [7]. Turbo boost can thus substantially change one’s
perception of performance. Hyper-threading gives the illu-
sion that a single physical core is in fact two logical cores,
inter-leaving the execution of multiple programs or threads
on a single physical core, leading to a less predictable per-
formance pattern than on physical cores alone.

3.5 Krun
Many confounding variables occur shortly before, and dur-
ing the running of, benchmarks. In order to control as many
of these as possible, we wrote Krun, a new benchmark run-
ner. Krun itself is a ‘supervisor’ which, given a configuration
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file specifying VMs, benchmarks (etc.) configures a Linux
or OpenBSD system, runs benchmarks, and collects the re-
sults. Individual VMs and benchmarks are then wrapped, or
altered, to report data back to Krun in an appropriate format.

In the remainder of this subsection, we describe Krun.
Since most of Krun’s controls work identically on Linux and
OpenBSD, we start with those, before detailing the differ-
ences imposed by the two operating systems. We then de-
scribe how Krun collects data from benchmarks. Note that,
although Krun has various ‘developer’ flags to aid develop-
ment and debugging benchmarking suites, we describe only
Krun’s full ‘production’ mode.

3.5.1 Platform Independent Controls
A typical problem with benchmarking is that earlier process
executions can affect later ones (e.g. a benchmark which
forces memory to swap will make later benchmarks seem to
run slower). Therefore, before each process execution (in-
cluding before the first), Krun reboots the system, ensur-
ing that the benchmark runs with the machine in a (largely)
known state. After each reboot, Krun is executed by the init
subsystem; Krun then pauses for 3 minutes to allow the sys-
tem to fully initialise; calls sync (to flush any remaining
files to disk) followed by a 30 second wait; before finally
running the next process execution.

The obvious way for Krun to determine which benchmark
to run next is to examine its results file. However, this is
a large file which grows over time, and reading it in could
affect benchmarks (e.g. due to significant memory fragmen-
tation). On its initial invocation, and before the first reboot,
Krun therefore creates a simple schedule file. After each re-
boot this is scanned line-by-line for the next benchmark to
run; the benchmark is run; and the schedule updated (with-
out changing its size). Once the process execution is com-
plete, Krun can safely load the results file in and append the
results data, knowing that the reboot that will occur shortly
after will put the machine into a (largely) known state.

Modern systems have various temperature-based limiters
built in: CPUs, for example, lower their frequency if they get
too hot. After its initial invocation, Krun waits for 1 minute
before collecting the values of all available temperature sen-
sors. After each reboot’s sync-wait, Krun waits for the ma-
chine to return to these base temperatures (±3◦C) before
starting the benchmark, fatally aborting if this temperature
range is not met within 1 hour. In so doing, we aim to lessen
the impact of ambient temperature changes.

Krun fixes the heap and stack ulimit for all VM pro-
cess executions (in our case, 2GiB heap and a 8MiB stack).3

Benchmarks are run as the ‘krun’ user, whose account and
home directory are created afresh before each process exe-
cution to prevent cached files affecting benchmarking.

3 Note that Linux allows users to inspect these values, but to allocate
memory beyond them.

User-configurable commands can be run before and af-
ter benchmark execution. In our experiment, we switch off
as many Unix daemons as possible (e.g. smtpd, crond) to
lessen the effects of context switching to other processes. We
also turn off network interfaces entirely, to prevent outside
sources causing unbounded (potentially performance inter-
fering) interrupts to be sent to the processor and kernel.

In order to identify problems with the machine itself,
Krun monitors the system’s dmesg buffer for unexpected
entries (known ‘safe’ entries are ignored), informing the user
if any arise. We implemented this after noticing that one
machine initially ear-marked for benchmarking occasionally
overheated, with the only clue to this being a line in dmesg.
We did not use this machine for our final benchmarking.

A process’s environment size can cause measurement
bias [15]. The diversity of VMs and platforms in our setup
makes it impossible to set a unified environment size across
all VMs and benchmarks. However, the krun user does
not vary its environment (we recorded the environment seen
by each process execution and verified their size), and we
designed the experiment such that, for a particular (machine,
VM, benchmark) triple the additional environment used to
configure the VM is of constant size.

3.5.2 Linux-specific Controls
On Linux, Krun controls several additional factors, some-
times by checking that the user has correctly set controls
which can only be set manually.

Krun uses cpufreq-set to set the CPU governor to
performance mode (i.e. the highest non-overclocked fre-
quency possible). To prevent the kernel overriding this set-
ting, Krun verifies that the user has disabled Intel P-state
support in the kernel by passing intel pstate=disable
as a kernel argument.

As standard, Linux interrupts (‘ticks’) each core CONFIG-
HZ times per second (usually 250) to decide whether to

perform a context switch. To avoid these repeated inter-
ruptions, Krun checks that it is running on a ‘tickless’
kernel [2], which requires recompiling the kernel with the
CONFIG NO HZ FULL ALL option set. Whilst the boot
core still ‘ticks’, other cores only ‘tick’ if more than one
runnable process is scheduled.

Similarly, Linux’s perf profiler may interrupt cores up
to 100,000 times a second. We became aware of perf when
Krun’s dmesg checks notified us that the kernel had de-
creased the sample-rate by 50% due to excessive sampling
overhead. This is troubling from a benchmarking perspec-
tive, as the change of sample rate could change benchmark
performance mid-process execution. Although perf cannot
be completely disabled, Krun sets it to sample at most once
per second, minimising interruptions.

Finally, Krun disables Address Space Layout Randomisa-
tion (ASLR). While ASLR is a sensible security precaution
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for everyday use, it introduces obvious non-determinism be-
tween process executions.4

3.5.3 OpenBSD-specific Controls
Relative to Linux, OpenBSD exposes many fewer knobs to
users. Nevertheless, there are two OpenBSD specific fea-
tures in Krun. First, Krun sets CPU performance to max-
imum by invoking apm -H prior to running benchmarks
(equivalent to Linux’s performance mode). Second,
Krun minimises the non-determinism in OpenBSD’s mal-
loc implementation, for example not requiring realloc to
always reallocate memory to an entirely new location. The
malloc.conf flags we use are sfghjpru.

