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Abstract

Severe weather events, for instance, heavy rainfall, snow-melt or droughts, cause large

losses of lives and money every year. Insurance companies offer some form of protec-

tion against such undesirable outcomes, and decision makers want to take precautions to

prevent future catastrophes. Both, decision makers and insurance companies, are hence

interested to understand which weather events induce a high risk. This information then

allows the insurance companies to set premiums for their policies by predicting future

losses. Further, the relationship between damages and weather is also important to assess

the impact of climate change.

Several aspects have to be considered in the statistical modelling of this relationship.

For instance, some regions in the world are more used to severe rainfall events than others

and, hence, presumably less vulnerable to small amounts of rainfall than others. Spatial

statistics provides a statistical framework which allows for a spatially varying relationship

while accounting for certain similarities for areas which are geographically close. Further,

damages, especially large losses, are rather rare and the statistical analysis is hence usually

based on a low number of observations. Methods from extreme value theory consider the

modelling of such events and may hence be beneficial.

This thesis aims to develop statistical models for the relationship between damages,

in particular property insurance claims, and weather events, based on daily Norwegian

insurance and weather data. To improve existing models, new methodology is introduced

which allows for substantial flexibility of the statistical model. The risk induced by certain

weather events is assumed to be spatially varying across Norway but with neighbouring

regions exhibiting similar vulnerability. To account for certain non-linear effects, the class
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of monotonic regression functions is considered. Specifically, this work is the first to de-

fine flexible dependence structures for such functions. In particular, the first approach

considers a Bayesian framework and estimates are obtained by Markov chain Monte Carlo

algorithms while the second approach is optimization-based. The last part of the thesis

derives extreme value models for discrete data and estimates them in a Bayesian frame-

work. In particular, a mixture model which allows for a flexible tail behaviour is motivated

by an exploratory analysis of the highest claims in the data. Additionally, the data are

restructured based on spatial and temporal patterns and then combined with the proposed

extreme value mixture model. All these approaches, monotonic regression and extreme

value analysis, lead to an improved model fit and a better understanding of the relationship

between insurance claims and weather events.
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Chapter 1

Introduction

1.1 Motivation

Large parts of society and economy face uncertainties, such as illness, unemployment or com-

mercial crises, in their decision processes. This led to the introduction of national insurance

systems in several countries, including the United Kingdom and Germany, as well as the estab-

lishment of private insurers. Nowadays, the insurance industry is an important economical factor

and insurance companies offer protection against a wide range of undesirable future events, for

instance, car accidents, disability and property damages. An insurance company guarantees

compensation up to a sum assured for a specified type of damage in return for a fixed monthly

or yearly payment (insurance premium). These premiums are pooled together to compensate

damages. Consequently, the risk of damages and losses is shared between insurance policy hold-

ers in the portfolio of the insurance company. This is the fundamental principle of insurance.

However, there still exists the risk that the promised payouts exceed the capital assets of the

insurance company, e.g. due to catastrophic events. Hence, reinsurance companies offer con-

tracts to achieve a higher level of risk sharing and reinsurance agreements are an important risk

management tool.

Quantification of the risk of an insured object or event is required in order to set an adequate

insurance premium. Actuarial science is the discipline which applies mathematical and statistical

methods to assess this risk in probabilistic terms. Properties of the probability distribution of

the claims are often estimated based on historical claim data and used to produce insurance

products. Several principles have been developed to derive the insurance premiums based on

these properties.

1



CHAPTER 1. INTRODUCTION 2

In this thesis, weather is considered as a specific risk factor because weather events such as

droughts or rainfall can cause severe damages and losses. Droughts and heatwaves can cause

both crop shortfall and casualties due to heat exhaustion. Intense rainfall, on the other hand,

may lead to localized flooding and destroy whole neighbourhood areas in the process. In order

to take adequate precautions, e.g. by building flood defenses or reservoirs, accurate weather

and climate models are required. Though weather forecasts have improved recently, there still

remains high uncertainty on future weather events and on the future distribution of the weather,

which we call climate.

The insurance industry offers two weather-related policies: property and weather index

insurances. In order to estimate the risk distribution, accurate models for both the weather

and the relationship between weather and claims are required. Here, interest lies in the latter,

in particular, the detection of weather events which induce a high claim risk. The Norwegian

meteorological institute predicts that the yearly precipitation will increase by more than 30%

for some regions in Norway by 2100 (www.senorge.no). A model which explains the impact

of certain weather events on the claim risk may hence help decision makers to take adequate

actions.

The statistical modelling is challenging due to the spatial and temporal variation of the

weather. In other words, some regions are expected to exhibit higher vulnerability to certain

weather events. This motivates the application of spatial statistical models which allow a sepa-

rate analysis for each region while accounting for potential similarities between them to reduce

model uncertainty. Here, a Norwegian data set which consider property insurances between

1997 and 2006 is investigated in order to develop such models. In particular, the data provide

information on claims caused by small-scale weather events such as rainfall and snow-melt. The

data have already been analyzed by Haug et al. (2011) and Scheel et al. (2013) and this thesis

extends their approaches and contributes new methodology to the statistical areas of spatial

statistics, monotonic regression and extreme value theory.

The remainder of this introductory chapter is organized as follows: Section 1.2 describes the

existing insurance policies against weather-related damages and corresponding pricing methods.

Further, a summary on the research in actuarial science with respect to climate change is pro-

vided. Section 1.3 introduces the Norwegian insurance and weather data which are considered

throughout this thesis. Additionally, the results of an explanatory analysis of the data are pre-

sented. Section 1.4 summarizes and discusses the work by Haug et al. (2011) and Scheel et al.

www.senorge.no


CHAPTER 1. INTRODUCTION 3

(2013) which consider the insurance and weather data. The limitations of their models motivate

this thesis whose aim and structure are described in Section 1.5.

1.2 Weather-related Insurances

1.2.1 Property and Weather Index Insurances

Insurance companies offer two products with which individuals and companies can get protection

against damages and monetary losses caused by undesirable weather events: property insurances

and weather index insurance. The former covers the costs of the damage (up to a sum assured)

while the latter’s payoff depends on a weather index, e.g. the temperature or the amount of

rainfall. Property insurances originated from fire insurances which were extended to include

additional perils (Dickson and Steele, 1986). Nowadays, most of the property insurances cover

several perils such as flooding, storms, falling trees, subsidence or riots.

In contrast, weather index insurances promise payment based on the difference between a

weather index and an agreed strike value. For instance, the owner of an outdoor swimming pool

may want to negotiate an insurance against too many rainy days to hedge against a low income.

Studies imply that these insurances can be a valuable risk management tool in agribusiness

for developed countries (Turvey et al., 2006) and newly industrialized countries (Heimfarth

and Musshoff, 2011). Other areas of applications include the energy industry, the construction

industry (Jewson et al., 2005) and the tourism industry (Bank and Wiesner, 2011). Richards

et al. (2004) state that these insurances are quite beneficial since no damage has to be assessed.

This feature is especially important to farmers as it is quite expensive to estimate crop losses.

Further, there is only a low risk of moral hazard effects as the payoff is based on an objective

measure. As such, farmers are motivated to harvest as much as possible. Barnett and Mahul

(2007) further claim that there is little potential for adverse selection since both the insurance

policy holders and the insurers have a similar knowledge on the weather. Fuchs and Wolff (2011),

however, argue that weather index insurances may also lead to potential overspecialization and

monoculture. For both property and weather index insurances, there exists a range of pricing

approaches using historical actuarial data and these are described in the following.
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Pricing of Property Insurances

Insurance companies aim to set the insurance premium such that it covers both the expected

payout and the service costs associated with the policy. Typically, the expected payout per

policy is estimated based on recorded and estimated loss data and then loaded, that is, the

expected claim size is adjusted by service costs, risk covering or profit (Williams et al., 1995;

Malinovski, 2008). To load the expected claim size, the risk (variance) has to be estimated

and this is one of the objectives in actuarial science. Policy holders are usually classified based

on several risk factors and the expected claims size is derived for each class separately. The

insurance premium is then calculated by using, for instance, premium calculation principles to

load the risk.

Several standard premium principles are described by Goovaerts and Haezendonck (1984).

The simplest one is the net premium principle which does not load for risk and is equal to

the expected claim size. However, this approach appears only suitable for a large number

of policies to ensure validity of the law of large numbers. Extensions of this basic approach

are the expected value, the variance and the standard deviation principles. The expected value

principle includes a risk load proportional to the expected claim size while the variance premium

principle loads a risk proportional to the variance of the claim distribution. Another approach

is the equivalent utility principle (Moore and Young, 2003; Xiao, 2011) whose solution can be

interpreted as the minimum premium such that the insurance company accepts to insure the

expected claim size. Further popular premium principles are the exponential (Gerber, 1974),

Esscher (Bühlmann, 1980) and Wang’s premium principle (Wang, 1996). Dickson (2005) states

five preferable properties which premium principles should satisfy. However, with the exception

of the net premium principle, none of the described principles above fulfills all these properties

(Young, 2006). More recently developed approaches include the weighted premium principle

(Furman and Zitikis, 2008) which contains, e.g., both the net and Esscher principles as special

cases (Kaluszka et al., 2012).

The principles outlined above require the expected claim size, the variance of the claim

size or even the claim distribution. As a consequence, it is necessary to estimate the required

statistical information based on the historical, actuarial data. Eshita (1977) states that the claim

distribution should be analyzed via two components: the claim frequency distribution and the

claim size distribution. Further, Eshita (1977) motivates the modelling of the claim frequency

by a Binomial or a Poisson distribution and this approach is considered in later sections.
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The application of these approaches in order to set premiums for property insurances is

complicated as the number of factors that influence the claim distribution is very high, e.g.,

spatial proximity to a river or construction design. Furthermore, the temporal variation of the

weather leads to a non-stationary claim distribution. For instance, a day with heavy rainfall

is expected to induce a higher average claim frequency than a sunny day. Additional to the

temporal variation, weather and climate vary in space and induce a spatially varying relationship

between claims and weather. In other words, two locations with distinct yearly rainfall levels are

likely to exhibit a different vulnerability to the same amount of rainfall. Prahl et al. (2012) also

consider the dependence between the wind speed and the claim distribution. Due to this variety

of risk factors, the classification of the actuarial data with respect to economical, hydrological

and meteorological factors could lead to a small number of cases in each class. Consequently,

the insurance companies would have to load for high uncertainty in the estimates, leading to

high insurance premiums. In summary, good reliable statistical approaches to estimate the

relationship between multiple risk factors and claims are required in order set adequate insurance

premiums.

Pricing of Weather Index Insurances

Weather index insurance contracts are usually defined by five attributes: (i) contract period

T , (ii) location of the measurement station, (iii) weather index, (iv) pay-off function which

converts the index into cash flow and (v) the premium paid by the policy holder (Jewson et al.,

2005). Weather measures of interest are typically temperature and precipitation, but snowfall,

hail and sunshine hours also feature. In the case of temperature, the indexes used are cooling

degree day (CDD), heating degree day (HDD) and cumulative average temperature (CAT). For

example, the CDD index is defined as the cumulative amount of degrees above a threshold c.

Mathematically, CDD can be expressed as

∑
t∈T

max{C(t)− c, 0},

where C(t) is the daily average temperature. In the market, the threshold c is equal to 18◦C

(Benth and Šaltytė Benth, 2011). Pricing techniques for weather index insurances are similar

to the ones for weather derivatives which are described in the following.

Weather derivatives are traded financial instruments which can be used by companies but
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also private households to reduce the risk associated with weather events. They differ from

weather index insurances in some contract details (Jewson et al., 2005) but payout depends on

the same weather indexes mentioned above. Nowadays, weather derivatives are, for instance,

traded at the Chicago Mercantile Exchange (Dorfleitner and Wimmer, 2010). Pricing techniques

for weather derivatives are based on the statistical modelling of historical weather data. Burn

analysis evaluates how a contract would have performed over the training period to estimate

the expected payout. Špička (2011) performs parametric bootstrapping (Efron, 1979) within

the burn analysis to quantify the uncertainty. Another approach is index modelling which fits

a statistical distribution to the historical weather data and provides some information on the

values outside the range of observed values (Taib and Benth, 2012).

Publications considering weather derivatives often focus on temperature indexes. Several

papers model the temperature dynamics first and derive the prices in a second step. Richards

et al. (2004) model the temperature data from Fresno County, California, by a mean-reverting

Brownian motion with log-normal jumps and time-varying volatility. They also state that the

temperature is more volatile in winter than in summer and capture this property by a first-

order ARCH process. Similarly, Benth and Šaltytė Benth (2011) model the temperature as

the sum of a seasonal mean function and a continuous-time autoregressive process. The design

of precipitation-related weather derivatives are, for instance, considered by Stoppa and Hess

(2003). Paulson et al. (2010) apply spatial kriging and MCMC techniques to estimate rainfall

histories and to derive insurance rates.

1.2.2 The Impact of Climate Change

Climate change makes the application of the pricing techniques described in the previous Sec-

tion 1.2.1 difficult, because the relationship between claims and weather events varies in time,

requiring more complicated statistical models. Consider, for instance, an increased frequency

of intense rainfall which causes more cases of household flooding than currently observed. This

may motivate decision makers to improve the infrastructure, e.g. extend the drainage system,

and house owners to invest in new construction designs to deal with these events. Hence, the

risk induced by certain amounts of precipitation is reduced. Furthermore, the temporal varia-

tion in the risk structure and the climate implies higher uncertainty which is passed on to the

policy holders in the form of higher insurance premiums. The aspect of insuring and pricing the

uncertainty on climate change is discussed by Tol (1998) and Litterman (2011).
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Actuarial research focuses on the impact of climate change with respect to the intensity

and occurrence of natural disasters, e.g. floods, storms or heat waves. These extreme events

generally imply high expenses for the insurance companies; their effect on economic growth is

investigated by Loayza et al. (2012). Some countries have implemented a special pool that settles

the natural disaster damage compensation. In Norway, for instance, all policyholders who enter

a fire insurance have to pay a fee to the Norwegian Natural Perils Pool. Though this thesis

considers claims caused by non-extreme weather events, properties found on natural disasters

may be similar and thus considerable. Hence, the results are summarized in the following.

Several authors investigate a potential temporal trend in the monetary losses due to natu-

ral disasters based on estimated loss data. However, the availability and correctness of these

estimates is limited, though it has improved over the past decades (Downton and Pielke, 2005).

Uncertainty on the loss data may be reduced by considering insured losses instead since these

are estimated with greater precision (Barthel and Neumayer, 2012). Furthermore, the data has

to be normalized with respect to economic wealth in order to be comparable from year to year.

Pielke and Landsea (1998) normalize the losses with respect to inflation, population and growing

wealth. Neumayer and Barthel (2011) extend this normalization as it ignores a potential spatial

variation of the wealth within a country. Nevertheless, this alternative requires information on

the insured assets potentially at risk in any given area, a condition which is usually infeasible

(Barthel and Neumayer, 2012).

The normalized loss data are then used to explore a potential global temporal trend. Miller

et al. (2008) consider weather-related natural disasters between 1950 and 2005 from several

developed and developing countries and find an annual upward trend of 2% per year since 1970.

Nevetheless, Miller et al. (2008) state that the results are highly affected by Hurricane Katrina

with an estimated insured loss of $41.1 billion and a total loss of $108 billion in 2005 (Knabb

et al., 2005). Further, no significant temporal trend is found if the US hurricane season 2004-

2005 and the flood damages between 1970 and 2005 in China are left out. Barthel and Neumayer

(2012) find no global trend from 1990 to 2008. However, the considered period is short in terms

of climate modelling and the authors also do not split between geophysical, e.g. earthquakes and

tsunamis, and weather-related natural disasters. In summary, there is no clear consensus on a

positive global trend in terms of the monetary losses related to natural disasters.
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1.3 The Insurance and Weather Data

1.3.1 Description

The insurance data are kindly provided by Gjensidige (www.gjensidge.no) and include ob-

servations for all 430 Norwegian municipalities between 1st January 1997 and 31st December

2006. These records cover all insured private buildings over this period and give information

on claims which are caused by non-catastrophic related weather events. Natural disasters are

excluded as these are covered via a governmental pool and not recorded by Gjensidige. For

each municipality, the data constitute the daily number of claims due to damages caused by

precipitation, surface water, snow melting, undermined drainage, sewage back-flow or blocked

pipes. Additionally, the monthly number of policy holders per municipality is reported too. In

what follows, Nk,t and Ak,t denote the number of claims and policies, respectively, on day t for

municipality k, k = 1, . . . , 430.

The meteorological and hydrological data are produced by the Norwegian Meteorological

Institute (www.met.no), together with the Norwegian Water Resources and Energy Directorate

(www.nve.no). Four daily measurements are provided for each municipality: (i) Mean tempera-

ture Ck,t, (ii) Precipitation Rk,t (iii) Drainage run-off Dk,t and (iv) Snow-water equivalent Sk,t.

The covariate Dk,t provides information on surface water while Sk,t corresponds to the amount

of water which is stored in form of snow on the ground.

These weather data are generated as follows: Temperature and precipitation measurements

are recorded for more than 200 weather stations across Norway and then spatially interpolated

to a high-resolution grid with 1×1 km cells. The precipitation measurement on day t is recorded

at 6am in the morning, i.e. the rain observed on day t is mostly related to events on day t− 1.

Since the weather may vary considerably within a municipality and damages are supposedly

linked to local events, Ck,t and Rk,t are derived by weighted averaging over the most densely

populated grid cells within the municipality only. The values for Dk,t and Sk,t are then derived

via a gridded water balance model. In the following, the covariate value Rk,t refers to the

precipitation measurement at 6am on day t+1 and this notation deviates from the one by Haug

et al. (2011) and Scheel et al. (2013).

www.gjensidge.no
www.met.no
www.nve.no


CHAPTER 1. INTRODUCTION 9

Table 1.3.1: Provided and derived weather covariates which are considered in Section 1.3.2.

Variable Description Unit

Rk,t Total amount of precipitation in day t mm
(Between 6am on day t to 6am on day t+ 1)

Rk,t−1 Total amount of precipitation in day t mm
(Between 6am on day t− 1 to 6am on day t)

Ck,t Mean temperature in day t ◦C

Dk,t Drainage run-off in day t mm

Sk,t Snow-water equivalent in day t mm

∆Sk,t Difference in snow-water equivalent Sk,t−1 − Sk,t mm

1.3.2 Exploratory Data Analysis

Since this thesis considers modelling the dependence of the claims and weather events, an ex-

ploratory analysis is performed in this section. Both the weather and insurance data are firstly

assessed separately with respect to temporal and geographical variations. Additionally, a po-

tential geographical correlation of the claim numbers for adjacent municipalities is examined.

Finally, the relationship of Nk,t and the weather covariates is investigated. Table 1.3.1 sum-

marizes the six covariates which are considered, the rain on the previous day Rk,t−1 and the

difference in the snow-water equivalent ∆Sk,t are derived as additional covariates to the four

mentioned in Section 1.3.1. Positive values in ∆Sk,t correspond to a drop in the amount of water

stored in form of snow and, hence, imply a period of snow-melt.

Spatial and Temporal Analysis of the Insurance Data

Prior to Nk,t, the spatial and temporal variation in Ak,t is explored. Figure 1.3.1a illustrates

the average number of policies for each municipality over the 10-year period. The scale of these

figures is dropped in order not to disclose industrial information. Nevertheless, there is no loss of

understanding of the qualitative properties of these plots. The highest values of Ak,t are recorded

for the large cities of Oslo and Bergen while rural municipalities observe substantially lower

values. This geographical variation in Ak,t is consistent with the one in the total population,

Oslo counts more than 500,000 inhabitants while other municipalities have a population of less

than 1,000. Therefore, it is assumed that the portfolios of property insurances for the different

municipalities are comparable. On average, the total number of policies per month over all

municipalities,
∑430

k=1Ak,t, is about 400,000 and some temporal variation is found.
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(a) Average number of policies (b) Standardized average claim rate

Figure 1.3.1: (a) Average number of policies and (b) Average claim rate standardized with respect
to the highest average claims per day per policy holder ratio for all 430 municipalities
between 1997 and 2006. A darker colour corresponds to a higher value.

Considering Nk,t, the insurance data exhibit a large frequency of zero claims, so on many

days no damages are reported within a municipality. Averaged across all 430 municipalities,

no claims, Nk,t = 0, are reported on about 98% of days and Nk,t > 1 with a frequency of

less than 0.2%. These findings are, however, non-homogeneous with respect to the individual

municipalities. While the large cities of Oslo and Bergen each record more than 300 days

with Nk,t > 1, no such event is observed for 172 municipalities over the 10-year period. Since

Ak,t is higher for densely populated municipalities (Figure 1.3.1a), claims are presumably more

frequent. However, Figure 1.3.1b also indicates that, especially in southern and central Norway,

cities exhibit a larger average claim rate per policy holder than rural areas. In particular, the

cities of Drammen, Oslo, Bærum and Trondheim are among the highest. The lack of natural

drainage in the cities potentially leads to a higher risk related to surface water. Furthermore,

the largest daily observations are also recorded for cities, 135 in Bærum, followed by Trondheim

with 59 and Oslo with 57. Note, the maximums in each municipality are distinctively higher

than all other observations. For instance, the second highest observations of Nk,t for Bærum

and Oslo are 27 and 18, respectively.

Temporal dependence for the time series Nk,t, k = 1, . . . , 430, is examined next. Figure

1.3.2 illustrates that very high observations are not recorded every year even for large cities;
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Figure 1.3.2: Daily number of claims for Oslo (Column 1) and Bergen (Column 2) for the years 1997
and 2002.

the maximum daily observed number of claims in 1997 is Nk,t = 4 for both Oslo and Bergen.

Further, there is little, or no, seasonality in the data and high claim numbers occur in both

summer and winter. Note, the highest observations are generally recorded over the summer.

Additional to seasonality in the claim numbers, temporal dependence is also explored based on

a daily basis. If at least one claim occurs in Oslo, then the empirical probability for at least

one claim on the next day, P (Nk,t > 0 | Nk,t−1 > 0), is 0.65, as opposed to 0.62 on any day.

More formally, the data exhibits a slight positive correlation for claim occurrences for Oslo.

Similar but smaller levels of positive correlation are also found for Bærum and Trondheim but

not for Bergen. These findings may indicate two hidden processes. Firstly, weather events may

affect claim dynamics over consecutive days, leading to higher vulnerability and an increased

risk. Secondly, there exists a potential lag in the claim recording process since Nk,t refers to the

claims reported to the insurance company on the day and these are not necessarily identical to

the ones which occurred on the day. For instance, a weather event may cause two damages and

one is reported on the same day while the second one the day after.

Spatial correlation of claims is explored for two pairs of adjacent densely populated munici-

palities. Figure 1.3.3a shows some dependence for high numbers of claims for Oslo and Bærum in

south-east Norway. The observation of 135 claims for Bærum coincides with 18 recorded claims
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Figure 1.3.3: Number of claims reported on day, Nk,t, for two pairs of adjacent Norwegian municipali-
ties.

for Oslo which is the second highest observation for the latter. Similar conclusions are found for

the municipalities of Melhus and Trondheim in north-west Norway in Figure 1.3.3b, high obser-

vations of Nk,t coincide on several days. The Pearson’s correlation coefficient for the two pairs

is calculated too and yields to 0.28 for Oslo and Bærum, and 0.64 for Trondheim and Melhus.

Consequently, these results are consistent with the findings from Figure 1.3.3. This dependence

is presumably due to adjacent municipalities often being exposed to similar weather conditions.

Hence, a severe weather event in one place is likely to affect the adjacent municipalities too.

This relationship supposedly also holds vice versa for low-risk weather events.

Spatial and Temporal Analysis of the Weather Data

Norway’s geographical extent, it spans about 13 degrees in latitude, leads to distinct spatial

differences in the climate. Figure 1.3.4a illustrates that the highest average temperatures of

about 8◦C in the data are recorded for the south-western municipalities around Bergen and

Stavanger. Conversely, lower average temperatures of around 0◦C are observed for northern and

easterly municipalities and in the Scandinavian Mountains. The mild temperatures for coastal

areas are due to their exposure to the North Atlantic Current and Gulf Stream. Indeed, the

warm ocean currents lead to high temperatures, compared to Alaska, Greenland and Siberia

which have similar latitude. The northern and easterly municipalities have a more continental
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(a) Average daily temperature (b) Average rainfall event

(c) Average drainage run-off (d) Average snow-water equivalent

Figure 1.3.4: Averages across Norway between 1997 and 2006 for (a) Temperature Ck,t (b) Rainfall
event Rk,t|Rk,t > 0 (c) Drainage run-off Dk,t and (d) Snow-water equivalent Sk,t|Sk,t > 0.

climate with cold winters and hence observe lower average temperatures.

The exposure to the ocean does also affect the frequency and intensity of rainfall events.

Figure 1.3.4b shows that the highest precipitation levels are observed around Bergen with,

on average, more than 20 mm while most inland municipalities exhibit average rainfall events

between 5 and 10 mm. The large observations for coastal areas are caused by orographic (relief)

and frontal precipitation. Conversely, eastern municipalities lie in the rain shadow and the humid
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Atlantic air is blocked by the Scandinavian Mountains. In terms of the frequency, Rk,t > 0 is

observed on about 70% of days for Bergen while only on 50% for Oslo. Furthermore, Rk,t varies

temporally with western areas observing the highest rainfall events during autumn and winter

while summer is the wettest season for Oslo; time series for 4 municipalities for 1998 are provided

in Appendix A.1. This difference in the rainfall levels transfers to the drainage run-off with the

highest averages being observed for coastal municipalities (Figure 1.3.4c).

In terms of the snow-water equivalent, Figure 1.3.4d illustrates that high averages are

recorded for northern municipalities and the Scandinavian Mountains while observations are

generally lower for the south-west. Furthermore, differences between adjacent municipalities are

larger for Sk,t than for the previous covariates Ck,t, Rk,t and Dk,t. The large differences across

Norway are linked to those for Ck,t since colder areas generally exhibit longer periods with tem-

peratures below 0◦C. Consequently, snow accumulates over several days and higher values for

Sk,t occur while, as mentioned by Scheel et al. (2013), snow is quite rare on the west coast.

Finally, the intensity of the snow-melt is explored by considering days with ∆Sk,t > 0 only and

little spatial variation is found; a plot is provided in Appendix A.2. Consequently, periods of

snow-melt vary spatially across Norway with respect to their duration rather than in terms of

their intensity.

Dependence between Insurance and Weather Data

In this thesis, the main interest lies in the relationship between the weather covariates and

the daily number of claims. The following analysis considers the two most densely populated

municipalities of Oslo and Bergen since they record the most claims and thus provide the most

insight. Furthermore, weather events leading to a higher number of claims may be investigated

better and compared to weather events leading to a smaller number of claims. Additional to a

separate analysis for the dependence in each covariate, potential combined effects between pairs

of covariates are examined.

The covariates Rk,t and Rk,t−1 capture the risk induced in form of both rain and snowfall

on the day itself and the previous one, respectively. Figure 1.3.5 indicates that the highest

claim numbers are generally related to higher observations for Rk,t or Rk,t−1. However, this

association is mostly observed for days with no snow since higher responses usually occur for

Sk,t = 0. Further, the plots indicate that Oslo and Bergen have a different vulnerability to

the same amount of precipitation. While very high responses in Oslo are already observed for
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Figure 1.3.5: Recorded number of claims Nk,t in dependence on the observed covariates Rk,t, Rk,t−1,
Dk,t, Sk,t and ∆Sk,t for the municipalities of Oslo (Column 1) and Bergen (Column 2).
The red points refer to the observations with Nk,t > 4.
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Figure 1.3.6: Observed covariate values for Rk,t and Rk,t−1 for Oslo (left panel) and Bergen (right
panel). Days withNk,t exceeding 4 and 3 are highlighted for Oslo and Bergen, respectively.

rainfall levels exceeding 15 mm, this only occurs in Bergen for much higher amounts of 30-50

mm. Consequently, the plots indicate that houses in Bergen are designed to withstand more

severe rainfall events than Oslo which is expected since the west coast exhibits much higher

precipitation levels. Nevertheless, high observations for one of the two precipitation covariates

do not necessarily imply high responses. Figure 1.3.6 illustrates this aspect since even rainfall

levels exceeding 30mm are not leading to high observations of Nk,t for Oslo. Conversely, the

combined effect of moderate precipitation levels on both days t and t− 1 may also cause higher

claim numbers.

The risk induced by Rk,t and Rk,t−1 may depend on whether the precipitation is in form of

rain or snow. As mentioned previously, high responses are usually observed for ∆Sk,t = 0. In

order to explore this aspect, observations of the mean daily temperature Ck,t are used. More

precisely, we examine the correlation between Rk,t and Nk,t, conditional on Ck,t. Figure 1.3.7

shows that the correlation is generally negative or close to zero for days with Ck,t < 0◦C while

being positive for warmer days. Hence, snow may have a non-significant effect on the claim

dynamics for the same day while rain does. Snow over a period with negative values for Ck,t

accumulates and, hence, additional snow does not necessarily increase the risk of water damages

on the same day. However, additional snow may still lead to a higher risk in terms of the next

snow-melting period. In order to account for this behaviour in the covariates, one may set Rk,t
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Figure 1.3.7: Pearson’s correlation coefficient between number of claims Nk,t and amounts of precipita-
tion Rk,t−1 and Rk,t in dependence on the mean daily temperature Ck,t. The functional
level corresponds to the correlation between Nk,t and Rk,t−1 (Row 1), and Nk,t and Rk,t
(Row 2) for Oslo (Column 1) and Bergen (Column 2) conditional on Ck,t being smaller
or equal uC .

equal to 0 for days with Ck,t ≤ 0. Otherwise, each rainfall covariate may be split into two

covariates to account for a potential difference between snow and rain. Additional to Pearson’s

correlation coefficient, Kendall’s and Spearman’s correlation coefficient have been considered

and the results are consistent with the ones in Figure 1.3.7; plots are provided in Appendix A.3.

Similarly to Rk,t and Rk,t−1, Figure 1.3.5 shows that high values in Dk,t, Sk,t or ∆Sk,t do not

automatically imply high responses. With respect to Dk,t, higher claim numbers are observed

for both lower and higher covariate values. This is particularly the case for Oslo where the

highest responses coincide with Dk,t ≤ 5. The snow-water equivalent Sk,t is considered next

and the plot indicates no apparent dependence. Days with higher number of claims, conditional

on Sk,t > 0, generally coincide with rain, Rk,t > 0, or snow-melt, ∆Sk,t > 0. For both Oslo

and Bergen, the highest response, conditional on Sk,t > 0, occurs on a day where both Rk,t and
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∆Sk,t are positive. Similarly to Rk,t and Rk,t−1, the correlation coefficient is derived. While

the correlation coefficient between Nk,t and ∆Sk,t, conditional on ∆Sk,t > 0, takes a value of

about 0.10, it is zero or slightly negative for days with ∆Sk,t < 0. Consequently, there exist a

potential difference between rain and snow which neither Haug et al. (2011) nor Scheel et al.

(2013) discuss. In summary, the exploratory analysis indicates a dependence between the claims

on the day, Nk,t, and both rainfall, Rk,t and Rk,t−1, as well as snow-melt, ∆Sk,t > 0.

1.4 Existing Claim Models for the Insurance and Weather Data

1.4.1 Haug et al. (2011)

Interest lies in modelling the total amount of insured losses on a day for each of the 430 Norwegian

municipalities. Additional to the daily number of claims Nk,t and the monthly number of policies

Ak,t, the mean claim sizes Mk,t on day t for municipality k are observed. Similarly to Eshita

(1977), the claim distribution is considered via two separate factors: the claim numbers Nk,t and

the average claim size Mk,t. The claim model is then applied to assess the impact of climate

change with respect to claim frequency and claim sizes.

Claim Model

The number of claims Nk,t is modelled via a Binomial distribution with overdispersion to account

for the high variability in the data. Hence, the distribution on day t for municipality k has mean

E(N) = Ak,t pk,t and variance Var(N) = φ Ak,t pk,t (1−pk,t), where φ is the dispersion parameter

and pk,t denotes the claim probability. Dependence between Nk,t and the weather data described

in Section 1.3 is defined via pk,t. In particular, Nk,t is modelled via a generalized linear model

(GLM) (McCullagh and Nelder, 1989) with logit link function.

Haug et al. (2011) perform further analysis prior to the estimation of the GLM to obtain a

suitable set of explanatory variables. Firstly, additional covariates, such as the aggregated rain

over the previous five days, Rk,t−2 to Rk,t−6, are derived. Secondly, seasonal components are

introduced to account for a potential temporal trend due to unknown processes and macroe-

conomic factors. Finally, potential parametric forms for the weather covariates, e.g. C2
k,t, are

examined based upon their generalized additive model fit (Hastie and Tibshirani, 1990). Note,

the difference in the snow-water equivalent ∆Sk,t is not considered in their approach. To obtain

a parsimonious set of explanatory variables, variable selection is performed on the set of can-
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didates via the Bayesian Information Criterion (BIC) (Schwarz, 1978) which is modified as in

Burnham and Anderson (2002) to handle overdispersion. The derived set contains 13 variables,

including the weather observations described in Section 1.3 but with the drainage run-off Dk,t

being on log-scale. The GLM is then fitted county-wise with covariate effects being taken as

constant for each municipality within a county. Geographical variation of the baseline risk, as

found in Section 1.3, is modelled via a mean county-level and a geographically varying correction

term for each municipality.

The average claim size Mk,t is modelled similarly via a GLM with log-link function. Average

claim sizes are assumed to be Gamma distributed and the mean varies with the set of explana-

tory variables. The expectation of Mk,t is further assumed to be independent of Nk,t but the

variance decreases in Nk,t, i.e. Nk,t is used as a weight. Again, a parsimonious set of explanatory

variables is derived similarly to Nk,t but based on the original BIC. The final set contains ten

explanatory variables but the snow-water equivalent Sk,t and the temperature Ck,t are found

to be uninformative. In terms of model parameters, larger geographical entities (regions) are

considered since days with no claims are uninformative in terms of the claim sizes. Equivalently

to Nk,t, covariate effects are constant within each of these regions. Further, the baseline levels

are the same for each municipality within a county and geographical variation is only allowed

for between counties.

Results

The statistical model is estimated for all 430 municipalities and results for the counties of

Hordaland, Akershus and Buskerud are provided; the remaining counties are omitted by Haug

et al. (2011) due to confidentiality reasons. Dependence between the responses and the covariates

is examined via normalized factor curves. The effect of Rk,t and Rk,t−1 is not explored via

separate factor curves but merged. Precipitation levels are found to be significant and positively

correlated for both Nk,t and Mk,t. Further, the easterly county of Akershus appears more

vulnerable to rainfall than the westerly county of Hordaland. This is consistent with the results

in Section 1.3; the west coast presumably exhibits a smaller vulnerability for the same amount

of precipitation, as compared to other municipalities. The observed snow-water equivalent Sk,t

is only significant and positively correlated in terms of Nk,t. Compared to precipitation, the

induced risk is smaller and Hordaland shows less vulnerability than the other two counties.

Similar conclusions are found for Dk,t which is only significant for Akershus and Buskerud.
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Finally, the factor curve for the mean temperature Ck,t is U-shaped with peaks at large positive

and negative values for all three counties. The U-shape of the curve is due to a second order

term of the temperature contained in the model. Equivalently to Dk,t and Sk,t, Ck,t is only

significant for the distribution of the claim numbers Nk,t but not the average claim sizes Mk,t.

Haug et al. (2011) assess the model fit by comparing the observed and estimated average

claim frequencies and claim sizes. These averages are more or less equal for the claim frequency

and quite close for the claim sizes for all three counties. The estimated claim model is applied to

predict the impact of climate change on the insured losses for the future period 2071-2100; see

Haug et al. (2011) for technical details on how these estimates are derived. In terms of the claim

frequency, results indicate an 30% increase for Hordaland and the north of Oslo but a smaller

one of about 5-10% for the more rural municipalities in Buskerud. Furthermore, the impact of

climate change appears similar for adjacent municipalities. Similar geographical patterns are

found with respect to the change in mean claim size which is relatively small, compared to the

increase in claim frequency. For example, the increase is 1-3% for all considered municipalities

in Buskerud. Since this thesis considers the modelling of Nk,t in dependence on the weather

covariates, the reader is referred to Haug et al. (2011) for more detailed results on their effect

study of climate.

1.4.2 Scheel et al. (2013)

In contrast to Haug et al. (2011), their work only considers the dependence between the daily

claim numbers Nk,t and the weather data for K = 319 municipalities in central and southern

Norway. Interest lies in both the detection of weather events which may lead to claims and

the prediction of the number of claims, given a particular weather event. In the context of the

covariates described in Section 1.3, the aim is to derive which of these are important for the

claim dynamics in the individual municipalities.

Claim Model

Scheel et al. (2013) argue that a Binomial or Poisson distribution for Nk,t ignores important

features of the data. Firstly, the frequency of zero claims is larger than expected from fitting

a Poisson distribution. Secondly, the mechanisms leading to claims may be different from the

ones for the number of claims, given a claim occurred. In order to account for these effects,

they propose a Poisson hurdle model (Mullahy, 1986) which consists of two components. Hurdle
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models are widely applied, for instance in agricultural economics (Ricker-Gilbert et al., 2011)

and medical statistics (Neelon et al., 2013). Zero-inflated Poisson models (Lambert, 1992) would

be another approach to account for the excessive occurrence of zero claims. Nevertheless, the

Poisson hurdle model appears more appropriate due to the possibility that the mechanism of

whether a claim occurs is different from the mechanism leading to the number of claims.

The first component, a Bernoulli distribution, models whether the number of claims is either

zero, Nk,t = 0, or strictly positive, Nk,t > 0. A zero-truncated Poisson distribution is defined

as second component for the strictly positive counts Nk,t | Nk,t > 0. Let αk,t ∈ [0, 1] denote

the probability for no claims on day t for municipality k while λk,t > 0 refers to the rate of

the zero-truncated Poisson distribution. The probability mass function for Nk,t is then formally

given as

P(Nk,t = n | αk,t, λk,t) =


αk,t if n = 0

(1− αk,t)
λnk,t

n! {exp(λk,t)− 1}
if n > 0.

(1.4.1)

Both parameters αk,t and λk,t vary in dependence on the weather data. Additional to the six

covariates explored in Section 1.3 (Rk,t, Rk,t−1, Sk,t, Dk,t, Ck,t and ∆Sk,t), the aggregated rainfall

over the previous three days, Rk,t−1 +Rk,t−2 +Rk,t−3, is derived. Let Xk,t = (Xk,t,1, . . . , Xk,t,7)

denote the vector of the seven covariate observations for municipality k on day t. Separate

models are then specified for αk,t and λk,t, conditional on Xk,t. While the covariate effects

are permissibly different across municipalities and no dependence structure is defined on their

regression coefficient, the locations of the municipalities are used to perform geographically

smoothed variable selection. The model expresses the belief that, given covariate j, j = 1, . . . , 7,

influences the claim dynamics for municipality k, covariate j is presumably also important for

the processes in its adjacent municipalities. The models for αk,t and λk,t are detailed in the

following.

In case of the Bernoulli component with parameter αk,t, a logit link function is used for

the transformation of the linear predictor. In order to perform geographically smoothed vari-

able selection, a set of latent binary variables is introduced. Define γαk = (γαk,1, . . . , γ
α
k,7),

k ∈ {1, . . . , 319} such that γαk,j = 1 if the jth covariate enters the model for αk,t and γαk,j = 0

otherwise. The parameter αk,t, conditional on Xk,t and γαk , is formally given as

logit (αk,t) = νk,0 +
∑

{j : γαk,j=1}
νk,jXk,t,j . (1.4.2)
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Gaussian priors are defined for the baseline risk νk,0 and the set of covariate effects νk,j for which

the associated γαk,j = 1; see Scheel et al. (2013) for details.

Geographically smoothed variable selection is performed by specifying, a priori, a dependence

model for the vectors of binary variables γ̃αj =
(
γα1,j , . . . , γ

α
K,j

)
, j = 1, . . . , 7. Specifically, an

Ising prior distribution is assumed for each covariate whose probability mass function is given

as

p(γ̃αj | ωj) ∝ exp

ωj ∑
1≤k<k′≤K

dk,k′1
(
γαk′,j = γαk,j

) , (1.4.3)

where 1(C) is equal to 1 if C is true and 0 otherwise and the constant dk,k′ is equal to 1 if

municipalities k and k′ are adjacent and 0 otherwise. The hyperparameter ωj controls the spatial

smoothness and an uniform prior distribution is defined, ωj ∼ Uniform (0, ωmax), where ωmax is

fixed. Note, this prior specification assumes that the vectors γ̃αj and γ̃αj∗ , j, j
∗ = 1, . . . , 7, j 6= j∗,

are statistically independent.

For the zero-truncated Poisson component, a log-linear model with Gaussian overdispersion

is defined. Inference is performed on days with positive claim numbers only as observations of

Nk,t = 0 are uninformative. As for the Bernoulli component, variable selection is performed via

a set of binary random variables which define whether a covariate enters the model or not. Let

γλk = (γλk,1, . . . , γ
λ
k,7), k ∈ {1, . . . , 319} be a vector of binary variables such that γλk,j = 1 if the

jth covariate enters the model for λk,t and γλk,j = 0 otherwise. The dependence between λk,t

and Xk,t, conditional on Nk,t > 0, is formally specified as

log (λk,t) ∼ Normal

βk,0 +
∑

{j : γk,j=1}
βk,jXk,t,j − log (Ak,t) , σ

2
k

 , (1.4.4)

where Ak,t is the observed number of policies. A Gaussian prior is defined on the vector of

covariate effects for which γλk,j = 1 and its covariance structure is in the form of a g-prior

(Zellner, 1986). Further, a conjugate inverse-Gamma prior is defined for σ2
k while an improper

prior is specified for the baseline risk, βk,0 ∝ 1; for more details on the prior specification see

Section 3 in Scheel et al. (2013). Geographically smoothed variable selection for each covariate

is performed equivalently to the Bernoulli component via an Ising prior distribution as in (1.4.3)

with hyperparameter ωλj .

Due to the statistical framework formulated above, inference on the parameters for λk,t can

be performed separately from αk,t as the two parameters are conditionally independent given
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the data. In the case of the zero-truncated Poisson component, the covariate effects βk and the

variance σ2
k can be integrated out from the prior; see Scheel et al. (2011) for details. Samples

from the posterior distribution for the zero-truncated Poisson component are then obtained

via Gibbs sampling and an adaptive Metropolis algorithm (Roberts and Rosenthal, 2009). For

the Bernoulli component, samples of the posterior distribution are drawn by a reversible jump

MCMC (Green, 1995).

Results

Parameters are estimated based on the data for all years except 2001 via the MCMC algorithm

outlined above. The zero-truncated Poisson component is not estimated for all municipalities

as some of them do not observe any days with Nk,t > 1. Since interest lies in the detection

of claim-driving weather events, analysis focuses on the posterior distributions of γαk,j and γλk,j

which provide insight into the importance of covariate j for the claim dynamics in municipality

k. Results show that the posterior means vary geographically but also between the two model

components.

Only the covariates Rk,t, Rk,t−1 and Dk,t appear to be important for the Bernoulli com-

ponent. Posterior mean plots indicate that Rk,t and Rk,t−1 enter the model for αk,t in more

than 60% of the samples for most of the western coast and in south-east Norway but not for

the mountainious areas in central Norway. Scheel et al. (2013) explain these differences via the

vegetation and the soil absorbing water in the rural, mountainous municipalities, as opposed

to the urbanized areas with asphalt-covered streets. Further, Dk,t has a strong impact on the

claim dynamics for south-east Norway where the landscape is flat and water cannot escape as

easily as in the mountainous municipalities in western Norway. Figure 3 in Scheel et al. (2011)

further shows that the posterior mode for γαk,j = 0 for municipalities in central Norway where

Ak,t is relatively small, i.e. any weather covariate hardly enters the model. Compared to Haug

et al. (2011), both approaches conclude that the drainage run-off is not important for western

municipalities.

For the zero-truncated Poisson component, plots indicate that Rk,t, Rk,t−1, Sk,t and ∆Sk,t

are important but not Dk,t. Results for Rk,t and Rk,t−1 are similar to the ones of the Bernoulli

component. The covariates Sk,t and ∆Sk,t appear important, with varying degree, across the

considered municipalities. While Sk,t enters the model for λk,t most often along the coast, the

binary factor associated to ∆Sk,t has highest posterior mean in Oppland and Hedmark.
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Table 1.4.1: Posterior predictive median, 95% prediction interval and actual observation of the weekly-
aggregated claim numbers for (a) the four weeks with the highest observations, (b) the
four weeks with maximum total precipitation for the Binomial and Poisson Hurdle model
with proposed covariates for Oslo and Bergen.

Period Results for Oslo Results for Bergen

Median 95% prediction Truth Median 95% prediction Truth
interval interval

(a) 4 (0,14) 11 3 (0,8) 7
4 (1,11) 11 3 (0,7) 7
3 (0,8) 8 2 (0,6) 6
3 (0,7) 7 2 (0,7) 6

(b) 3 (0,8) 3 2 (0,7) 2
3 (0,7) 3 2 (0,7) 2
3 (0,7) 3 3 (0,8) 2
3 (0,7) 3 2 (0,6) 2

(c) 5 (1,13) 5 4 (0,10) 5
4 (0,14) 11 4 (0,12) 1
4 (0,11) 6 3 (0,9) 3
4 (1,11) 11 3 (0,9) 3

(d) 3 (0,8) 6 3 (0,7) 0
3 (0,8) 3 3 (0,6) 2
3 (0,8) 1 2 (0,7) 3
3 (0,8) 3 3 (0,6) 3

Predictive performance is assessed on a weekly basis for the year 2001. In particular, the

weekly-aggregated claim numbers are classified with respect to three types: (i) zero claims, (ii)

one to three claims and (iii) more than 3 claims. The predicted type is the one with the highest

posterior predictive probability. On average, the Poisson Hurdle model predicts the correct type

in 89% of the cases but performance differs strongly between municipalities. While predictions

are correct in more than 90% of the weeks for most rural municipalities, the success rate is about

70% for the largest cities and only 46% for Sarpsborg in south-east Norway.

Additional to the claim type prediction, the predictive performance is considered for Oslo

and Bergen and the results from Scheel et al. (2013) are provided in Table 1.4.1. While the

predictions are relatively good for weeks with medial claim numbers and precipitation levels,

the results show a clear tendency to underpredict high claim numbers. Furthermore, the model

also shows limitations in capturing the effect of rainfall since the observed claim numbers are

sometimes at the upper end of the 95% prediction intervals.
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1.4.3 Limitations

Both claim models by Haug et al. (2011) and Scheel et al. (2013) appear to have potential limi-

tations in terms of capturing the dependence structure between the insurance and weather data

analyzed in Section 1.3. Haug et al. (2011) estimate a Binomial model with overdispersion for

Nk,t but assess its model fit solely by comparing the observed and predicted average numbers of

claims over the whole 10-year period. Such an examination does not provide much insight into

the model performance for days with high claim numbers. Furthermore, the modelling frame-

work is based upon the restrictive assumption of common covariate effects for all municipalities

within a county. For instance, the county of Buskerud has a diverse topology, western areas

are mountainous and rural while the east is rather flat and densely populated with the city of

Drammen. The model estimates by Scheel et al. (2013) also show geographical differences in

the importance of the covariate within the region; Rk,t is found to usually enter the model for

Drammen while this is hardly the case for western municipalities in Buskerud. While the ap-

proach assumes common vulnerability to the weather covariates across the county, any potential

geographical structure between counties is not considered. Finally, Haug et al. (2011) allow for

non-linear parametric forms of the single covariates but they do not account for a non-linear

combined effect of, e.g. snow-melt and precipitation.

Scheel et al. (2013) argue that a Binomial distribution cannot handle the high frequency of

zero claims which may be another potential limitation of Haug et al. (2011). They hence propose

a Bayesian Poisson Hurdle (BPH) model whose parameters depend on seven covariates. How-

ever, Table 1.4.1 shows that the BPH model underperforms in weeks with high claim numbers.

Consequently, the dynamics which induce high claim numbers are not well modelled although

the proposed distribution accounts for the high frequency of zero claims. Consequently, the log-

linear model with overdispersion and zero-truncated Poisson distribution is not flexible enough

to fit the strictly positive claim numbers. Equivalently to Haug et al. (2011), any non-linear

combined effects of the covariates are not considered. Both approaches also ignore potential

non-continuous threshold effects. For instance, the infrastructure of a city is generally able to

cope with low amounts of precipitation, i.e. the risk changes only slightly, but the claim prob-

ability may ’jump’ at a certain precipitation level and then increase much stronger beyond this

threshold.
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1.5 Thesis Aims and Structure

This thesis aims to improve the approaches by Haug et al. (2011) and Scheel et al. (2013) and

introduces new statistical models for the dependence between the number of claims and the

weather data. Section 1.2 outlined that good models are required as decision makers want to

take efficient actions against weather events which cause severe damages while the insurance

companies want to set adequate premiums. These models are based upon the new methodology

in spatial statistics, monotonic regression and extreme value theory developed in this thesis.

Bayesian inference and optimization are applied to estimate the introduced models. The thesis

is split into several chapters that consider different aspects and handle the limitations discussed

in Section 1.4.3. It includes an introduction to the statistical areas of spatial statistics, monotonic

regression and extreme value theory as well as a summary of existing research (Chapter 2).

Chapter 3 compares the performance of the Binomial and the Bayesian Poisson Hurdle model

with respect to the insurance and weather data. A Bayesian hierarchical model is introduced for

both approaches separately and defines a geographical dependence structure for the covariate

effects. The dependence model is more flexible than the one by Haug et al. (2011), as it estimates

covariate effects municipality-wise, but defines a higher degree of dependence between municipal-

ities than Scheel et al. (2013). Equivalently to Scheel et al. (2013), the predictive performance is

assessed on a weekly basis. The following chapters then introduce the new methodologies which

increase the flexibility of the modelling framework in Chapter 3 and are structured in form of

papers. Hence, they can be read as separate entities. As such, some aspects, e.g. the description

of the insurance and weather data, are repeated.

Chapter 4 introduces Bayesian Spatial Monotonic Multiple Regression (BSMMR), a new

methodology to perform monotonic, multiple regression for a set of contiguous regions (lattice

data). The regression functions permissibly vary between regions and exhibit geographical

structure. Bayesian non-parametric methodology is developed which allows for both continuous

and discontinuous functional shapes and which are estimated using marked point processes and

reversible jump Markov Chain Monte Carlo techniques (Green, 1995). Geographical dependence

is incorporated by a flexible prior distribution; the parametrization allows the dependence to

vary with functional level. The approach is tuned using Bayesian global optimization and cross-

validation. Estimates enable variable selection, threshold detection and prediction as well as

the extrapolation of the regression function. Performance and flexibility of the approach are
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illustrated by simulation studies and an application to a subset of the Norwegian insurance data

set explored in Section 1.3.

Chapter 5 introduces an alternative approach to BSMMR which also considers monotonic,

multiple regression for lattice data. This methodology is motivated by the high computational

cost of the BSMMR approach. Monotonic functions are estimated via optimization and can be

combined with all other optimization-based approaches considering a single monotonic function.

The approach is slightly less flexible than BSMMR, but also less computationally demanding.

A simulation study is performed to illustrate the performance and benefits.

Chapter 6 introduces a new approach to model the dependence between weather events, e.g.

rainfall or snow-melt, and the number of water-related property insurance claims. Similarly to

Scheel et al. (2013), the model accounts for a spatial variation of the underlying dynamics due

to differences in topology, construction designs and climate. The new model is in particular

motivated by the lack of model fit for high numbers of claims and methods of extreme value

theory are used. More precisely, the statistical framework is based on both mixture and extremal

mixture modelling, with the latter being based on a discretized generalized Pareto distribution.

Further, a temporal clustering algorithm is proposed and new covariates are derived which

lead to a better understanding of the association between claims and weather events. The

modelling of the claims, conditional on the locally observed weather events, both fits the marginal

distributions well and captures the spatial dependence between locations. To demonstrate its

benefits, the methodology is applied to the three cities of Oslo, Bergen and Bærum. The thesis

concludes with a summary and discussion on future research in Chapter 7.



Chapter 2

Literature Reviews

2.1 Statistical Models for Lattice Data

2.1.1 Overview

Spatial data arise in several application areas, including meteorology (Handcock and Wallis,

1994) and public health (Wakefield, 2007). Let D ⊂ Rd, d ≥ 1, denote the spatial domain, that

is, the set of locations which is considered in the analysis. Spatial statistics considers inference

about a stochastic process (random field) Z over D which defines a random variable Z(s) at

each spatial location s ∈ D. Cressie (1993) classifies spatial data into three categories based on

the nature of D: geostatistical data, point pattern data and lattice data.

For geostatistical data, D is a continuous set and observations are recorded for a finite set

of fixed spatial locations, s1, . . . , sn ∈ D. Interest lies in the spatial interpolation of the data

to predict Z at an unobserved spatial locations s∗ ∈ D. Such data emerge, for instance, in

meteorology as the temperature is recorded for a finite set of weather stations and then derived

for each location via spatial interpolation. Note, the weather covariates described in Section 1.3

are generated by such an approach. Gaussian process models are widely discussed and applied

in geostatistics (Kim et al., 2005; Banerjee et al., 2008); see Rasmussen and Williams (2006) for

a detailed overview on Gaussian processes. Conditional on such a model, the interpolated value

at a location corresponds to the mean of the estimated Gaussian process model at this point in

space.

Point pattern data are also observed over a continuous spatial domain D but the spatial

locations are stochastic. Each observation is a countable set of points which are a realization of

the spatial stochastic process Z. Consequently, inference for point pattern data considers the

28
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distribution of the spatial locations while methods for geostatistical data analyze the spatial

dependence between the observed values. For instance, the point patterns could be realizations

from a Poisson process with non-stationary spatial density function. Point patterns arise in

epidemiology and are used to estimate the spatial variation in risk of infection (Diggle, 2013).

In practice, point pattern data derive from case-control studies where the exact spatial location

for each individual is known (Costain, 2009). Such data then allow to detect areas which exhibit

an elevated or reduced risk of infection. For more details on the statistical methodology for

geostatistical and point pattern data, the reader is referred to Cressie (1993), Schabenberger

and Gotway (2004) and Gelfand et al. (2010).

Lattice data refer to spatial data for which the number of locations in D is finite and examples

include pixel data and areal unit data. The latter generally occur when individual observations

are locally aggregated due to practicality or confidentiality concerns (Paiva et al., 2014). Note,

the areal units may be irregular both in shape and size. Let K denote the number of areal

units. The stochastic process Z then corresponds to a random vector Z = (Z1, . . . , ZK) , where

Zk, k = 1, . . . ,K refers to the kth areal unit. In applications, an adjacency (neighbourhood)

structure is generally defined either via an adjacency matrix B ∈ {0, 1}K×K or an undirected

graph G = (V, E), where V and E refer to vertex and edge set, respectively. An adjacency matrix

B has zeros on its diagonal and off-diagonal entry Bk,k′ = 1, k, k′ = 1, . . . ,K, k 6= k′, if the

areal units k and k′ are adjacent, and 0 otherwise. With respect to the graph representation,

each node v ∈ V corresponds to an areal unit and an edge e ∈ E between two nodes corresponds

to the associated areal units being adjacent.

The Norwegian insurance and weather data explored in Section 1.3 and used throughout the

thesis is ’areal’ in structure and the spatial domain consists of the K = 430 municipalities (areal

units). Therefore, the following literature review considers this data type only and summarizes

the existing research. Section 2.1.2 details two classical models for lattice data: the Ising model

and Gaussian Markov random fields. Section 2.1.3 describes how these models are generally

applied and provides some examples from the literature, including the aspect of spatially varying

regression functions.

2.1.2 Ising Model and Gaussian Markov Random Field

Interest lies in the specification of a spatial dependence model for the K-dimensional random

vector Z = (Z1, . . . , ZK) ∈ RK . Scheel et al. (2013) apply the Ising model to perform spatially
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varying variable selection. The spatial variation in the baseline risk as modelled by Haug et al.

(2011), on the other hand, may be defined in terms of a Gaussian Markov random field. These

two spatial models are detailed in the following:

Ising Model

Let Z be a vector of binary random variables which take values 0 or 1 and consider an adjacency

matrix B which defines the spatial structure. Note, the following model can also be defined more

generally for any symmetric matrix with non-negative entries. The Ising model for Z based on

B then defines a joint density which allocates higher probability to outcomes of Z for which

adjacent areal units have the same binary outcome. Formally, the joint density π (z) of Z is, up

to a normalizing constant, given as

π(z) ∝ exp

−ω
∑

{(k,k′) : Bk,k′=1}
dk,k′1 (zk = zk′)

 , (2.1.1)

where dk,k′ ≥ 0 are prespecified constants. The parameter ω ≥ 0 defines the degree of spatial

smoothing, that is, the probability mass function has greater mass around the outcomes z = 1

and z = 0 with increasing ω. Such dependence models are, for instance, considered in image

analysis (Smith and Fahrmeir, 2007).

The spatial model in (2.1.1) can readily be integrated into a MCMC scheme, in particular,

a Gibbs sampling scheme. Consider the update of zk, k = 1, . . . ,K, and let D denote the data.

Further, define Z−k as the set of binary random variables excluding Zk and z−k its current

values. The full conditional posterior for Zk with likelihood function f (D | z) is then given as

π (zk | z−k,D) ∝ f (D | z)π (zk | z−k) = f (D | z) exp

−ω
∑

{k′ : Bk,k′=1}
dk,k′1 (zk = zk′)

 ,

in which the sum is taken over the areal units adjacent to area k.

While the update of the binary random variables, z, is straightforward, the smoothing pa-

rameter ω is more complex. In order to sample ω, the normalizing constant of the density

function in (2.1.1) is required. For small K, one may evaluate the sum in (2.1.1) for all possible

combinations of the binary random variables and hence derive the normalizing constant exactly.

However, this approach is infeasible for large K. For example, consider: the number of possible
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345

Figure 2.1.1: Example of an undirected graph with K = 5 nodes.

outcomes of Z for the insurance data is 2430 ≈ 3 × 10129. Since the normalizing constant is

intractable for large K, approximative approaches are generally applied. For instance, Smith

and Fahrmeir (2007) and Scheel et al. (2013) apply the thermodynamic integration approach by

Green and Richardson (2002) which assumes ω > 0 and approximations are derived for a finite

set of values of ω, e.g. defined via a grid. While this approach requires additional off-line com-

putation, Møller et al. (2006) propose the introduction of an auxiliary variable which requires

no additional step. The latter also relates to importance sampling; see Møller et al. (2006) for

details.

Gaussian Markov Random Fields

Prior to introducing the concept of a Gaussian Markov Random field, a more general introduction

to Markov random fields is provided. Consider theK-dimensional vector Z = (Z1, . . . , ZK) ∈ RK

and let the dependence structure between the areal units be specified via an undirected graph

G = (V, E) as described in Section 2.1.1. Hence, the kth node corresponds to Zk and an edge

e ∈ E between two nodes corresponds to the associated areal units being adjacent. Figure 2.1.1

illustrates an example of a dependence structure for a set of K = 5 areal units. The random

vector Z is then termed a Markov random field with respect to G if it satisfies certain Markov

properties:

Pairwise Markov property

Any two components which are not connected via an edge e ∈ E are conditionally indepen-

dent given all the other components. With respect to Figure 2.1.1, this property implies

that Z1 ⊥⊥ Z4 | (Z2, Z3, Z5).

Local Markov property

A variable is conditionally independent of all other components given all the ones to
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which an edge exists. Considering Figure 2.1.1, the local Markov property implies that

Z1 ⊥⊥ (Z3, Z4) | (Z2, Z5).

Global Markov property

Any two subsets of variables are conditionally independent given a non-empty separating

subset. For Figure 2.1.1, the global Markov property implies that (Z1, Z5) ⊥⊥ Z3 | (Z2, Z4).

For a Markov random field, the Hammersley-Clifford theorem provides a factorization of the

joint density of Z, πZ(z), based on G and the concept of a clique. A subset Ṽ ⊆ V is called

a clique if all vertexes in v ∈ Ṽ are connected to each other. For instance in Figure 2.1.1, the

subgraph (2, 3, 4) is a clique while (1, 2, 5) is not a clique since there exists no edge between the

2nd and 5th vertex. The Hammersley-Clifford theorem then states that for all outputs z of Z

with π (z) > 0, the joint density factorizes over the cliques of the graph; see Besag (1974) for a

proof.

The approach in spatial statistics for lattice data is then to define a model on Z via a set of

full conditional distributions Zk | (Z−k = z−k), where Z−k refers to Z without Zk. Due to the

local Markov property, it is sufficient to specify the full conditional for Zk based on the adjacent

areal units only. The other attractive property of such an approach is the ease of integrability

into a MCMC algorithm. Similarly to the Ising model, estimates of the posterior distribution

of Z can be sampled in a Gibbs sampling scheme as the full conditionals are easily accessible.

Hence the full conditional posterior density π (z | D, z−k) of Zk | (D, z−k) is given as

π (zk | D, z−k) ∝ f (D | zk, z−k)π (zk | z−k) .

However, not every set of full conditionals defines a valid joint distribution for Z. In the following,

the special case of Z being Gaussian distributed is considered and criteria on the full conditionals

are specified.

Let Z be Gaussian distributed with positive definite precision matrix Q ∈ RK×K and whose

dependence structure can be represented via an undirected graph G. Then Qk,k′ is equal to 0 if,

and only if, there exists no edge between the nodes k and k′, that is, Zk and Zk′ are conditionally

independent given all other components. Besag (1974) generally defines a set of full conditionals

Zk | z−k, termed conditional autoregressive (CAR) models, such that the joint density of Z is
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Gaussian distributed. Assume that Z has mean 0 and let Zk | (Z−k = z−k) be defined as

Zk | (Z−k = z−k) ∼ Normal

∑
k′ 6=k

dk,k′zk′ , τ
−1
k

 , (2.1.2)

where dk,k′ ≥ 0 is constant and τk > 0. If τk dk,k′ = τk′ dk′,k for all pairs k 6= k′, the

model specified by expression (2.1.2) results in a multivariate Gaussian distribution for Z,

Z ∼ MVN
(
0,Q−1

)
; subject to Q being positive definite. Specifically, the precision matrix Q

has diagonal entries Qk,k = τk and off-diagonal entries Qk,k′ = −τkdk,k′ .

In several applications, a specification by Besag et al. (1991) which results in Q being positive

semidefinite and not having full rank is considered. Rue and Held (2005) refer to this approach as

intrinsic autoregressive (IAR) while Wakefield (2007) terms it intrinsic conditional autoregressive

(ICAR). Formally, the full conditionals are defined as

π (zk | z−k) ∼ Normal

(∑
k′ 6=k dk,k′zk′∑
k′ 6=k dk,k′

,
1

ω
∑

k′ 6=k dk,k′

)
. (2.1.3)

Similarly to the Ising model in (2.1.1), the parameter ω > 0 controls the spatial smoothness,

with higher values for ω implying less spatial variation and hence higher spatial dependence.

The constants dk,k impose a weighting of the areal units and are often adjacency-defined, that

is, dk,k = 1 if the areal units k and k′ are adjacent and 0 otherwise. An alternative definition of

dk,k′ considers the distance between the centroids of the areal units.

For the conditional model specification in (2.1.3) with adjacency-based weights and G being

a connected graph, the resulting joint distribution is improper and has probability density

π(z) ∝ ω
K−1

2 exp

−ω2 ∑
1≤k<k′≤K

dk,k′ (zk − zk′)2


= ω

K−1
2 exp

{
−ω

2
z>Qz

}
.

(2.1.4)

Here, Q has diagonal entry Qk,k equal to the number of areal units adjacent to k, and off-diagonal

entries Qk,k′ = −1 if the areal units k and k′ are adjacent and 0 otherwise. This distribution has

no mean since it is defined upon pairwise differences and hence the right-hand side is invariant

to translation of z by adding a single constant to each component of z. While Besag et al. (1991)

suggest a factor of ωK/2 in (2.1.4), several authors agree on ω(K−1)/2, as advocated by Knorr-

Held (2003) and Hodges et al. (2003), and which is based on the precision matrix having rank
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K − 1. If G is unconnected, then the factor depends on the number of unconnected subgraphs.

Alternative approaches to the IAR in expression (2.1.4) are, for instance, proposed by Cressie

(1993) or Leroux et al. (1999). Lee (2011) performs a comparative study and finds that all

approaches produce close to unbiased estimates and that the prior model by Leroux et al.

(1999) appears to be best in terms of overall performance. These conditional autoregressive

models are also implemented in the CARBayes R package by Lee (2013).

A specified improper prior model, as in expression (2.1.4), results in a proper posterior

distribution if the data allow for the estimation of an overall mean of Z. As later described in

Section 2.1.3, the overall mean of Z is defined as an additional parameter and a constraint is

imposed on Z to ensure identifiability. Let Z̃ = Z− E(Z). The constraint then corresponds to

K∑
k=1

Z̃k = 0. (2.1.5)

While this condition appears restrictive, Gelfand and Sahu (1999) state that it is sufficient to

replace the estimates z̃ by z̃− z̃ after each iteration of the Gibbs sampler. Finally, a conjugate

Gamma prior is generally defined for the spatial smoothing parameter ω; the reader is referred

to Rue and Held (2005) for more details on Gaussian Markov random fields.

2.1.3 Statistical Models

The statistical models described in Section 2.1.2 permit incorporation of spatial dependence in

a wide range of applications. In environmental epidemiology, also referred to as disease mapping

or spatial epidemiology (Lawson, 2013), the baseline risk is typically assumed to be spatially

varying across the areal units and the CAR or IAR model is then used. Assume, for example,

that both the number of infected and susceptible are observed for a set of K areal units. Then

the number of infected for areal unit k may be modelled by a Binomial distribution with the

probability on logit scale being defined as

logit (pk) = β0 + uk + εk. (2.1.6)

The parameter β0 denotes the average baseline risk of infection over all areal units, εk is a

local random effect with mean 0 and uk is a spatial random effect. In a Bayesian modelling

framework as described by Besag et al. (1991), the dependence structure for uk is defined via

an IAR model with adjacency-based weights while Gaussian priors are defined for β0 and εk.
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In order to ensure identifiability of β0, the constraint (2.1.5) is imposed on the spatial random

effects u = (u1, . . . , uK). Alternatively to the Binomial distribution, a Poisson model may be

considered since the number of infections is typically sufficiently small in comparison to the

population size.

Further, additional explanatory variables are often observed and included in (2.1.6) via a

linear term or more generally via a non-parametric regression function (Hughes and Haran, 2013;

Neelon et al., 2013). In these cases, the regression function is usually assumed to be identical for

all areal units and any spatial variation in the process is captured via differences in the observed

values of the explanatory variables. In the context of disease mapping, this approach often

appears reasonable since factors such as temperature affect the risk of infection independently

of the spatial location. However, Bell et al. (2004) find a spatially heterogeneous effect of air

pollution levels with respect to mortality across the major cities in the United States. They

explain these differences with potentially city-specific differences in pollution characteristics and

socioeconomic factors.

Approaches for spatial varying regression functions usually assume a linear shape of these

functions. Brunsdon et al. (1998) and Fotheringham et al. (2002) introduce the concept of ge-

ographically weighted regression (GWR). In principle, GWR considers the locations in the data

sequentially and fits a linear regression at each location using weighted least squares method-

ology. The weights are generally positively correlated to the spatial proximity, in particular,

the most weight is given to the locations which are the closest spatially, while locations which

are too distant have weight 0. A Bayesian approach based upon the CAR prior specification in

expression (2.1.2) is considered, for instance, by Assunção (2003) and Congdon (2003). The for-

mer terms this approach a geographically varying coefficient (GVC) model. Similarly to (2.1.6),

the covariate effect for each areal unit is defined as the sum of an average covariate effect and a

spatial random effect, with latter being modelled via a conditional autoregressive model. Waller

et al. (2007) compares the two approaches in the context of alcohol and violence data and the

results indicate that they are qualitatively similar. Haug et al. (2011) and Scheel et al. (2013)

consider a spatial variation in the covariate structure too and define two quite different models.

Haug et al. (2011) assume no spatial variation within a Norwegian region but covariate effects

are assumed to vary across regions and no spatial structure is imposed. The approach by Scheel

et al. (2013) defines spatial dependence on the covariate effects via the latent binary indicator

variables detailed in Section 1.4. More flexible regression shapes are considered by Congdon
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(2006) who proposes a non-parametric approach based on generalized additive modelling.

The conditional autoregressive approach can also be applied in a spatio-temporal modelling

framework. Similarly to the modelling of a spatial random effect as in expression (2.1.6) via, for

instance, an IAR model, a temporal random effect is introduced for each areal unit. Potential

temporal dependence between time points is again incorporated via a conditional autoregressive

model. Knorr-Held (2000) introduces a second independently distributed random effect, result-

ing in a total of 4 random effects for each observation. Such spatio-temporal models are also

applied by Mercer et al. (2015) and Lee and Lawson (2016); for more details on spatio-temporal

models see Cressie and Wikle (2015).

2.2 Monotonic Regression

2.2.1 Overview

Monotonic regression, also termed isotonic regression, considers the estimation of an unknown

regression function λ : X ⊆ Rm → Y ⊆ R subject to the constraint of monotonicity. More

precisely, the constraint states that an ordering in the input set is preserved or reversed in the

output set and is defined here in terms of the Euclidean ordering �. Formally, the constraint

u � v ⇒ λ(u) ≤ λ(v), u,v ∈ X , (2.2.1)

implies that λ is monotonically non-decreasing, called isotonic. The notation u � v for two

vectors u,v ∈ X corresponds to u ≤ v component-wise. Each monotonic function can be

transformed to an isotonic one by reversing some or all of the coordinate axis. Hence, it is

sufficient to consider settings with constraint (2.2.1) in the following. Note, the term monotone

(isotone) regression generally refers to the special case m = 1.

Shape constraints such as (2.2.1) are imposed in several applications in which linearity is too

restrictive. The monotonicity assumption is, for instance, imposed on dose-response relationships

in the pharmaceutical industry. Dose-response curves are generally monotone and model the

response, or effect, as a function of the concentration, or dose. Other application areas are

considered by Royston (2000), Hyndman and Ullah (2007), Farah et al. (2013) and Wilson et al.

(2014).

In the following, interest lies in obtaining an estimate λ̂ for λ based on a set of observations
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D = {(yi,xi) ∈ R×X : i = 1, . . . , n}, subject to the monotonicity constraint. Such problems

were originally considered by Ayer et al. (1955) and Brunk (1955) in the context of parameter

estimation. Several approaches have since been developed in both Operations Research and

Statistics, and these are generally semi- or non-parametric. Most methods impose one or more

additional assumptions such as continuity, smoothness or boundedness of λ.

The following sections consider these approaches in detail and summarize the existing re-

search on monotonic regression. Methods for monotonic regression which are based on (i) op-

timization, (ii) generalized additive models, (iii) Bayesian non-parametrics and (iv) functional

data analysis are detailed, respectively, in Sections 2.2.2 to 2.2.4. The section concludes with a

summary, including benefits and limitations in Section 2.2.5.

2.2.2 Optimization

Monotonic Regression can be formalized via an optimization problem with constraints as defined

in (2.2.1). In this context, λ is estimated locally at the observed points x1, . . . ,xn. Let ŷi

denote the functional level of the estimated function λ̂ at xi, ŷi = λ̂(xi). The aim is to find

values ŷ1, . . . , ŷn which minimize the residuals |yi − ŷi| , i = 1, . . . , n. Formally, the optimization

problem is defined as

min
ŷ1,...,ŷn

[
n∑
i=1

wi |yi − ŷi|p
] 1
p

, 1 ≤ p ≤ ∞,

subject to xi � xj ⇒ ŷi ≤ ŷj , ∀i, j ∈ {1, . . . , n} ,

(2.2.2)

where the objective function is the Lp norm of the vector of residuals with specified constants

w1, . . . , wn ≥ 0. The ordering induced by the constraints in (2.2.2) on the data points in D

can be represented via a directed acyclic graph (DAG), G = (V,E), where the vertex set V

represents the n observations and an edge e ∈ E corresponds to a constraint between two

observations. Optimization problems of the form (2.2.2) are, for instance, considered in supply

chain management (Maxwell and Muckstadt, 1985), medicine (Schell and Singh, 1997), biology

(Obozinski et al., 2008), genetics (Luss et al., 2012) and economics (Keshvari and Kuosmanen,

2013).

The optimization problem in (2.2.2) is generally tractable. If 1 < p < ∞, the objective

function is a sum of strictly convex functions which is also strictly convex. Since the space of

potential solutions (ŷ1, . . . , ŷn) is convex too, (2.2.2) has an unique solution for 1 < p <∞. For
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the remaining cases p = 1 and p =∞, there exists one, not necessarily unique, solution (Khattree

et al., 1999; Stout, 2012). Note, most theoretical results hold for any strictly convex loss function

Φ (ŷ1, . . . , ŷn) and are not limited to the Lp norm in (2.2.2). Furthermore, some publications

in the optimization literature examine variations or extensions of 2.2.2. For instance, Liu and

Ubhaya (1997) impose the additional constraint of each estimate ŷi, i ∈ {1, . . . , n}, being integer

while Sasabuchi et al. (1983) and Sasabuchi et al. (1992) consider a multivariate analogue.