3.5.4 The Iterations Runners
To report timing data to Krun, we created an iterations run-
ner for each language under investigation. These take the
name of a specific benchmark and the desired number of
in-process iterations, run the benchmark appropriately, and
once it has completed, print the times to stdout for Krun to
capture. For each in-process iteration we measure (on Linux
and OpenBSD) the wall-clock time taken, and (Linux only)
core cycle, APERF, and MPERF counters.

We use a monotonic wall-clock timer with sub-millisec-
ond accuracy (CLOCK MONOTONIC RAW on Linux, and
CLOCK MONOTONIC on OpenBSD). Although wall-clock
time is the only measure which really matters to users, it
gives no insight into multi-threaded computations: we there-
fore also record core cycle counts using the CPU CLK-
UNHALTED.CORE counter to see what work each core

is actually doing. In contrast, we use the ratio of APER-
F/MPERF deltas solely as a safety check that our wall-
clock times are valid. The IA32 APERF counter incre-
ments at a fixed frequency for each instruction executed;
the IA32 MPERF counter increments at a rate proportional
to the processor’s current frequency. With an APERF/M-
PERF ratio of precisely 1, the processor is running at full
speed; below 1 it is in a power-saving mode; and above 1,
turbo boost is being used.

A deliberate design goal of the in-process iterations run-
ners is to minimise timing noise and distortion from mea-
surements. Since system calls can have a significant over-
head (on Linux, calling functions such as write can evict
as much as two thirds of an x86’s L1 cache [18]), we avoid
making any system calls other than those required to take
measurements. We avoid in-benchmark I/O and memory al-
location by storing measurements in a pre-allocated buffer
and only writing measurements to stdout after all in-
process iterations have completed (see Listing 2 for an ex-
ample). However, the situation on Linux is complicated by
our need to read core cycle and APERF/MPERF counts from

4 The Stabilizer system [8] is an intriguing approach for obtaining reliable
statistics in the face of features such as ASLR. Unfortunately we were not
able to build it on a modern Linux system.

void krun_measure(int mdata_idx) {
struct krun_data *data = &(krun_mdata[mdata_idx]);
if (mdata_idx == 0) { // start benchmark readings
for (int core = 0; core < num_cores; core++) {
data->aperf[core] = read_aperf(core);
data->mperf[core] = read_mperf(core);
data->core_cycles[core] = read_core_cycles(core);

}
data->wallclock = krun_clock_gettime_monotonic();

} else { // end benchmark readings
data->wallclock = krun_clock_gettime_monotonic();
for (int core = 0; core < num_cores; core++) {
data->core_cycles[core] = read_core_cycles(core);
data->aperf[core] = read_aperf(core);
data->mperf[core] = read_mperf(core);

}
}

}

Listing 1: krun measure: Measuring before (the if’s true
branch) and after (its false branch) a benchmark. Since wall-
clock time is the most important measure, it is innermost;
since the APERF/MPERF counters are a sanity check, they
are outermost. Note that the APERF/MPERF counters must
be read in the same order before and after a benchmark.

wallclock_times = [0] * iters
for i in xrange(iters):

krun_measure(0) # Start timed section
bench_func(param) # Call the benchmark
krun_measure(1) # End timed section
wallclock_times[i] = \

krun_get_wallclock(1) - krun_get_wallclock(0)
js = { "wallclock_times": wallclock_times }
sys.stdout.write("%s\n" % json.dumps(js))

Listing 2: An elided version of the Python in-process
iterations runner (with core cycles etc. removed).

Model Specific Register (MSR) file device nodes,5 which are
relatively slow (see Section 7). Since wall-clock time is the
most important measure, we ensure that it is the innermost
measure taken (i.e. to the extent we control, it does not in-
clude the time taken to read core cycle or APERF/MPERF
counts) as shown in Listing 1.

The need to carefully sequence the measurements means
that we cannot rely on user-level libraries: not all of the
VMs in our experiment give us access to the appropriate
monotonic timer. We therefore implemented a small C li-
brary (libkruntime.so) which exposes these measures
(see Listing 1 for an example). When possible (all VMs apart
from JRuby+Truffle, HHVM and V8), we used a language’s
FFI to dynamically load this library in; in the remaining
cases, we linked the library directly against the VM, which
then required us to add user-language visible functions to
access them. Core-cycle, APERF, and MPERF counts are
64-bit unsigned integers; since JavaScript and current ver-
sions of LuaJIT do not support integers, and since PHP’s
maximum integer size varies across OS and PHP versions,
we convert the 64-bit unsigned measurements to double-

5 We forked, and slightly modified, Linux’s msr device driver to allow us
to easily access the MSRs as a non-root user.
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precision floating point values in those VMs, throwing an
error if this leads to a loss of precision.

4. Classifying Warmup
The main data created by our experiment is the time taken by
each in-process iteration to run. Formally, this is time series
data of length 2000. In this Section we explain how we use
statistical changepoint analysis to enable us to understand
this time series data and classify the results we see, giving
the first automated method for identifying warmup.

4.1 Outliers
As is common with analyses of time series data, we first
identify outliers (i.e. in-process iterations with much larg-
er/smaller times than their near neighbours) so that our later
analysis can ignore them. In our case, the intuition is that
such outliers are likely to be the result of JIT compilation,
GC, or of other processes interrupting benchmarks. We use
Tukey’s method [19], conservatively defining an outlier as
one that, within a sliding window of 200 in-process itera-
tions, lies outside the median ±3 ∗ (90%ile − 10%ile). In
order that we avoid classifying slow warm-up iterations at
the start of an execution as outliers (when they are in fact
likely to be important warmup data), we ignore the first 200
in-process iterations. Of the 2440000 in-process iterations,
0.4% are classified as outliers, with the most for any single
process execution being 15.0% of in-process iterations.

4.2 Changepoint Analysis
Intuitively, in order to uncover if/when warmup has com-
pleted, we need to determine when the times taken by in-
process iterations have become faster within a process exe-
cution. Put another way, we expect to see a number of in-
process executions taking time t to be followed by a num-
ber at time t′. In order to automatically determine when this
occurs, we use statistical changepoint analysis (see [9] for
an introduction). Formally, a changepoint is a point in time
where the statistical properties of prior data are different to
the statistical properties of subsequent data; the data between
two changepoints is a changepoint segment. There are var-
ious ways that one can determine when a changepoint has
occurred, but the best fit for our data is to consider changes
in both the mean and variance of in-process iterations.

In order to automate this, we use the cpt.meanvar
function in the R changepoint package [13], passing
15 log n (where n is the time series length minus the number
of outliers) to the penalty argument. This function uses
the PELT algorithm [14], which can detect arbitrary numbers
of changepoints; it returns changepoint locations and the
mean and variance of each segment. For the particular, some-
what noisy, data we obtain, the algorithm is slightly over-
sensitive to changes in the variance, particularly for very
fast in-process iterations. Although we use a microsecond
timer, our experience is that time deltas under 0.001s are at

Figure 2: An example of changepoint analysis on a run-
sequence plot (a process execution of Richards on HotSpot
from OpenBSD4790). This shows two changepoints (the ver-
tical red lines): one soon after startup; and another around
iteration 200. The horizontal red lines are the means of the
changepoint segments. The red blob denotes a solitary out-
lier, which was discounted by the changepoint analysis.

the mercy of the non-determinism inherent in a real machine
and OS. We therefore merge consecutive sequences of seg-
ments (from left-to-right) whose confidence intervals (cal-
culated using the inter-quartile range) overlap, and/or whose
means are within 0.001s of each other. Figure 2 shows an
example of a run-sequence plot with outliers, changepoints,
and changepoint segments superimposed upon it.

4.3 Classifications
Building atop changepoint analysis, we can then define use-
ful classifications of time-series data from VM benchmarks.

First, we define classifications for individual process exe-
cutions. A process execution with no changepoints is clas-
sified as flat ( ). Since all our benchmarks run for 2000
in-process iterations we (somewhat arbitrarily) define that
a process execution reaches a steady-state if the last 500
in-process iterations are part of a single changepoint seg-
ment. A process execution with a changepoint in its last 500
in-process iterations is classified as no steady state ( ). A
steady-state process execution whose final segment: is the
fastest execution time of all segments is classified as warmup
( ); is not the fastest execution time of all segments is clas-
sified as slowdown ( ).

Second, we define classifications for a (VM, benchmark)
pair as follows: if its process executions all share the same
classification (e.g. warmup) then we classify the pair the
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Class. Linux4790K Linux4790 OpenBSD4790

(VM, benchmark) pairs
21.7% 26.1% 23.3%
28.3% 30.4% 20.0%
8.7% 8.7% 6.7%
4.3% 2.2% 0.0%
37.0% 32.6% 50.0%

Process executions
29.6% 29.6% 45.0%
45.9% 42.6% 37.7%
16.7% 19.1% 15.7%
7.8% 8.7% 1.7%

Table 1: Relative proportions of classifiers across bench-
marking machines. Classifiers key: : flat, : warmup, :
slowdown, : no steady state, : inconsistent.

same way (in this example, warmup); otherwise we classify
the pair as inconsistent ( ).

Informally, we suggest that benchmarks whose behaviour
is either flat or warmup are ‘good’ (flat benchmarks may
be unobservably fast warmup), while benchmarks which are
either slowdown or no steady state are ‘bad’. Inconsistent
benchmarks are sometimes easily judged through the clas-
sification of their process executions, which we report in
brackets. A benchmark which is (6 , 4 ) (i.e. inconsis-
tent, with 6 process executions classified as slowdown, 4 as
no steady state) is clearly ‘bad’. However, there are some
more subjective cases. For example, consider a benchmark
which is (8 , 2 ). Manual investigation of the individual
process execution’s data may show that there is consider-
able difference between the warmup and flat process execu-
tions and that it is clearly ‘bad’. However, if the warmups
are small in magnitude (and thus are not far from being clas-
sified as flat) some may consider it ‘good’ whilst some will
consider it ‘neutral’, on the basis that they should all be con-
sistent. To avoid such subjectivity, we consider inconsistent
benchmarks to be either (obviously) ‘bad’ or ‘neutral’.

4.4 Timings
For benchmarks which reach a steady state ( , , or ) we
report the number of iterations and the time in seconds to
reach the steady state, as well as the performance of the
steady state itself in seconds (defined as the final change-
point segment’s mean). For the latter two measures, we re-
port the median time over all 10 process executions, and re-
port 99% confidence intervals (bootstrapped with 10000 it-
erations, sampling with replacement).

5. Results
Our experiment consists of 1220 process executions and
2440000 in-process iterations. Table 1 summarises the (VM,

benchmark) pairs and process executions for each bench-
marking machine. Taking Linux4790K as a representative
example, 50.0% of (VM, benchmark) pairs and 75.5% of
process executions have ‘good’ warmup ( , ) (for com-
parison, Linux4790 is 56.5% and 72.2% respectively and
OpenBSD4790 is 43.3% and 82.7% respectively, though
the latter runs fewer benchmarks). Fewer (VM, bench-
mark) pairs than process executions have ‘good’ warmup be-
cause some inconsistent (VM, benchmark) pairs have some
‘good’ warmup process executions. On Linux4790K 8.7% of
(VM, benchmark) pairs slowdown and 37.0% are inconsis-
tent (with over two thirds of those being obviously ‘bad’);
Linux4790 and OpenBSD4790 are broadly similar. Taking
Linux4790K as an example, one third of its (VM, benchmark)
pairs are ‘bad’, clearly invalidating Hypothesis H1.