The solution to (2.2.2) is of piecewise-constant form (Barlow and Brunk, 1972) and can be

derived using Convex Optimization in the case p > 1; see Boyd and Vandenberghe (2004) for a

detailed overview on convex optimization. In practice, algorithms split {(yi,xi) : i = 1, . . . , n}

into a set of disjoint blocks B1, . . . , BJ with all data points in one block having the same

functional level: i, i′ ∈ Bj ⇒ ŷi = ŷi′ . For instance for p = 2, the functional level of

block Bj , j = 1, . . . , J corresponds to the weighted average of the points yi with i ∈ Bj since

this minimizes (2.2.2). Multiple approaches to derive B1, . . . , BJ are available in the literature;

recent developments include the work by Stout (2015) and Kyng et al. (2015). Three iterative

algorithms, (i) Pool Adjacent Violators, (ii) Minimum Lower Set and (iii) Isotonic Recursive

Partitioning, are outlined in the following:

Pool Adjacent Violators Algorithm (PAVA)

The algorithm is introduced by Ayer et al. (1955) and Miles (1959) and is restricted to the

estimation of univariate monotonic (monotone) functions, i.e. m = 1. Hence, the Euclidian

ordering induces a total order on the input space X and the observations x1 to xn can be

ordered. For notational simplicity, let xi < xi+1, ∀i ∈ {1, . . . , n− 1} which implies ŷi ≤ ŷi+1.

Initially, all n data points are considered as individual blocks, Bj = {j} , j = 1, . . . , n, with

assigned level ŷi = yi. Since this setup violates, in general, the monotonicity constraint, adjacent

blocks are pooled until the monotonic constraint is fulfilled. More precisely, the algorithm

executes the following operations recursively:

1. If ŷi > ŷi+1 for any i ∈ {1, . . . , n− 1}, pool the blocks containing ŷi and ŷi+1.

2. Derive new functional level ŷi = ŷi+1 for of all points in the pooled block as the one which

minimizes the objective function in (2.2.2).

3. Stop if ŷi ≤ ŷi+1, ∀i ∈ {1, . . . , n− 1}, else continue with Step 1.
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Figure 2.2.1: Function estimates obtained by the PAVA in the isotone package for two data sets
with 100 Normally distributed observations, yi|xi ∼ Normal(λ(xi), 0.1) and uniformly
distributed input values xi, xi ∼ Uniform(0, 1), i = 1, . . . , 100. The values for the

optimization are set to p = 2 and wi = 1, i = 1, . . . , 100. The plots provide ( ) the

true underlying function λ, ( ) the estimate λ̂ and the sampled observations.

De Leeuw et al. (2009) introduce the R package isotone which provides functions for the PAVA.

Figure 2.2.1 shows that the PAVA yields reasonable results for both smooth and discontinuous

monotone functions. The algorithm is an active set method (Best and Chakravarti, 1990; Best

et al., 2000) and several modifications have been proposed. For instance, Yeganova and Wilbur

(2009) modify the PAVA in order to obtain a continuous estimate for λ̂, based upon λ fulfilling

the Lipschitz condition. For more details on the algorithm see Robertson et al. (1988) and

De Leeuw et al. (2009).

Minimum Lower Set Algorithm (MLSA)

The approach is based on Brunk (1955) and Brunk et al. (1957) and uses the concept of lower

sets. A set L ⊆ B is a lower set if it is downward closed, i.e. a ∈ L, b ∈ B, b � a ⇒ b ∈ L.

In contrast to the PAVA, the MLSA only requires a partial order on X , i.e. the algorithm is

applicable for any dimension m ≥ 1 of the input space X .

All observations are initially in one block B1, i.e. ŷ1 = · · · = ŷn, with functional level set

to the one which minimizes the objective function in (2.2.2). The algorithm then recursively

subtracts lower sets L1, L2, . . . from the initial set B1 as follows:

1. Derive lower set Lj ⊆ Bj which provides the lowest functional level.
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2. Set Bj+1 = Bj\Lj .

Estimates ŷ1, . . . , ŷn are then derived via the lower sets L1, L2, . . .. Modifications of the MLSA

for more general optimization problems than (2.2.2) are proposed by Robertson and Wright

(1980) and Qian (1992).

Isotonic Recursive Partitioning (IRP)

The principle idea for IRP is introduced by Maxwell and Muckstadt (1985) and later considered

by Spouge et al. (2003) and Luss et al. (2012). For notational simplicity, let p = 2 and set

the constants in (2.2.2) as w1 = . . . = wn = 1. Equivalently to the MLSA, all data points are

initially in one block B1 with functional levels ŷ
(1)
1 = · · · = ŷ

(1)
n = y. An optimal partition for

the initial block B1 is derived by solving the best cut problem

max
L

 ∑
i∈B1\L

(yi − y)−
∑
i∈L

(yi − y)

 , (2.2.3)

where L is a lower set. In the next iteration, the algorithm solves the optimization problem

(2.2.3) for both blocks L and B1 \ L separately. This is required since the optimal lower set

L in (2.2.3) is not necessarily identical to the optimal minimum lower set in the MLSA. Best

cut problems of type (2.2.3) are then recursively solved until no further partition is optimal,

i.e. the lower set L is empty or the whole set. The difference between IRP and MLSA can also

be described in terms of the aforementioned DAG representation. While the MLSA separates

a connected subgraph from the original graph, IRP splits the graph into two potentially dis-

connected graphs in each iteration. The advantage of IRP is that the optimization problem in

(2.2.3) can be efficiently solved by linear programming; for more details see Luss et al. (2012).

The generalization of the IRP approach is derived in Luss and Rosset (2014).

2.2.3 Generalized Additive Models

We provide a short introduction to the generalized additive modelling (GAM) framework prior to

its consideration in the context of monotonic regression. Hastie and Tibshirani (1986) introduce

GAM by combing generalized linear and additive models, the latter are established by Friedman

and Stuetzle (1981) as a tool for non-parametric regression. More precisely, the linear predictor

is replaced by a sum of smooth functions f1, f2, . . ., i.e. a higher-dimensional function is expressed
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in terms of lower-dimensional functions. Formally, a general GAM is of the form

g [E(Y )] = β0 + f1(x1) + · · ·+ fm(xm) + fm+1(x1, x2) + · · · , (2.2.4)

where Y is the response variable with a distribution function from the exponential family. Equiv-

alently to the generalized linear case, the link function g is invertible; for theoretical details see

Hastie and Tibshirani (1990). GAM frameworks as in (2.2.4) are widely applied, e.g. in medicine

(Hawn et al., 2013) and risk analysis (Chavez-Demoulin et al., 2016).

The smooth functions f1, f2, . . . can be estimated from the data D non-parametrically via

the backfitting algorithm, Hastie and Tibshirani (1986) refer to it as the local scoring algorithm.

In order to ensure identifiability, it is often assumed that

n∑
i=1

fj(xi,j) = 0, ∀j = 1, 2, . . . ,m,m+ 1, . . . ,

where xi,j , j = 1, . . . ,m denotes the jth element of the input vector xi. Alternative methods are

usually semi-parametric and these are based on penalized regression splines (Eilers and Marx,

1996; Ruppert, 2002; Wood, 2006). An approach for large data sets is introduced by Wood et al.

(2015).

Monotonic regression in an additive setting is introduced by Cunningham (1982) and termed

additive monotonic (isotonic) modeling. The framework postulates f1, f2 . . . in (2.2.4) to be

monotonic instead of smooth. Most publications on additive monotonic isotonic models consider

a model with univariate monotonic functions only, i.e. fj = 0, ∀j > m. Then, similarly to (2.2.2),

the estimation problem for f1, . . . , fm can be formulated via a convex optimization problem of

the form

min
f̂1,...,f̂m

n∑
i=1

yi − β0 −
m∑
j=1

f̂i(xi,j)

p ,
subject to f̂1, . . . , f̂m being isotonic,

(2.2.5)

but the fit may also be defined in terms of the likelihood.

Bacchetti (1989) proposes the non-parametric cyclic pool adjacent violators (CPAV) algo-

rithm to obtain the estimates f̂1, . . . , f̂m in (2.2.5). The CPAV algorithm combines the PAVA

(Section 2.2.2) and the alternating conditional expectations algorithm (Breiman and Friedman,

1985) in order to obtain estimates f̂1, . . . , f̂m as follows:
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1. Set initial values f̂j(xi,j) = ŷi,j , i ∈ {1, . . . , n} , j ∈ {1, . . . ,m}.

2. Optimize the fit with respect to f̂1 via the PAVA while keeping f̂2, . . . , f̂m fixed. Then

optimize f̂2 subject to f̂1, f̂3, . . . , f̂m being fixed, followed by f̂3 and so on. The initial

setup for each update of f̂j is as in the PAVA: f̂j(xi,j) = ŷi,j i ∈ {1, . . . , n}.

3. Apply Step 2 until convergence is reached.

Morton-Jones et al. (2000) extend the CPAV algorithm to settings with additional linear pre-

dictors. The authors apply their algorithm in an epidemiological framework in order to model

the relationship between risk and exposure. Such regression problems with both linear and

smooth functions are termed semi-parametric additive monotonic and are widely studied; see

Cheng (2009); Cheng et al. (2012); Rueda (2013); Yu (2014); Chen and Samworth (2016) and

references therein.

A substantially different class of approaches considers the estimation of f1,. . . ,fm via mono-

tonic regression splines. Hence, the estimates f̂1, . . . , f̂m in (2.2.5) are constrained to be both

monotonic and continuous (smooth). The additional constraint of continuity is plausible in some

applications, e.g. for the estimation of dose-response curves. In such cases, the application of

regression splines may be preferred to the CPAV algorithm which estimates f1, . . . , fm in form

of step functions. Ramsay (1988) proposes to fit monotone regression splines using integrated

splines (I-splines) which are derived using M-splines (Curry and Schoenberg, 1966). The mod-

elling approach is applied in several areas, e.g. toxicology (De Boer et al., 2002), and is used in

a setting with multiple covariates by Tutz and Leitenstorfer (2007).

Kelly and Rice (1990) and He and Shi (1998) consider monotone regression using B-splines

with each estimate f̂j , j = 1, . . . ,m being of the form

f̂j =

S∑
s=1

αj,sBj,s(x), (2.2.6)

subject to αj,s ∀ j ∈ {1, . . . ,m} , s ∈ {1, . . . , S} preserving monotonicity. A similar setting to

(2.2.6) is also considered by Wang and Small (2015) and Wang and Xue (2015), and applied by

Leitenstorfer and Tutz (2007). While these approaches estimate f1, . . . , fm using optimization

methods, Neelon and Dunson (2004) and Cai and Dunson (2007) propose a Bayesian setting for

single and multiple outcomes, respectively.

In recent publications, additive monotonic regression models are also considered for high-
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dimensional problems with the number of covariates, m, exceeding the number of observations,

n. In a linear regression setting, the least absolute shrinkage and selection operator (LASSO)

(Tibshirani, 1996) is a well-known technique to minimize the number of non-zero covariate

effects. The approach by Fang and Meinshausen (2012) is motivated by the LASSO and extends

(2.2.5) by adding a penalty for high variations of f̂1, . . . , f̂m. Estimates f̂1, . . . , f̂m are then

obtained via a modified CPAV algorithm and Fang and Meinshausen (2012) term their method

the LASSO Isotone (LISO). While LISO yields step-wise constant functions f̂1, . . . , f̂m, Bergersen

et al. (2014) propose an alternative method which derives estimates f̂1, . . . , f̂m using I-splines.

2.2.4 Bayesian Nonparametrics

Bayesian nonparametric methods typically refer to Bayesian models with a very large or infinite

number of parameters. Several monotonic regression approaches in Bayesian nonparametrics

are based on the Dirichlet process by Ferguson (1973). A Dirichlet process is defined by a base

distribution F0 and a concentration parameter α, DP(F0, α), and its realizations are probability

distributions. The sampled distributions are almost surely discrete even though F0 may be

continuous. Dirichlet processes are widely applied in Bayesian nonparametrics (Antoniak, 1974;

Jain and Neal, 2004; Kim et al., 2006; Zhou et al., 2012), e.g. for clustering, infinite mixture

models and hidden Markov models (Hjort et al., 2010). Several extensions are proposed in the

literature, e.g. Teh et al. (2006) and Rodŕıguez et al. (2008) introduce a hierarchical and nested

modelling framework, respectively. Gelfand et al. (2005) and Duan et al. (2007) define spatial

Dirichlet process models from a geostatistical perspective.

In the context of monotonic regression, several authors propose a Dirichlet process based ap-

proach. Gelfand and Kuo (1991) consider the estimation of monotone dose-response or potency

curves and propose an ordered Dirichlet process prior. The authors further propose a second

prior which, in contrast to the Dirichlet process prior, is conjugate and based on a product of

Beta distributions. Additionally, Gelfand and Kuo (1991) propose an inference procedure for

two functions λ1, λ2 with λ1(x) ≤ λ2(x), ∀ x ∈ X ⊆ R. Lavine and Mockus (1995) and Kottas

et al. (2002) extend this approach, e.g. the former incorporates the estimation of an unknown

error density via a second Dirichlet process. The models considered in these three publications

are, however, slightly limited since the estimated functions are strictly increasing. Therefore,

Dunson (2005) introduce a mixture prior which allows for flat areas of the unknown regression

function.
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A different set of approaches consider monotonic regression under the constraint of λ being

differentiable. Hence, λ can be formally represented by

λ(x) = β0 + β1

∫ x

0
f(u) du, (2.2.7)

where f(x) is non-negative, β0 ∈ R and β1 ≥ 0. Ramsay (1998) consider the case of f in

(2.2.7) being the exponential of an unconstrained function g. Ramsay and Silverman (2005)

then apply this approach to model the tibia data collected by Hermanussen et al. (1998). While

Ramsay and Silverman (2005) estimate g via B-splines, Shively et al. (2009) define a Wiener

process as prior distribution and estimate f via a MCMC algorithm. Similarly to Gelfand and

Kuo (1991), the estimated functions of the form (2.2.7) are strictly monotone. Bornkamp and

Ickstadt (2009) consider a setting as in (2.2.7) and set f as a probability density function of a

continuous bounded random variable. The distribution function associated to f is then modelled

via a mixture of parametric probability distributions, with a general discrete random measure

as a prior distribution.

Many other approaches have been developed and are briefly mentioned here. Shively et al.

(2009) propose, additionally to a framework as in (2.2.7), a fixed-knot regression spline approach,

allowing the first derivative, λ′(x), to take the value 0. Shively et al. (2011) then extend this

spline approach and introduce a free-knot regression spline model. Riihimäki and Vehtari (2010)

estimate monotonic functions using Gaussian processes and results indicate a good performance

for smooth surfaces. Lin and Dunson (2014) introduce a monotonic regression method which uses

projections of Gaussian processes and optimization based approaches, e.g. the PAVA in Section

2.2.2. Finally, Bornkamp et al. (2010) and Wang and Dunson (2011) consider monotonicity in

the wider framework of density functions.

In this work, we focus on the approaches by Holmes and Heard (2003) and Saarela and

Arjas (2011), the latter extending the monotone modelling framework of the former to higher

dimensions. The principal idea lies in defining the monotone (monotonic) function via a marked

point process with constraints which ensure monotonicity. Points are then iteratively added,

deleted or shifted using the reversible jump MCMC (RJMCMC) algorithm by Green (1995)

which allows to traverse models of varying dimension. Each sampled marked point process

then corresponds to a piecewise constant function via imposition of a monotonic relation on the

functional space. In conclusion, this method is a Bayesian analogue to the optimization based
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approaches in 2.2.2 in the sense that the estimated functions are piecewise constant. Specific

details on the marked point process formulation and the RJMCMC algorithm are omitted here

since they are detailed in Section 4.2.

2.2.5 Summary

The publications mentioned in the previous Sections 2.2.2 through 2.2.4 illustrate the variety of

methodologies and applications in which monotonicity of the underlying regression function λ

is considered. Approaches have been proposed to obtain an estimate λ̂ of either continuous or

non-continuous shape. Conditional on the application, smooth or discontinuous functions may

be preferred. While the optimization based approaches in 2.2.2 generally lead to a piecewise

constant estimate, smooth estimates for λ are obtained via the monotonic regression splines in

Sections 2.2.3 and 2.2.4.

Monotonic regression has two very positive aspects. Firstly, it provides a valuable alternative

if multiple linear regression leads to a poor model fit. Since each linear model with non-negative

covariate effects fulfills the monotonic constraint in expression (2.2.1), it can be replaced by a

monotonic model without the requirement of additional assumptions. Secondly, the assumption

of monotonicity can be tested using the methods by Bowman et al. (1998) and Ghosal et al.

(2000). Furthermore, Scott et al. (2015) introduce a test for monotonicity based on Bayesian

nonparametric statistics. From an applied perspective, aspects of monotonicity may also be

discussed with operators and engineers. If, however, there exists uncertainty on the monotonicity

of λ, Tibshirani et al. (2011) introduce a modelling framework which penalizes non-monotonicity

but does not preclude it.

Nevertheless, there exist some limitations to the monotonic regression framework. Most im-

portantly, extrapolation of the regression function is hardly possible since functions are generally

estimated locally and non-parametrically. This issue does, however, not solely occur in mono-

tonic regression framework but exists for flexible non-parametric regression models in general.

Furthermore, the constraint of monotonicity is generally less restrictive for higher dimensions

and leads to overfitting, unless λ is expressed in terms of an additive model. Consider two inde-

pendent samples, u,v from the input space X , u,v ∼ ZX , where ZX refers to the distribution of

the covariates. The monotonic constraint (2.2.1) only applies if u ≤ v component-wise or vice

versa. It can be easily verified that for a given dimension m, the probability for a monotonic

relationship between two covariate observations u,v ∈ X is given by
(

1
2

)m−1
. Therefore, the
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number of points, n, required to obtain a sufficiently good fit increases exponentially with the

dimension of the covariate space.

2.3 Extreme Value Theory

2.3.1 Overview

The modelling of rare (extreme) events is of general interest in several application areas, for

instance, in sports analysis (Stephenson and Tawn, 2013), to assess equity or storm risks (Em-

brechts et al., 2013; Economou et al., 2014) and to model river flows (Asadi et al., 2015). Focus

lies then on the lower and upper tails of the distribution. In order to predict the occurrence rate

of future extremes, there is also the desire to explore the tail behaviour beyond the observed

minima and maxima, i.e. extrapolation of the tails is required. However, model estimates are

mainly driven by the body rather than the tails since data are concentrated towards the centre

of the distribution. Furthermore, different models that fit the body well can have very different

extrapolations. The statistical area of extreme value theory provides an asymptotically justified

modelling framework to estimate the tail behaviour of an unknown distribution.

This section provides an overview of the extreme value methodology for univariate random

variables used in this thesis. Sections 2.3.2 and 2.3.3 detail the extremal modelling of the block

maxima and the exceedances above a threshold, respectively, for a continuous random variable.

Section 2.3.4 then considers the research in extreme value theory for discrete (integer-valued)

random variables. The section concludes with a summary of extreme-value mixture models in

Section 2.3.5.

2.3.2 Block Maxima Approach

Let X1, . . . , Xn be a sequence of independent and identically distributed (IID) continuous ran-

dom variables with distribution function F . Define further the random variable Mn as the

maximum of X1, . . . , Xn, i.e.

Mn = max (X1, . . . , Xn) . (2.3.1)

Although interest lies in the modelling of both the lower and upper tail, the following theory

focuses on Mn in (2.3.1) and hence on the upper tail. This is not restrictive due to the relation

min (X1, . . . , Xn) = −max (−X1, . . . ,−Xn) .
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If F is known, the distribution of Mn can be derived exactly as

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

= P (X1 ≤ x) · · ·P (Xn ≤ x)

= [F (x)]n .

The result above is usually not very helpful since F is generally unknown in applications.

Instead the asymptotic behaviour of Fn as n→∞ is studied. Note, Mn converges in probability

to the upper end point of F , xF , as n→∞; the asymptotic distribution of Mn is degenerate. If

there exist sequences of constants an > 0 and bn ∈ R, such that, as n→∞

P
(
Mn − bn

an
≤ x

)
→ G(x), (2.3.2)

for some non-degenerate distribution G, then G belongs to the family of extreme value distri-

butions. The Extremal Types Theorem (ETT) by Leadbetter et al. (1983) states that G takes

one of three limiting distributions (Gumbel, Fréchet and Negative Weibull). For instance, if

X1, . . . , Xn are Normally distributed, G results in the Gumbel distribution, or in other words,

the Normal distribution function lies in the max-domain of attraction of the Gumbel distribu-

tion. A detailed proof of the ETT is provided in Leadbetter et al. (1983). Note, the ETT does

neither guarantee the existence of a non-degenerate limit G nor does it imply the type of limiting

distribution. Furthermore, the Gumbel, Fréchet and Negative Weibull are the only distributions

which satisfy the property of max-stability, that is, the maximum of a set of IID random vari-

ables has, up to type, the same distribution as each individual sample. More formally in terms

of the distribution function G, there exist constants An > 0 and Bn for every n > 0 such that

G (Anx+Bn) = [G(x)]n .

A parametrization which unifies the Gumbel, Fréchet and Negative Weibull distributions is

commonly used instead of the three distinct types in the ETT. The generalized extreme value

(GEV) distribution, GEV (µ, σ, ξ), has cumulative distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
, (2.3.3)
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Figure 2.3.1: Example of a partition of a data set with 1,000 observations and a block size n = 100.
The block maxima are highlighted in red.

where y+ = max{y, 0}, σ > 0 and µ, ξ ∈ R. The three parameters (µ, σ, ξ) are termed the loca-

tion, scale and and shape parameters, respectively. The tail behaviour and limiting distribution

are determined via ξ, where

• ξ > 0 corresponds to a Fréchet distribution which has a heavy upper tail.

• ξ = 0 corresponds to the Gumbel distribution which has an exponential tail.

• ξ < 0 corresponds to the Negative Weibull distribution which has a finite upper limit.

The GEV distribution in (2.3.3) is used to model block maxima based on observed data

D. In order to apply the asymptotic theory outlined above, it is assumed that the left-hand

side in expression (2.3.2) is approximately GEV distributed for some finite value of n. The

appropriateness of this approach then relies on the choice of a sufficiently high block size n. If

n is too low, the asymptotic argument may not apply while a higher value for n leads to less

observations for Mn and a higher variance of the estimated parameters. In other words, we aim

to find the best trade-off between the block size n and the number of observed blocks. Figure

2.3.1 illustrates a potential partition for a simulated data set. Estimates for the parameters

(µ, σ, ξ) are then obtained via likelihood or Bayesian inference. The reader is referred to Coles

(2001) for more details on the GEV.

2.3.3 Threshold Exceedance Approach

The block maxima approach can lead to inefficient statistical procedures for the modelling of

extreme values. More precisely, any statistical information from other extremal observations,



CHAPTER 2. LITERATURE REVIEWS 49

●

●

●●

●

●

●

●

●●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●●

●●●

●

●

●

●●
●

●
●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●
●●●
●

●
●
●
●
●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●
●

●
●
●
●

●
●●

●

●

●

●
●
●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●
●

●●

●

●

●●

●

●●
●
●
●●●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●●●

●

●
●●

●

●●

●

●

●

●

●●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●
●
●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●
●●

●

●
●●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●
●
●

●

●

●
●

●
●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●
●
●

●
●
●

●
●

●

●

●
●
●
●

●

●
●

●

●●
●
●
●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●

●

●●
●

●

●
●

●

●●

●●

●

●

●

●●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●
●
●

●

●●
●

●●

●

●
●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●●
●●
●
●
●

●

●

0 200 400 600 800 1000

0
5

10
20

30

Index

O
bs

er
va

tio
n

●
● ●

●

●
●

●

●

●
●

●● ●
●

● ●

●

● ●
●

●

●

●

●

●

●
● ● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●● ●●

●

●

●

●

Figure 2.3.2: A sample of 1,000 simulated data points with the observations exceeding the threshold
u = 15 being highlighted in red.

apart from the block maxima, are discarded. This motivates the derivation of extreme value

models which incorporate all observations which are large enough to be called extreme. In

contrast to the block maxima setting, the approach detailed in the following is based on all

observations which exceed a sufficiently high threshold u and does not require the data to be

split into blocks. Figure 2.3.2 illustrates this aspect for the simulated data from Figure 2.3.1.

Consider a set of IID random variables X1, . . . , Xn whose distribution function F lies in the

domain of attraction of a GEV distribution with shape parameter ξ ∈ R. Let further an and

bn denote the normalizing constants as in (2.3.2). A sequence of point processes P1, P2, . . . on

[0, 1]× R is then constructed by

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
(2.3.4)

and the limit process as n → ∞ is examined. The limit process is non-degenerate since

(Mn − bn) /an is non-degenerate. Smaller points are normalized to the same value bl as n→∞

while larger points are retained in the limit process. Under the construction in (2.3.4), the point

process Pn converges to a non-homogeneous Poisson process P on [0, 1]× (bl,∞) whose intensity

function is determined by ξ.

The asymptotic description of the limit Poisson process motivates the modelling of large

values. Define un(v) = anv+ bn, where v > bl, and note that un(v) tends to the upper endpoint

xF of the distribution. Pickands (1975) shows that for X ∼ F and x > 0, the Poisson process
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limit P implies that

P (X > un(v) + anx | X > un(v))→
[
1 + ξ

x

σv

]− 1
ξ

+

, (2.3.5)

where σv = 1 + ξv. The right-hand side in (2.3.5) corresponds to the survival function of

a generalized Pareto distribution (GPD) with scale σv > 0 and shape ξ. Consequently, the

limiting distribution for excesses above a threshold converges to a GPD as the threshold tends

to xF .

Based upon the assumption that the limit in (2.3.5) holds exactly for a sufficiently high

threshold u and by absorbing an into the scale parameter, for any x > u

P (X > x | X > u) =

[
1 + ξ

(x− u)

σu

]− 1
ξ

+

, (2.3.6)

i.e. (X − u) | (X > u) ∼ GPD (σu, ξ). Note, the shape parameter ξ in (2.3.6) is equal to the

one in (2.3.3). Hence, ξ characterizes the tail behaviour of the GPD in the same way as for the

GEV distribution, e.g., ξ < 0 implies that the GPD is short-tailed with a finite upper end point.

To apply the threshold exceedance approach, it is necessary to set a sufficiently high threshold

u. If u is too low, the GPD may not fit well since the asymptotic argument may not apply.

Conversely, the amount of data for inference shrinks with increasing u and a too high threshold

leads to a high variance in the parameter estimates. Several approaches to select u are proposed

in the literature and the two most commonly used selection diagnostics are outlined here: the

threshold stability plot and the mean residual life (MRL) plot.

The first diagnostic is based on the threshold-stability property of the GPD, that is, if

(X − u) | (X > u) ∼ GPD (σu, ξ), then for any higher threshold v > u

(X − v) | (X > v) ∼ GPD (σu + ξ(v − u), ξ) . (2.3.7)

Hence, the shape parameter ξ is constant with increasing threshold but the scale parameter is

not (Davison and Smith, 1990). In order to assess parameter stability in the scale parameter

too, the modified scale σ∗ = σv − ξv is considered instead of σv since it is threshold invariant.

Threshold diagnostics is then based upon the examination of the threshold-stability plots, that

is, the behaviour of σ∗ and ξ in dependence on u. The threshold u is then chosen as the smallest

value for which both parameters remain constant (excluding variability). Since some uncertainty
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and subjectivity is hence involved in the selection of u, test-based approaches have been recently

introduced (Wadsworth and Tawn, 2012; Northrop and Coleman, 2014; Wadsworth, 2016).

The MRL approach considers the mean excess. If (X − u) | (X > u) ∼ GPD (σu, ξ), the

mean excess over v > u for ξ < 1 results as

E (X − v | X > v) =
σu + ξ(v − u)

1− ξ
. (2.3.8)

This property implies that the mean excess in (2.3.8) is linear in v with gradient ξ/(1−ξ). Hence,

a threshold diagnostic is performed by plotting the sample mean excess against the threshold

and selecting u such that the MRL is a straight line above u.

2.3.4 Extreme Value Theory for Discrete Data

While extreme value modelling is well established for observations from a continuous random

variable, comparatively little research has been done for discrete data. Most publications con-

sider the limiting behaviour of the block maxima Mn for a positive integer-valued random

variable N with cumulative distribution function F . Anderson (1970) derives several limit laws

for Mn, conditional on N having infinite support, which are based upon

lim
n→∞

1− F (n)

1− F (n+ 1)
. (2.3.9)

The first result by Anderson (1970) implies that the block maxima Mn almost surely takes one of

two consecutive integers if, and only if, the limit (2.3.9) tends to infinity. One important example

satisfying this condition is the Poisson distribution. Anderson (1970) further proves limiting

bounds on the error induced by approximating the discrete data by a continuous distribution,

conditional on (2.3.9) being finite and greater than one. This condition holds, for instance, for

the geometric distribution. Finally, Anderson (1970) shows that the limiting distribution of Mn

is infinitely dispersed if (2.3.9) takes a value equal to 1. These results are later considered by

McCormick and Park (1992) and Athreya and Sethuraman (2001).

Anderson (1980) then explores the link between the block maxima behaviour of N and the

max-domains of attraction described in Section 2.3.2. If N has a right upper bound in the sense

that all higher integer values are observed with zero probability, Mn converges geometrically fast

to this point. Hence, no discrete random variable can belong to the max-domain of attraction

of the Negative Weibull distribution. Furthermore, Anderson (1980) derives conditions on F
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which imply that Mn has a Gumbel or Fréchet distribution.

The Poisson distribution does not satisfy the conditions in Anderson (1980) but Anderson

et al. (1997) argue that extreme value modelling can nevertheless be used for Poisson maxima if

the rate parameter λ is sufficiently high. Their approach is based upon the approximative Normal

behaviour of the Poisson random variable for large λ. In particular, the main result by Anderson

et al. (1997) states that the limiting behaviour of Mn is that of a Gumbel distribution, if λ grows

with n in a suitable manner. Coles and Pauli (2001) then extend this result to the bivariate

case. Nadarajah and Mitov (2002, 2004) derive similar results for other univariate integer-valued

distributions, such as, the discrete Uniform and Binomial distributions. Anderson et al. (1997)

further consider discrete triangular arrays and specify conditions which imply that the row-wise

maximum lies in the max-domain of attraction of a Gumbel distribution. Dkengne et al. (2016)

extend this theory and apply it in the context of avalanches.

Shimura (2012) investigates the extremal behaviour of discrete distributions, conditional

on their continuous analogue being in any max-domain of attraction. The discretization of a

continuous random variable X is defined as the minimal integer not less than X. As mentioned

previously, Mn converges to a single point if the discrete random variable has finite support.

Hence, the block maximaMn of a discrete analogue has a degenerate distribution if its continuous

analogue lies in the max-domain of attraction of the negative Weibull distribution. Further, in

case the limiting behaviour of the continuous distribution is of Fréchet type, its discretization lies

in the same max-domain of attraction. This result implies that, for instance, the block maxima

Mn sampled from either a t-distribution or its discrete analogue are both Fréchet distributed.

Finally, if the block maxima of a continuous random variable is Gumbel distributed, then the

discretized analogue is so too if, and only if, the limit in (2.3.9) takes value one. Shimura (2012)

states that, for instance, the log-Normal distribution satisfies this condition. These results are

align with Anderson (1970). For instance, the geometric distribution does not belong do any

max-domain of attraction even though the exponential distribution, its continuous analogue, lies

in the max-domain of attraction of the Gumbel distribution.

Additional to block maxima, threshold exceedances of a discrete random variable N are

considered too. Prieto et al. (2014) define a discretized GPD based upon the cumulative dis-

tribution function of the GPD. If Y ∼ GPD (σ, ξ), the discretized analogue Ỹ has probability

mass function

P
(
Ỹ = y

)
= P (Y > y)− P (Y > y + 1) , y = 1, 2, . . . . (2.3.10)
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Figure 2.3.3: A density function defined via three components fL, fB and fR for the lower tail, body
and upper tail of the distribution, respectively.

Prieto et al. (2014) further derive properties of this discretized GPD, such as its mean and

hazard function. The distribution defined in (2.3.10) is then applied to model Spanish road

traffic data, in particular, the number of accidents in blackspots.

2.3.5 Extreme-value Mixture Models

The previous sections focused solely on the modelling of the tails of a distribution by considering

either block maxima or threshold exceedances. In many applications, however, both the body

of a distribution and its tails are of interest. Extreme-value mixture models embed the extreme

value methodology and consider the simultaneous estimation of the body and the tails. These

models are generally considered for a continuous random variable X with unknown distribution

function as in Sections 2.3.2 and 2.3.3.

In principle, the defined model consists of three components which each consider a different

domain of F , that is, lower tail, body and upper tail. By defining these components via their

density functions fL, fB and fR, the resulting density function f can be formally expressed as

f(x) = P(X < uL)fL(x) + P (uL ≤ X ≤ uR) fB(x) + P (X > uR) fR(x). (2.3.11)

Here the support of fL, fB and fR lies within (−∞, uL), [uL, uR] and (uR,∞), respectively, and

FL, FB and FR are the associated distribution functions. Further uL and uR denote respectively

the lower and upper thresholds. The unknown distribution function FL and FR are commonly

modelled as GPD. Figure 2.3.3 shows an example for a density function f defined as in (2.3.11).
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In what follows, several approaches to estimate such models are described, some of these impose

a continuity constraint for f at the thresholds uL and uR. For notational simplicity, the model

consists of two components only, the body fB and the upper tail fR.

Behrens et al. (2004) introduce a Bayesian modelling framework which treats the threshold

as unknown and estimates it together with the remaining parameters. Specifically, the approach

considers a parametric form of FB, e.g. a Normal or Weibull distribution, and a GPD for FR.

Hence, the distribution function F (x) is formally given as

F (x) =


FB(x) x ≤ u

FB(u) + [1− FB(u)]FR(x) x > u.

(2.3.12)

This model specification generally results in a discontinuity of f at u. Behrens et al. (2004) state

that uncertainty in u increases with a decreasing size of the discontinuity. De Melo Mendes and

Lopes (2004) consider a similar model specification with FB being a Normal distribution and

different models for lower and upper tail. Instead of incorporating uncertainty in the thresholds,

they optimize the proportion of data used to model the lower and upper tail. Carreau and

Bengio (2009) propose a hybrid Pareto model which splices a Normal density with the density

of a GPD while preserving smoothness of f(x) at the threshold.

While the former parametric approaches consider a strict partition as in (2.3.11), Frigessi

et al. (2002) propose a dynamically weighted mixture model of a Weibull distribution and a

GPD. In particular, the specified model does not require the estimation of a threshold. The

density function is then formally given by

f(x) =
[1− p(x)] fB(x) + p(x)fR(x)

C
,

where the mixing function p(x) satisfies p(x)→ 1 as x→ xF , and fB and fR denote the density

functions of a Weibull distribution and a GPD respectively. Further, C is a normalising constant

which depends on the parameters. This model formulation implies that the GPD dominates the

tail behaviour.

Additional to the parametric approaches, the non-parametric estimation of fB is considered

in the literature. Tancredi et al. (2006) define fB as piece-wise constant with an unknown

number of steps and u is taken to be unknown. Estimates are then obtained via in reversible

jump MCMC scheme (Green, 1995). MacDonald et al. (2011) introduce a highly flexible kernel-
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density based approach which also uses the Poisson process formulation in Section 2.3.3.



Chapter 3

Modelling Insurance Claims by

Spatially Varying Regression

3.1 Introduction

Eshita (1977) models the claim frequencies via a Binomial or Poisson model and, as outlined in

Section 2.1, such approaches are often also applied in disease mapping. Scheel et al. (2013) argue,

however, that these distributions are unsuitable for the insurance and weather data explored in

Section 1.3 as these are incapable of capturing the high frequency of zero claims. They hence

propose a Bayesian Poisson hurdle (BPH) model; see Section 1.4 for details. In this chapter, a

comparative study is performed in order to assess the degree of improvement obtained by the

Poisson hurdle model approach, as compared to one based on the Binomial distribution. Here,

this comparison is based upon all K = 430 municipalities.

Scheel et al. (2013) estimate the baseline risk and covariate effects in the BPH model in-

dividually for each municipality and spatial information is used for variable selection (Section

1.4). The modelling framework introduced in this chapter also estimates the covariate effects

municipality-wise but defines a dependence structure which, a priori, assumes covariate effects of

adjacent municipalities to be more similar. In particular, the approach is based on the geograph-

ically varying coefficient (GVC) model (Assunção, 2003; Congdon, 2003) described in Section

2.1. Hence, estimates are obtained in a Bayesian framework rather than via weighted least

squares methodology as in the geographically weighted regression approach (Brunsdon et al.,

1998; Fotheringham et al., 2002).

A spatially varying modelling approach is suitable to examine the dependence between the

56
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daily number of claims Nk,t and the weather data. Firstly, Section 1.3 shows a spatially varying

vulnerability to the covariates, e.g. the same amount of precipitation affects Oslo and Bergen

differently. Secondly, adjacent municipalities exhibit strong similarities in the weather covariates

and, hence, have a, presumably, similar vulnerability. The GVC modelling framework allows

the explicit specification of a dependence model which shares statistical information between

adjacent municipalities.

In addition to this model comparison, the potential adjustments to the covariates discussed

in Section 1.3 are investigated. The exploratory data analysis indicates that the effect of rainfall

and snowfall are different, in particular, the correlation of snowfall and claim numbers is close

to zero. Conversely, Nk,t and Rk,t are positively correlated, conditional on a positive daily mean

temperature, Ck,t > 0◦ Celsius. In other words, the analysis implies that rain affects the claim

dynamics on the day stronger than snow. Hence, the original covariates Rk,t and Rk,t−1 may be

replaced by R̃k,t and R̃k,t−1 which are defined as

R̃k,t = Rk,t 1{Ck,t>0}. (3.1.1)

Consequently, the amount of snow fall on the day has no effect on the claim dynamics on the

same day.

Section 1.3 also discusses the difference in snow-water equivalent, ∆Sk,t. The exploratory

data analysis indicates that Nk,t and ∆Sk,t are positively correlated, conditional on ∆Sk,t > 0,

while little or no dependence is found otherwise. Similarly to Rk,t, the covariate ∆Sk,t may be

replaced by ∆̃Sk,t which is defined by

∆̃Sk,t = ∆Sk,t 1{∆Sk,t>0}. (3.1.2)

In conclusion, ∆̃Sk,t corresponds to the amount of snow-melt rather than the difference in

snow-water equivalent. Additionally to these potential refinements in the covariates, Section 1.3

indicates that cities exhibit higher vulnerability than rural areas. This potential difference is

included via an additional binary factor Zk which takes value Zk = 1 if the average number of

policies over the 10-year period exceeds 2,000 and Zk = 0 otherwise. To derive the threshold

of 2,000, the average claim rate per policy holder for municipalities below and above a range of

potential thresholds was derived first. The examination of the ratio of the average claim rate

then indicated that a threshold at around 2,000 yields the highest difference in the average claim
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rates.

In summary, interest lies in the comparison of the Binomial and Poisson hurdle approaches,

as well as, the examination of the performance of the proposed covariates R̃k,t and ∆̃Sk,t in

expressions (3.1.1) and (3.1.2), respectively. The drainage run-off Dk,t and the snow-water

equivalent Sk,t are included additionally to the three covariates discussed above. In the following,

three competing models are examined: (i) Binomial distribution and original covariates (ii)

Binomial distribution and proposed covariates and (iii) Poisson hurdle model and proposed

covariates. A fourth possible setting is a Poisson-Hurdle model with the original covariates as

done by Scheel et al. (2013). Instead of fitting this model, we compare the three settings to

the original model by Scheel et al. (2013) which imposes less spatial structure on the covariate

effects.

The remainder of this chapter is organized as follows: Section 3.2 details the modelling

framework for both the Binomial and Poisson hurdle distribution and describes the estimation

of the model parameters using Markov chain Monte Carlo (MCMC) techniques. Results for

the three models are then compared and discussed in Section 3.3. Equivalently to Scheel et al.

(2013), the predictive performance is assessed on a weekly basis. The chapter concludes with a

discussion in Section 3.4.

3.2 Modelling and Inference

The statistical framework for both the Binomial distribution and the Poisson hurdle model are

specified via a Bayesian hierarchical model. Such models are widely applied, for instance in

atmospheric modelling (McBride et al., 2007) and marine ecology (Qian et al., 2009), and are

based on three levels: a data, a process and a parameter model. Interest lies in the distribution

of the daily claim numbers Nk,t conditional on the weather covariates for each municipality

k = 1, . . . ,K. Both distributions assume that the individual insurance policies are IID Bernoulli

distributed, given the covariates. While this assumption appears unlikely as some dependence

probably exists for adjacent households, it may provide a reasonable approximation.

In the following, the weather covariates on day t for municipality k are denoted by Xk,t;

this notation refers to both the original and proposed covariate set. Let Tk ⊆ {1, . . . , 3651}

denote the set of days on which both Nk,t and Xk,t are recorded for municipality k (as some

missing values exist). Sections 3.2.1 and 3.2.2 define the modelling frameworks and Section 3.2.3
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describes the MCMC algorithm to obtain estimates of the model parameters.

3.2.1 Binomial Model

Since the number of policies Ak,t per month and municipality is known, the number of claims

can be modelled via a Binomial distribution. The daily number of claims Nk,t for municipality

k on day t is hence modelled via a Binomial distribution with number of samples Ak,t and claim

probability pk,t. Formally, the data model for municipality k, k = 1, . . . ,K, on day t ∈ Tk is

Nk,t ∼ Binomial (Ak,t, pk,t) . (3.2.1)

Alternatively, a Poisson distribution may be considered as Nk,t is very small in comparison to

Ak,t.

Similarly to Haug et al. (2011) and Scheel et al. (2013), the dependence of Nk,t on the weather

data Xk,t is specified via pk,t. Since the claim probability takes values between 0 and 1 only, a

linear model with covariates Xk,t and binary factor Zk is defined for pk,t on the logit scale. The

process model is then formally given by

logit (pk,t) = βk,0 + XT
k,tβk + ρpZk, (3.2.2)

where ρp, the baseline βk,0 and the covariate effects βk = (βk,1, . . . , βk,5) , k = 1, . . . ,K, are

the parameters of interest. This model specification for municipality k with claim numbers

Nk = {Nk,t : t ∈ Tk}, conditional on Xk = {Xk,t : t ∈ Tk} and Zk, results in a likelihood function

which is formally given as

f (Nk | Xk, Zk, βk,0,βk, ρp) =
∏
t∈Tk

(
Ak,t
Nk,t

) [
exp

(
βk,0 + XT

k,tβk + ρpZk

)]Nk,t
[
1 + exp

(
βk,0 + XT

k,tβk + ρpZk

)]Ak,t . (3.2.3)

The Bayesian hierarchical model is concluded by defining the parameter model via prior

distributions for the parameters. Here, the baseline risk and the covariate effects of adjacent

municipalities are assumed to be similar. Further, no dependence is assumed, a priori, between

the parameters associated with different covariates. In other words, a dependence model is de-

fined separately for βk,0 through to βk,5. In particular, a geographical structure in each parameter

is induced via the specification of an intrinsic conditional autoregressive (ICAR) model (Besag
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Figure 3.2.1: Network representing the dependence of the parameters for the Binomial model detailed
in in Section 3.2.1.

et al., 1991; Rue and Held, 2005). Hence, the joint prior distribution for the parameter vector

π (β1,j , . . . , βK,j) , j = 0, . . . , 5, is specified via its full conditionals βk,j |β−k,j , k = 1, . . . ,K,

where β−k,j = (β1, j, . . . , βk−1,j , βk+1,j , . . . , βK,j) denotes the vector of covariate effects for all

municipalities except k. Here, the full conditional βk,j |β−k,j is Normally distributed and of the

form

βk,j | β−k,j ∼ Normal

(∑K
k′=1 dk,k′βk′,j∑K
k′=1 dk,k′

,
1

τj
∑K

k′=1 dk,k′

)
, (3.2.4)

where τj ≥ 0 is a hyperparameter related to the conditional variance of βk,q given the covariate

effects of the other municipalities. More precisely, the degree of dependence between the covari-

ate effects increases with τj . The constants dk,k′ describe the weighting of the municipalities

and are specified here as

dk,k′ =


1 if municipalities k and k′ are adjacent

0 otherwise.

(3.2.5)

In conclusion, the prior specified in (3.2.4) and (3.2.5) favours βk,j to be close to a weighted

average over β−k,j . Further, the variance of the Gaussian distribution in (3.2.4) decreases with

the number of adjacent municipalities.

The modelling framework is completed by the specification of priors on the remaining param-

eters ρp and τj , j = 0, . . . , 5. Figure 3.2.1 illustrates the dependence in the model parameters
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via a directed acyclic graph (DAG). Weakly-informative Gamma priors are set on the hyper-

paramaters

τj ∼ Gamma (1, 0.01) (3.2.6)

and a standard Gaussian prior is placed on ρp

ρp ∼ Normal (0, 1) . (3.2.7)

3.2.2 Poisson Hurdle Model

The BPH model consists of two components, one of which is a Bernoulli distribution modelling

whether Nk,t is zero or positive while the other models the number of claims, conditional on

at least one claim being recorded: Nk,t|Nk,t > 0, by a count distribution. Here, the parameter

setup of the Bernoulli component is defined slightly differently to that of in Section 1.4. In

particular, the parameter αk,t is replaced by (1− qk,t)Ak,t in order to aid comparability to the

Binomial model. If the estimates for the Binomial distribution and the BPH model are quite

different, the estimated parameters for pk,t and qk,t should be so too. Consequently, the data

model is then formally defined by

P (Nk,t = n | Xk,t) =


(1− qk,t)Ak,t if n = 0[
1− (1− qk,t)Ak,t

] λnk,t
n! [exp(λk,t)− 1]

if n > 0

, (3.2.8)

The parameters of interest are qk,t and λk,t which vary in dependence on the weather co-

variates Xk,t. As for pk,t in (3.2.2), a linear model is defined for the probability qk,t on the logit

scale. Formally,

logit (qk,t) = γk,0 + XT
k,tγk + ρqZk. (3.2.9)

The rate parameter λk,t on log scale is modelled via a linear model (similarly to Section 1.4)

and yields

log (λk,t) = δk,0 + XT
k,tδk + ρλZk + log (Ak,t) , k = 1, . . . ,K. (3.2.10)

Consequently, we obtain a likelihood function for each municipality k for the set of model

parameters specified in (3.2.8) to (3.2.10), denoted f (Nk | Xk, Zk, γk,0,γk, δk,0, δk, ρq, ρλ).

The Bayesian hierarchical model is completed by specifying priors for the parameters. Sim-

ilarly to the Binomial setting in Section 3.2.1, the geographical dependence in the baselines and
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Figure 3.2.2: Network representing the dependence of the parameters for the Poisson Hurdle model.

covariate effects is specified via conditional autoregressive models γk,j |γ−k,j and δk,j |δ−k,j . The

weights dk,k′ are set as in (3.2.5) and let τq = (τq,0, . . . , τq,5) and τλ = (τλ,0, . . . , τλ,5) denote

the hyperparameters in the conditional autoregressive models for the parameters γk and δk,

respectively. Figure 3.2.2 illustrates the dependence of the model parameters for Nk,t and the

DAG shows that qk,t and λk,t are conditionally independent given the observations Xk,t, Ak,t

and Zk. Finally, standard Gaussian priors as in (3.2.7) are specified for ρq and ρλ, and Gamma

priors for the hyperparameters in the ICAR model as in (3.2.6).

3.2.3 Inference

The posterior distribution given by the specified likelihood function and the prior distributions is

of non-standard form for both the Binomial and the BPH model. Realizations from the posterior

are therefore sampled via a block Metropolis-Hastings algorithm, also known as Metropolis

within Gibbs. Parameter values are then updated iteratively by sampling either directly from

the full conditional, if it is of standard form, or via a Metropolis-Hastings step as introduced by

Metropolis et al. (1953) and Hastings (1970). The parameters of the municipalities are updated

following their order of appearance in the data set. In the following, the updates for the two

modelling frameworks are detailed:
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Binomial Model

Baseline levels βk,0 and covariate effects βk are updated via a Random-Walk Metropolis step.

Consider the baseline βk,0, k = 1, . . . ,K. A proposal β∗k,0 is sampled from a Normal distribution

with mean βk,0 and standard deviation 0.05, β∗k,0 ∼ Normal (βk,0, 0.05). Based on the likelihood

function in (3.2.3) and the ICAR prior in (3.2.4), the acceptance probability α
(
βk,0, β

∗
k,0

)
then

takes the form

α
(
βk,0, β

∗
k,0

)
= min

1 ,
∏
t∈Tk

f
(
Nk | Xk, Zk, β

∗
k,0,βk, ρp

)
f (Nk | Xk, Zk, βk,0,βk, ρp)

×
π
(
β∗k,0 | β−k,0

)
π (βk,0 | β−k,0)

 (3.2.11)

To improve numerical stability, the acceptance probability is derived on the log-scale. The

baseline βk,0 is set to β∗k,0 if log
[
α
(
βk,0, β

∗
k,0

)]
> log(u), where u is sampled from a standard

uniform distribution: u ∼ Uniform(0, 1). The covariate effects βk,j , j = 0, . . . , 5, k = 1, . . . ,K

and the parameter ρp are then updated similarly with proposal distributions taking the form

β∗k,j ∼ Normal (βk,j , 0.05) and ρ∗p ∼ Normal (ρp, 0.05), respectively.

The hyperparameters τq are updated via Gibbs sampling. As detailed in Section 2.1, sev-

eral authors advocate that the joint prior π (β1,j , . . . , βK,j) , j = 0, . . . , 5, specified via the full

conditionals βk,j |β−k,j , k = 1, . . . ,K, in (3.2.4) and (3.2.5) takes the form

π (β1,j , . . . , βK,j) ∝ τ
K−1

2
p exp

(
−τp

2
(β1,p, . . . , βK,p)

T Q (β1,p, . . . , βK,p)
)
. (3.2.12)

Here, Q is a K ×K matrix with non-diagonal entries Qk,k′ = −1 if municipalities k and k′ are

adjacent and diagonal entries Qk,k are equal to the number of municipalities adjacent to k. Since

Gamma priors are set on each component in τp, the full conditional, π (τp,j |·), of the posterior

is a Gamma distribution. Hence, the parameter τp,j is updated via a Gibbs step which samples

directly from

τp,j ∼ Gamma

(
K − 1

2
+ 1, (β1,j , . . . , βK,j)

T Q (β1,j , . . . , βK,j) + 0.01

)
. (3.2.13)

Poisson Hurdle Model

Parameter values are updated similarly to the Binomial modelling framework. Proposals for the

baselines γk,0 and δk,0, the covariate effects γk and δk, and the parameter ρq and ρλ are up-

dated via a Random Walk Metropolis with proposals being sampled from a Normal distribution
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with standard deviation 0.05. The acceptance probability is then as in (3.2.11) but with likeli-

hood function f (Nk | Xk, Zk, γk,0,γk, δk,0, δk, ρq, ρλ). For the parameters of the zero-truncated

Poisson component, only observations with Nk,t > 0 have to be considered for the update. Fur-

thermore, if for a municipality k, no event Nk,t > 1 is recorded in the data, then the parameters

are solely updated via the full conditional prior specification. Finally, the hyperparameters in

τq and τλ are updated as in (3.2.13).

3.3 Results

Equivalently to Scheel et al. (2013), the observations for 2001 are stored as a test data set and

parameter estimates are based on the remaining nine years. Covariates are scaled across all

430 municipalities to have mean 0 and variance equal to 1, hence allowing comparison of the

associated vulnerability across municipalities. Samples for the three model specifications are

obtained via the MCMC algorithms outlined in Section 3.2.3. For each model, 10,000 iterations

are performed after a burn-in of 1,000 iterations.

Convergence is verified via sampling two additional Markov chains with 4,000 iterations for

each model and performing Brooks-Gelman-Rubin diagnostics (Brooks and Gelman, 1998), as

well as, investigating the trace plots. These diagnostic tools indicate that the Markov chains

have converged after the burn-in period. Furthermore, only every tenth sample is considered

for analysis, leading to a collection of 1,000 samples for the analysis. The mixing is assessed for

the four cities of Oslo, Bergen, Trondheim and Bærum and the effective sample size obtained

for the 1,000 samples lies between 200 and 1,000 for most of the parameters. Trace plots of the

marginal posterior samples for Oslo and Bergen are provided in Appendix B.1.

Section 3.3.1 summarizes and compares the estimated parameter values for the three models.

Furthermore, uncertainty in the estimates is considered too and we explore which covariates are

important for which municipality. Section 3.3.2 then assesses the predictive performance of the

estimated models.

3.3.1 Parameter Estimates

The difference between the original and proposed covariates, Xk,t and X̃k,t respectively, is ex-

plored first by considering the estimates of the two Binomial models. Results indicate that the

posterior mean estimates of the two models are very similar. Figure 3.3.1 illustrates the results
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for the Xk,t and plots for X̃k,t are provided in Appendix B.2. South-eastern and northern Nor-

way are estimated to have the highest baseline risk while central municipalities have the lowest

one. These results are consistent with the empirical average claim rate in Figure 1.3.1 in Section

1.3. Further, high correlation is found between the parameter ρp and the parameter βk,0 for the

municipalities with Z = 1; hence the combined baseline risk is considered. Nevertheless, the

samples obtained via the MCMC algorithm for βk,0 + Zkρp show good mixing properties.

The estimated covariate effects for Rk,t and Rk,t−1 are generally positive and indicate that

inland municipalities are more vulnerable than coastal areas. Since western municipalities ex-

hibit, on average, higher precipitation levels, the buildings are expected to be designed such that

they can withstand more severe rainfall events. Furthermore, the two covariate effects typically

have a similar value, that is, if the covariate effect for Rk,t is high, so is the one for Rk,t−1 and

vice versa. Similarly, the covariate effects associated to Dk,t indicate a higher risk for eastern

and northern regions, as compared to coastal areas. The snow-water equivalent Sk,t appears

to have the largest effect on the claim dynamics for northern municipalities and these are also

the ones which observe the highest covariate values. With respect to ∆Sk,t, the municipalities

exhibiting highest vulnerability are in eastern Norway. When compared to the rainfall covari-

ates, the remaining covariates appear to often have a smaller impact as manifest by the smaller

posterior mean estimates. As for the baseline claim risk, the sampled Markov chains show good

mixing.

Considering the BPH model, the estimates for the hurdle component in Figure 3.3.2 exhibit

similar spatial patterns to the estimates of the Binomial model. Larger differences are only found

for western coastal municipalities with respect to Sk,t and also for ∆Sk,t for northern Norway.

Again, urban municipalities exhibit a higher baseline risk than rural municipalities in central

Norway. In comparison to the estimated baseline risk for the Binomial model, the posterior mean

estimates are slightly lower. Figure 3.3.2 further shows that the estimated covariate effects for

qk,t are generally lower, as compared to the Binomial model, and take negative values for a

few municipalities. This is, in particular, the case for ∆Sk,t. These results indicate that the

frequency of zero claims may indeed be higher than the estimated Binomial model suggests.

Next, the Poisson component is examined by the spatial posterior mean plots for δk, 0 through

to δk,5 in Figure 3.3.3. Compared to the hurdle component, the estimates are spatially more

variable. The baseline risk is also higher than for the hurdle component with the highest levels

found for northern Norway. The rainfall covariates Rk,t and Rk,t−1 appear to be important
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Figure 3.3.1: Posterior mean estimates of the baseline risk βk,0+ρpZk and the covariate effects obtained
for the Binomial model with the original covariates.
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Figure 3.3.2: Posterior mean estimates of the baseline risk γ0 +ρqZ and the covariate effects γ1, . . . , γ5

obtained for the Binomial model with the proposed data.
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Figure 3.3.3: Posterior mean estimates of the baseline risk δ0 + ρλZ and the covariate effects δ1, . . . , δ5
obtained for the Poisson Hurdle model with the proposed data.
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Binomial model -
Original covariates

Poisson Hurdle model -
Hurdle component

Poisson Hurdle model -
Poisson component

Rk,t

Rk,t−1

Figure 3.3.4: Classification of the 95% credibility interval of the covariate effects associated to Rk,t and
Rk,t−1 into three categories. For municipalities with the darkest colour, the central 95%
credibility interval does not intersect with the interval (−0.1, 0.1) while zero is contained
in the 95% credibility interval for municipalities with a light colouring.

for the claim dynamics for most, but not all, municipalities. Further, the covariate effects for

δk,3 through δk,5 for Dk,t, Sk,t and ∆Sk,t, respectively, take negative values for about half of

the municipalities. This may partly be due to the low frequency of higher claims for most

municipalities and, hence, no high claim numbers being recorded for days with high values for

∆Sk,t and Dk,t.

After the investigation of the spatial variation in the posterior mean, interest lies in the de-

tection of covariates which are important for the claim dynamics in each municipality. Therefore,

the uncertainty is considered in addition to the posterior mean plots in (Figures 3.3.1 through to

3.3.3) and the central 95% credibility intervals are derived. A covariate is considered important

if a covariate value of zero does not lie within the derived credibility interval. Firstly, the two

rainfall covariates are examined in Figure 3.3.4. Again, the results for the Binomial model with

proposed covariate set X̃k,t are very similar to the ones for the original covariates and, hence,

omitted. Figure 3.3.4 indicates a high degree of certainty for the Binomial model and the hurdle

component on the covariates effects associated to Rk,t and Rk,t−1 being non-zero for almost all
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Binomial model
BPH - Hurdle

component
BPH - Poisson

component

Dk,t

Sk,t

∆Sk,t

Figure 3.3.5: Classification of the 95% credibility interval of the covariate effects associated to Dk,t,
Sk,t and ∆Sk,t−1 into three categories. For municipalities with the darkest colour, the
central 95% credibility interval does not intersect with the interval (−0.1, 0.1) while zero
is contained in the 95% credibility interval for municipalities with a light colouring.

municipalities. The only exceptions are a few coastal municipalities and the most northern ones.

With respect to the Poisson component, zero is contained in the central 95% credibility interval

for several municipalities, especially in northern and central Norway. Since central and northern

municipalities are less populated, estimates are often solely based on the prior and, hence, more

uncertain. Note, the municipalities with the highest certainty on the covariate effects being

non-zero are similar to those of Scheel et al. (2013).

While the amount of precipitation appears to have a general impact on the claim dynamics,

Figure 3.3.5 indicates that the remaining covariates are only important for some municipalities.
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Figure 3.3.6: Ratio of correctly predicted claims type for the Binomial model with original covariates

(left panel) and comparison of the predictive performance between the Binomial models
fitted for original and proposed covariates (right panel).

High certainty on the covariate effect associated to the drainage run-off Dk,t being non-zero is

only found for eastern Norway for both the Binomial model and the hurdle component. Further-

more, zero is contained within the central 95% credibility interval for almost all municipalities

with respect to δk,3 the Poisson component. Scheel et al. (2013) also state that their results

also indicate that drainage is important for the hurdle component but not the Poisson one.

Next, the snow-water related covariates Sk,t and ∆Sk,t have an impact for northern and eastern

municipalities only. Again, zero is contained in the 95% credibility interval for most regions for

the zero-truncated Poisson component, and the municipalities for which the results indicate an

importance are rather spatially isolated. Precipitation on the day itself and the previous day

appear the most important factor for the claim dynamics. Furthermore, the other three covari-

ates considered here are important for some regions, especially eastern municipalities. Finally,

the estimated models do not indicate a significant difference between the original and proposed

covariates.

3.3.2 Predictive Performance

The predictive performance is assessed for the observations in 2001 which were excluded from

the model estimation. Interest lies in predicting the number of claims within each week for each

municipality. Equivalently to Scheel et al. (2013), each week is classified as one of three types:
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Figure 3.3.7: Comparison of the predictive performance for the Binomial model with original covariates
and a weekly prediction of zero claims (left panel). The right panel illustrates the perfor-
mance of predicting zero claims with respect to the rank of the municipality in terms of
number of policies.

(i) No claims, (ii) 1-3 claims and (iii) more than four claims. The predicted type for a week

yields to the one with highest posterior probability.

For the Binomial models, Figure 3.3.6 shows a good overall performance. On average, the

predicted claim type is correct for 89% of the weeks but large differences between municipalities

exist. While the predictive performance is generally above 95% for rural municipalities, it is

below 50% for the more densely populated cities of Sarpsborg and Fredrikstad in south-east

Norway. Comparison of the original and proposed covariates shows only small differences and

the proposed covariates perform slightly better. In comparison to Scheel et al. (2013), the

predictive performance is similar too and they find that the model yields poor predictions for

Sarpbsborg in 2001.

The good performance for rural municipalities is due to the high occurrence of weeks with

zero claims. To illustrate this aspect, the performance for a constant prediction of zero claims

is compared to the Binomial model fir for the original covariates. The left plot in Figure 3.3.7

shows that a prediction of zero claims performs similarly if the Binomial model fits well too but

has a lower rate of correct predictions otherwise. The municipalities for which the Binomial

model yields better predictions are the ones with the highest number of policies (right panel in

Figure 3.3.7). In addition to a prediction of zero claims, the performance of an approach based

on the average daily number of claims over the training period has been considered; the plots
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Figure 3.3.8: Ratio of correctly predicted claims type for the Poisson hurdle model with proposed

covariates (left panel) and comparison of the predictive performance between the Binomial
and Poisson hurdle model both with proposed covariates (right panel).

are provided in Appendix B.3.

Next, the results are compared to the fitted Poisson hurdle model. Figure 3.3.8 indicates

that the model also performs quite well. Again, the predictive performance is better for rural

municipalities than for urban ones. Furthermore, the right panel in Figure 3.3.8 shows that the

differences between the Poisson hurdle and Binomial model are quite small for most munici-

palities, with the exception of two municipalities which exhibit a much better performance for

the Poisson hurdle model. In particular for Fredrikstad, the Poisson hurdle model predicts the

correct type for 32 weeks while the Binomial models do so for just 25 weeks. The results are

also quite similar to the ones by Scheel et al. (2013).

In order to gain more insight, the municipalities of Oslo and Bergen are examined in more

detail. Equivalently to Scheel et al. (2013), the weeks with the highest claim numbers and

the highest precipitation levels in 2001 are considered and the 95% prediction intervals are

derived. Table 3.3.1 provides the results obtained for all three models. The two Binomial

models performed very similarly and differ only in small details. Note, the week in which 8

claims are observed for Oslo corresponds to a week with small amounts of snowfall and hence

the predictions differ. With respect to the Poisson hurdle model, estimates are slighty better

but no large differences are found. In conclusion, similarly to Scheel et al. (2013), both the

Binomial and Poisson hurdle model tend to underpredict the number of claims.
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Table 3.3.1: Posterior predictive median, 95% prediction interval and actual observation of the weekly-
aggregated claim numbers for (a) the four weeks with the highest observations, (b) the four
weeks with maximum total precipitation for the three different spatially varying regression
models Oslo and Bergen.

Municipality Period Truth Binomial Binomial Poisson hurdle

Original Proposed Proposed

Oslo (a) 11 6 (2,11) 6 (2,11) 6 (1,12)
11 5 (1,10) 5 (1,10) 5 (1,11)
8 3 (0,7) 2 (0,6) 3 (0,7)
7 3 (0,7) 3 (0,7) 3 (0,7)

(b) 11 6 (2,11) 6 (2,11) 6 (1,12)
5 7 (2,12) 7 (2,12) 6 (1,13)
6 5 (1,10) 5 (1,9) 4 (1,10)
11 5 (1,10) 5 (1,10) 5 (1,11)

Bergen (a) 7 3 (0,7) 3 (0,7) 3 (0,7)
7 2 (0,6) 2 (0,6) 2 (0,7)
6 2 (0,6) 2 (0,6) 2 (0,6)
6 2 (0,6) 2 (0,5) 2 (0,6)

(b) 5 6 (2,11) 6 (2,11) 4 (1,10)
1 6 (2,12) 6 (2,12) 5 (1,11)
3 4 (1,9) 4 (1,9) 3 (0,8)
4 4 (1,9) 4 (1,9) 4 (0,9)

3.4 Discussion

This chapter performed a comparative study of a Binomial model, as used in many disease

mapping approaches, and a Poisson hurdle model which accounts for the high frequency of zero

claims in the insurance data. Note, both models are based upon the assumption that claims

occur independently both within and across municipalities, conditional on the weather covari-

ates. Additionally, modified covariates for the amount of precipitation and the difference in the

snow-water equivalent were considered too. Similarly to Scheel et al. (2013), the parameters

were assumed to vary spatially across municipalities. In order to borrow statistical information

between municipalities, a ICAR prior (Section 2.1) was specified in order to define a spatial

dependence of the model parameters. Results showed that the two considered sets of covari-

ates perform very similarly in terms of both parameter estimates and predictive performance.

Compared to the more complex Poisson hurdle model, results showed a slight improvement with

respect to the predictive performance. However, all three models performed poorly in terms of

predicting weeks with high numbers of claims which are of particular interest to the insurance

companies.
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The results in this chapter motivate the new methodology for monotonic regression and

extreme value theory in the following chapters. One potential limitation is the assumption of

linearity in the model setup. Since observations of Nk,t > 1 are very rare, the parameter es-

timates are mostly dominated by days with zero or one claim. However, the days with high

claims are much more important in order to detect the weather events which induce the highest

claim risk. A simple extension of the considered model may introduce a weighting in order to

focus the analysis on days with high claim numbers. Nevertheless, there are further limitations

to the linear model. As discussed in Section 1.4, the combined effect of the covariates may be

non-linear. Further, the model also does not allow for any jumps in the regression function,

also termed threshold effects. These arguments motivate the consideration of a more flexible

monotonic regression approach (Section 2.2) in the following Chapters 4 and 5. However, its

application is not straightforward since there exists no statistical model which defines a depen-

dence structure on such functions. Hence, such a model is introduced in Chapter 4 and then

embedded and estimated in a Bayesian framework. Chapter 5 then proposes an alternative

version which considers the optimization-based approaches detailed in Section 2.2.2.

While the approaches in Chapters 4 and 5 introduce a more flexible process model, in terms

of the Bayesian hierarchical modelling approach in this chapter, Chapter 6 considers an improved

data model. While almost all days observe values ofNk,t between 0 and 5, there only exist 11 days

with more than 5 claims for Oslo and some are very large. Hence, the Poisson component may

lack flexibility in terms of fitting these extremes. This motivates the application of extreme value

models (Section 2.3). Chapter 6 considers an extension of the zero-truncated Poisson component

in the Poisson hurdle model based upon the generalized Pareto distribution. Additional to the

model fit with respect to the highest observations, the data structure itself is considered too.

Firstly, the potential lag in the recording process of the claims discussed in Section 1.3 may

partly cause the tendency to underpredict weeks with higher claims. Secondly, the considered

covariate set is limited in terms of exploiting spatial and temporal patterns in the covariate set.

This leads to the derivation of a temporal cluster algorithm with respective covariates which is

also detailed in Chapter 6.

Finally, the results in the chapter indicate that the measurement for predictive performance

applied by Scheel et al. (2013) has limitations. Although they argue that the year 2001 is

generally representative, days with Nk,t > 4 are observed for neither Oslo nor Bergen in this

period. Hence, it is difficult to examine model differences with respect to the highest claims.
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Further, the aggregation over several days may make the assessment of certain aspects, such

as the performance for days with snow-melt, difficult. Therefore, the model fit is assessed

differently in the rest of this thesis. Chapter 4 assesses predictive performance on a daily

basis while Chapter 6 considers both the Bayesian (Schwarz, 1978) and Deviance (Spiegelhalter

et al., 2002) Information Criterion. Application of the former to the models considered in this

chapter reveals that the Poisson hurdle model performs better than the Binomial models for

the most populated municipalities. On the other hand, the added flexibility leads to only small

improvements in the likelihood fit for more rural municipalities.



Chapter 4

Bayesian Spatial Monotonic Multiple

Regression

4.1 Introduction

Geospatial data are considered in several areas, including ecology (Guttorp, 1991), forestry

(Penttinen et al., 1992) and epidemiology (Waller and Gotway, 2004). Data in a locally ag-

gregated form, lattice data (Cressie, 1993), are common due to practicality or confidentiality

concerns and are typically over an irregular lattice. Statistical methods for such area-level data

model associations between a response variable and a set of explanatory variables via a regres-

sion function, whilst accounting for potential spatial dependence in the model parameters. To

introduce spatial dependence, a neighbourhood structure, often based upon the arrangement of

the areal units (regions) on a map, is typically defined in form of an adjacency matrix.

Most modelling frameworks in spatial statistics assume the regression function to have the

same shape across all regions (Waller and Gotway, 2004; Wakefield, 2007; Waller and Carlin,

2010). Spatial variation is then typically accommodated via a spatially structured random effect

on the intercept (baseline level) with dependence being, for instance, defined by an intrinsic

conditional autoregressive (ICAR) prior (Besag, 1974; Besag et al., 1991; Rue and Held, 2005).

Some applications, however, need to allow for a spatial varying association between response and

explanatory variables (Bell et al., 2004; Zhang and Shi, 2004; Cahill and Mulligan, 2007; Waller

et al., 2007) and, hence, require a more flexible modelling framework. Statistical methods

for such scenarios are available for generalized linear (Brunsdon et al., 1998; Fotheringham

et al., 2002; Assunção, 2003; Congdon, 2003; Scheel et al., 2013) and additive models (Congdon,

77
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2006). Whilst more flexible, these approaches are limited in terms of recovering discontinuities

(threshold effects) as continuity of the regression function is assumed. More precisely, abrupt

changes in the regression surface are not captured unless these are explicitly included; negligence

of such effects may result in a bias due to oversmoothing (Bowman and Azzalini, 1997).

Since the assumption of continuity may be inappropriate, we substitute it by one of mono-

tonicity, an important assumption in several applications (Royston, 2000; Farah et al., 2013;

Wilson et al., 2014). Whilst continuity can, in general, not be verified, tests of monotonicity

for the underlying process are available (Bowman et al., 1998; Ghosal et al., 2000; Scott et al.,

2015). Conditional on the monotonicity constraint, we develop methodology which estimates the

form of the association between the response and explanatory variables for each region; whilst

exploiting any neighbourhood structure.

The estimation of a single multivariate, monotonic function is considered in several statistical

areas and is usually referred to as isotonic regression. Early publications discuss inference on

parameter values under monotonic constraints (Ayer et al., 1955; Brunk, 1955; Barlow and

Brunk, 1972) and solution algorithms are available in the optimization literature (Brunk et al.,

1957; Luss et al., 2012). Isotonic regression is further considered for additive (Bacchetti, 1989;

Morton-Jones et al., 2000; Tutz and Leitenstorfer, 2007) and high-dimensional models (Fang

and Meinshausen, 2012; Bergersen et al., 2014), in functional data analysis (Ramsay, 1998;

Ramsay and Silverman, 2005) and Bayesian nonparametrics (Holmes and Heard, 2003; Shively

et al., 2009; Saarela and Arjas, 2011; Lin and Dunson, 2014). To apply these techniques for the

modelling of spatially varying regression functions, a dependence model for monotonic functions,

without the additional assumption of continuity, is required. However, little, to no, research

exists on dependence models for the class of discontinuous functions.

We introduce new Bayesian, non-parametric, methodology, Bayesian Spatial Monotonic Mul-

tiple Regression (BSMMR), which allows for dependence modelling of regression functions under

the assumptions of monotonicity and boundedness. The regional (areal) monotonic functions

are each represented by a set of marked point processes, permitting both smooth contours and

threshold effects in the regression surface. Potential spatial dependence is modelled via the

specification of a novel joint prior distribution on the monotonic functions, which is constructed

based upon a flexible pair-wise discrepancy measure. The defined prior allows the functional

dependence to be either constant, increasing or decreasing with an increasing functional level.

In order to tune the prior, we propose a new algorithm, EGO-CV, which combines the concepts
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of cross-validation and Bayesian global optimization. Realizations of the posterior are obtained

by a reversible jump MCMC (RJMCMC) algorithm (Green, 1995) and facilitate analysis with

regard to threshold effects, variable selection, prediction and extrapolation.

The remainder of this chapter is organized as follows: Section 4.2 details the model specifica-

tion and inferential framework of the BSMMR approach, including the newly defined dependence

model and the EGO-CV algorithm. Performance and sensitivity of our approach is assessed via

multiple simulation studies in Section 4.3. In Section 4.4, the methodology is applied to Nor-

wegian insurance and meteorological data, with a view to investigating weather related claim

dynamics over an area. The chapter concludes with a summary and discussion in Section 4.5.

4.2 Modelling and Inference

4.2.1 Probability Model, Notation and Outlook

Consider a set of K (contiguous) regions whose neighbourhood structure is given by an adjacency

matrix or a lattice graph (regular or irregular). Let yk ∈ R and xk = (xk,1, . . . , xk,m) ∈ Rm

denote the response and explanatory variables, respectively, for region k = 1, . . . ,K. The

probability model (likelihood) is defined as

f (yk | λk(xk),θk) , (4.2.1)

where λk : Rm → [δmin, δmax] refers to the monotonic regression function for region k; a mapping

for which the functional level λk (xk) is assumed to lie within a prespecified interval [δmin, δmax].

Monotonicity is here defined in terms of the partial Euclidean ordering �, that is, ∀ u,v ∈ Rm

such that u ≤ v component-wise, then λk(u) ≤ λk(v). The vector θk denotes additional,

potentially spatially varying, model parameters which are a priori independent of λ1, . . . , λK .

In what follows, we perform inference on λ1 through λK while accounting for potential

spatial structure in these functions. Each λk, k = 1, . . . ,K, is estimated over an associated

closed set Xk ⊂ Rm which is permissibly different across regions. In applications, Xk and the

boundaries, δmin and δmax, may be defined in terms of the observed explanatory variables and

responses, respectively. For instance, δmin may be set to the minimum observed response across

the K regions if yk follows a Gaussian distribution with mean λk (xk). Sections 4.2.2 and 4.2.3

complete the Bayesian framework by defining a joint prior on λ1, . . . , λK while Sections 4.2.4
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and 4.2.5 detail the estimation procedure.