Table 1 clearly shows that the results from Linux4790K
and Linux4790 (both running Linux but on moderately dif-
ferent hardware) are comparable, with the relative pro-
portions of all measures being only a few percent differ-
ent. OpenBSD4790 (running OpenBSD, but on the same
hardware as Linux4790K) is somewhat different. This is in
large part because it is unable to run benchmarks on Graal,
HHVM, and JRuby+Truffle (see Section 3.3): of the bench-
marks it can run, most behave similarly, with the notable
exception of LuaJIT, whose benchmarks are more often clas-
sified as non-flat (see Table 7 in the Appendix). With that in
mind, we believe that our results are a fairly clear validation
of Hypothesis H2.

Looking at one machine’s data brings out further detail.
For example, Table 2 (with data from Linux4790K) enables to
make us several observations. Of the 6 benchmarks, only n-
body comes close to ‘good’ warmup behaviour on all VMs
on all machines (the one C slowdown excepted): the other
5 benchmarks all have at least one VM which consistently
slows down. Second, there appears to be a bimodal pattern
for the number of in-process iterations required to reach a
steady state (when it exists): VMs tend either to reach it very
quickly (often in 10 or fewer in-process iterations) or take
hundreds of in-process iterations. Those that take a long time
to stabilise are troubling, because previous benchmarking
methodologies will not have run them long enough to see
this steady state emerge. Finally, there seems to be very little
correlation between the time it takes a VM to reach a steady
state and the performance of that steady state: i.e. it does
not seem to be the case that VMs which take a long time to
warmup are creating more efficient steady-state code.

5.1 Warmup Plots
To understand why we see so many unexpected cases, we
created a series of plots for process executions. All plots
have in-process iteration number on the x-axis. For y-axes:
run-sequence plots show wall-clock time; and (on Linux)
core-cycle plots show the processor cycle count per-core.
The run-sequence and core-cycle plots in Figures 3, 6, and
4 show examples of traditional warmup, slowdown, and no
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Steady Steady Steady Steady Steady Steady
Class. iter (#) iter (s) perf (s) Class. iter (#) iter (s) perf (s)

C

bi
na

ry
tr

ee
s

n-
bo

dy

(9 , 1 )

Graal 12
±5

2.78
±1.047

0.17329
±0.001097

4
±0

0.75
±0.036

0.15095
±0.000003

HHVM 73
±11

151.71
±24.233

2.06641
±0.002518

132
±0

905.10
±2.404

2.71942
±0.000306

HotSpot 6
±7

1.12
±1.296

0.17220
±0.000601

1
±0

0.16
±0.000

0.15616
±0.000007

JRuby+Truffle (7 , 3 ) 68
±0

19.93
±0.161

0.23255
±0.000603

LuaJIT (5 , 4 , 1 ) 0.26651
±0.000046

PyPy (6 , 4 ) 1.63684
±0.000594

V8 (9 , 1 ) 366
±12

92.20
±3.156

0.25066
±0.000049

C

fa
nn

ku
ch

re
du

x

0.37885
±0.000073

R
ic

ha
rd

s

0.68768
±0.000340

Graal (9 , 1 ) (7 , 2 , 1 )

HHVM 9
±0

39.64
±0.003

1.32396
±0.000415

HotSpot (9 , 1 ) 201
±1

46.25
±1.040

0.24374
±0.003678

JRuby+Truffle 998
±0

928.46
±6.095

1.05923
±0.009511

(7 , 3 )

LuaJIT 0.50777
±0.000048

2.60442
±0.000459

PyPy (8 , 2 ) 3
±4

2.88
±3.712

0.88289
±0.000215

V8 0.27360
±0.000030

(5 , 5 )

C

fa
st

a

0.06649
±0.000040

sp
ec

tr
al

no
rm
(7 , 3 )

Graal 3
±1

0.62
±0.221

0.13348
±0.000214

13
±0

6.08
±0.247

0.93004
±0.000024

HHVM (9 , 1 ) 355
±402

596.22
±579.975

1.48467
±0.000291

HotSpot (9 , 1 ) (8 , 2 )

JRuby+Truffle (7 , 3 )

LuaJIT 0.29931
±0.000750

0.42033
±0.000026

PyPy (9 , 1 )

V8 523
±0

533.02
±0.106

1.03610
±0.000318

2
±0

0.84
±0.000

0.42035
±0.000013

Table 2: Benchmark results for Linux4790K. For processes which reach a steady state: steady iter (#) is the median in-process
iteration that the steady state was reached at; steady iter (s) is the wall-clock time since the beginning of the process execution
that the steady state was reached; steady perf (s) is the median performance of the steady state segment across all process
executions. We give the constituent classifications of inconsistent benchmarks e.g. (2 , 8 ) means 2 of the process executions
were slowdown, and 8 warmup.

steady state respectively. Figure 5 shows an example of
inconsistent process executions.

Core-cycle plots help us understand how VMs use, and
how the OS schedules, threads. Benchmarks running on
single-threaded VMs are characterised by a high cycle-count
on one core, and very low (though never quite zero) values
on all other cores. Such VMs may still be migrated between
cores during a process execution, as can be clearly seen in
Figure 4. Although multi-threaded VMs can run JIT compi-
lation and / or GC in parallel, it is typically hard to visually
detect such parallelism as it tends to be accompanied by fre-
quent migration between cores. However, it can often easily

be seen that several cores are active during the first few in-
process iterations whilst JIT compilation occurs.