4.2.2 A Spatial Dependence Model for Monotonic Functions

Interest lies in the imposition of a spatial structure on the K monotonic functions λ1, . . . , λK

defined in Section 4.2.1. In a Bayesian framework, beliefs on spatial dependence in the model

parameters are typically accommodated via the specification of a prior distribution. Since lit-

tle research exists on dependence models for monotonic functions, we derive a joint density

π (λ1, . . . , λK) which favours similarity of λ1 through λK by penalizing differences in their func-

tional levels. For notational simplicity, λk (x) , x ∈ Rm, k = 1, . . . ,K, is assumed to be non-

negative since, in general, one would naturally consider λk(x)− δmin instead of λk(x).

In the first step, we introduce a pair-wise discrepancy measure for function pairs λk and

λk′ which evaluates their functional difference over a set Wk,k′ ⊂ Rm. Section 4.3.3, later,

demonstrates that Wk,k′ may be defined such that it permits borrowing of statistical information

for extrapolation, in particular, in case that the observation spaces for λk and λk′ differ. The

discrepancy measure should be minimal if, and only if, λk and λk′ are equal, and increase with an

increasing difference in the functional levels. An intuitive choice which satisfies these properties

is the integrated squared difference

∫
Wk,k′

[λk(x)− λk′(x)]2 dx. (4.2.2)

The defined measure in (4.2.2) is, however, rather inflexible as it penalizes functional differences

regardless of the exact functional levels. In certain cases, differences in the lower, or higher,

functional levels should be particularly downweighted, or avoided. For example, measurement

errors in the response may be expected to increase with the values of the explanatory variables.

To achieve greater flexibility, we substitute the squared distance [λk(x)− λk′(x)]2 in (4.2.2)

by

γp,q [λk(x), λk′(x)] :=
∣∣∣ [1 + λk(x)]p− [1 + λk′(x)]p

∣∣∣×|λk(x)− λk′(x)|q , p ∈ R , q ≥ 0. (4.2.3)

The functional levels in the first modulus term are increased by 1 to ensure numerical stability for

the case p < 0, as λk(x) and λk′(x) may be close or equal to 0. In other words, γp,q [λk(x), λk′(x)]

is bounded for every choice of p and q by shifting both functional levels by 1. Note, the setting

p = q = 1 results in the squared distance in expression (4.2.2).
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Figure 4.2.1: Behaviour of γp,q [κ, ψ] for ( ) p = 1, q = 1, ( ) p = 2, q = 1, ( ) p = 1, q =

0.5, ( ) p = 0.5, q = 1, ( ) p = −1, q = 2 and ( ) p = −0.5, q = 0.1. Both
plots examine γp,q [κ, ψ] with respect to κ, subject to (a) ψ = 0 is fixed and (b) ψ = κ+0.1
is fixed. Note, the curves of the first and third setting are identical in (b).

We illustrate, Figure 4.2.1, the behaviour of γp,q [λk(x), λk′(x)] at a fixed point x ∈ Rm for

different settings of p and q. For notational brevity, let κ := λk(x) and ψ := λk′(x). In Figure

4.2.1a, ψ = 0 and, as desired, γp,q [κ, ψ] increases with κ for all values of p and q. Figure 4.2.1b

then examines the dependence of γp,q [κ, ψ] on κ, subject to ψ = κ + 0.1 being fixed. The plot

shows that the fixed difference, ψ−κ = 0.1, is penalized more heavily for higher κ if p > 1 while

being penalized less heavily for p < 1. A constant penalty is induced for p = 1. For instance,

the setting p = 2, q = 1 leads to a five-fold increase in γp,q [κ, ψ] when κ = 4 compared to when

κ = 0. In conclusion, p allows the penalty for the functional difference between λk and λk′ to

vary with the functional levels. Since γp,q [·, ·] in (4.2.3) fulfills the desired properties, we now

formally define the discrepancy measure as

Dp,q(λk, λk′) :=

∫
Wk,k′

γp,q [λk(x), λk′(x)] dx , p ∈ R , q ≥ 0. (4.2.4)

The dependence model for λ1, . . . , λK is then defined as a Gibbs distribution with the measure

Dp,q in (4.2.4) as a pair-potential. Formally, the joint density for the K-set of monotonic

functions is given by

π (λ1, . . . , λK | ω) ∝
∏

1≤k<k′≤K
exp

[
− ω · dk,k′ ·Dp,q (λk, λk′)

]
, ω ≥ 0, (4.2.5)

where the product is defined over all pairs of regions. The non-negative constant dk,k′ describes
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our belief on the degree of similarity of λk and λk′ . A natural choice is dk,k′ = 1 if regions

k and k′ are adjacent (share a border) and 0 otherwise, a common setting in Ising or ICAR

models. Such a choice reduces the computational cost as the integral in (4.2.4) needs only to

be evaluated for pairs of adjacent regions. The degree of dependence increases in ω, with ω = 0

corresponding to λ1, . . . , λK being independent. Further, p allows the dependence to vary with

the functional levels; sensitivity on p and q is explored in Section 4.3.2. In the next Section

4.2.3, we specify an individual prior for each λk, k = 1, . . . ,K, which, combined with (4.2.5),

results in a composite prior.

4.2.3 Marked Point Process Prior Formulation

We specify an individual prior model for each λk : Xk → [δmin, δmax] , k = 1, . . . ,K. Several

prior distributions for a single monotonic function are proposed in the literature, for instance,

an ordered Dirichlet process (Gelfand and Kuo, 1991) or a constrained spline model (Shiv-

ely et al., 2009). We define a similar prior to that of Saarela and Arjas (2011). Specifically,

λk is postulated to be a step function, that is, λk is monotonic and piecewise constant, with

λk (x) ∈ [δmin, δmax] , ∀ x ∈ Xk. This prior setting is highly flexible as any monotonic, bounded

function can be approximated up to a desired degree of accuracy by increasing the number of

steps. Furthermore, the posterior mean, induced by the likelihood in expression (4.2.1), may

be a smooth function, given the model permits variability in the number, locations and heights

of the steps (Heikkinen and Arjas, 1998; Heikkinen, 2003). Consequently, both smooth and

discontinuous functional shapes can be recovered.

The step function λk is represented via its characteristics, namely the location and height of

the jumps, which define a marked point process on Xk. Following Saarela and Arjas (2011), we

consider a set of I marked point processes, ∆k = (∆k,1, . . . ,∆k,I), instead of a single marked

point process; the benefits of this approach are discussed later in this section. Here, the marked

point processes ∆k,1, . . . ,∆k,I are defined on non-empty subsets Xk,1, . . . , Xk,I , respectively,

where
⋃I
i=1Xk,i = Xk. In what follows, the representation of λk via ∆k is formalized.

Consider the set ∆k = (∆k,1, . . . ,∆k,I) and let the marked point process ∆k,i, i = 1, . . . , I,

be of the form

∆k,i = {(ξk,i,j , δk,i,j) : j = 1, . . . , n(∆k,i)} , (4.2.6)

where ξk,i,j and δk,i,j refer to a location and associated mark, respectively, and n(∆k,i) is the
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Figure 4.2.2: Locations for a marked point process representation of λk on Xk = [0, 1]2 via (a) ∆k =
{∆k,1,∆k,2,∆k,3} defined in terms of the non-empty subsets of the covariate set {1, 2}
and (b) a single marked point process Γk. The processes ∆k,1 ( ) and ∆k,2 ( ) are
defined on the one-dimensional covariate subsets, {1} and {2}, respectively while ∆k,3

( ) is defined on {1, 2}.

number of points in ∆k,i. Functional monotonicity is preserved via the imposition of a monotonic

constraint on the marks. Specifically, if ξk,i,j � ξk,i′,j′ , then δk,i,j ≤ δk,i′,j′ , i, i
′ ∈ {1, . . . , I},

j ∈ {1, . . . , n (∆k,i)}, j′ ∈
{

1, . . . , n
(
∆k,i′

)}
. The functional level λk(x) is then defined by ∆k

as the highest mark δk,i,j such that x imposes a monotonic constraint on the associated location

ξk,i,j . Formally, λk(x) is given by

λk(x) = max
i,j
{δk,i,j : ξk,i,j � x} . (4.2.7)

While there is no restriction on the number, I, of marked point processes or the associated

subsets, we define Xk,1, . . . , Xk,I based on the non-empty subsets of the covariate set {1, . . . ,m}.

For instance, in the case m = 2 and Xk = [0, 1]2, this yields I = 3 processes (Figure 4.2.2a)

with, for instance, ∆k,1 containing the locations with the second component being 0: ξk,1,j =

(·, 0) , j = 1, . . . , n (∆k,1). Although λk may also be represented via a single marked point process

Γk (Figure 4.2.2b), the proposed approach has indeed benefits in terms of variable selection, and

these are explained in the following:

Assume Xk is scaled to Xk = [0, 1]m and suppose that, for instance, the explanatory variable

xk,1 is redundant. Hence, the regression function λk is constant with increasing xk,1, that is,

λk(x) = λk(x + ε1), ∀ x ∈ Xk, where ε1 = (ε, 0, . . . , 0) has positive first component and is zero
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otherwise. As the points in both Γk and ∆k represent the jumps of λk, the locations in Γk

and ∆k are 0 in the first component. For instance in the case m = 2, the redundancy of xk,1

implies that locations lie on the vertical x2-axis in Figure 4.2.2. In terms of ∆k, all points are

thus contained in ∆k,2 while ∆k,1 and ∆k,3 are empty. Consequently, n (∆k,i) , i = 1, . . . , I,

provides an indicator of the redundancy of explanatory variables, in addition to examination of

the functional shape.

The defined association between λk and ∆k results in a well-defined mapping between

the space of step functions and that of marked point processes with monotonic constraints.

Thus, we can set a prior for λk via a prior specification for ∆k. The number of steps of λk,

n (∆k) =
∑I

i=1 n (∆k,i), is taken to be geometrically distributed with probability 1/η, η > 1,

where n (∆k) = 0 corresponds to λk being constant. This setting favours parsimony: λk to

have a small number of steps. Given n(∆k), the vector [n (∆k,1) , . . . , n (∆k,I)] is uniformly

distributed over the set of possibilities of allocating n(∆k) points to the I processes. For

∆k,i, i = 1, . . . , I, the n (∆k,i) locations ξk,i,1, . . . , ξk,i,n(∆k,i) are a priori uniformly distributed

on Xk,i. The set of marks δk = {δk,i,j : j = 1, . . . , n (∆k,i) , i = 1, . . . , I} is then uniformly dis-

tributed on [δmin, δmax], subject to the monotonic constraints imposed by the associated set of

locations ξk = {ξk,i,j : j = 1, . . . , n (∆k,i) , i = 1, . . . , I}. Based on this Bayesian hierarchical

model, the prior for ∆k yields to

φ (∆k | η) = π [δk | ξk]×
I∏
i=1

π [ξk,i | n (∆k,i)]× π [n(∆k,1), . . . , n(∆k,I) | n(∆k)]× π [n(∆k) | η] .

(4.2.8)

The density φ (∆k | η) is proper and analytically tractable; see Appendix C.1. A conjugate Beta

prior may be specified to perform inference on 1/η.

We impose a spatial structure on ∆1 through ∆K by combining φ (∆k | η) in (4.2.8) with

the dependence model in (4.2.5). The joint prior for the K-set (∆1, . . . ,∆K) is then formally

given as

π (∆1, . . . ,∆K | ω, η) ∝
∏

1≤k<k′≤K
exp

[
− ω · dk,k′ ·Dp,q (λk, λk′)

]
×

K∏
k=1

φ (∆k | η) , (4.2.9)

where λk and λ′k refer to the step functions represented by ∆k and ∆k′ , respectively. Note, the

prior for ∆k in (4.2.9) converges to (4.2.8) as ω → 0 and is proper since the first term lies within

(0, 1] and the second term is a proper density function. Further, Dp,q (λk, λk′) can be computed
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efficiently as λk and λ′k are step functions and, hence, the integral simplifies to a sum.

The likelihood (4.2.1) and prior (4.2.9) fully specify a posterior density for ∆1, . . . ,∆K which

is proportional to

[
K∏
k=1

Tk∏
t=1

f (yk,t | λk (xk,t) ,θk)

]
× π (∆1, . . . ,∆K | ω, η) , (4.2.10)

where Tk denotes the number of observations for region k and λk is the step function represented

by ∆k. Section 4.2.4 details the sampling of ∆1, . . . ,∆K from the posterior density in (4.2.10).

In a fully Bayesian framework, we would want to specify priors for the parameters η and

ω in order to infer on these too. However, the full conditional posterior density for η and ω is

not obtainable as the normalizing constant in (4.2.9) is intractable. This issue led to our novel

inferential approach for ω which is detailed in Section 4.2.5. To select η, one may first consider

the posterior density resulting from the likelihood (4.2.1) and the prior φ (∆k | η). In this case,

the normalizing constant of the conditional posterior density for η is analytically tractable.

Hence, we can sample realizations from this density and then set η to the posterior mean when

inferring on ω and ∆1 through ∆K . Performance of this posterior mean approach is explored

in Section 4.3.

4.2.4 Inference and Analysis of the Marked Point Processes

We outline a RJMCMC algorithm to sample realizations of ∆1, . . . ,∆K from the posterior

density in (4.2.10). Each point (ξk,i,j , δk,i,j) in ∆k is considered as one parameter with the

number of points, hence the dimension of the parameter space, unknown. Initially, ∆1 . . . ,∆K

are empty and λ1 through λK are defined as constant with level δmin. The sets ∆1, . . . ,∆K

are then updated sequentially with moves being defined similarly to Saarela and Arjas (2011).

More precisely, one of three moves, implying local changes in the regression surface, is randomly

proposed for one of the processes ∆k,1, . . . ,∆k,I , for region k, k = 1, . . . ,K, in turn.

Assume that the process ∆k,i has been sampled to be updated. The first move, Birth, adds a

point (ξ∗, δ∗) to ∆k,i, where ξ∗ is sampled uniformly on Xk,i. Given ξ∗, δ∗ is sampled uniformly,

subject to monotonicity being preserved. A Death removes a point from the current process,

maintaining reversibility. The last move, Shift, leads to a ’local’ change in both the location

and level of an existing point in ∆k,i, subject to the monotonic structure of the locations being

maintained. See Appendix C.2 for more details on the algorithm.
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Sampling ∆1, . . . ,∆K via this RJMCMC algorithm has one small limitation. If, for instance,

Xk = [0, 1]m, then λk(0, . . . , 0) = δmin as ξ∗ = (0, . . . , 0) is proposed with probability 0. To

address this, one may define the decomposition λk (xk) := µk+ λ̃k (xk) and then infer on µk ∈ R

and λ̃k separately; this approach is applied in Sections 4.3 and 4.4. Further alternatives are (i)

definition of an Ith+1 process ∆k,0 = {((0, 0), δmin)} for which only changes in δmin are proposed

and (ii) estimation of λk on an extended set, such as Xk = [−0.1, 1.0]m. The decomposition

is, however, more flexible as it allows for a similar functional behaviour with respect to the

covariates but different baseline levels; this aspect will be particularly useful in Section 4.4.

Realizations from the posterior distribution are rich and facilitate detailed analysis of the

functions λ1, . . . , λK . Thinning is performed on the sampled Markov chains in order to reduce

autocorrelation and for storage reasons. Posterior mean estimates λ̂k of λk are obtained by

averaging over the stored realizations. The mean and quantiles of the posterior distribution

are accessible for any x ∈ Xk by deriving the functional level λ
(r)
k (x) for each sample r, r =

1, . . . , R. Further, the sampled marked point processes facilitate the detection of discontinuities;

see Appendix C.3.

4.2.5 Estimation of the Prior Parameter ω

Performance of our approach relies on a suitable ω in (4.2.9). If ω is too high, the prior domi-

nates the posterior distribution and spatial variation in ∆1 to ∆K is oversmoothed. Otherwise,

the data may be overfitted if ω is too small. In a Bayesian framework, ω should ideally be

updated within the RJMCMC algorithm in Section 4.2.4, for instance, via an additional Gibbs

step. However, the normalizing constant of (4.2.9), which depends on δmin, δmax, ω, and η,

is intractable. We considered several approaches to handle intractable normalizing constants,

including Beaumont et al. (2002), Møller et al. (2006) and Andrieu and Roberts (2009). Never-

theless, these approaches cannot be adapted since efficient sampling from the prior distribution

in (4.2.9) is infeasible. Approximate Bayesian computation, for instance, would require multiple

samples from (4.2.9) for each update of ω. Hence, we estimate ω via a separate approach, prior

to inferring on ∆1, . . . ,∆K .

One possible approach to find a suitable value for ω is s-fold cross-validation, that is, the data

for each of the K regions are split into s subsets of equal size. The RJMCMC in Section 4.2.4

is then performed s times with varying training and test data. Parameter values are then, for

instance, compared by the mean squared error (MSE) of the posterior predictive functional mean
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of the test data points derived by Monte Carlo integration. Nevertheless, the number of evaluated

values for ω should be as small as possible since the RJMCMC algorithm is computationally

expensive.

We reduce the number of evaluations by applying Bayesian optimization, in particular, the

efficient global optimization (EGO) algorithm (Jones et al., 1998). Despite having potential to

reduce the number of evaluations substantially, this concept has, to the best of our knowledge,

never been applied in combination with cross-validation. In the following, we outline a new algo-

rithm, termed EGO-CV, which combines the two concepts and aims to reduce the computational

time.

The EGO concept postulates a sequential design strategy to detect global extrema of a

black-box function g. EGO is widely applied in simulations if g is costly to evaluate and the

parameter space is relatively small (Roustant et al., 2012). The rationale is to model g by a

Gaussian process G which is updated sequentially with proposals being based on the expected

improvement. More formally, the expected improvement at an arbitrary point z given G and

the current optimum gopt of the unknown g is defined as

E [max (gopt −G(z), 0)] (4.2.11)

and represents the potential of g(z) being smaller than gopt. Proposals are considered until the

expected improvement falls below a critical value for all z, corresponding to the current gopt

being presumably close to the unknown global minimum of g. As EGO balances between a local

exploration of the values likely to provide ’good model fit’ and a global search (to avoid a local

but not global minimum), a suitable solution is generally found after a reasonable number of

evaluations.

In the context of estimating ω, interest lies in the global minimum of the unknown cross-

validation function, CV(ω), and a general layout of our EGO-CV approach is given in Algorithm

4.1. First, an upper bound is derived as EGO can only be applied to a closed set. Hence, an

initial bound ωu is increased until the associated MSE is sufficiently greater than the one for

ω = 0. More clarity is provided in lines 2 to 7 in Algorithm 4.1. An upper bound based on

β = 2 in Algorithm 4.1 proved reasonable in all simulations. Once the bound is fixed, an initial

proposal ω∗ ∈ [0, ωu] is made, guaranteeing that the process G in (4.2.11) is fitted with at least

3 data points. After performing cross-validation for ω∗, EGO is performed until the expected
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improvement falls below the critical value α. The value ωopt providing the lowest MSE is then

used in the conclusive RJMCMC algorithm. In this work, EGO is performed by the DiceOptim

R package by Roustant et al. (2012). To reduce dependence on the split, multiple repetitions

with the same value for ω are performed and the variance of the MSE across the repetitions is

used, additional to the average MSE, to fit G.

Algorithm 4.1 Efficient Global Optimization within Cross-Validation (EGO-CV)

Require: Parameter settings for both the RJMCMC algorithm and cross-validation
Require: Initial upper bound ωu, critical value α, factor β

1: Initialize expected improvement max EI> α
2: Perform cross-validation for ω = 0 and ωu, and store results CV(0) and CV(ωu)
3: while CV(ωu) < β CV(0) do
4: Increase upper bound ωu
5: Perform cross-validation for new ωu and store CV(ωu)
6: end while
7: Set initial proposal ω∗, e.g. ω∗ = ωu/2
8: while max EI > α do
9: Perform cross-validation for ω∗ and store CV(ω∗)

10: Perform EGO on the interval [0, ωu] and update ω∗ and max EI

11: end while
12: return Parameter value ωopt which provides smallest error for the potential values

4.3 Simulation Study

4.3.1 Introduction

We aim to demonstrate that our approach is highly flexible, in terms of reconstructing a wide

range of regression surfaces, and to appraise the value for sharing statistical information spatially

between regions. Multiple simulations studies are performed in order to

1. Illustrate that BSMMR in combination with the EGO-CV algorithm improves estimates

if similarities between functional shapes exist, and is also robust if the functions are dis-

similar.

2. Examine sensitivity on the prior parameters p, q and η in expression (4.2.9).

Improvements in the estimates are discussed with respect to ω = 0, a setting which imposes no

dependence. Performance is evaluated via the posterior mean estimate λ̂k of the true function

λk. Specifically, the absolute difference
∣∣∣λk − λ̂k∣∣∣ and the standard deviation of λk − λ̂k are

derived based upon a 100 × 100 grid on Xk. Here, Xk is defined as the square spanned by the
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lowest and highest observed values in each component. While this definition of Xk has some

computational benefits, function estimates at the boundaries of Xk are solely based on the prior,

raising the issue of extrapolation. To focus analysis on the data supported areas of Xk, only grid

points contained in the convex hull of the observed values of xk are considered for comparison.

EGO-CV is applied with β = 2, α = min(cv MSE)/1000 and an initial ωu = 50 which is

increased by factor 10 until the condition in line 3 of Algorithm 4.1 is satisfied. For each proposal

wu and w∗, 5 repetitions of a 10-fold cross validation are performed, where a fold consists of

50,000 iterations and every 100th sample being stored after a burn-in period of 25,000. In

addition to the expected improvement criterion, EGO-CV stops if 30 values for ω have been

considered. Since smoothing is more sensitive on lower than upper values of ω, EGO is performed

on a transformed scale with ω̃ =
√
ω/50 which provided increased robustness. Alternatively,

EGO may be applied on a transformed log scale, for example. Births, Deaths and Shifts are

proposed with probabilities 0.3, 0.3 and 0.4, respectively. The conclusive MCMC algorithm runs

with ωopt for 2,500,000 iterations after a burn-in period of 500,000 and every 1000th sample is

stored for analysis. Convergence of the Markov chains for region k is checked by first sampling

some points over Xk and then investigating the associated trace plots of the functional levels;

see Appendix C.4 for examples.

Section 4.3.2 considers K = 2 contiguous regions with Gaussian response data and performs

sensitivity analysis on the prior parameters η, p and q. A more complex spatial networks with

Binomial response data and regionally varying sample spaces is considered in Section 4.3.3.

4.3.2 Gaussian Data

Observations for region k = 1, 2 are simulated independently from a Normal distribution

yk ∼ Normal
(
λk(xk), σ

2
k

)
, (4.3.1)

where xk ∈ [0, 1]2 with a varying distribution across the simulations; details are provided in the

respective sections. Instead of inferring on λk directly, the decomposition described in Section

4.2.4 is applied. Hence, we define λk (x) := µk + λ̃k (x) and the considered probability model

(4.2.1) is then given as

f
(
yk | λ̃k (xk) , µk, σk

)
=

1√
2πσ2

k

exp

[
− 1

2σ2
k

(
yk − µk − λ̃k (xk)

)2
]
. (4.3.2)
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Table 4.3.1: Absolute difference ×10−2 (standard deviation of the difference ×10−2) between true func-
tion and posterior mean estimate for the five pairs of functions (λ1, λ2) in Studies 1 to 5
for three settings of η. The last column refers to ω = 0 and η being updated within the
MCMC scheme. The setting providing the lowest combined absolute difference is printed
in bold.

Study Function η = 10 η = 1000 η = η̂ ω = 0

1 λ1 1.8 (2.8) 1.7 (2.6) 1.7 (2.5) 1.8 (2.7)
λ2 3.1 (4.5) 2.8 (4.1) 2.7 (3.9) 4.5 (7.3)

2 λ1 1.6 (3.5) 1.6 (3.6) 1.6 (3.5) 1.6 (3.8)
λ2 2.9 (4.1) 3.0 (4.4) 3.0 (4.5) 4.7 (7.2)

3 λ1 1.3 (1.8) 1.1 (1.6) 1.2 (1.6) 1.1 (1.5)
λ2 1.9 (2.4) 1.7 (2.2) 1.8 (2.3) 2.4 (3.5)

4 λ1 3.0 (9.3) 2.8 (8.3) 2.8 (8.1) 2.8 (8.3)
λ2 4.1 (9.6) 4.0 (8.8) 4.1 (9.0) 5.9 (12.4)

5 λ1 1.4 (1.9) 1.3 (1.7) 1.3 (1.8) 1.3 (1.8)
λ2 2.3 (3.6) 2.3 (3.4) 2.3 (3.4) 2.4 (3.6)

The prior in Section 4.2.3 is then set for
(
λ̃1, λ̃2

)
with d1,2 = 1. An ICAR prior is defined

for (µ1, µ2), imposing a spatial structure, and these are updated separately via a Random-

Walk Metropolis step. The hyperparameter in the ICAR prior is updated via Gibbs sampling

as proposed by Knorr-Held (2003). Inverse-Gamma priors are set for σ2
1 and σ2

2 and these

parameters are updated via Gibbs sampling. The first set of simulations performs sensitivity

analysis for η while the second set does so for p and q.

Sensitivity Analysis for Prior Parameter η

The five considered pairs of λ1 and λ2, ranging from smooth curves through to discontinuous

surfaces with several threshold effects, are illustrated in Column 1 and 2, respectively, of Figure

4.3.1. The functional levels λk(xk) ∈ [0, 2] , k = 1, 2, across all studies. For each pair, 1,000

and 100 data points are sampled for regions 1 and 2, respectively, with σ2
k = 0.052 and xk ∼

Unif
(
[0, 1]2

)
, k = 1, 2. This setting explores, in particular, the potential benefits of borrowing

statistical information from region 1 when estimating λ2. To explore sensitivity with respect to

η, three parameter settings are considered: (i) η = 10, (ii) η = 1000 and (iii) η = η̂, In (iii), η̂

is the posterior mean estimate based on 150,000 iterations after a burn-in period of 50,000 for

the case ω = 0 (Section 4.2.3). The other parameters are fixed to p = q = 1, δmin = −1.0 and

δmax = 4.0 across all studies.

Study 1 and 2 consider cases with λ1 = λ2 and Table 4.3.1 shows that both error measures
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Region 1 : Truth Region 2 : Truth Region 2 : η = η̂

Study 1

Identical:
Continuous

Study 2

Identical:
Discontinuous

Study 3

Similar:
Continuous

Study 4

Similar:
Discontinuous

Study 5

Different:
Continuous

Figure 4.3.1: True functions λ1 (Column 1) and λ2 (Column 2), and the posterior mean estimate λ̂2

obtained by BSMMR and EGO-CV with η = η̂ (Column 3) for the five function pairs in
Section 4.3.2.
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Figure 4.3.2: True functions λ1 and λ2 in Section 4.3.2 and contour plot of the absolute difference in
their functional levels.

are reduced, in particular, for region 2. The posterior mean plots for λ2 and η = η̂ in Figure

4.3.1 illustrate that both smooth surfaces and discontinuities are captured well. In Study 3 and

4, λ1 and λ2 are similar and the conclusions are consistent with those for Study 1 and 2.

Finally, Study 5 applies BSMMR to a pair of substantially different functions and Table

4.3.1 shows no worsening for both regions. The capacity for variable selection, described in

Section 4.2.3, has been tested for λ2 in Study 5, a function for which λ2 (x) only depends on

x2,1. Almost all sampled points of ∆2 are contained in ∆2,1 (results not shown) and the samples,

hence, indicate that x2,2 is redundant.

Table 4.3.1 further indicates a small sensitivity with respect to η. In particular, η = 10 leads

to slightly worse results than η = 1000 or η = η̂ if λ1 and λ2 are smooth. As higher η allow, on

average, for a higher number of process points, the smooth surfaces are fitted better due to the

samples having more, but smaller, jumps. All posterior mean plots are provided in Appendix

C.4. As the setting η = η̂ performs generally well, it is applied in the following simulations.

Sensitivity Analysis for Prior Parameters p and q

When considering p and q, the setup differs from the previous set of simulations in that the

distribution of xk varies across the studies, whereas λ1 and λ2 are fixed. This setting explores

the performance of our approach subject to relatively more or less data points being observed

in areas with similar functional levels. Figure 4.3.2 illustrates the true function pair (λ1, λ2),

which is fixed across studies, and a contour plot of the difference in their functional levels.

Both functions exhibit a discontinuity at (0.5, 0.5) and the lower functional levels, referring to

xk ∈ [0, 1]2 \ [0.5, 1.0]2, are more similar than the upper levels, xk ∈ [0.5, 1.0]2, k = 1, 2.
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Table 4.3.2: Absolute difference ×10−2 (standard deviation of the difference ×10−2) between true func-
tion and posterior mean estimate for the three simulation setups in Section 4.3.2 and dif-
ferent values for the prior parameters p and q. The setting providing the lowest combined
absolute difference is printed in bold.

Study Function p = 1.0 p = 1.0 p = 0.1 p = −1.0 p = 2.0 ω = 0
q = 1.0 q = 2.0 q = 1.0 q = 1.0 q = 1.0

1 λ1 3.7 (6.7) 3.4 (5.4) 3.4 (6.2) 3.1 (5.7) 3.6 (6.3) 3.6 (6.4)
λ2 3.3 (6.3) 3.2 (5.8) 3.0 (5.5) 2.9 (5.3) 3.4 (6.5) 3.7 (7.8)

2 λ1 4.5 (7.8) 4.2 (6.8) 4.2 (7.1) 4.2 (6.9) 4.5 (8.0) 5.6 (12.5)
λ2 4.3 (6.7) 4.2 (5.8) 4.0 (6.0) 4.0 (6.0) 4.4 (6.5) 4.3 (6.2)

3 λ1 3.5 (7.6) 3.5 (8.1) 3.6 (7.4) 3.3 (6.9) 3.6 (6.3) 3.5 (7.6)
λ2 4.0 (7.3) 3.3 (6.0) 3.5 (6.1) 3.2 (5.3) 3.5 (5.1) 4.3 (8.4)

For each study, 300 data points are simulated for each region with σ2
1 = σ2

2 = 0.12. The three

studies considered in the following vary with respect to the number of observations sampled on

[0.5, 1.0]2, the area for which the levels of λ1 and λ2 are quite different. Study 1 considers the

case xk ∼ Unif
(

[0, 1]2
)
, k = 1, 2. In Study 2, 200 data points are sampled uniformly from

[0.5, 1.0]2 for each region while only 40 observations are sampled from this area in Study 3. The

remaining data points, 100 and 260, respectively, are sampled uniformly from [0, 1]2 \ [0.5, 1.0]2.

Five settings for p and q are compared in order to explore sensitivity on these parameters.

The first two settings: (1) p = 1, q = 1 and (2) p = 1, q = 2 impose a constant degree of

dependence between λ1 and λ2. Settings (3) p = 0.1, q = 1 and (4) p = −1, q = 1 allow for

stronger dependence in the lower functional levels while the last setting (5) p = 2, q = 1 imposes

increased dependence for higher levels. The functional level boundaries are set to δmin = 0.0

and δmax = 3.0.

Table 4.3.2 shows that all settings for p and q improve upon ω = 0, with p = −1, q = 1

performing generally best. Consequently, the imposition of a dependence structure is beneficial

despite the upper functional levels being rather different. The setting p = −1, q = 1 performs

best as it effectively borrows statistical information for the lower functional levels without induc-

ing a large bias on the upper functional levels. Table 4.3.2 further indicates a small sensitivity

with respect to q, in particular, setting (2) outperforms setting (1) across the three studies.

An increase in q implies that less dependence is imposed on the smaller functional differences,

relative to the highest functional level difference. Hence, a higher value for q allows here for

a better mixing of the functional levels at the discontinuity. Since the true function is strictly

increasing, this leads to the setting p = 1, q = 2 performing better than p = 1, q = 1. All
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21

3

4

5

Figure 4.3.3: Spatial network of the 5 regions considered in Section 4.3.3.

posterior mean plots are provided in Appendix C.5.

4.3.3 Binomial Data

We consider the spatial network in Figure 4.3.3 with the K = 5 regions having between 1 and 4

neighbours. Responses yk are sampled independently from a Binomial distribution of the form

yk ∼ Binomial (Ak, λk (xk)) , (4.3.3)

where the number of trials Ak = 100 is fixed ∀k and λk (xk) ∈ [0, 1] refers to the success

probability with xk ∈ [0, 1]2. Here, the sample space for the first explanatory variable xk,1 is

regionally varying. Specifically, xk ∈ [0.0, 0.7] × [0, 1] for region k = 1, 3, 5, and observed on

[0.2, 1.0]× [0, 1] and [0.1, 0.9]× [0, 1] for regions 2 and 4, respectively. Column 1 in Figure 4.3.4

illustrates the true functions λ1, . . . , λ5 over the defined spaces. The number of observations

generated for regions 1 through 5 are 100, 500, 200, 300 and 200, respectively, with xk, k =

1, . . . , 5, being uniformly distributed on the defined sample spaces.

In addition to inferring on λk, k = 1, . . . , 5, over its associated observation space, we borrow

statistical information spatially for extrapolation. Let X̃k denote the square spanned by the

lowest and highest observed values for xk,j , j = 1, 2, and set dk,k′ = 1 in (4.2.9) if regions k

and k′ are adjacent, and dk,k′ = 0 otherwise. We then extrapolate λk by defining the domain

Wk,k′ in (4.2.4) as the union of X̃k and X̃k′ , that is, Wk,k′ := X̃k ∪ X̃k′ . Consequently, there

exists statistical information to estimate λk on the set Xk :=
⋃
{k′:dk,k′=1}

{
X̃k ∪ X̃k′

}
. In the

simulation setting above, Xk, k = 1, . . . , 5, then corresponds approximately to the unit square.

Note, the extrapolation assumes similar functional forms for adjacent regions. If this assumption

appears too strong, inference can be restricted to X̃k by defining Wk,k′ as the intersection of X̃k

and X̃k′ : Wk,k′ := X̃k ∩ X̃k′ . Both the union and intersection settings for Wk,k′ are applied to

the simulated data with prior parameters p = 1, q = 1 and η = η̂ (Section 4.3.2).

Table 4.3.3 indicates that both settings for Wk,k′ perform similarly in terms of the considered
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Truth Wk,k′ := X̃k ∩ X̃k′ Wk,k′ := X̃k ∪ X̃k′

Region 1

Region 2

Region 3

Region 4

Region 5

Figure 4.3.4: True functions λ1 through λ5 (Column 1) and estimated posterior means for the settings

Wk,k′ := X̃k ∩ X̃k′ (Column 2) and Wk,k′ := X̃k ∪ X̃k′ (Column 3) in Section 4.3.3.
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Table 4.3.3: Average absolute×10−2 (standard deviation×10−2) of the difference between true function
and posterior mean estimate for the five functions λ1 through λ5 in Section 4.3.3 with two
different settings for Wk,k′ and the case ω = 0.

Function Wk,k′ := X̃k ∩ X̃k′ Wk,k′ := X̃k ∪ X̃k′ ω = 0

λ1 1.4 (1.4) 1.3 (1.4) 1.9 (2.2)
λ2 0.8 (0.9) 0.8 (0.9) 0.8 (1.1)
λ3 1.0 (1.2) 1.1 (1.3) 1.5 (1.9)
λ4 0.9 (1.0) 0.9 (1.2) 1.3 (1.8)
λ5 0.9 (1.2) 0.9 (1.3) 1.6 (2.2)

error measurements and also improve upon ω = 0. Specifically, the results suggest that, for

instance, region 1 borrows statistical information from region 2. Figure 4.3.4 then shows that

our approach recovers the smooth functions λ1 through λ5 well. Further, the extrapolated

functions in Column 3 of Figure 4.3.4 show that our approach allows for effective borrowing

of statistical information. For instance, we borrow from region 2 to extrapolate the functions

λ1, λ3, λ4 and λ5 which mimic the functional shape of λ̂2 in the extrapolated areas.

4.4 Case Study

We consider the insurance and weather data used by Haug et al. (2011) and Scheel et al.

(2013). The data provide the daily number of insurance claims caused by precipitation, surface

water, snow melt, undermined drainage, sewage back-flow or blocked pipes for all 430 Norwegian

municipality from 1997 to 2006. Further, the average number of policies held per month and

multiple daily weather metrics are recorded municipality-wise. Here, we explore the effect of the

amount of precipitation on the current, t, and previous, t−1, day on the daily number of claims.

Scheel et al. (2013) found these to be the most informative explanatory variables. Intuitively, the

assumption that the average claim risk per property increases with the amount of precipitation

appears reasonable and, hence, motivates the application of our BSMMR methodology. Analysis

is performed for a contiguous set of K = 11 municipalities around the Oslofjord (Figure 4.4.1).

The notation and modelling framework is formalized in the following.

Let Nk,t and Ak,t denote the number of claims and policies, respectively, on day t for mu-

nicipality k. Further, Rk,t and Rk,t−1 refer to the amount of precipitation on day t and t − 1,

respectively, for municipality k. We then model Nk,t via a Binomial distribution with the claim

probability on day t for municipality k, pk,t, on the logit scale being given as λk (Rk,t, Rk,t−1).

Since exploratory data analysis indicates that differences exist in the average claim rate per pol-
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Figure 4.4.1: Map of the 11 municipalities considered in Section 4.4.

icy holder across the 11 municipalities, we apply the decomposition described in Section 4.2.4

and define λk (Rk,t, Rk,t−1) := µk + λ̃k (Rk,t, Rk,t−1). Formally, the claim model is then given by

Nk,t ∼ Binomial (Ak,t, pk,t)

logit (pk,t) = µk + λ̃k (Rk,t, Rk,t−1) .

(4.4.1)

As presented in Section 4.3.2, an ICAR prior is defined for the intercepts µ1, . . . , µ11.

To assess the predictive performance, observations for 2001 and 2003 are stored as test data

and the monotonic functions and intercepts are estimated based on the remaining 8 years. In

addition to our BSMMR approach, we consider two competing models:

1. The number of claims on each day is simply predicted as the average over the training

data set: Nk,t.

2. A spatially varying coefficient (SVC) model (Assunção, 2003) which defines pk,t on the

logit scale as a linear combination of Rk,t and Rk,t−1. Separate ICAR priors are defined

for the intercepts and the two covariate effects.

BSMMR is applied with prior parameters p = −1, q = 1, η = η̂ and dk,k′ = 1 if municipalities

k and k′ share a border and 0, otherwise. The selection p = −1 is motivated by the high

occurrence of days with little or no precipitation. More specifically, relatively more data points

are available to model the lower functional levels (lower rainfall) compared to the number of

days with high amount of precipitation. The functional level boundaries are set to δmin = 0 and
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Table 4.4.1: Sum of squared prediction errors of the daily number of claims for the years 2001 and 2003
based on the model fitted with explanatory variables Rk,t and Rk,t−1 for the remaining 8
years between 1997 and 2006. For each municipality, the model performing best is in bold
type face.

Municipality ω = ωopt ω = 0 Nk,t SVC

Ås 14.0 14.0 13.9 14.3
Asker 360.8 361.4 372.5 331.0
Bærum 296.0 318.2 915.1 679.3
Frogn 8.2 8.2 8.5 12.3
Hurum 17.4 17.5 17.7 17.1
Nesodden 20.6 20.9 20.5 20.2
Oppeg̊ard 31.6 33.9 26.2 27.6
Oslo 445.8 444.0 412.2 452.3
Røyken 57.6 57.5 63.5 53.3
Ski 39.0 39.0 38.2 38.8
Vestby 18.6 18.6 18.5 18.9

Σ 1309.6 1333.2 1906.8 1665.1

δmax = 10, and Wk,k′ in (4.2.4) is defined as Wk,k′ := X̃k ∪ X̃k′ , where X̃k refers to the square

spanned by the observed minima and maxima of Rk,t and Rk,t−1 for municipality k. Due to

positive skew, the transformed variables
√
Rk,t and

√
Rk,t−1 are considered. Alternatively, one

may transform the data using the empirical distribution function, resulting in a modelling of

Nk,t in dependence on the precipitation-quantiles. After deriving the posterior mean estimate η̂

and the prior parameter ωopt, λ1, . . . , λ11 are estimated by performing 1,000,000 iteration steps

of the MCMC algorithm and storing every 500th sample after a burn-in period of 200,000. The

SVC model is fitted with the two covariate effects by performing 10,000 iteration steps with a

burn-in of 1,000.

Table 4.4.1 shows that BSMMR performs the best in terms of the overall predictive error Σ;

reducing it to Σ = 1309.6, compared to Σ = 1333.2 for the setting ω = 0 and Σ = 1665.1 for the

fitted SVC model. Slight improvements are achieved by accounting for spatial structure in the

regression functions. The small scale of improvement from ω = 0 to ω = ωopt can be explained

by the high number of training data points (≈ 3000) for each municipality. Hence, important

structures in the regression surface are likely to be captured without borrowing statistical in-

formation from adjacent municipalities. Posterior mean plots for the municipalities of Oslo and

Hurum are provided in Appendix C.6. For confidentiality reasons, no information is given on

the estimated functional levels.

The largest improvement is achieved for Bærum, the municipality which observes the highest
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daily count over the test period. Hence, the results indicate that BSMMR is better at predicting

higher claim number than the competing models. A possible explanation may be the existence

of a threshold effect which induces an elevated claim risk if precipitation levels exceed a certain

level. The high frequency of days with low precipitation levels then effects the linear model fit

for higher precipitation levels stronger than it does for our more flexible approach.

The results for the other 10 municipalities are similar for the different models which relates

to there being zero high-claim days observed over the test period. This occurrence of zero high-

claim days can be further seen in the results; the predictive squared error obtained for model 1

is low for most municipalities. BSMMR performs slightly worse than the SVC model (model 2)

for Asker due to one day with a high claim number Nk,t that is not captured well as days with

similar precipitation in the training data observe no daily count Nk,t of this magnitude.

4.5 Discussion

We developed new non-parametric Bayesian methodology for modelling and estimation of a

spatially varying regression function under the assumptions of monotonicity and boundedness.

To impose a spatial structure on the monotonic functions, we constructed a flexible pair-wise

discrepancy measure which allows the degree of dependence to vary with the functional levels

via a tuning parameter p. We further postulated the functions to be step functions and which

are represented via marked point processes. The conclusive joint prior was then defined on the

marked point processes and incorporated the pair-wise defined dependence model. A RJMCMC

scheme was formulated to sample from the posterior distribution. As the normalizing constant

of the prior was intractable, we developed the EGO-CV algorithm, combining the concepts of

cross-validation and Bayesian global optimization, to derive a robust value for the smoothing

parameter ω.

We applied our methodology to several simulated data sets to illustrate its benefits. The re-

sults show that BSMMR can recover both smooth and discontinuous surfaces and that statistical

information is shared effectively. In particular, our methodology substantially improved upon

existing approaches if the functional shapes were similar. These conclusions were irrespective

of the functional shapes and the distribution of the explanatory variables. We also considered

a pair of monotonic functions with very different functional forms in order to illustrate the ro-

bustness of our EGO-CV approach. In this chapter, we further demonstrated that the BSMMR
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methodology allows for extrapolation and variable selection. Finally, we applied our methodol-

ogy to explore the association between precipitation levels and water-related insurance claims.

Again, our approach performed better than its competitors.

From a general perspective, BSMMR provides a useful modelling approach which allows for

both smooth and discontinuous functional forms and which may not be captured if a linear

or additive form is assumed. Also, the approach can be applied generally for network and

dependence models and is not limited to a spatial context. Our simulations further provide

some practical guidance for selecting the parameters p, q and η. A reliable η can be derived

from an initial MCMC algorithm with ω = 0; a setting for which posterior realizations of η can

be sampled via an additional Gibbs sampling step. To select p and q, the function estimates

obtained from the MCMC algorithm used to tune η may indicate functional differences and,

hence, allow, for instance, to infer on the choice of p < 1, p = 1 or p > 1.

This chapter considered spatial variation in the regression function, per se, but the method-

ology can be extended to a spatio-temporal context. Assume that the effect of the explanatory

variables is temporally stationary but that the baseline level changes between observations. The

monotonic regression function λk,t at time t for region k could then be defined as

λk,t (x) = αk,t + λ̃k (x) , (4.5.1)

where λ̃k is estimated as proposed in this chapter. To impose temporal structure, for instance,

an ICAR prior could be set on (αk,t−1, αk,t). The modelling framework is also expandable to

a spatio-temporal setting for which the regional regression functions change at specified time

points. Temporal structure is then imposed analogously to the spatial structure using time-

adjacency.

An aspect not discussed here is the selection of the number of subprocesses. Since we only

considered m = 2 explanatory variables, the number of subprocesses was I = 3. In higher

dimensions, however, one may want to restrict I. Assume there exists prior knowledge on a

continuous explanatory variable xk,j , j = 1, . . . ,m, being informative and let Xk = [0, 1]m.

Then the marked point processes which the jth entry of ξk,i,j being 0 might be ignored.

Our methodology is well-suited for lower-dimensional regression problems, and we find

BSMMR to perform best for models with two to five explanatory variables. However, as for

many other flexible approaches, e.g. generalize additive models, some issues arise for higher
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dimensions. Firstly, the computational cost for calculating the prior density scales exponen-

tially with the number of explanatory variables. Secondly, the monotonic constraint becomes

less restrictive with increasing dimensions, leading to a potential overfit of the data. As, for

instance, discussed by Bergersen et al. (2014), larger sets of explanatory variables can be ac-

commodated by imposing an additive or semi-parametric structure on the regression function.

The lower-dimensional monotonic functions could then be estimated in-turn. In conclusion, our

methodology can be applied for higher dimensional regression problems, but we would recom-

mend a pre-analysis in order to reduce the computational time substantially.

Computationally, BSMMR is quite demanding, depending on the neighbourhood structure

and the number of both explanatory variables and data points. Since proposals change the

regression surface only locally, the computational time for computing the prior ratio is reduced

by firstly deriving the area affected by the proposal and then evaluating Dp,q over it. However,

further splits into smaller areas are usually required as the functions associated to the adjacent

regions are likely to be non-constant over this area. To reduce the computational time, in

particular for the EGO-CV algorithm, parallelization techniques could be used which allocate

the folds to multiple processors. The C++ implementation and R files for Section 4.3 are available

from www.lancaster.ac.uk/pg/rohrbeck/BSMMR.

Our work can be extended in several ways. From a theoretical perspective, interest may lie

in the construction of a different discrepancy measure, for instance, one based on the Kullback-

Leibler divergence. Further, one may want to derive p and q directly from the functional esti-

mates for ω = 0, rather than selecting these manually. The estimation would then be a three-step

process which first estimates the parameters p, q and η based on the setting ω = 0, followed

by theEGO-CV algorithm to infer on ω and, finally, the conclusive RJMCMC algorithm. An

aspect we have not considered yet is the selection of the number of folds s which we arbitrarily

fixed to s = 10. As the value for ω also depends on the number of data points, a larger number

of folds may return a more robust estimate. The additional computational time may be handled

by parallelized computing techniques.



Chapter 5

Modelling Functional Dependence in

an Isotonic Regression Framework

5.1 Introduction

The association of a response Y and a set of predictors X1, . . . , Xm is of interest in several

applications. Often it can be assumed that the mean of Y is non-decreasing with increases

in Xi, i = 1, . . . ,m. This is typically the case, for instance, for dose-response relationships.

Analysis under this constraint is termed isotonic, or monotonic, regression and is considered

in several statistical areas, including optimization (Ayer et al., 1955; Maxwell and Muckstadt,

1985; Luss and Rosset, 2014), generalized additive modelling (Bacchetti, 1989; Leitenstorfer

and Tutz, 2007; Bergersen et al., 2014) and Bayesian non-parametrics (Gelfand and Kuo, 1991;

Dunson, 2005; Saarela and Arjas, 2011). In this chapter, the optimization-based approaches are

considered in particular.

Consider a set of observed responses and predictors {(yi,xi) ∈ R× Rm : i = 1, . . . , n} and

let � define a partial order on Rm, e.g. the Euclidian order. Barlow and Brunk (1972) consider

Gaussian distributed responses and derive estimates ŷ1, . . . , ŷn ∈ R at x1, . . . ,xn via the solution

of an optimization problem of the form

min
ŷ1,...,ŷn

n∑
i=1

wi |yi − ŷi|2 , (5.1.1)

subject to the constraint ŷi ≤ ŷj when xi � xj , ∀i, j = 1, . . . , n and where wi ≥ 0 are fixed

constants which impose a weighting of the observations. Note, the optimization problem (5.1.1)

102
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is not limited to Gaussian data and can, for instance, also be applied to Binomial or Poisson

data. Several algorithms to solve this optimization problem exist, for instance, the pool adjacent

violators algorithm (PAVA) (Ayer et al., 1955), for the case m = 1, or isotonic recursive parti-

tioning (Luss et al., 2012). To predict the response at a point z ∈ Rm, a monotonic function

λ̂ : Rm → R can be derived based on the solution ŷ1, . . . , ŷn ∈ R via interpolation. For instance,

by defining

λ̂ (z) = max
i=1,...,n

{ŷi : xi � z} , (5.1.2)

for which the resulting monotonic function λ̂ is piecewise constant with λ̂(xi) = ŷi, i = 1, . . . , n.

An extended modelling framework is developed here, where data are observed for a fixed

number of subgroups rather than for a single group. The association between response and

predictor is assumed to be monotonic but potentially varying across subgroups. Such scenarios

have generic relevance, for instance, in medical applications; patients may exhibit individually

varying dose-response curves and hence be classified into different subgroups based on an ob-

jective criterion. Another application area concerns spatial (Cressie, 1993) and spatio-temporal

(Cressie and Wikle, 2015) lattice data, where the association between response and predictors

may vary either temporally or spatially. Statistical methods considering spatio-temporal data

generally aim to improve estimates by borrowing statistical information from subgroups (areal

units or geographical subregions) which exhibit a similar functional structure. In this spirit,

certain similarities between subgroups may exist and interest lies in exploiting these in order

to estimate the underlying monotonic relationships between response and predictors for the

different subgroups.

While some methodology exists to model a spatial variation in the dependence between

response and predictors (Fotheringham et al., 2002; Assunção, 2003; Scheel et al., 2013), little

research has been done in the context of isotonic regression. Chapter 4 introduced a Bayesian

approach, termed Bayesian spatial monotonic multiple regression (BSMMR), which defines a

dependence structure on the functional levels via a prior distribution. However, BSMMR is

computationally expensive and requires multiple iterations of a reversible jump Markov Chain

Monte Carlo algorithm. This chapter introduces a computationally more efficient approach

which is motivated by the optimization problem in (5.1.1). This increased efficiency comes at

the cost of reduced flexibility, in particular, functions are estimated at the observed data points

only and then derived via interpolation, for instance, as in expression (5.1.2).
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The remainder of this chapter is organized as follows: Section 5.2 details the modelling

framework which consists of a general optimization problem, the optimization algorithm and an

approach to estimate the pair-wise similarity between subgroups at each observed data point.

Performance of the method is then assessed for simulated Gaussian data in Section 5.3. The

chapter concludes with a summary and discussion in Section 5.4.

5.2 Methodology

5.2.1 The Optimization Problem

Consider a fixed number of K subgroups and let Yk ∈ R and Xk = (Xk,1, . . . , Xk,m) ∈ Rm

denote the response and predictor for subgroup k = 1, . . . ,K, respectively. Further, let the

association between Yk and Xk, k = 1, . . . ,K be defined via an unknown monotonic function

λk : Rm → R, for instance, E (Yk) = λk (Xk). Without loss of generality, assume that λk is

monotonic increasing with respect to a partial order �, that is,

u � v ⇒ λk(u) ≤ λk(v), u,v ∈ Rm. (5.2.1)

Interest lies in estimating the K monotonic functions λ1, . . . , λK based on the collection of K

data sets, D1, . . . ,DK , where Dk = {(yk,i,xk,i) ∈ R× Rm : i = 1, . . . , nk} , k = 1, . . . ,K. Note,

the number of data points, nk, is potentially varying between subgroups.

If λ1, . . . , λK are assumed to be independent, each function λk can be estimated separately

at xk,1, . . . ,xnk by solving the optimization problem in (5.1.1) with respect to the data set

Dk. However, λ1, . . . , λK may exhibit pair-wise similarities in their functional shapes. Hence,

observations in one subgroup, k, may increase the efficiency when estimating another monotonic

function λk′ , k
′ 6= k. The idea is to extend the optimization problem (5.1.1) such that statistical

information may be shared between subgroups. For notational simplicity, the case K = 2 is

considered first and later generalized.

Assume that λ1 and λ2 are similar with respect to their functional levels and, hence, λ1(xk,i)

and λ2(xk,i), i = 1, . . . , nk, k = 1, 2, are close. In this case, the estimates for λ2 at x2,i i =

1, . . . , n2, provide additional statistical information to estimate λ1. Similarly, the values of λ1

at the data points in D1 are useful to estimate λ2. Consequently, λ1 and λ2 can be estimated

over the combined set of covariate observations, E = {x1,i : i = 1, . . . , n1}∪{x2,i : i = 1, . . . , n2},
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rather than separately over D1 and D2, respectively. This approach is consistent with the

monotonic regression framework in (5.1.1) which estimates the function locally at the observed

data points only.

The arguments above motivate the estimation of λ1 based upon the data D1 and λ2, and

vice versa for λ2. Hence, an optimization problem is defined, based upon (5.1.1), which mediates

between the observed data and the expected similarity of λ1 and λ2. To incorporate belief in

the similarity of λ1 and λ2, a discrepancy measure is introduced which penalizes differences in

the functional levels at each point x ∈ E . Similarly to (5.1.1), the squared difference may be

considered. Let, further, {w̃k,i} , i = 1, . . . , nk, k = 1, 2 denote non-negative weights which

represent the similarity of λ1 and λ2 at xk,i; the estimation of such weights is considered later

in Section 5.2.2. If the discrepancy measure for the functional levels is defined as the squared

difference, the optimization problem results in

min
λ̂1, λ̂2

n1∑
i=1

{
w1,i

[
y1,i − λ̂1 (x1,i)

]2
+ w̃1,i

[
λ̂1 (x1,i)− λ̂2 (x1,i)

]2
}

+

n2∑
i=1

{
w2,i

[
y2,i − λ̂2 (x2,i)

]2
+ w̃2,i

[
λ̂1 (x2,i)− λ̂2 (x2,i)

]2
}
,

(5.2.2)

where λ̂1 and λ̂2 are estimated over E and satisfy the monotonicity constraint in (5.2.1). The

constants {wk,i} ≥ 0 are prespecified as in (5.1.1). To ensure uniqueness of the solution λ̂1,

one may restrict its estimation to the set of points with positive weight only. Furthermore,

the solution is unique under this restriction since the objective function is a sum of strictly

convex functions and the set of potential solutions is convex too. In principle, the estimates

obtained via (5.2.2) are weighted averages over the monotonic functions obtained by applying

the optimization problem in (5.1.1) separately to each data set.

To extend the optimization problem (5.2.2) toK subgroups, the union of theK covariate sets,

E =
⋃K
k=1 {xk,i : i = 1, . . . , nk}, is considered. Furthermore, the approach is extended to a more

general class of discrepancy measures than the squared distance, in particular, non-negative,

strictly convex, differentiable loss functions. This class of functions contains, for instance, the

negative Poisson log-likelihood or the negative-Bernoulli log-likelihood. Let Φk,i denote the loss

function for yk,i and the fitted functional level λ̂k (xk,i) while Φ̃k,k′,i refers to the discrepancy

measure between λ̂k and λ̂k′ at xk,i. Again, knowledge on the similarity of the functions is
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expressed via a set of weights
{
w̃k,k′,i

}
. The general optimization problem is then of the form

min
λ̂1,...,λ̂K

K∑
k=1

nk∑
i=1

wk,iΦk,i

[
yk,i, λ̂k (xk,i)

]
+

∑
k′ 6=k

w̃k,k′,iΦ̃k,k′,i

[
λ̂k (xk,i) , λ̂k′ (xk,i)

] , (5.2.3)

subject to λ̂1, . . . , λ̂K satisfying the monotonicity constraint in (5.2.1). Since the loss functions

are strictly convex and differentiable, the objective function in (5.2.3) is convex too. Similarly

to the optimization problem (5.2.2), the set of feasible solution for 5.2.3 is also convex. Con-

sequently, the optimization problem is convex and has an unique solution. In applications, a

constant loss function Φ̃k,k′,i = Φ̃ would be considered instead of specifying a different one for

each data point. Such a scenario is applied in Section 5.3.

5.2.2 Deriving the Optimal Solution

Since the optimization problem is convex, any local minimum found via a solution algorithm is

guaranteed to be the global optimum. Therefore, a sensitivity analysis with respect to the initial

setting is unnecessary. To solve the optimization problem (5.2.3), a cyclic algorithm is applied

which is motivated by Bacchetti (1989) who considers the estimation of a generalized additive

model, Hastie and Tibshirani (1990), under the monotonic constraint in expression (5.2.1).

Specifically, the functions λ̂1 to λ̂K are optimized in-turn while keeping the others fixed. Hence,

each optimization step corresponds to the estimation of a single isotonic function and existing

isotonic regression solution algorithms can be used. If λ1, . . . , λK are univariate, the PAVA

can be applied and this is done in Section 5.3. In case the isotonic functions are multivariate,

optimization can be performed, for instance, via a minimum lower set algorithm (Brunk, 1955)

or generalized isotonic recursive partitioning (Luss and Rosset, 2014). The cyclic optimization

procedure stops if none of the current estimates λ̂1, . . . , λ̂K changes and this corresponds to the

objective function being minimal. Note, if all constants w̃k,k′,i = 0, the algorithm is guaranteed to

converge after one iteration as the functions are estimated independently based on the respective

data sets.

To conclude the modelling framework, the constants w̃k,k′,i in (5.2.3) have to be specified.

Since there usually exists little knowledge on the functional similarity between functions in

applications, an approach to estimate these is proposed in the following. Initially, set w̃k,k′,i = 0

which implies that all functions are independent and they can thus be estimated separately

by an existing solution algorithm for monotonic regression problems. Let λ̂0
1 to λ̂0

K denote the
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solutions obtained by such an algorihtm for the subgroups 1 to K, respectively. Consider the

point xk,i at which λ̂0
k has been estimated and consider a different function λ̂0

k′ . Based upon an

interpolation such as (5.1.2), the functional level λ̂0
k′(xk,i) can be derived. If λ̂0

k′ (xk,i) is close to

λ̂0
k(xk,i), the weight w̃k,k′,i should be positive since estimates indicate similarity in the functional

levels. Conversely, w̃k,k′,i = 0 if the difference is too large.

The approach described above for a single point is applied to all points xk,i ∈ E . One

possibility is to define w̃k,k′,i to decay linearly with an increasing distance between λ̂0
k (xk,i) and

λ̂0
k′ (xk,i). This approach formally results in

w̃k,k′,i =


1−

∣∣∣λ̂0
k(xk,i)− λ̂0

k′(xk,i)
∣∣∣

ε
if
∣∣∣λ̂0
k(xk,i)− λ̂0

k′(xk,i)
∣∣∣ ≤ ε

0 if
∣∣∣λ̂0
k(xk,i)− λ̂0

k′(xk,i)
∣∣∣ > ε,

(5.2.4)

where ε > 0 is a fixed constant. Other settings are possible, for instance, quadratic or logarithmic

decay. The choice of an upper bound of 1 for w̃k,k′,i in expression (5.2.4) is not compulsory.

However, if wk,i is bounded between 0 and 1, then a value of w̃k,k′,i = 1 corresponds to λ̂k′ (xk,i)

being considered as an additional observation with maximum possible weight to estimate λ̂k.

Performance of the weights derived by (5.2.4) depends on the selection of ε. If ε is too large,

strong similarity is assumed between functions which may actually be quite different. Conversely,

only little statistical information is used from other data sets if ε is too small. Sensitivity with

respect to ε is considered in Section 5.3.

5.3 Simulation Study

The methodology detailed in Section 5.2 is applied to simulated Gaussian data in order to

examine its performance. Interest lies in the overall improvement, the sensitivity of the results

with respect to ε in expression (5.2.4) and the computational cost. The underlying regression

functions λ1, . . . , λK are univariate and the distribution of the response Yk, conditional on the

predictor Xk, is formally given as

Yk ∼ Normal
(
λk (Xk) , σ

2
k

)
. (5.3.1)

The loss functions Φk,i and Φ̃k,k′,i in the optimization problem (5.2.3) are defined as the

squared distance, that is, Φ(u, v) = Φ̃(u, v) = (u − v)2. Further, the weights {wk,i} in (5.2.3)
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are set equal to 1 for all observations. Since λk is univariate, the PAVA can be applied in

the described cyclic optimization routine in Section 5.2. Here, the R package isotone is used

to obtain the individual updates of the monotonic functions. The functional levels λ̂k′ (xk,i)

in (5.2.4) are obtained via linear interpolation. Let xl = max{xk′,i : xk′,i ≤ xk,i} and xu =

min{xk′,i : xk′,i ≥ xk,i}. The functional level of λ̂k′ at z is then defined as

λ̂k′ (z) = λ̂k′(xl) +
λ̂k′(xu)− λ̂k′(xl)

xu − xl
(z − xl) . (5.3.2)

If no point xl exists, λ̂k′ is set to the smallest estimated functional level and, conversely, to the

highest estimated level if no xu exists. As discussed in Section 5.2, the function λk, k = 1, . . . ,K

is only estimated over the covariate values in Dk and the set of points for which w̃k′,k,i, k
′ 6= k,

is positive in order to ensure uniqueness of the solution. This set depends on the value of ε and

is denoted by Ek in the following

To assess the proposed approach, estimates of λk are also obtained classically by applying

an optimization routine, the PAVA in this case, to the observations in Dk, k = 1, . . . ,K. Results

are compared with respect to the average bias over the set of points on which λk is estimated,

that is, Ek for the new method and {xk,i : i = 1, . . . , nk} otherwise. Let λ̂k and λ̂0
k denote the

estimated functions obtained via the new and an existing algorithm, respectively. The model fit

for λ̂k and λ̂0
k is then compared based on the ratio

C
(
λ̂k, λ̂

0
k

)
=

∑nk
i=1

∣∣∣λk (xk,i)− λ̂0
k (xk,i)

∣∣∣∑
x∈Ek

∣∣∣λk (x)− λ̂k (x)
∣∣∣ , (5.3.3)

where a value of C
(
λ̂k, λ̂

0
k

)
greater than 1 corresponds to the new method performing better.

In the first simulation study, a collection of K = 2 subgroups is considered. The number of

data points in D1 and D2 is set to 200 and 50, respectively. Covariate values for both sets are

simulated uniformly from the interval 0 to 3 and the standard deviation in expression (5.3.1)

is set to σ1 = σ2 = 1. Row 1 in Figure 5.3.1 illustrates the underlying monotonic regression

functions and the sampled data points. Functional levels of λ1 and λ2 are similar up to the

occurrence of a discontinuity for λ2 which leads to quite different upper levels.

The algorithm is performed for a range of values and the ratio in (5.3.3) is derived for both

data sets (Figure 5.3.2). The plots indicate that there exists values of ε for which the model

fit is improved for both functions. Row 2 in Figure 5.3.1 provided the estimated functions λ̂1
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Figure 5.3.1: Simulated data points and underlying regression functions ( ) used in Study 1 (Row

1). Row 2 illustrates the true underlying function λk ( ), the estimate λ̂k obtained

by the proposed algorithm ( ) and the PAVA estimate λ̂0
k ( ).

and λ̂2 for ε = 0.55 which provided the highest combined value C
(
λ̂1, λ̂

0
1

)
+ C

(
λ̂2, λ̂

0
2

)
. The

plots illustrate that the proposed method leads to a better fit at the lower functional levels,

as compared to the PAVA estimates. However, Figure 5.3.2 shows sensitivity with respect to ε

since a worse model fit is obtained for small and very high values of ε. The latter is due to all

points being considered informative and, thus, the difference in the upper levels leads to a poor

fit. For small ε, the behaviour may be caused by a few points which are potentially not beneficial

for estimating the true underlying regression function or possibly due to the points in the set Ek

which depend on ε. Additionally, with respect to ε, the data set with less observations is more

sensitive as the ratio of data points in D2 to points from λ̂1 is higher. It is further found that the

number of iterations until convergence increases in ε. While the algorithm converges in about

30 iteration steps for small ε, 250 iteration steps are required for ε = 2.0. Nevertheless, the

computational time is very small and the algorithm took less than 1 second for each considered

value of ε.

In the second simulation study, a setting with K = 5 subgroups is considered. The distribu-

tion of the predictor Xk as well as the standard deviation in (5.3.1) varies across the subgroups

but is otherwise constant. Table 5.3.1 summarizes the values for σk and the distribution Gk
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Figure 5.3.2: Dependence between the parameter ε in (5.2.4) and the ratio in (5.3.3) for Study 1 for

( ) λ̂1 and ( ) λ̂2

Table 5.3.1: Setup for Study 2 with a set of K = 5 subgroups and Gaussian distributed data.

Subgroup 1 2 3 4 5

Gk Gamma(1.1,1) Gamma(3,2) Uniform(0,5) Exp(0.8) Weibull(2,2)
σk 0.4 0.3 0.3 0.3 0.3
nk 300 200 100 50 25

of Xk. As in Study 1, a different number of data points is sampled for each subgroup. In

particular, nk for ∆1 through ∆5 is set to 300, 200, 100, 50 and 25, respectively. Column 1 in

Figure 5.3.3 illustrates the true underlying monotonic functions and the sampled data points.

The plots illustrate that λ1, λ3 and λ4 exhibit a similar functional shape which is different from

λ2 and λ5 with respect to the upper functional levels. Furthermore, all five functions exhibit a

similar discontinuity around x = 1.2.

Again, a range of values is considered for the fixed constant ε in expression (5.2.4). Similarly

to Study 1, there exists a range of values which lead to an improvement in the overall model

fit. The selected value of ε leads to good improvements with respect to the estimates for λ2, λ4

and λ5. On the other hand, very small improvements are obtained for λ1 and λ3 as the ratio is

1.01 for both. As for Study 1, the number of iterations until convergence increases with ε and

the algorithm requires about 700 iteration steps for ε = 1.0. Column 2 in Figure 5.3.3 shows

the estimates of the monotonic functions obtained for the optimal ε and indicates that the true

underlying regression function is fitted well. The plots further show that the proposed method

also allow for extrapolation of the functions. In terms of the computational time, the algorithm



CHAPTER 5. DEPENDENCE IN ISOTONIC REGRESSION FRAMEWORK 111

Observations Estimates

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●
●

● ●
●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

● ●

●

●

●

●
●

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 1
(x

)

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 1
(x

)

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

● ●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●
●●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 2
(x

)

0 1 2 3 4 5
0

1
2

3
4

5
6

x

λ 2
(x

)

●

●

●

●

●
●

●

●
●

●

●

●

● ●●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●
● ●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 3
(x

)

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 3
(x

)

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 4
(x

)

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 4
(x

)

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 5
(x

)

0 1 2 3 4 5

0
1

2
3

4
5

6

x

λ 5
(x

)

Figure 5.3.3: Simulated data points and underlying regression functions ( ) used in Study 1 (Col-

umn 1). Column 2 illustrates the true underlying function λk ( ), the estimate λ̂k

obtained by the proposed algorithm ( ) and the PAVA estimate λ̂0
k ( ).
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takes about 4-5 seconds per considered value of ε.

5.4 Discussion

This chapter introduced an alternative, optimization-based approach to the computationally

expensive BSMMR methodology in Chapter 4. Similarly to BSMMR, the proposed algorithm

considers a fixed number of subgroups and allows for sharing of statistical information between

subgroups to improve the estimates. The methodology extends the classical isotonic regression

problem by introducing additional compounds to penalize differences in the functional levels.

Since the optimization problem is convex, its solution can be computed via a cyclic routine

which updates each function while keeping the remaining ones fixed. Estimates are derived at

the observed covariate values and the monotonic functions are then obtained via interpolation.

This approach is less flexible than BSMMR and depends on the interpolation approach. To avoid

a poor model fit, an approach to estimate weights based upon an initial isotonic regression fit

is considered and requires the specification of one parameter. The algorithm has been applied

to simulated Gaussian data and results show an improvement in the overall model fit of the

monotonic functions. Further, some sensitivity is found with respect to the specified parameter.

The research done in this chapter can be extended in several ways and some aspects will

be considered in future work. Here, only univariate functions are considered in the simulation

study. However, the methodology is much more general and interest may lie to examine its

performance for higher dimensions: isotonic recursive partitioning (Luss et al., 2012) or its

generalization (Luss and Rosset, 2014) may then be used instead of the restrictive PAVA. Further,

the specification of ε remains an open problem and has to be considered in future research. Some

information may potentially be derived based on the variance of the residuals obtained for the

initial estimates or via cross-validation. While the comparison to the BSMMR approach has only

been done in terms of the computational cost, a more thorough analysis has to be performed

which also compares the model fit. Finally, the algorithm has to be applied to the Norwegian

insurance and weather data to assess its predictive performance.



Chapter 6

Extreme Value Modelling of

Insurance Claims

6.1 Introduction

Since large parts of society and the economy are weather-sensitive, insurances against undesirable

weather events have become an important economical factor. Mills (2005) state that the payout

by insurance companies for weather related disasters in developing countries is three times higher

than the international aid. In order to set premiums correctly, the insurance companies require

accurate models. Thus, it is necessary to understand which weather events are responsible for

damages. While natural disasters such as Hurricane Katrina, which caused damages of over

$100 billion in 2005 (Knabb et al., 2005), lead to large monetary losses, the majority of insured

losses are related to small scale weather events (Mills, 2005; Botzen and Van Den Bergh, 2008).

Damages caused by precipitation are, for instance, studied by Schuster et al. (2006) and Kubilay

et al. (2013). In this chapter, interest lies in the impact of small-scale weather events, e.g. heavy

rain or snow-melt, and we aim to explain which weather events induce a high claim risk and to

predict the number of claims related to those events. This approach is also important in the

context of the current climate change which will affect both society and economy (Sanders and

Phillipson, 2003; Jenkins et al., 2008; Botzen and van den Bergh, 2012).

We consider the insurance and weather data analyzed by Haug et al. (2011) and Scheel et al.

(2013). The insurance data provide the daily number of claims caused by either precipitation,

surface water, snow melt, undermined drainage, sewage back-flow or blocked pipes for all Nor-

wegian municipalities between 1997 and 2006. Let Nk,t denote the number of claims on day t

113
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Table 6.1.1: Weather covariates provided by the Norwegian Meteorological Institute and the Norwegian
Water Resources and Energy Directorate.

Variable Description Unit

Rk,t Total amount of precipitation in day t mm
(Between 6am on day t to 6am on day t+ 1)

Ck,t Mean temperature in day t ◦C

Dk,t Drainage run-off in day t mm

Sk,t Snow-water equivalent in day t mm
(Amount of water in form of snow)

for municipality k. Table 6.1.1 shows the set of meteorological and hydrological covariates Xk,t

which are either empirical or model generated with a single value for each covariate representing

day t and municipality k; see Section 1.3, Haug et al. (2011) and Scheel et al. (2013) for details.

The weather data are derived by spatial interpolation, weighted proportionally to the population

density within the municipality. Norway’s climate varies due to the country’s large geographical

extent and the input of the Gulf Stream, inducing differences in the distribution of the weather

observations. Comparison across municipalities shows, for instance, that western coastal areas

observe relatively mild temperatures and large amounts of rainfall while central (inland) areas

such as Oslo are drier and have more of a continental climate. These differences are likely to

lead to a spatial variation of the claim dynamics and have to be accounted for in the modelling

framework.

Scheel et al. (2013) propose a Bayesian Poisson hurdle (BPH) model for the dependence of

Nk,t on Xk,t, since the high frequency of zero claims, Nk,t = 0, limits the applicability of a

Poisson or Binomial distribution for Nk,t. Further, mechanisms leading to any claim in a region

may be different from mechanisms for the number of claims given damage occurred. They also

derive additional simple covariates from Xk,t. Formally, their probability model is then given

by

P (Nk,t = n | Xk,t) =


αk,t if n = 0

(1− αk,t)
λnk,t

n! [exp(λk,t)− 1]
if n > 0,

(6.1.1)

where both λk,t > 0 and αk,t ∈ [0, 1] depend on Xk,t and the latter also depends on the number

of policies. According to distribution (6.1.1), αk,t corresponds to the frequency of zero claims

while λk,t is the rate of a zero-truncated Poisson distribution for the number of claims, given at

least one claim is reported. The parameters λk,t and αk,t are separately modelled since they are
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Figure 6.1.1: Observed covariate values for Rk,t and Rk,t−1 for the original data by Scheel et al. (2013)
for Oslo (left panel) and Bergen (right panel). Days with the number of claims exceeding
3, Nk,t > 3, are highlighted.

conditionally independent, given the data; see Scheel et al. (2013) for details.

Scheel et al. (2013) assess the predictive performance of the BPH model on a weekly basis

and the results are generally positive. Table 2 in Scheel et al. (2013) (Table 1.4.1 in Section

1.4) indicates, however, that the model substantially underperforms in weeks with high numbers

of claims and underpredicts the impact of high precipitation levels, especially for Oslo. In

conclusion, the distribution (6.1.1) is limited in its ability to model high numbers of claims,

which is the most important feature of the model.

Figure 6.1.1 provides some insight into the causes of the lack of model fit for the BPH model.

The plots illustrate the dependence between claims on day t and the amount of precipitation

on the claim day t and the previous day t − 1 for two of the municipalities. Firstly, higher

claim numbers are not always associated to high precipitation levels on either day. Some claims

associated with weak rainfall coincide with snow-melt but others cannot be linked to the weather

covariates. The latter may be caused by localized weather events which are not recorded by any

measurement station. Further, blocked pipes or sewage back-flow, which are also contained in

the data, are not necessarily related to the weather on the same day. Ignoring such effects may

influence the estimated model and lead to biased estimation of the covariate effects. Finally,

while claim numbers for Oslo lie between zero and three claims on about 97% of days, much
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higher numbers occur and these are generally related to high precipitation levels, sometimes in

combination with snow-melt. A Poisson distribution is incapable of fitting these extremes while

accounting for the high frequency of lower claims.