5.2 Cyclic data
We suspected that enough benchmarks would exhibit cyclic
behaviour (as seen in Figure 7) to require special support
in our automated analysis. To quantify this, we took one
process execution from each benchmark run on Linux4790K,
removed the first 1500 in-process iterations, and generated
an autocorrelation plot for the remainder (in similar fashion
to Kalibera & Jones). 4 (VM, benchmark) pairs showed what
we have come to call ‘fully cyclic’ behaviour, where all in-
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Figure 3: An example of traditional warmup behaviour with
the n-body benchmark on HHVM (process execution 4 of 10
run on Linux4790K). The run-sequence plot (bottom) shows
that warmup completed by in-process iteration #134. The
core-cycle plot (top) shows that the main benchmark com-
putation occurred almost entirely on core 1: cores 0, 2 and 3
Cycle Counts (CC) were low enough for us to classify them
as ‘inactive’, and we have thus elided them.

process iterations repeat in a predictable pattern; 8 showed
‘partially cyclic’ behaviour, where most iterations are noise
around a mean, but every n iterations there is a predictable
and significant peak (with n varying from 5 to 19).

For partially cyclic data, or fully cyclic data with a large
period (as in Figure 7), our automated analysis handles the
situation appropriately (classifying Figure 7 as no steady
state). However, changepoint analysis cannot currently iden-
tify small cycle periods in fully cyclic data. Since this only
happens for 2 of 47 (VM, benchmark) pairs, both of which
have a small absolute difference between the cycle’s ele-
ments, we consider this a minor worry.

5.3 The Effects of Compilation and GC
The large number of non-warmup cases in our data led us to
make the following hypothesis:

H3 Non-warmup process executions are largely due to JIT
compilation or GC events.

To test this hypothesis, we made use of the fact that both
HotSpot and PyPy allow information about the duration of
JIT compilation and GC to be recorded. Since recording
this additional data could potentially change the results we
collect, it is only collected when Krun is explicitly set to
‘instrumentation mode’. An example instrumentation-plot
can be seen in the slowdown of Figure 6 where there is a
clear correlation (though we cannot be entirely sure that it is
a causation) between a JIT compilation and the slowdown.

Figure 4: No steady state. There is a small behavioural shift
around iteration 950, where the VM migrates from (tickless)
core 1 to (ticked) core 0.

However, some other notably odd examples have no such
correlation, as can be seen in Figure 8.

The relatively few results we have with GC and JIT com-
pilation events, and the lack of a clear message from them,
means that we feel unable to validate or invalidate Hypoth-
esis H3. Whilst some non-warmups are plausibly explained
by GC or JIT compilation events, many are not, at least on
HotSpot and PyPy. When there is no clear explanation, we
have very little idea what might be the cause of the unex-
pected behaviour. It may be that obtaining similar data from
other VMs may help clarify this issue, but not all VMs sup-
port this feature and, in our experience, those that do support
it do not always document it accurately.

6. Startup Time
The data presented thus far in the paper has all been collected
after the VM has started executing the user program. The
period between a VM being initially invoked and it executing
the first line of the user program is the VM’s startup time,
and is an important component in understanding a VM’s
real-world performance.

A small modification to Krun enables us to measure
startup. We prepend each VM execution command with a
small C wrapper, which prints out wall-clock time before
immediately executing the VM itself; and, for each language
under investigation, we provide a ‘dummy’ iterations runner
which simply prints out wall-clock time. In other words, we
measure the time just before the VM is loaded and at the first
point that a user-level program can execute code on the VM;

9 2016/11/16



Figure 5: An example of inconsistent process executions for the same (machine, VM, benchmark) triple.

Figure 6: Slowdown at in-process iteration #199, with GC
and JIT measurements turned on. Although these additional
measures add overhead, in this case they make no observable
difference to the main run-sequence graph. They allow us to
observe that the slowdown is correlated with two immedi-
ately preceding JIT compilation events that may explain the
drop in performance. Note that the regular GC spikes have
only a small effect on the time of in-process iterations.

the delta between the two is the startup time. For each VM
we run 200 process executions (for startup, in-process exe-
cutions are irrelevant, as the user-level program completes
as soon as it has printed out wall-clock time).

Table 3 shows startup times from both Linux4790K and
OpenBSD4790. Since Krun reboots before each process ex-

Figure 7: Cycles in wall-clock times and core-cycle counts.

ecution, these are measures of a ‘cold’ start and thus partly
reflect disk speed etc. (though both machines load VMs from
an SSD). As this data clearly shows, startup time varies sig-
nificantly amongst VMs: taking C as a baseline, the fastest
VM (LuaJIT) is around 2x slower, whilst the slowest VM
(JRuby+Truffle) is around 1000x slower, to startup.

7. Threats to Validity
While we have designed our experiment as carefully as pos-
sible, we do not pretend to have controlled every possibly
confounding variable. It is inevitable that there are further
confounding variables that we are not aware of, some of
which may be controllable, although many may not. It is
possible that confounding variables we are not aware of have
coloured our results.

We have tried to gain a partial understanding of the ef-
fects of different hardware on benchmarks by using ma-
chines with the same OS but different hardware. However,
while the hardware between the two is different, more dis-
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Figure 8: The cyclic example from Figure 7 with GC and JIT
compilation instrumentation enabled. The additional over-
head changes some of the details in the first half of the pro-
cess execution, but the second half is unchanged. As this
example shows, the cycles are not correlated with GC (of
which there is none) or JIT compilation.

Linux4790K OpenBSD4790

C 0.00213
±0.000005

0.00110
±0.000004

Graal 0.24744
±0.000339

HHVM 0.78364
±0.001834

Hotspot 0.10655
±0.000411

0.19041
±0.000148

JRubyTruffle 2.21071
±0.007821

LuaJIT 0.00432
±0.000013

0.00673
±0.000004

PyPy 0.21710
±0.000563

0.82526
±0.000235

V8 0.03702
±0.000097

0.09607
±0.000048

Table 3: VM startup time (in seconds with 99% confidence
intervals).

tinct hardware (e.g. a non-x86 architecture) is more likely
to uncover hardware-related differences. However, hardware
cannot be varied in isolation from software: the greater the
differences in hardware, the more likely that JIT compil-
ers compilers are to use different components (e.g. different
code generators). Put another way, an apples-to-apples com-

parison across very different hardware is often impossible,
because the ‘same’ software is itself different.