This chapter introduces several new methods in order to improve the model fit which have

generic relevance to the modelling of insurance claim data. Interest lies, in particular, in the

days with high numbers of claims. We extend the zero-truncated Poisson component in the BPH

approach using extreme value and mixture models. Extreme value models such as the generalized

Pareto distribution (GPD) are widely applied to estimate the tail of a random variable (Holmes

and Moriarty, 1999; Coles, 2001; Li et al., 2005). Here, a discretized analogue of the GPD

is defined since Nk,t takes non-negative integer values only. Mixture models are considered in

several areas, including finance (Lin et al., 2007) and medicine (Ozenne et al., 2015), and are

also applied for the extreme value modelling in risk analysis (Smith and Goodman, 2000; Bottolo

et al., 2003). Additional to advancing the statistical model, the input data are considered too.

This leads to the derivation of new covariates which exploit temporal and spatial patterns in

the weather covariates. These covariates are based on an exploratory analysis of the data for

Oslo in Figure 6.1.1a. Furthermore, we introduce a temporal clustering algorithm to obtain

periods of consecutive days which are exposed to the same weather event for each municipality.

The distributions of clustered claims, conditional on covariates, over different municipalities are

used to derive the marginal distribution of clustered claims. They also show that claims over

different municipalities appear independent conditionally on the covariates, indicating that our

model has captured the key meteorological factors that explain water-related insurance claims

in Norway. The usefulness of these approaches is validated with respect to the data for the

municipalities of Oslo (Figure 6.1.1a), Bergen (Figure 6.1.1b) and Bærum, and the likelihood of

future extremes is predicted under the assumption of no climate change.

The remainder of this chapter is organized as follows: Section 6.2 details our extensions of

the zero-truncated Poisson distribution and introduces an approach to optimize tail dependency

for additional covariates. Section 6.3 defines the new covariates and introduces the temporal

clustering algorithm. The extended model is then applied to the three Norwegian municipalities

in Sections 6.4 and 6.5 and results are provided. Finally, the chapter concludes with a summary

and discussion in Section 6.6.



CHAPTER 6. EXTREME VALUE MODELLING OF INSURANCE CLAIMS 117

6.2 Extension of the Bayesian Poisson Hurdle Model

This section details our extensions to the zero-truncated Poisson distribution in expression (6.1.1)

to obtain a better model for claim occurrences Nk,t | (Xk,t, Nk,t > 0). For notational simplicity,

the indexes k and t are dropped in the following. Section 6.2.1 introduces a mixture model while

Section 6.2.2 defines an integer-valued GPD and combines it with the zero-truncated Poisson

distribution via an extremal mixture model. Section 6.2.3 details a general methodology to

optimize the tail dependence between a response and a family of predictors which is later applied

in Section 6.3.

6.2.1 Mixture Modelling

Figure 6.1.1, coupled with exploratory analysis, indicates that claim dynamics are mainly driven

by the observed precipitation and snow-melt levels but some claims may also be caused by

additional processes which are not captured via the provided weather data. Information on the

precise cause of damage, e.g. snow-melt or sewage back-flow, may allow the fit of a separate

model for each cause but these are not available.

We propose a two-component mixture distribution with discrete positive-valued random

variables Y and Z for N | (X, N > 0) to accommodate a potentially varying weather-dependence

of these claim types. The first model component Y captures the dependence of N on the

weather covariates X while the second component Z considers the claims which are caused by

unobserved processes. All reported claims on a day are assumed to come from exactly one of

the two components. The distribution function of N | (X, N > 0) is then formally given by

P (N = n | X, N > 0) = p P (Y = n | X) + (1− p) P (Z = n) , n ≥ 1, (6.2.1)

where p denotes the probability of N | (X, N > 0) being distributed according to Y | X. Here,

the component Z is defined as a zero-truncated Poisson distribution with rate parameter κ > 0

P (Z = n) =
κn

n! [exp(κ)− 1]
, n ≥ 1. (6.2.2)

Note, the case p = 0 in distribution (6.2.1) corresponds to the BPH model in (6.1.1) without

covariate structure. The choice of only two components is due to parsimony and the results in

Section 6.4 show that this number is sufficient.
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6.2.2 Extremal Mixture Modelling

Defining the mixture component Y in (6.2.1) as a zero-truncated Poisson distribution leads to a

poor fit of the extreme claim numbers for Oslo and Bergen in Figure 6.1.1. Hence, we extend the

model in order to allow for a more flexible tail behaviour. In particular, the lower claim numbers

are still distributed according to a zero-truncated Poisson model but the highest observations

are fitted using extreme value models. First, a distribution for the extremes of a discrete random

variable is derived without the consideration of covariates. The zero-truncated Poisson model

is then combined with this distribution and covariates are included.

Consider the modelling of Y | Y > u, where u ∈ R is a certain sufficiently high threshold.

The discrete variable Y can be considered as Y = bHc, where H is a continuous random variable.

In an extreme value modelling framework, the distribution of H above threshold u is generally

modelled by a GPD with scale parameter σu and shape parameter ξ (Coles, 2001), a model that

has asymptotic justification as u tends to the upper endpoint of H. For a large enough choice

of u, the distribution of H | H > u is then approximately given by

P (H ≤ h+ u | H > u) = 1−
(

1 +
ξh

σu

)− 1
ξ

+

, h > 0, (6.2.3)

where x+ = max(x, 0), σu > 0 and ξ ∈ R, with the value for ξ = 0 interpreted as the limit as

ξ → 0. We then derive a discretized GPD to model Y | Y > u via a GPD for H above threshold

buc. The probability mass function for Y | Y > u, for n > u, is then formally given by

P (Y = n | Y > u) = P (H ≤ n | H > buc)− P (H ≤ n− 1 | H > buc)

=



[
1 +

ξ(n− 1)

σu

]− 1
ξ

+

−
[
1 +

ξn

σu

]− 1
ξ

+

ξ 6= 0

exp

(
−n− 1

σu

)
− exp

(
− n

σu

)
ξ = 0.

(6.2.4)

In the following, the distribution (6.2.4) is termed an integer-valued Generalized Pareto distribu-

tion, IGPD(σu, ξ, u), above threshold u with scale σu and shape ξ. Interpretation of the shape

parameter ξ is equivalent to that of the GPD: a negative shape parameter ξ < 0 corresponds to

the distribution being short-tailed, with upper bound. Conversely, ξ > 0 indicates a power-law

tail, much heavier than a Poisson distribution.

Prieto et al. (2014) consider a similar formulation to expression (6.2.4) but they do not exam-
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ine its properties with varying threshold, i.e., how the distribution changes as the threshold is in-

creased to v > u. The GPD has the threshold stability, that is, if H − u | H > u ∼ GPD (σu, ξ),

then for any higher threshold v > u, H − v | H > v ∼ GPD (σu + ξ(v − u), ξ). As such, ξ is

constant with increasing threshold while the scale parameter σu is not. An equivalent property

also holds for the defined IGPD. In particular, if Y | Y > u ∼ IGPD(σu, ξ, u), then for v > u

Y | Y > v ∼ IGPD(σu + ξ(bvc − buc), ξ); see Appendix D.1 for the proof. This property is

important since it allows the selection of a threshold u for the IGPD via a threshold stability

plot, the same technique applied for a GPD (Coles, 2001).

Note, the Poisson distribution above a high threshold u does not follow an IGPD and there

also exists no limiting generalized extreme value (GEV) distribution for the maximum of Poisson

variables (Anderson, 1970, 1980). However, Anderson et al. (1997) show that asymptotically

the Poisson follows a GEV distribution with shape parameter ξ = 0 as the rate parameter tends

to infinity. Since the interpretation of the shape parameter is identical for GEV and GPD, an

estimate of ξ that is statistically significantly different from zero for the IGPD indicates that

the tail of the underlying distribution is not Poisson.

The IGPD (6.2.4) is combined with the zero-truncated Poisson distribution to form an ex-

tremal mixture distribution, i.e. a distribution with different forms below and above a threshold

u. Such mixtures have been widely studied in a continuous variable setting (Coles and Tawn,

1991; Frigessi et al., 2002; Behrens et al., 2004; Carreau and Bengio, 2009; MacDonald et al.,

2011) and the estimation of the threshold u is considered too. Here, observations smaller than

or equal to u are zero-truncated Poisson distributed while being IGPD otherwise. Formally, the

probability mass function for Y | (X, Y > 0) is then given by

P (Y = n | X, Y > 0) =


λn

n! [exp(λ)− 1]
1 ≤ n ≤ u

Bu P (Y = n | X, Y > u) n > u,

(6.2.5)

where Bu denotes the probability of a zero-truncated Poisson distribution with parameter λ

exceeding u and P (Y = n | X, Y > u) is given by model (6.2.4). The parameters λ and σu both

vary with the covariates X.
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6.2.3 Optimizing Tail Dependency of New Covariates

The generalized linear modelling framework by Scheel et al. (2013) has limited ability to account

for the interaction effect of multiple risk factors; e.g. snow-melt and rainfall. This is due to a

range of reasons, these include: simple interaction terms not capturing the non-linearity of the

known physical properties of the relationship, parsimony, and a lack of weight given to extreme

events when the signal to noise ratio is at its greatest. These weaknesses motivate our approach

to construct an additional covariate, based upon X, which overcomes these deficiencies and is

tuned using extreme event data. In particular, a new covariate X∗ is derived non-linearly from

X, as X∗ = f(X,θ), with unknown parameters θ and the function f is selected based on the

context of the problem. Such additional covariates are later defined in Section 6.3. Since X∗ is

motivated by the extreme claim numbers, θ should be selected such that the tail dependence

between X∗ and N is optimized.

To achieve this aim, we adapt the approach by Russell et al. (2016) which is based on

the following result. For identically distributed random variables V1 and V2 with unit Fréchet

margins it follows, under a weak assumption of bivariate regular variation (Resnick, 1987), that

for any Borel set B and v ≥ 1

lim
t→∞

P(V1 + V2 > tv, V1/(V1 + V2) ∈ B | V1 + V2 > t) = v−1Ψ({B}), (6.2.6)

where Ψ is known as the spectral distribution, corresponding to a [0, 1] random variable with

mean 1
2 . Expression (6.2.6) presents bivariate regular variation for an L1 norm, though in

practice if it holds for one norm, it holds for any norm, so the choice of the L1 norm is without loss

of generality. The weakest tail behaviour between V1 and V2 occurs when Ψ({0}) = Ψ({1}) =

1/2 and the strongest when Ψ({1
2}) = 1, the former and latter corresponding to asymptotic

independence (Ledford and Tawn, 1996) and perfect dependence respectively. Thus the greater

the mass that the spectral measure places close to 1
2 the stronger the tail dependence. There is

no unique way to define the closeness of the spectral measure to 1
2 . A classic way of measuring

dependence in extremes is via the coefficient of asymptotic dependence, χ, defined as

χ = lim
t→∞

P(V2 > t | V1 > t), (6.2.7)

with larger values of χ corresponding to strong extremal dependence (Coles et al 1999). In terms
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of Ψ we can write

χ = 2

∫ 1

0
min(w, 1− w) dΨ(w). (6.2.8)

This χ measure does not measure well the deviation of W := V1/(V1 +V2) from 1
2 , as it does not

distinguish between cases of extreme values of V1 occurring with large V2 (W near 1
2) or typical

values of V2 (W near 1). We want a measure which strongly penalizes departures of W from 1
2 ,

with the penalty symmetric about 1
2 . Although we could have taken the penalty as |w − 1

2 |, its

empirical performance was not strong in our experience. Instead we use

Dε =

∫ 1

0
min

{ ∣∣∣∣log

(
w

1− w

)∣∣∣∣ , ∣∣∣∣log

(
ε

1− ε

)∣∣∣∣ } dΨ(w). (6.2.9)

Here the | log{w/(1 − w)}| term penalizes departures from 1
2 more strongly. The value of ε is

assumed to be fixed and sufficiently small. With the penalty function as in expression (6.2.9),

Dε ≥ 0 with Dε = 0 occurring when Ψ({1
2}) = 1 and Dε is increasing as Ψ places mass further

from {1
2} with Dε →

∣∣∣log
(

ε
1−ε

)∣∣∣ as asymptotic independence is approached. Here
∣∣∣log

(
w

1−w

)∣∣∣
is bounded by the minimum term in the integrand as w → 0 and w → 1 to avoid cases where Ψ

puts any mass at {0} and {1} leading to Dε →∞.

To apply the asymptotic property of bivariate regular variation in practice when we have

observations (V1,i, V2,i) for i = 1, . . . ,m, we need to assume that limit (6.2.6) holds for a finite

t, i.e.,

P(V1/(V1 + V2) ≤ w | V1 + V2 > t) = Ψ(w). (6.2.10)

To ensure that the limit holds, t needs to be large enough to give the conditional independence

of variables V1 + V2 and V1/(V1 + V2) for the limit (6.2.6) to factorize. For the lowest choice of

t for which conditional independence is a reasonable assumption, Ψ can be estimated using the

set of points (V1,i, V2,i) with V1,i + V2,i > t, denoted by Qt, by

Ψ̃t(w) =
1

|Qt|

n∑
i=1

1(V1,i + V2,i > t & V1,i/(V1,i + V2,i) ≤ w), (6.2.11)
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with 1 being the indicator function. The dependence measure Dε is then approximated using

D̃ε,t =

∫ 1

0
min

{ ∣∣∣∣log

(
w

1− w

)∣∣∣∣ , ∣∣∣∣log

(
ε

1− ε

)∣∣∣∣ } dΨ̃(w)

=
1

|Qt|

n∑
i=1

∣∣∣∣log

(
wi

1− wi

)∣∣∣∣1(V1,i + V2,i > t),

=
1

|Qt|

n∑
i=1

∣∣∣∣log

(
V1,i

V2,i

)∣∣∣∣1(V1,i + V2,i > t)

(6.2.12)

where wi = V1,i/ (V1,i + V2,i), with the second equality holding when ε < wi < 1− ε for all i with

V1,i + V2,i > t. To apply this dependence measure to construct the covariate X∗, we transform

the observations of X∗ and N to Fréchet margins (V1, V2) and then select θ∗ as θ∗ = argmin D̃ε,t

and set X∗ = f (X,θ∗).

6.3 Restructuring the Data

This section introduces our algorithm to obtain clusters of consecutive days which are exposed to

the same severe weather event. Prior to the algorithm, we derive additional covariates in Sections

6.3.1 to 6.3.3 based upon the assumption that adjacent municipalities may provide additional

insight. In particular, these covariates account for spatial and temporal patterns of snow-melt

and rainfall and are partly set as inputs in the clustering algorithm. Section 6.3.4 details the

clustering algorithm which is based on the weather covariates. Covariates summarizing the

weather events over the derived cluster periods are defined in Section 6.3.5. Finally, the event-

based covariates are tuned to increase their ability to describe the occurrence of the largest

numbers of claims in Section 6.3.6. In the following, the notation k′ ∼ k refers to municipalities

k and k′ being adjacent.

6.3.1 Snow-melt

Long periods of snow-melt, or rapid melts of large volumes of snow, can give flood levels that

are comparable to large rainfall events. Hence, periods of high temperatures or rain, conditional

on snow being on the ground, may affect the claim dynamics and induce a higher risk for

property damages. Information on the level of snow-melt is derived via the daily observed mean

temperature Ck,t and the snow-water equivalent Sk,t. Scheel et al. (2013) consider the difference

in the snow-water equivalent over a day, i.e., Sk,t−1−Sk,t, which for positive values represents an

additional source of water for properties to deal with. Estimates indicate a positive correlation
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of this difference with respect to the claim risk for several municipalities. However, negative

values of Sk,t−1 − Sk,t do not affect the water-related claim dynamics on the day since these

only correspond to a rise of the amount of snow on the ground. Positive values of the difference

Sk,t−1 − Sk,t will only approximate the true amount of snow-melt in municipality k. Certain

topological factors are likely to be ignored since observations are weighted according to the

population density. Consider a city which lies at the foot of a mountain range. The buildings

are then affected by the snow-melt both within the city and on higher ground while Sk,t−1−Sk,t

captures the former only.

We use the observations for the adjacent municipalities to introduce a new snow-melt covari-

ate ∆Sk,t as a spatially weighted average. In particular, our formulation for ∆Sk,t varies from

Scheel et al. (2013) as ∆Sk,t > Sk,t−1 − Sk,t if an adjacent municipality exhibits higher levels of

snow-melt. Formally, ∆Sk,t is defined by

∆Sk,t =
1

1 + ωSk

[
Sk,t−1 − Sk,t + ωSk max

m∈{k,k′∼k}
(Sm,t−1 − Sm,t)

]
1{Ck,t≥0}, (6.3.1)

with weight ωSk ≥ 0. The maximum term in (6.3.1) is derived over the set of adjacent munici-

palities k′ ∼ k and k itself. Note, ∆Sk,t = Sk,t−1 − Sk,t if snow-melt in municipality k exceeds

snow-melt in its neighbours and Ck,t > 0, or if ωSk = 0. The indicator function is set in order to

ensure that no snow-melt occurs for temperatures Ck,t below 0◦C.

6.3.2 Surface Water

An increased claim risk is induced by the interaction of multiple weather events or the duration

of one event over consecutive days. Scheel et al. (2013) attempt to account for such processes via

the values of two covariates: the drainage run-off Dk,t and the aggregated rain on the previous

three days, denoted by Rk,3t. Their results indicate that both Rk,3t and Dk,t have a small effect

on the distribution of Nk,t | Nk,t > 0. However, Rk,3t and Dk,t are limited in their potential to

explain interaction effects. Values for Dk,t change very slowly from day to day, that is, Dk,t may

be high despite the last rain being several days ago. Further, Rk,3t cannot distinguish whether

high amounts of rainfall were recorded two or three days ago. The derivation of new covariates

appears advisable.

To help our construction of a new covariate, we consider a highly idealized model of the

ability of the infrastructure to handle surface water. Assume that a maximum ck mm of water
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drains off within a day. Here, the value ck may correspond to a certain quantile of the observed

rain and be linked to the capacity of the drainage system. The amount of water left in the

system on day t, Wk,t, is then given by

Wk,t = (Wk,t−1 +Rk,t−1 + ∆Sk,t−1 − ck)+ . (6.3.2)

A value of Wk,t greater than 0 implies that the previous weather events affect the risk induced

by the weather on day t, for instance, in form of surface water. Further, Wk,t is assumed to

influence the claim dynamics if, and only if, Rk,t + ∆Sk,t > ck since the value Wk,t in (6.3.2)

decreases otherwise, implying that no additional properties are threatened by surface water.

This results in the definition of a new amplifier covariate,

Gk,t = Wk,t1{Rk,t+∆Sk,t>ck}, (6.3.3)

which captures the risk induced by heavy rainfall in combination with high surface water levels.

6.3.3 Rainfall Intensity

Since the covariate Rk,t corresponds to the aggregated precipitation measurements over 24 hours,

it provides little insight into the peak-daily intensity. High values of Rk,t can be due to either

short-term intense or longer-term moderate rainfall but the former is likely to induce a higher risk

for property flooding. We attempt to derive additional information from the spatial variation of

{Rk,t} on day t. To achieve this, we assume that the intensity correlates with the difference in the

precipitation levels of adjacent municipalities. Further, an intense rainfall within a municipality

is also taken to affect the claim dynamics of the adjacent municipalities, though on a smaller

scale.

These considerations result in our definition of the covariate intensity, Ik,t, which is based

on the spatial pattern of {Rk,t} at day t. Let k̃ be the municipality, adjacent to municipality k,

with the highest level of precipitation, i.e.,

k̃ = argmax
k′∼k

Rk′,t.

If Rk,t is larger than R
k̃,t

, the centre of the rainfall event lies within municipality k and, hence,

may be rather intense. Similarly, if R
k̃,t
> Rk,t, we consider the adjacent municipalities k′ ∼ k̃
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to explore whether the rainfall event leads to the highest precipitation levels in municipality

k̃. In order to represent the impact of a rainfall event at municipality k̃ for municipality k, we

introduce a weight ωRk ∈ [0, 1] to downscale the intensity. Finally, if the rainfall is centred in

neither of these municipalities, the rainfall is considered as not intense. The covariate value Ik,t

is then defined as

Ik,t =



Rk,t −Rk̃,t if Rk,t > R
k̃,t

ωRk

(
R
k̃,t
−max

k′∼k̃
Rk′,t

)
if R

k̃,t
> max

k′∼k̃
Rk′,t

0 otherwise.

(6.3.4)

Note, the last case in (6.3.4) corresponds to the municipalities k and k̃ observing lower pre-

cipitation levels than at least one of their adjacent neighbours. The upper bound for ωRk is

justified since Ik,t should not be higher than Ik′,t if the highest precipitation levels are recorded

for municipality k′. Similarly to Gk,t, Ik,t only affects the claim dynamics for high rainfall levels,

Rk,t > ck, since the intensity of the rainfall is presumably not important for the claim dynamics

otherwise.

6.3.4 Cluster Definition

In many cases, the observations of consecutive day claim numbers Nk,t and Nk,t+1, are dependent

as they are consequences of the same weather event. Figure 6.1.1 indicates that high numbers

of claims caused by heavy rain Rk,t are typically reported on the current or next day. For

instance, the highest rainfall level in Figure 6.1.1b results in observations of 11 and 50 claims.

Nevertheless, some claims may be reported on later days and the covariate observations on the

day of the claim would then provide little insight. Therefore, we derive periods of consecutive

days, for each municipality individually, in order to cluster days which are exposed to a higher

claim risk due to the same severe weather event and hence also reduce the effects of claim lag

in the recording process.

Interest lies in the derivation of cluster periods {(αk,j , βk,j) , j = 1, . . . , Jk} for municipality

k, based upon the weather covariates Xk,t, with αk,j , βk,j representing the start and end point

of the jth of Jk clusters in municipality k respectively. While the daily claims within a cluster

period (αk,j , βk,j) are assumed to depend on the same severe weather event, the claims in two

different clusters are considered as temporally independent. In particular, the claim dynamics



CHAPTER 6. EXTREME VALUE MODELLING OF INSURANCE CLAIMS 126

on day αk,j are solely dependent on the weather events on the same day, irrespective of the

weather on day βk,j−1.

Our approach to identify cluster start points αk,j is based upon two prespecified trigger

events which affect the claim dynamics on subsequent days: rain on the current day exceeds

ck, Rk,t > ck, and snow-melt occurs, ∆Sk,t > 0. The first trigger event is motivated by the

discussion in Section 6.3.2 while the second trigger reflects our expectation that snow-melt in

combination with rainfall induces a high claim risk over several days. These events then initialize

clusters of length greater than one day. The main criterion for the end of a cluster considers the

change in the drainage run-off, i.e., ∆Dk,t = Dk,t −Dk,t−1. In particular, a cluster period ends

if ∆Dk,t drops below a certain value dk. Additionally, clusters triggered by snow-melt also end

if no snow is left on the ground. Algorithm 6.1 summarizes our cluster approach which is based

on the covariates Rk,t, Dk,t and ∆Sk,t.

Algorithm 6.1 Derive clusters for municipality k

Require: Weather covariates ∆Sk,t, ∆Dk,t, Rk,t, and thresholds ck and dk
1: Go to first time point t = 1
2: while Unclustered observations left do
3: if ∆Sk,t > 0 then
4: Set start point α = t and initial end point β = t+ 1
5: while ∆Dk,β > dk AND ∆Sk,β > 0 do
6: Shift end point β ← β + 1
7: end while
8: else if Rk,t > ck then
9: Set start point α = t and initial end point β = t+ 1

10: while ∆Dk,β > dk do
11: Shift end point β ← β + 1
12: end while
13: else
14: Set start and end point to α = β = t
15: end if
16: Store start and end points of cluster period (α, β)
17: Go to next time point t = β + 1
18: end while
19: return Cluster periods

6.3.5 Cluster Data

The daily data have to be adapted to the cluster periods derived by Algorithm 6.1. Consider

the jth cluster period for municipality k with start and end point αk,j and βk,j , respectively.
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The number of claims over the jth cluster period, Ñk,j , is then

Ñk,j =

βk,j∑
t=αk,j

Nk,t. (6.3.5)

Snow-melt for cluster j is summarized via the accumulated amount over the cluster period

∆SΣ
k,j =

βk,j∑
t=αk,j

∆Sk,t, (6.3.6)

where ∆Sk,t is defined via (6.3.1).

To capture both the maximum and aggregated rainfall, covariates Rmax
k,j and RΣ

k,j are defined,

respectively. While Rmax
k,j focuses on a single day over the cluster period, RΣ

k,j , takes the amount

of precipitation over all days into account. Let γj denote the day over the period αk,j to βk,j

with highest value Rk,t. Then

Rmax
k,j = ηk Gk,γj +Rk,γj exp

(
ρk Ik,γj

)
, (6.3.7)

where Gk,γj and Ik,γj are defined as in (6.3.3) and (6.3.4), respectively. The parameters ηk and

ρk are selected to optimize the tail dependence of Rmax and Ñ , details are given in Section 6.3.6.

The non-linear structure of expression (6.3.7) aims to account for two separate claim processes

which are associated to rainfall. In particular, the first additive component accounts for the

risk in terms of surface water induced by previous rainfall events while the second component

considers the rainfall on the day. The impact of the rainfall on the day for claims depends on

both the rainfall and its intensity. Our arguments for the construction of the covariates Gk,t

and Ik,t suggests that ηk ∈ [0, 1] and ρk ≥ 0. Covariate RΣ
k,j is

RΣ
k,j =

βk,j∑
t=αk,j

Rk,t −Rk,γj , (6.3.8)

i.e., the aggregation of the rainfall, except the highest, in the cluster. Note, RΣ
k,j takes value

zero if the jth cluster is of length 1.
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6.3.6 Selection of Parameter Values

The covariates introduced in this work depend on several parameters whose tuning is considered

in this section. First, the parameter ωSk in (6.3.1) is selected based upon a simple generalized

linear model fit for the original daily data for municipality k. The parameter ωSk has to be

estimated prior to the cluster algorithm since it is important to gain insight into whether ωS = 0

or not. The maximum likelihood estimator of ωSk is found using the model

Nk,t ∼ Poisson
(

exp[φ0 + φ1∆Sk,t(ω
S
k )]

)
.

The parameter may be estimated again after the clustering algorithm but the results in Section

6.4 are obtained without this additional step.

Next, the thresholds ck and dk in Algorithm 6.1 are specified. An explanatory analysis for

Oslo indicates that periods with high numbers usually coincide with rainfall events exceeding the

80% quantile. Similarly, claim occurrences are observed if the change in drainage levels exceeds

the 80% quantile. Hence, the thresholds are specified via quantiles as ck = q0.8 (Rk,t | Rk,t > 0)

and dk = q0.8 (∆Dk,t). While this choice is motivated based on Oslo only, Section 6.4 indicates

that it works for other municialities too. Algorithm 6.1 is then applied to the data.

The vector of covariate observations of the maximum rainfall covariate in expression (6.3.7),

Rmax
k , depends on the parameters ρk, ηk and also on the weight ωRk via Ik,t. Since Ik,t and

Gk,t are predominately designed with respect to the high numbers of claims, ρk, ηk and ωRk are

selected such that the tail dependency between Rmax
k and Ñk in expression (6.3.5) is maximized.

Here, we adapt the approach detailed in Section 6.2.3 with X∗ = Rmax with f(X,θ) given by

expression (6.3.7) and the optimization is over a set of candidates for θk =
(
ηk, ρk, ω

R
k

)
. This

involves first transforming the data to Fréchet margins, selecting a threshold t above which the

conditional independence property (6.2.6) holds, then estimating Ψ̃t(w) and finally deriving the

distance measure D̃ε,t for each candidate. Combining these ideas leads to the following selection

process for the optimal candidate:

1. Derive the covariate values Rmax
k (θ∗) for each candidate θ∗ on a grid.

2. Use the empirical distribution functions and the probability integral transform to transform
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Rmax
k and Ñk to have Fréchet margins

N∗ = −

log

rank
(
Ñk

)
m+ 1


−1

and R∗ = −
{

log

[
rank (Rmax

k )

m+ 1

]}−1

.

3. The threshold t in (6.2.11) is chosen as a 99.5% quantile of the set {N∗ + R∗}. Further

set

Qt = {i = 1, . . . ,m : N∗i +R∗i > t := q0.995 (N∗ + R∗)} .

4. Derive the distance measure as outlined in Section 6.2.3. Via the substitutions V1,i = N∗i

and V2,i = R∗i , the distance measure in (6.2.12) yields

D̃ε,t =
1

|Qt|
∑
i∈Qt

|log(N∗i )− log(R∗i )|1(N∗i +R∗i > t).

5. The optimal set of parameters θ∗ is then the one which provides the minimum D̃ε,t.

6.4 Application to the Insurance Data

Performance of the approaches in Sections 6.2 and 6.3 is assessed by applying them to three

Norwegian municipalities: Oslo, Bærum and Bergen, where the first two are adjacent and the

latter approximately 300 miles away from them. Oslo and Bergen were chosen since these are the

municipalities with the highest number of policies and the model by Scheel et al. (2013) is limited

in terms of capturing their highest claims. Bærum was selected based on its spatial proximity

to Oslo and due to the highest observation over the 10 year period for Norway being observed

for this municipality. Section 6.4.1 defines the statistical model and details the estimation of the

model parameters. Section 6.4.2 then summarizes the estimates and investigates the model fit.

6.4.1 Statistical Model

Each of the three municipalities is considered separately and the indexes k, j and t for the

municipality, the cluster period and the day, respectively, are dropped for notational simplicity.

The optimisation approach in Section 6.3.6 derives that ρ = 0 for Bærum and Bergen; the

latter is plausible since Bergen is surrounded by mountain ranges, leading to potentially high

but uninformative values for the intensity I. Table 6.4.1 shows that about one third of days are
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Table 6.4.1: Occurrence of cluster lengths for three Norwegian municipalities.

Cluster length 1 2 3 4 5 6 > 6

Oslo 2091 254 57 98 43 23 17
Bærum 2453 105 43 92 46 19 18
Bergen 1868 340 55 131 39 23 11

allocated to clusters of length greater than 1. It also shows that clusters are almost always less

than 7 days, which is the window that the insurance industry typically treats as a single event

for reinsurance purposes. Figure 6.4.1 illustrates that, post clustering, most of the high number

of claims coincide with high values for Rmax and RΣ, suggesting that our methods of Section

6.3 for constructing justifiable covariates and their relationship to claims has been successful.

The statistical models in Section 6.2 are applied to model the dependence between periods

with positive numbers of claims, Ñ > 0, and the covariates X̃ =
(
RΣ,∆SΣ, Rmax

)
. Despite

clustering, there still appear to be some modest claims which do not coincide with large values

of the covariates. Hence, the mixture model in Section 6.2.1 is applied. The extremal mixture

model in Section 6.2.2 is applied too as the highest numbers of claims are not well captured via

a zero-truncated Poisson distribution. Hence, Ñ |
(
X̃, Ñ > 0

)
is modelled via a two-component

mixture with a covariate-dependent component Ỹ and a random component Z̃.

The mixture component Ỹ in (6.2.1) is defined according to (6.2.5) as an extremal mixture of

a zero-truncated Poisson and an IGPD while Z̃ is defined as a zero-truncated Poisson distribution

with constant rate parameter κ. Formally, the model for Ñ |
(
X̃, Ñ > 0

)
is

P
(
Ñ = n | X̃, Ñ > 0

)
= p P

(
Ỹ = n | X̃

)
+ (1− p) P

(
Z̃ = n

)
, n ≥ 1. (6.4.1)

Adapting the approach in Section 6.2.2, the probability mass function of Ỹ is then given by

P
(
Ỹ = n | X̃

)
=


λn

n! [exp(λ)− 1]
1 ≤ n ≤ u

P
(
Ỹ > u | X̃

)
P
(
Ỹ = n | X̃, Ỹ > u

)
n > u,

(6.4.2)

where P
(
Ỹ = n | X̃, Ỹ > u

)
is of IGPD-form as in expression (6.2.4). We complete the model
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(b) Bergen

Figure 6.4.1: Dependence between the aggregated rain RΣ and the maximum rain within a day Rmax

for the cities of Oslo (left panel) and Bergen (right panel). Periods with Ñ > 4 are
highlighted.

by specifying the dependence of λ and σu on RΣ, ∆SΣ and Rmax via linear models of the form

log σu = β0 + β1R
Σ + β2∆SΣ + β3R

max

log λ = δ0 + δ1R
Σ + δ2∆SΣ + δ3R

max.

(6.4.3)

Note, the tail of the distribution defined by (6.4.1) and (6.4.2) is a mixture of zero-truncated

Poisson and an IGPD. Similarly to the IGPD, threshold stability in the tails can also be proven

for this mixture distribution; see Appendix D.2 for details. Using this threshold stability prop-

erty, the threshold u is set to 4, 2 and 4 for Oslo, Bærum and Bergen, respectively.

6.4.2 Results

The statistical model in expressions (6.4.1) to (6.4.3) is specified by 11 parameters which are

now estimated via Bayesian inference. Specifically, a Metropolis-Gibbs algorithm is used; see

Appendix D.3 for details. Alternatively, estimates may also be obtained via an Expectation-

Maximization algorithm. However, we found that this led to poor estimates since the support

of the component Ỹ varies in the shape parameter ξ, for ξ < 0. The MCMC algorithm runs

for 100,000 iterations and every 50th sample is stored for analysis after a burn-in of 25,000.

Convergence is checked by investigation of the trace plots and Brooks-Gelman-Rubin diagnostics

(Brooks and Gelman, 1998) based on three sampled chains. Our R implementation took about
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Table 6.4.2: Posterior mean estimates, lower 5% quantile (q0.05) and upper 5% quantile (q0.95) of the
model parameters for the municipalities of Oslo, Bærum and Bergen with thresholds uk =
4, 2 and 4, respectively.

City Statistic p β0 β1 β2 β3 ξ δ0 δ1 δ2 δ3 κ

Oslo Mean 0.90 0.12 0.21 0.23 0.76 -0.32 -0.16 0.42 0.32 0.71 2.21
q0.05 0.83 -0.61 0.09 0.10 0.46 -0.76 -0.30 0.29 0.22 0.57 1.65
q0.95 0.96 0.81 0.33 0.35 1.03 0.15 -0.03 0.56 0.42 0.86 2.93

Bærum Mean 0.83 -1.80 0.15 0.35 1.31 0.16 -0.87 0.44 0.33 0.89 1.14
q0.05 0.67 -2.92 -0.01 0.18 0.87 -0.40 -1.31 0.18 0.20 0.58 0.70
q0.95 0.95 -0.90 0.34 0.53 1.70 0.82 -0.56 0.88 0.50 1.30 1.79

Bergen Mean 0.88 -0.61 -0.03 0.19 0.37 0.53 -0.52 0.15 0.13 0.41 1.23
q0.05 0.79 -1.64 -0.17 0.05 0.17 0.10 -0.74 0.09 0.07 0.33 0.65
q0.95 0.95 0.30 0.12 0.33 0.57 1.10 -0.35 0.20 0.20 0.49 1.99

20 minutes per chain on a 2.80-GHz Intel Core i7 processor.

Through the posterior distributions of p, Table 6.4.2 indicates that 80− 90% of the observa-

tions are estimated to be related to the defined covariates. With respect to the shape parameter,

0 is contained in the 90% credibility interval for only 2 of the 3 municipalities. Hence, there

is evidence that the tail behaviour is not Poisson for Bergen. The covariate effects for Bergen

are generally lower than for Oslo and Bærum. Since Bergen exhibits higher precipitation levels

than Oslo and Bærum, the buildings are presumably designed to withstand more severe rainfall

events than Oslo. The posterior estimates further show that covariate effects are non-negative

except for β1. Hence, the risk induced by the accumulated rainfall RΣ is mainly captured via

δ1. Collectively, this indicates that a increase in RΣ results in more claims above 4 in Bergen

but a reduction in the variability of these claims over 4. The municipalities of Oslo and Bærum

exhibit similar covariate effects for RΣ and ∆SΣ which correlates with their spatial proxim-

ity. Further, the estimates for the non-weather related rate κ differ by a factor of 2 for Oslo

and Bærum, which is consistent with the number of policies in Oslo being about twice that of

Bærum. The large difference for β3 posteriors between Oslo and Bærum is mainly driven by

one large observation of 143 claims. Indeed, β3 has posterior mean 0.75 and 0.81 for Oslo and

Bærum, respectively, when leaving their highest response out; see Appendix D.4.

The behaviour of the probability distribution for Ñ | (X̃, Ñ > 0) is further investigated in

Figure 6.4.2 which shows changes in the mean claim for each covariate at each municipality. In

general, the probability for high number of claims increases with increasing values for each of

the three covariates, with Rmax being the main risk factor for high number of claims. Further,
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Figure 6.4.2: Probability for certain events of Ñ |
(
X̃, Ñ > 0

)
for Oslo, Bærum and Bergen varying

with each of the covariates RΣ, ∆SΣ and Rmax. The events are Ñ = 1 ( ), Ñ = 3

( ), Ñ = 5 ( ) and Ñ > 6 ( ). In the first column, the probability is considered
with respect to RΣ while the remaining covariates are fixed at their minimum value.
Equivalently, the second column and third column consider ∆SΣ and Rmax, respectively.

the risk for very high number of claims increases more strongly for Oslo and Bærum than for

Bergen. For instance, a covariate value of Rmax = 50 results in a probability of 60% for observing

more than 6 claims in Oslo while it is only about 10% in Bergen. These findings are consistent

with previous arguments that properties in Bergen are likely to be designed to withstand higher

precipitation levels than in Oslo.