We have not systematically tested whether rebuilding
VMs effects warmup, an effect noted by Kalibera & Jones,
though which seems to have little effect on the performance
of JIT compiled code [4]. However, since measuring warm-
up largely involves measuring code that was not created by
a JIT compiler, it is possible that these effects may impact
upon our experiment. To a limited extent, the rebuilding of
VMs that occurred on each of our benchmarking machines
gives some small evidence as to this effect, or lack thereof.

The checksums we added to benchmarks ensure that, at
a user-visible level, each performs equivalent work in each
language variant. However, it is impossible to say whether
each performs equivalent work at the lowest level or not.
For example, choosing to use a different data type in a lan-
guage’s core library may substantially impact performance.
There is also the perennial problem as to the degree to which
an implementation of a benchmark should respect other lan-
guage’s implementations or be idiomatic (the latter being
likely to run faster). From our perspective, this possibility is
somewhat less important, since we are more interested in the
warmup patterns of reasonable programs, whether they be
the fastest possible or not. It is however possible that by in-
serting checksums we have created unrepresentative bench-
marks, though this complaint could arguably be directed at
the unmodified benchmarks too.

Although we have minimised the number of system
calls that our in-process iterations runners make, we can-
not escape them entirely. For example, on both Linux and
OpenBSD, clock gettime() (which we use to obtain
monotonic wall-clock time) contains what is effectively a
spin-lock, meaning that there is no guarantee that it returns
within a fixed bound. In practise, clock gettime returns
far quicker than the granularity of any of our benchmarks,
so this is a minor worry at most. The situation on Linux
is complicated by our reading of core cycle, APERF, and
MPERF counters via MSR device nodes: we call lseek
and read between each in-process iteration (we keep the
files open across all in-process iterations to reduce the
open/close overhead). These calls are more involved than
clock gettime: as well as the file system overhead, read-
ing from a MSR device node triggers inter-processor inter-
rupts to schedule an RDMSR instruction on the desired core
(causing the running core to save its registers etc.). We are
not currently aware of a practical way to lower these costs.

Although Krun does as much to control CPU clock speed
as possible, modern CPUs do not always respect operating
system requests. On Linux, we use the APERF/MPERF ra-
tio to check for frequency changes. Although the hoped-for
ratio is precisely 1, there is often noticeable variation around
this value due to the cost of reading these counters. On cores
performing active computation, the error is small (around
1% in our experience), but on inactive cores it can be rela-
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tively high (10% or more is not uncommon; in artificially ex-
treme cases, we have observed up to 200%). In order to ver-
ify that there were no frequency changes during benchmark-
ing, we wrote a simple checking tool. For each in-process
iteration, it first checks the corresponding cycle-count data:
since active cores generally have cycle-counts in the billions,
we conservatively classify inactive cores as those with cycle-
counts in the low millions. Active cores are then checked
for an APERF/MPERF ratio between 1 ± 0.015. All active
cores in our experiment were within these limits, strongly
suggesting that our experiment experienced no unexpected
CPU frequency changes.

Our experiments allow the kernel to run on the same core
as benchmarking code. We experimented extensively with
CPU pinning, but eventually abandoned it. After being con-
fused by the behaviour of Linux’s isolcpus mechanism
(whose semantics changes between a normal and a real-time
kernel), we used CPU shielding (cset shield) to pin the
benchmarks to the 3 non-boot cores on our machines. How-
ever, we then observed notably worse performance for VMs
such as HotSpot. We suspect this is because such VMs query
the OS for the number of available cores and create a match-
ing number of compilation threads; by reducing the num-
ber of available cores, we accidentally forced two of these
threads to compete for a single core’s resources.

In controlling confounding variables, our benchmarking
environment necessarily deviates from standard configura-
tions. It is possible that in so doing, we have created a sys-
tem that shows warmup effects that few people will ever see
in practise. However, our judgement is that this is preferable
to running on a noisy system that is likely to introduce sub-
stantial noise into our readings.

8. Related work
There are two works we are aware of which explicitly note
unusual warmup patterns. Whilst running benchmarks on
HotSpot, Gil et al. [10] observed inconsistent process execu-
tions (e.g. recursiveErgodic), and benchmarks that we could
classify as no steady state (listBubbleSort) and slowdown
(arrayBubbleSort). By running a larger number of (some-
what larger) benchmarks on a number of VMs, and execut-
ing them in a more tightly controlled execution environment,
our results can be seen as significantly strengthening Gil
et al.’s observations. Our work also adds an automated ap-
proach to identifying when warmup has occurred. Kalibera
& Jones note the existence of what we have called cyclic be-
haviour (in the context of benchmarking, they then require
the user to manually pick one part of the cycle for measure-
ment [12]): the data from our experiment seems to be less
often cyclic, though we have no explanation for why.

9. Conclusions
Warmup has previously been an informally defined term [17]
and in this paper we have shown cases where the definition

fails to hold. Through a carefully designed experiment, and
an application of a new statistical method, we hope to have
helped give the study of warmup a firmer base.

Although we are fairly experienced in designing and im-
plementing experiments, the experiment in this paper took
far more time than we expected — about 2 full person years.
In part this is because there is limited precedent for such de-
tailed experiments. Investigating possible confounding vari-
ables, understanding how to control them, and implement-
ing the necessary checks, all took time. In many cases, we
had to implement small programs or systems to understand
a variable’s effect (e.g. that Linux allows a process to al-
locate memory beyond that specified in the soft and hard
ulimit). However, we are realistic that few people will
have the time or energy to institute all the controls that we
implemented. An open question is which of the controls are
the most significant in terms of producing a reliable experi-
ment. The large number of partly inter-locking combinations
means that we estimate that untangling this will require 3–6
months of experimental running time.

Our results have suggested to us some potentially useful
advice for VM developers and users. First, simply running
benchmarks for a larger number of in-process iterations is
a simple way of understanding a VM’s long-term perfor-
mance stability. Second, as a community, we need to accept
that a steady state of peak performance is not guaranteed to
exist. Third, the significant differences in warmup time be-
tween VMs strongly suggest that VM benchmarking should
always include warmup time. Fourth, we suspect that some
of the odd results we have seen result from over-training VM
heuristics on small sets of benchmarks. The approach taken
by the machine-learning community may apply equally well
to VMs: using a training set to devise heuristics, and then
benchmarking the resulting system(s) on a separate valida-
tion system. Fifth, we suspect that the general reliance on
small suites of benchmarks means that only small parts of
VMs are being benchmarked effectively: we are increasingly
of the opinion that benchmarking quality and quantity are
tightly related, and that VMs need more benchmarks.

Transparency: Blinded for submission.
Acknowledgements: Blinded for submission.
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In this appendix, we first show that our statistical method can
be applied to well known benchmarking suites (Appendix A)
before showing the complete warmup data from our exper-
iment (Appendix B). We then present a curated selection
of interesting run-sequence / core-cycle / APERF/MPERF
plots. The complete series of plots is available in a separate
document.

A. Applying the Statistical Method to
Existing Benchmark Suites

The statistical method presented in Section 4 is not limited to
data produced from Krun. To demonstrate this, we have ap-
plied it to two standard benchmark suites: DaCapo [5] (Java)
and Octane [1] (JavaScript). We ran both for 10 process exe-
cutions and 2000 in-process iterations without reboots, tem-
perature control etc.: DaCapo on Linux4790K; and Octane
on LinuxE3−1240v5 (a Xeon machine, with a software setup
similar to Linux4790K).6

We ran DaCapo (with its default benchmark size) on
Graal and HotSpot. As it already has support for altering the
number of in-process executions, we used it without modi-
fication. However, we were unable to run 4 of its 14 bench-
marks: batik crashes with a InvocationTarget-
Exception; eclipse, tomcat, and (intermittently)
tradesoap fail their own internal validation checks.

We ran Octane on SpiderMonkey (#465d150b, a JIT com-
piling VM for JavaScript) and V8. We replaced its complex
runner (which reported timings with a non-monotonic mi-
crosecond timer) with a simpler alternative (using a mono-
tonic millisecond timer). We also had to decide on an ac-
ceptable notion of ‘iteration’. Many of Octane’s benchmarks
consist of a relatively quick ‘inner benchmark’; an ‘outer
benchmark’ specifies how many times the inner benchmark
should be run in order to make an adequately long running
benchmark. We recorded 2000 iterations of the outer bench-
mark; our runner fully resets the benchmark and the ran-
dom number generator between each iteration. The box2d,
gameboy, mandreel benchmarks do not properly reset
their state between runs, leading to run-time errors we have
not been able to fix; typescript’s reset function, in con-
trast, frees constant data needed by all iterations, which
we were able to easily fix. When run for 2000 iterations,
CodeLoadClosure, pdfjs, and zlib all fail due to
memory leaks. We were able to easily fix pdfjs by emp-
tying a global list after each iteration, but not the others.
We therefore include 12 of Octane’s benchmarks (includ-
ing lightly modified versions of pdfjs and typescript).
Because we run fewer benchmarks, our modified runner is
unable to fully replicate the running order of Octane’s orig-

6 The large amount of CPU time our experiments require meant that we
ran out of time to run Octane on Linux4790K before paper submission.
For the final paper, we will run DaCapo and Octane on the same machine.
Although we do not expect this to result in significant changes to the data,
it will reduce a source of variation.

inal runner. Since Octane runs all benchmarks in a single
process execution, this could affect the performance of later
benchmarks in the suite.

Table 4 shows the full DaCapo results. Graal and HotSpot
both perform similarly. The luindex benchmark is consis-
tently a slowdown on Graal, and mostly a slowdown on
HotSpot. Jython is notably inconsistent on both VMs. In
summary, even on this most carefully designed of bench-
mark suites, only 70% of (VM, benchmark) pairs have
‘good’ warmup.

Table 5 shows the full Octane results. These are notably
less consistent than the DaCapo results, with SpiderMonkey
being somewhat less consistent than V8. In summary, only
45.8% of (VM, benchmark) pairs have ‘good’ warmup.

As these results show, our automated statistical method
produces satisfying results even on existing benchmark
suites that have not been subject to the Krun treatment. Both
DaCapo and (mostly) Octane use much larger benchmarks
than our main experiment. We have no realistic way of un-
derstanding to what extent this makes ‘good’ warmup more
or less likely. For example, it is likely that there is CFG non-
determinism in many of these benchmarks; however, their
larger code-bases may give VMs the ability to ‘spread out’
VM costs, making smaller blips less likely.

B. Further Results
The main experiment’s results for Linux4790 and OpenBSD4790

can be seen in Tables 6 and 7.
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Steady Steady Steady Steady Steady Steady
Class. iter (#) iter (s) perf (s) Class. iter (#) iter (s) perf (s)

avrora
G

ra
al

2
±0

5.60
±1.226

1.68542
±0.005515

H
ot

sp
ot

1
±0

3.22
±1.265

1.66918
±0.006029

fop (7 , 2 , 1 ) (6 , 4 )

h2 2.94680
±0.019285

2.75639
±0.023803

jython (6 , 3 , 1 ) (7 , 3 )

luindex 682
±76

240.45
±28.352

0.38489
±0.001527

(9 , 1 )

lusearch 2
±1

4.33
±1.015

0.75815
±0.001929

1
±1

1.82
±0.696

0.52262
±0.006121

pmd 25
±5

20.06
±3.709

0.64875
±0.004969

32
±9

22.81
±6.202

0.60165
±0.007261

sunflow 1
±0

3.34
±0.067

1.39696
±0.009948

1.52857
±0.007367

tradebeans 1
±0

3.78
±1.805

2.19572
±0.021630

1
±0

3.89
±0.997

1.93720
±0.024628

xalan 7
±1

6.53
±0.665

0.43149
±0.003218

8
±1

5.94
±0.371

0.37728
±0.003869

Table 4: DaCapo results.

Steady Steady Steady Steady Steady Steady
Class. iter (#) iter (s) perf (s) Class. iter (#) iter (s) perf (s)

Boyer

Sp
id

er
m

on
ke

y

1.72407
±0.001516

V
8

(9 , 1 )

Decrypt (5 , 3 , 2 ) 6
±1

4.98
±1.167

0.78870
±0.005202

DeltaBlue (9 , 1 ) (4 , 4 , 2 )

Earley 1.05912
±0.002149

1
±0

1.17
±0.002

1.15330
±0.001862

Encrypt (8 , 2 ) 2
±1

1.59
±1.137

0.78309
±0.000779

NavierStokes 7
±7

5.65
±5.588

0.78486
±0.000070

(7 , 3 )

PdfJS 1
±0

2.10
±0.906

1.11829
±0.003161

(8 , 1 , 1 )

RayTrace (8 , 2 ) 1
±0

0.60
±0.106

0.52512
±0.000958

RegExp (9 , 1 ) (9 , 1 )

Richards (9 , 1 ) 2
±1

1.64
±1.107

0.81120
±0.000458

Splay 0.51989
±0.001250

0.46197
±0.002564

Typescript (7 , 3 ) (5 , 5 )

Table 5: Octane results.
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Steady Steady Steady Steady Steady Steady
Class. iter (#) iter (s) perf (s) Class. iter (#) iter (s) perf (s)

C

bi
na

ry
tr

ee
s

(9 , 1 )

n-
bo

dy

(9 , 1 )

Graal (9 , 1 ) 4
±0

0.85
±0.051

0.16801
±0.000013

HHVM 78
±28

181.45
±66.989

2.31524
±0.002691

132
±0

1006.83
±0.078

3.03675
±0.000224

HotSpot 2
±2

0.60
±0.495

0.19030
±0.000326

1
±0

0.18
±0.000

0.17379
±0.000025

JRuby+Truffle (5 , 4 , 1 ) 68
±0

21.98
±0.198

0.25855
±0.000431

LuaJIT (8 , 2 ) 0.29664
±0.000062

PyPy (7 , 3 ) 1.82929
±0.000782

V8 1
±0

0.69
±0.390

0.48385
±0.000486

367
±4

102.94
±1.291

0.27909
±0.000083

C

fa
nn

ku
ch

re
du

x

0.42153
±0.000124

R
ic

ha
rd

s

0.76543
±0.000320

Graal 1
±0

0.77
±0.101

0.37329
±0.002215

(7 , 2 , 1 )

HHVM (9 , 1 )

HotSpot (9 , 1 ) (8 , 2 )

JRuby+Truffle 998
±0

1039.83
±10.664

1.17529
±0.020561

573
±155

630.39
±169.475

1.08722
±0.014276

LuaJIT 0.56521
±0.000032

2.89911
±0.000433

PyPy 1.62912
±0.003134

1
±0

1.14
±0.002

0.98095
±0.000129

V8 0.30454
±0.000046

(9 , 1 )

C

fa
st

a

0.07398
±0.000012

sp
ec

tr
al

no
rm

(6 , 2 , 2 )

Graal 2
±0

0.67
±0.102

0.14819
±0.000253

13
±0

6.71
±0.233

1.03518
±0.000031

HHVM 17
±3

17.21
±2.557

0.81976
±0.000458

32
±0

128.39
±1.549

1.65400
±0.000270

HotSpot (7 , 3 ) (7 , 3 )

JRuby+Truffle (7 , 3 )

LuaJIT 0.33296
±0.000671

0.46787
±0.000041

PyPy 0.51937
±0.000048

V8 523
±0

593.15
±0.197

1.15337
±0.000826

2
±0

0.94
±0.000

0.46784
±0.000043

Table 6: Benchmark results for Linux4790.
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Steady Steady Steady Steady Steady Steady
Class. iter (#) iter (s) perf (s) Class. iter (#) iter (s) perf (s)

C

bi
na

ry
tr

ee
s

3.29854
±0.014325

n-
bo

dy

(5 , 4 , 1 )

HotSpot 1
±0

0.28
±0.038

0.18688
±0.000625

1
±0

0.18
±0.000

0.17177
±0.000215

LuaJIT (5 , 3 , 2 ) 0.29358
±0.000771

PyPy 32
±62

46.66
±90.291

1.45425
±0.006822

3.84375
±0.051145

V8 (6 , 3 , 1 ) (7 , 3 )

C

fa
nn

ku
ch

re
du

x 0.41142
±0.000035

R
ic

ha
rd

s

(8 , 2 )

HotSpot 195
±155

73.50
±58.486

0.35896
±0.016563

198
±0

50.96
±0.354

0.27327
±0.002359

LuaJIT (8 , 2 ) (8 , 1 , 1 )

PyPy (9 , 1 ) 29
±8

32.23
±9.555

1.08374
±0.013451

V8 (6 , 4 ) (8 , 2 )

C

fa
st

a

0.07415
±0.000034

sp
ec

tr
al

no
rm

(5 , 3 , 2 )

HotSpot (8 , 2 ) (9 , 1 )

LuaJIT (9 , 1 ) 0.46778
±0.000000

PyPy (5 , 3 , 2 ) 110
±44

57.44
±24.104

0.51932
±0.000007

V8 361
±86

417.36
±99.219

1.15646
±0.004120

0.46779
±0.000001

Table 7: Benchmark results for OpenBSD4790.
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C. Curated Plots
The remainder of this appendix shows curated plots: we have selected 4 interesting plots from each classification, to give
readers a sense of the range of data obtained from our experiment. A separate document contains the complete series of plots.
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C.1 Examples of Warmup Behaviour
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C.2 Examples of Flat Behaviour
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C.3 Examples of Slowdown Behaviour
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C.4 Examples of No Steady State Behaviour
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