The fit of the estimated model is verified separately for observations below and above the

threshold. For observations Ñ ≤ u, the estimated and empirical frequencies are compared
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Table 6.4.3: Posterior mean and empirical frequencies both times×102 for the number of claims between
1 and 4 for different rainfall settings for Oslo, Bærum and Bergen. For the empirical fre-
quency, central 95% confidence intervals are given in parentheses. The rainfall settings are
(1) Rmax = 0, (2) 0 < Rmax ≤ q0.5 (Rmax|Rmax > 0) and (3) Rmax > q0.5 (Rmax|Rmax > 0).

Ñ Rmax Oslo Bærum Bergen

estimated empirical estimated empirical estimated empirical

1 (1) 72 75 (72,79) 83 84 (80,87) 77 79 (74,83)
(2) 69 74 (69,80) 81 83 (78,90) 74 76 (72,81)
(3) 40 34 (28,41) 49 47 (39,57) 44 45 (40,51)

2 (1) 20 18 (14,21) 13 13 (9,17) 19 16 (12,21)
(2) 22 17 (12,23) 15 14 (9,21) 21 18 (13,22)
(3) 25 24 (17,30) 25 22 (14,31) 26 24 (18,30)

3 (1) 5 5 ( 1, 8) 4 4 (0,9)
(2) 6 7 ( 2,14) 4 3 (0,8)
(3) 14 12 ( 6,19) 13 13 (7,19)

4 (1) 2 2 ( 0, 6) 1 0 (0,5)
(2) 2 0 ( 0, 6) 1 2 (0,6)
(3) 9 14 ( 7,21) 7 8 (2,13)

> uk (1) 1 0 ( 0, 4) 3 4 (0,8) 0 0 (0,4)
(2) 1 1 ( 0, 7) 4 2 (0,9) 0 1 (0,5)
(3) 13 16 (10,23) 25 31 (23,40) 10 11 (6,17)

in Table 6.4.3. In order to examine the performance more thoroughly, observations are split

into three subsets with respect to Rmax. For instance, the posterior frequency for n claims,

conditional on Rmax = 0, is given as

P
(
Ñ = n | Rmax = 0, Ñ > 0

)
=

∫
P
(
Ñ = n | Rmax = 0, Ñ > 0, x̃

)
π
(
x̃ | Rmax = 0, Ñ > 0

)
dx̃.

The frequency for each posterior sample is derived by Monte Carlo integration via sampling

from the empirical density π
(
x̃ | Rmax = 0, Ñ > 0

)
. In particular, the sampled covariate values

for Rmax and RΣ are from the same cluster periods while ∆SΣ can be from any cluster period.

The joint sampling of the rainfall covariates is required since the joint occurrence of Rmax = 0

and RΣ > 0 is impossible, and hence high dependence exists. In contrast, snow-melt is approx-

imately independent of the rainfall covariates. Confidence intervals are obtained by considering

observations as realizations of a multinomial distribution with 5 possible outcomes for Oslo and

Bergen and 3 for Bærum. Table 6.4.3 illustrates that the model-based estimated frequency for Ñ

lies within the central empirical 95% confidence interval in all cases. The model fit for the tails

is verified via the posterior QQ plots provided in Column 1 of Figure 6.4.3. These are generated
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Figure 6.4.3: Posterior Quantile-Quantile for Oslo, Bærum and Bergen obtained by the full model.
Column 1 provides the results for the clustered data while Column 2 considers the original

daily data. The lines in each plot represent ( ) Posterior mean, ( ) Posterior

median and ( ) Central 95% posterior interval.
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Table 6.4.4: Average Bayesian Information Criterion (BIC) and Deviance Information criterion (DIC)

for several competing models considering the distribution of Ñ | (X̃, Ñ > 0) for Oslo,
Bærum and Bergen. The best model fit for each municipality is highlighted.

Model City BIC DIC

Poisson Oslo 2158 4.06
Bærum 1079 3.96
Bergen 2005 3.92

Poisson-Mixture Oslo 2137 5.74
Bærum 963 6.21
Bergen 1977 5.63

Poison-IGPD Oslo 2088 8.26
Bærum 939 8.69
Bergen 1937 8.75

Poisson-IGPD-Mixture Oslo 1779 3.18
Bærum 596 −0.62
Bergen 1632 4.72

by deriving an individual QQ plot for each posterior sample and then deriving the mean and

quantiles over this set of QQ plots. The plots indicate that a good model fit is obtained for

each municipality as the diagonal lies within the 95% credibility interval. A slightly poor fit

is found for Oslo around 20 claims which is due to the occurrence of three claim periods with

22-25 claims while there exists two with 16-21 claims. For Bærum, the highest observation is not

fitted prefectly due to it being by far the highest observation over the 10-year period. However,

it is still consistent with our model when uncertainty is accounted for.

Finally, we consider whether a similar performance may have been achieved with a different

model. In order to verify the improvement obtained via clustering, the full model is fitted for the

daily data with a lower threshold of u = 3 for Oslo and Bergen and u being unchanged for Bærum.

The modification of the threshold is required since the frequency of higher number of claims is

lower in the daily data than in the clustered data. For instance, the daily data for Oslo only

contain 41 days with N > 3 while the clustering algorithm results in a total of 86 periods with

Ñ > 3. Column 2 in Figure 6.4.3 shows a much worse model fit for the daily data, in particular

for the medium to large claim numbers. Next, we compare the full model to three less-complex

models for Ñ | (X̃, Ñ > 0): zero-truncated Poisson as in (6.1.1), Poisson-mixture without the

extremal mixture model for Ỹ and an extremal mixture model without the component Z̃. Table

6.4.4 gives the Bayesian Information Criterion (BIC) (Schwarz, 1978) averaged over all posterior

samples and results indicate that the full model performs better than the competing models.
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The municipalities are similar in showing evidence that the additional flexibility offered by both

our mixture and tail modelling components leads to substantial improvements. This conclusion

is largely supported using the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002).

In conclusion, both the full model and the clustering of the data are beneficial and provide the

best model fit within subclasses of the model formulation.

6.5 Geographical Dependence and Prediction of Extremes

Section 6.4 illustrates that our approaches in Sections 6.2 and 6.3 lead to a better model fit

than previous models. However, the statistical framework is based upon the assumption that

claims in different municipalities are independent, conditional on the weather covariates. We

investigate to which extent the fitted model captures the geographical dependence by considering

the adjacent municipalities of Oslo and Bærum. Furthermore, the observation Ñ = 143 for

Bærum is the highest number of claims reported over the ten year period. It is of interest

to predict the frequency of such extreme events for Oslo, Bærum and Bergen irrespective of

weather covariates. Here, we estimate the probability of Ñ exceeding a large level v. Section

6.5.1 examines the spatial dependence while Section 6.5.2 derives P
(
Ñ > v

)
.

6.5.1 Geographical Dependence

Interest lies in the spatial dependence of the clustered claims for different municipalities, in

particular, for the adjacent municipalities of Bærum and Oslo. Figure 6.5.1 shows that high

claim numbers tend to be observed for both municipalities over the same cluster period. Here,

we examine to which extent the derived weather covariates capture this dependence. Since the

cluster periods are not identical for both municipalities, some simplification is required. From

the site-specific sets of cluster start days, the subset of days on which clusters are identified to

have started at both sites is found. From this new set of start days, the time periods between

consecutive start dates are then examined, and the cluster period with the largest number of

claims during this period is identified separately for each site. While this approach appears very

restrictive, only 10% of the cluster periods for Bærum are discarded and most of these observe

zero claims. Furthermore, we discard samples for which Ñ is equal to zero for Oslo or Bærum

since our model considers cluster periods with a positive number of claims only. About 60%

of the cluster periods for Bærum with a positive number of claims remain for analysis. This
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Figure 6.5.1: Plots of simultaneous clustered claims for the municipalities of Oslo and Bærum (left
panel) and of the randomized probability integral transformed samples using the esti-
mated conditional distributions of claims given weather at each municipality (right panel).
Observations for which simultaneously more than 4 claims are observed for Oslo and more
than 2 for Bærum are highlighted.

reduced data set is appropriate since the main interest lies in the dependence of the high claims.

In order to examine dependence of these observations, conditional on the weather covariates,

the randomized probability integral transform (PIT), as described by Smith (1985) and Brock-

well (2007) is applied. The randomized PIT approach is chosen since observations are discrete.

Consider the observations {(ñi, x̃i) : i = 1, . . . ,m}. Conditional on the estimated model in

Section 6.4 being correct, the set {vi : i = 1 . . . ,m} sampled via

vi ∼ Uniform
[
P
(
Ñ ≤ ñi − 1 | x̃i, Ñ > 0

)
,P
(
Ñ ≤ ñi | x̃i, Ñ > 0

)]
(6.5.1)

is uniformly distributed. Here, the probabilities in expression (6.5.1) are set to the correspond-

ing average posterior probability. Consequently, the two data sets for Oslo and Bærum are

transformed according to (6.5.1) and the resulting sets are denoted by vO and vB for Oslo and

Bærum, respectively. If there is no claim dependence for the two municipalities, conditional

on the weather covariates, the point process
{(

vOi ,v
B
i

)
: i = 1, . . . , V

}
is uniform. This ap-

proach verifies the model fit as claims in different municipalities are only related through similar

weather.

Dependence of the claims for the two municipalities, given the weather covariates, is hence

examined by plotting vO versus vB. Figure 6.5.1 shows that the points are relatively uniformly

distributed on the unit square and hence independent. With respect to the largest claim num-
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bers, the associated points are rather uniformly concentrated in the upper right corner of the

unit square. This is due to the non-weather related component Z̃ in the modelling framework

which induces a lower bound on P
(
Ñ ≤ ñi | x̃i, Ñ > 0

)
for large ñi, irrespective of the covariate

values.

6.5.2 Probability of Large Claims

The probability P
(
Ñ > v

)
for v > u is approximated by a series of estimated probabili-

ties. In the first step, P
(
Ñ > v

)
is split into the distribution of the positive claim numbers

P
(
Ñ > v | Ñ > 0

)
and one empirical part for claim occurrences P

(
Ñ > 0

)
. The former is then

derived via the modelling framework considered in the previous sections. Formally,

P
(
Ñ > v

)
= P

(
Ñ > v | Ñ > 0

)
P
(
Ñ > 0

)
=
[
p P

(
Ỹ > v

)
+ (1− p) P

(
Z̃ > v

)]
P
(
Ñ > 0

)
≈

 1

J

J∑
j=1

[
p(j)P

(
Ỹ > v | θ(j)

)
+
(

1− p(j)
)

P
(
Z̃ > v | θ(j)

)]P
(
Ñ > 0

)
,

(6.5.2)

where θ(j) refers to the jth of J samples obtained via the MCMC algorithm in Section 6.4.

The probability P
(
Ỹ > v | θ(j)

)
captures the dependence on the weather and more work is

required to obtain it, see (6.5.3) below. Conversely, the remaining components can be derived

quite straightforwardly. Equivalently to the hurdle component of the BPH model in expression

(6.1.1), the random variable Ñ > 0 is assumed to be Bernoulli distributed. Column 4 in

Table 6.5.1 provides the posterior mean and central 90% credibility intervals of this probability

obtained via Bayesian inference with an uniform prior. Further, the probability P
(
Z̃ > v | θ(j)

)
is independent of the covariates X̃ and hence directly accessible.

For the covariate-driven component Ỹ , additional steps are necessary since we require the

marginal P
(
Ỹ > v | θ(j)

)
. Formally, the probability P

(
Ỹ > v | θ(j)

)
can be expressed via

P
(
Ỹ > v | θ(j)

)
= P

(
Ỹ > v | θ(j), Ỹ > u

)
× P

(
Ỹ > u | θ(j)

)
=

∫
P
(
Ỹ > v | x̃,θ(j), Ỹ > u

)
π
(
x̃ | Ỹ > u

)
dx̃×

∫
P
(
Ỹ > u | x̃,θ(j)

)
π (x̃) dx̃.

(6.5.3)

In order to evaluate these integrals, the probability density functions π (x̃) and π
(
x̃ | Ỹ > u

)
are
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Table 6.5.1: Estimated scale ν and shape η for the distribution Rmax|Ỹ > u ∼ GPD (ν, η) and standard
errors. Column 3 provides the posterior mean and central 90% credibility intervals of
the probability that Ñ exceeds 100 conditional on Ñ > 0. Column 4 gives the empirical
maximum likelihood estimate and central 90% confidence intervals of the frequency for
Ñ > 0.

Municipality ν η P
(
Ñ > 100 | Ñ > 0

)
P
(
Ñ > 0

)
Oslo 37.6 -0.48 0.00029 0.391

(6.7) (0.11)
(
6.3× 10−7, 0.00096

)
(0.376, 0.407)

Bærum 27.73 -0.47 0.00044 0.209
(4.8) (0.11)

(
5.1× 10−5, 0.00122

)
(0.197, 0.222)

Bergen 67.34 -0.40 0.00052 0.393
(12.0) (0.10)

(
4.8× 10−5, 0.00148

)
(0.377, 0.409)

required. The former is approximated by the empirical density function since a sufficient number

of observations is available. Due to low amount of observations greater than u, π
(
x̃ | Ỹ > u

)
is estimated parametrically and some simplifications are required. As our conditional model for

claims given weather shows that extreme claims are strongly associated with extreme Rmax only,

π
(
x̃ | Ỹ > u

)
is approximated as π

(
Rmax | Ỹ > u

)
and the remaining values are set to their

average observed values, conditional on the number of claims exceeding u. Larger Rmax than

those observed need to be accounted for as they are critical when considering extreme Ỹ . The

one-dimensional density π
(
Rmax | Ỹ > u

)
is estimated via an extremal mixture model.

In order to select a threshold, the mean residual life plots in Figure 6.5.2 are considered. A

threshold of uR = 0.1, which corresponds to smallest positive amount of rainfall, seems suitable

and, hence, we fit a GPD with point mass at the minimum value since a few claims exceeding u

occur for Rmax = 0. The distribution is fitted separately for each city via maximum likelihood

and estimates and standard errors for the scale parameter ν and shape parameter η for the

GPD as in expression (6.2.3) are provided in Table 6.5.1. The estimated shape parameter η is

negative for all three municipalities, that is, the associated GPD is short-tailed with an upper

end point. Figure 6.5.2 shows that the fit is good for Oslo and Bærum while being slightly off

for Bergen.

The case v = 100, P
(
Ñ > 100 | Ñ > 0

)
, is then derived using Monte Carlo integration

for the expressions in (6.5.2) and (6.5.3). Table 6.5.1 shows a varying behaviour for the three

municipalities for P
(
Ñ > 0

)
and P

(
Ñ > 100 | Ñ > 0

)
. The results indicate that about 1 in

5000 events for Bergen will cause more than 100 claims. Considering that about 2,500 events

were observed over a 10 year horizon, that corresponds to one occurrence every 20 years on
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Figure 6.5.2: Mean residual life plots (Row 1) and Quantile-Quantile plots with central 95% confidence

intervals of the fitted GPD distribution (Row 2) for π
(
Rmax | Ỹ > u

)
for the municipal-

ities of Oslo, Bærum and Bergen.

average. Furthermore, the same approach implies that such an event happens every 30-40 years

for Oslo and Bærum. Hence, the observation of 143 claims for Bærum is a very rare event.

6.6 Discussion

We extended the modelling framework by Haug et al. (2011) and Scheel et al. (2013) in order

to improve the model fit for higher number of claims. Additional information was gained by

analyzing the spatial and temporal patterns with respect to snow-melt and precipitation. A

temporal cluster algorithm, based solely on the observed weather covariates, was introduced in

order to reduce the effects of potential lags in the recording process and to account for weather

events which affect the claim dynamics on consecutive days. The original daily data were then

adapted to the respective cluster periods and one covariate was tuned to maximize its relevance

to large claims.

A mixture model with an extremal mixture component was applied to model the number

of claims over the cluster periods. Results have shown good performance for lower as well
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as higher numbers of claims. Furthermore, the spatial dependence between claims in different

municipalities appears to be accounted for conditional on the derived weather covariates. Finally,

the estimated model also facilitates the investigation of the probability for very rare events.

The derived model can also be applied to assess the impact of climate change. Haug et al.

(2011) use the daily data and perform an effect study, subject to the insurance portfolio of

properties of future periods being close in value and quality to the one of the model fitting

period. Their results indicate an increase in the claim frequency for all municipalities. In order

to perform a similar study with our new model, it is necessary to simulate weather observations

for cluster periods rather than single days.

There are various way to extend the model presented in this chapter. Firstly in the model

fitting of the extremal mixture model for claims, the distribution can be restricted to a unimodal

form by excluding parameter settings which induce

P
(
Ỹ = buc − 1 | X̃

)
> P

(
Ỹ = buc | X̃

)
< P

(
Ỹ = buc+ 1 | X̃

)
.

This set of inequalities imposes additional constraints on the parameters λ, σu and ξ. This

chapter focused on the periods with Ñ > 0 but there is interest for all periods. We considered a

Poisson-IGPD mixture with the same parameter values as for the zero-truncated Poisson-IGPD

mixture in Section 4 and found that the model underpredicts the frequency of periods with zero

claims Ñ = 0. Hence, the model could be extended via a hurdle component as in the BPH.

Furthermore, Figure 6.4.2 shows that the event Ñ = 1 has a probability of about 0.10 even for

very high values of Rmax due to the non-weather related mixture component. One may argue

that such predictions are unrealistic since extreme precipitation levels over a day should lead

to large damages, regardless of their intensity. Therefore, the mixture probability p could be

modelled as a function of the covariate Rmax.

Further research can also be undertaken from a spatial perspective. Spatial dependence of

the parameters of the conditional distribution of Ñ |
(
X̃, Ñ > 0

)
may be introduced to allow

for a better model fit similarly to Scheel et al. (2013). For instance, the threshold u = 2 for

Bærum may be too low for the extremal mixture model but there are not enough observations to

raise it to u = 3. Additional information may be borrowed from the adjacent municipalities, in

particular Oslo, in order to achieve this. Spatial dependence could be modelled via a conditional

autoregressive prior (Besag, 1974; Besag et al., 1991) on (β1, β2, β3) in (6.4.3).



Chapter 7

Discussion

7.1 Summary

This thesis explored the association between property insurance claims and weather events. The

relationship is of general interest as, for instance, insurance companies have to set premiums.

To derive adequate models, daily insurance and weather data for all Norwegian municipalities

were considered. An exploratory data analysis indicated that the degree of vulnerability with

respect to the weather covariates varies spatially and, additionally, a higher average claim risk

was found for cities, as compared to rural municipalities. Since the existing models exhibit limi-

tations, in particular for days with high claim numbers, novel methodologies in spatial statistics,

monotonic regression and extreme value theory were introduced. In particular, this thesis con-

tributed approaches to model the dependence of monotonic functions and to perform extreme

value analysis of discrete random variables. These approaches were designed to address certain

properties of the claim dynamics and increased the flexibility of the statistical models. Results

showed that the model fit improved which, in conclusion, provided a better understanding of the

claim processes. In the following, the contributions of each chapter are outlined individually.

Chapter 3 defined a Bayesian hierarchical modelling framework which allowed for a spatially

varying relationship between the number of claims and the weather covariates while assuming a

similar claim process for adjacent municipalities. A comparative study was performed to assess

the difference between two data models and partly differing covariates. Estimates indicated a

spatial variation in the claim process, for instance, a certain rainfall amount affects the claim

dynamics stronger for inland municipalities than for coastal areas. As for the existing models,

the overall predictive performance was good but the higher number of claims were generally
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underestimated. While the models performed similarly in terms of the considered performance

measure, a difference was found with respect to the BIC. Specifically, a Bayesian Poisson hurdle

model outperformed a Binomial model for densely populated municipalities. Consequently,

results indicated that the performance measure by Scheel et al. (2013) is limited in terms of

assessing model fit.

The Bayesian hierarchical model in Chapter 3 was then extended in Chapter 4 by substitut-

ing the linear predictor in the process model by a monotonic function, leading to the concept of

Bayesian spatial monotonic multiple regression (BSMMR). Since the dependence modelling of

monotonic functions has not been considered in the literature, a flexible prior distribution was in-

troduced which allowed the sharing of statistical information across municipalities. Further, the

hyperparameter in the prior distribution was estimated via cross-validation and Bayesian global

optimization as the normalizing constant of the prior is intractable. A reversible jump MCMC

algorithm, as proposed by Saarela and Arjas (2011), was implemented to obtain the function

estimates. The simulation studies performed illustrated the benefits of the new methodology.

Finally, the approach was also applied to a subset of the insurance and weather data and yielded

to an improvement of the daily predictive performance.

Chapter 5 then introduced an alternative approach to BSMMR. The method is optimization-

based and was motivated by the high computational cost of the BSMMR methodology. Depen-

dence between functions was incorporated via the addition of penalty terms in the original

optimization problem. Since the resulting optimization problem is convex, estimates can be

obtained via a cyclic algorithm which updates one function while keeping the remaining ones

fixed. Statistical information on the dependence structure was derived by treating the functions

as initially independent and then examining the individual function estimates. Simulations show

good results at a low computational cost. The performance partly depends on a selected in-

terpolation routine as the functions are estimated at a finite set of points only while BSMMR

estimates them over a continuous space.

Chapter 6 considered the application of extreme value models to improve the fit for higher

numbers of claims. An analysis of the specific data for Oslo motivated the definition of a

two-component mixture model; a covariate-dependent and a random distribution. Further, the

tail of the covariate-dependent distribution was modelled via a discretized generalized Pareto

distribution. Additional to the statistical model, a temporal clustering algorithm was introduced

which aggregated periods of consecutive days based on the observed covariate values. The defined
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cluster covariates, associated to the cluster periods, represented the amount of precipitation and

snow-melt. One covariate was tuned to maximize its relevance to the highest claims. The

combination of the clustering approach and the mixture model led to a large improvement in

terms of the model fit for the municipalities of Oslo, Bærum and Bergen. Further, the estimated

mixture distribution captured the spatial dependence of the claims and allowed the derivation

of the probability of high claims in the future, conditional on no climate change.

7.2 Future Work and Possible Extensions

7.2.1 Combining the Different Models and Reducing Computational Time

The approaches in Chapters 4 and 6 have been applied separately to model the number of claims.

However, these approaches can be combined in a Bayesian hierarchical model. The assumption

of linearity in the mixture model in Chapter 6 may be violated as it does not account for any

potential threshold effects. Therefore, the linear predictors for the model parameters may be

replaced by monotonic ones to account for these potential effects. Such an approach can also be

considered for the daily covariates and claim numbers.

Nevertheless, the assumption of linearity may be plausible for some of covariates. Both

approaches to model dependence in a monotonic regression framework can be extended to a

mixture of linear and monotonic functions. Such a model would reduce the computational time

substantially as the BSMMR algorithm is very costly for higher dimensions. However, it is too

computationally expensive to consider all possible combinations of linear and monotonic factors.

Therefore, statistical tools are required in order to decide which covariates may be assumed to

be linear. These guidelines would then have to be assessed via an exhaustive simulation study.

Additional to this approach, parallelization techniques may be used to reduce the compu-

tational cost of the BSMMR algorithm. The simplest approach may be to run several cross-

validations for one proposed spatial smoothing parameter in parallel. For instance, the simula-

tion studies in Chapter 4 performed 50 cross-validations for each proposal and these could be run

independently on 50 processors. Alternatively, the reversible jump MCMC may be parallelized

itself to some extent. For one update, the current implementation samples a proposal, updates

the likelihood and computes the prior ratio before considering the next monotonic function.

Since the prior is defined via pair-wise differences, some improvements are possible. Further,

proposals for all regions may be sampled jointly at the beginning of the iteration step and the
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likelihood ratio may be computed in parallel for each municipality.

By reducing the computational time, the statistical models may then be derived for a larger

set of municipalities in a reasonable amount of time. The new methods for monotonic regression

and extreme value analysis were applied to single or small sets of municipalities only but interest

lies in the estimation of a claim model for all municipalities. Further, the mixture model in

Chapter 6 may be extended by defining a spatial structure for the model parameters. Finally,

the temporal variation in the number of claims was ignored in Chapter 6 and may also be

incorporated.

7.2.2 Compound Poisson Distribution

This thesis assumed smaller claims to be Binomially distributed which implies independence

of the claims within a municipality. Haug et al. (2011) consider the overdispersed Binomial

distribution to achieve higher flexibility. Here, a compound Poisson distribution is discussed as

an alternative. The number of claims is then the sum of Poisson random variables with the

same rate parameter, and the number of components is assumed to be Poisson distributed too.

Formally, the distribution of N is given as

N | (M = m, θ) ∼ Poisson (mθ + θ)

M | λ ∼ Poisson(λ).

(7.2.1)

From an applied perspective, M + 1 is the number of areas within the municipality for which

claims may be observed and θ is the expected number of claims for each area. A simulation study

with 200 samples and parameter values θ = 3 and λ = 8 is performed to assess this approach.

The parameters θ and λ are estimated via a Metropolis-within-Gibbs algorithm and every 500th

sample is considered for analysis. Figure 7.2.1 illustrates the sampled Markov chains and the

plots indicate a poor mixing and high correlation between the samples.

To reduce the dependence of the parameters, they are transformed based on the mean and

variance. Using conditional probabilities, the mean of the compound Poisson distribution in

expression (7.2.1) yields to

E [N ] = E [E (N |M)]

= E [Mθ + θ]

= θ(λ+ 1).

(7.2.2)



CHAPTER 7. DISCUSSION 147

0 200 400 600 800

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

Index

θ

0 200 400 600 800

4
6

8
10

Index

λ

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

2.5 3.0 3.5 4.0 4.5 5.0 5.5

4
6

8
10

θ

λ

Figure 7.2.1: Sampled Markov chains for the parameters θ (Plot 1) and λ (Plot 2) of the compound
Poisson distribution. Plot 3 illustrates the sampled pairs of parameters θ and λ.

Similarly, the variance of the distribution is given as

Var [N ] = E
[
N2
]
− E [N ]2

= E
[
E
(
N2 |M

)]
− θ2(λ+ 1)2

= E
[
θ2(M + 1)2 + θ(M + 1)

]
− θ2(λ+ 1)2

= θ2E
[
M2 + 2M + 1

]
+ θ(λ+ 1)− θ2(λ+ 1)2

= θ2
(
λ2 + λ+ 2λ+ 1

)
+ θ(λ+ 1)− θ2(λ+ 1)2

= θ2λ+ θ(λ+ 1).

(7.2.3)

Note, the variance of the defined compound Poisson distribution is greater than the mean unless

λ = 0. The transformed parameters φ1 and φ2 are then derived from θ and λ, based on (7.2.2)

and (7.2.3), via the transformation

(θ, λ) 7−→
(
θ(λ+ 1), θ2λ

)
= (φ1, φ2) . (7.2.4)

Hence, θ and λ are conversely defined in terms of φ1 and φ2 as

θ =
φ1

2
−
√
φ2

1

4
− φ2

λ = φ1

[
φ1

2
−
√
φ2

1

4
− φ2

]−1

− 1.

(7.2.5)

The estimates of φ1 and φ2 for the simulated data are provided in Figure 7.2.2. Results indicate

an improved mixing and less dependence of the parameter estimates.
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Figure 7.2.2: Sampled Markov chains for the reparametrized parameters φ1 (Plot 1) and φ2 (Plot 2)
of the compound Poisson distribution. Plot 3 illustrates the sampled pairs of parameters
φ1 and φ2.

In conclusion, the proposed transformed has improved the efficiency of the MCMC algorithm.

The distribution of the number of claimsN can then be defined via the compound Poisson (7.2.1).

Further work is, however, required to define the covariate structure of the model parameters.

Since both φ1 and φ2 are positive, a log-linear model could be specified.

7.2.3 Effect Study of Climate

The improved claim models developed using the approaches in this thesis should finally be

applied to assess the impact of climate change. Similarly to Haug et al. (2011), it is of interest

to predict the claim frequency for a scenario period, such as, 2071-2100. To obtain these claim

frequencies, the covariates introduced in Chapter 6 have to be derived based upon general

circulation models (GCM). This requires both downscaling and calibration in order to achieve

future weather data from these climate models. Some research on future rainfall events in Norway

has already been undertaken (Orskaug et al., 2011). However, the new covariates proposed here

are defined over time periods which may correspond to more than one severe weather event and

this may make the derivation of future covariate values more difficult.

Conditional on future weather covariates being derivable, the models in this thesis can then

be applied in combination with a claim size distribution as formulated by Haug et al. (2011). In

particular, the monetary losses over each period are assumed to be Gamma distributed as the

sparse data will lead to a high uncertainty in the estimates for more complex statistical models.

The results by Haug et al. (2011) indicate an increase in both the claim frequency and claim

size in the future. However, their claim model does not allow differentiate between the emissions
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models A2 and B2 as the corresponding approximate 95% confidence intervals overlap. This

result is quite unsatisfactory as politics and economy should have more certainty in how far the

climate change affects the society. Further, politics and science are interested in the differences

between different emission models such that they have additional information for future decision

making. Therefore, the improved claim models in this thesis may provide a better understanding

by applying them in combination with climate modelling.
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A.1 Temporal Variation in the Rainfall Levels
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Figure A.1.1: Observations for Rk,t for four municipalities across Norway for 1998.
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A.2 Spatial Variation of the Difference in Snow-water Equiva-

lent

Figure A.2.1: Average positive difference in snow-water equivalent ∆Sk,t|∆Sk,t > 0 between 1997 and
2006.
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A.3 Correlation between Claims and Rainfall
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Figure A.3.1: Kendall’s correlation coefficient between number of claims Nk,t and amounts of pre-
cipitation Rk,t−1 and Rk,t in dependency on Ck,t. The functional level corresponds to
the correlation between Nk,t and Rk,t−1 (Row 1), and Nk,t and Rk,t (Row 2) for Oslo
(Column 1) and Bergen (Column 2) conditional on Ck,t being smaller or equal uC .
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Figure A.3.2: Spearman’s correlation coefficient between number of claims Nk,t and amounts of pre-
cipitation Rk,t−1 and Rk,t in dependency on Ck,t. The functional level corresponds to
the correlation between Nk,t and Rk,t−1 (Row 1), and Nk,t and Rk,t (Row 2) for Oslo
(Column 1) and Bergen (Column 2) conditional on Ck,t being smaller or equal uC .
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B.1 Trace plots for the sampled intercepts and covariate effects

for Oslo and Bergen
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Figure B.1.1: Trace plots of the sampled realizations from the posterior distribution for the Binomial
model and the original covariates for Oslo and Bergen.
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Figure B.1.2: Trace plots of the sampled realizations from the posterior distribution for the Binomial
model and the proposed covariates for Oslo and Bergen.
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Figure B.1.3: Trace plots of the sampled realizations from the posterior distribution for the Hurdle
component of the Poisson-Hurdle model and the proposed covariates for Oslo and Bergen.
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Figure B.1.4: Trace plots of the sampled realizations from the posterior distribution for the Poisson
component of the Poisson-Hurdle model and the proposed covariates for Oslo and Bergen.
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B.2 Posterior Mean estimates for the Binomial model with pro-

posed covariates

Figure B.2.1: Posterior mean estimates of the baseline risk and the covariate effects obtained for the
Binomial model with the proposed data.
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B.3 Predicting the weekly average number of claims
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Figure B.3.1: Comparison of predictive performance for the Binomial model with original covariates
and a prediction of the average weekly number of claims over the test period (left panel).
The right panel illustrates the performance of predicting the average number of weekly
claims with respect to the rank of the municipality in terms of number of policies.
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C.1 Derivation of the Prior Density φ (∆k | η) in Section 4.2.3

We derive the prior density φ (∆k | η) in expression (4.2.8) in Section 4.2.3. For notational

simplicity, the index k is dropped in the following. The number of points in ∆, corresponding to

the number of jumps of λ, is defined as geometrically distributed with probability η−1, η > 1.

Hence, its probability mass function is formally given as

P (n (∆) = n | η) =
1

η

(
1− 1

η

)n
.

Conditional on n (∆), the distribution of the number of points in the subprocesses ∆1, . . . ,∆I

is specified as being uniform over the set of possibilities to allocate n(∆) points to I processes.

Thus, the distribution n (∆1) , . . . , n (∆I)
∣∣∣ n (∆) has probability mass function

P

[
n (∆1) = n1, . . . , n (∆I) = nI

∣∣∣ n(∆) :=
I∑
i=1

n (∆i) = n

]
=

(
n+ I − 1

n

)−1

.

For subprocess ∆i, i = 1, . . . , I, the location ξi,j , j = 1, . . . , n (∆i), is uniformly distributed

on the subspace Xi with volume |Xi|. The density for the vector ξi =
(
ξi,1, . . . , ξi,n(∆i)

)
, given

n (∆i), is thus

π
[
ξi | n(∆i)

]
=

[
1

|Xi|

]n(∆i)

, i = 1, . . . , I.

Given the n(∆) locations, the marks are defined to be uniformly distributed on the prespecified

interval [δmin, δmax], subject to them satisfying the monotonic constraints. Formally, the density

160
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yields to

π
(
δ1, . . . , δI | ξ1, . . . , ξI

)
=

n (∆)!

Z
(
ξ1, . . . , ξI

) ( 1

δmax − δmin

)n(∆)

,

where n (∆)! is the total number of permutations and Z
(
ξ1, . . . , ξI

)
denotes the number of

permutations which satisfy the monotonic constraints. For instance, if the covariate space is

one-dimensional, m = 1, then the monotonic constraint imposes a total ordering and, hence,

Z
(
ξ1, . . . , ξI

)
= 1.

Combining the individual densities and by application of the chain rule, φ (∆k | η) results in

π
(
δ1, . . . , δI | ξ1, . . . , ξI

)
×

I∏
i=1

π
[
ξi | n (∆i)

]
× π [n(∆1), . . . , n(∆I) | n(∆)]× π [n(∆) | η]

=
n(∆)!

Z
(
ξ1, . . . , ξI

) ( 1

δmax − δmin

)n(∆)

×
I∏
i=1

[
1

|Xi|

]n(∆i)

×
(
n(∆) + I − 1

n(∆)

)−1

× 1

η

(
1− 1

η

)n(∆)

.

C.2 Details of the RJMCMC Algorithm

The following calculations derive the acceptance probabilities for the defined moves Birth, Death

and Shift. For notational clarity, we first derive the acceptance probabilities in case ω = 0, that

is, the prior for ∆k, k = 1, . . . ,K, yields to φ (∆k | η). As λ1, . . . , λK are independent in this

case, we consider λk, k = 1, . . . ,K, individually and drop the index k in the following. The

proposed moves and associated acceptance probabilities are then similar to Saarela and Arjas

(2011).

Prior to sampling the proposed move, one of the I processes ∆1, . . . ,∆I is randomly selected

with equal probability. Let ∆i denote the process which is to be updated. Next, one of the

three defined moves Birth, Death and Shift is randomly selected with probability pBirth, pDeath

and 1 − pBirth − pDeath, respectively. If ∆i contains no point, a proposed Death or Shift is

rejected immediately. As Birth and Death lead to an increase and decrease, respectively, in the

dimension of the parameter space, their acceptance probability has to be derived according to

Green (1995).

In case of Birth, we propose to add a point (ξ∗, δ∗) to the current process ∆i. The proposal

(ξ∗, δ∗) is generated by first sampling the proposed location ξ∗ uniformly on Xi. Next, the

associated mark δ∗ is sampled uniformly over the interval of values which satisfy the monotonic

constraint, that is, the proposal distribution for δ∗ depends on both ξ∗ and the current set of
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marked point processes ∆k. The mapping between the parameter spaces then corresponds to

the identity function and, thus, the determinant of the Jacobian is equal to 1. The reverse move

Death selects one of the points in ∆i with equal probability and proposes to remove it.

The acceptance probability for a Birth is then of the form

min

{
1,

T∏
t=1

f (yt | λ∗ (xt) ,θ)

f (yt | λ (xt) ,θ)
× φ (∆∗ | η)

φ (∆ | η)
× 1

q (ξ∗, δ∗ |∆)
× pDeath
pBirth

}
.

By using the expression for φ (∆ | η) derived in the previous Section C.1, the right-hand term

in the acceptance probability can be written as

T∏
t=1

f (yt | λ∗ (xt) ,θ)

f (yt | λ (xt) ,θ)
× π (δ1, . . . , δ

∗
i , . . . δI | ξ1, . . . , ξ

∗
i . . . , ξI)

π (δ1, . . . , δi, . . . δI | ξ1, . . . , ξi . . . , ξI)
× π [ξ∗i | n (∆i) + 1]

π [ξi | n (∆i)]
×

π [n (∆1) , . . . , n (∆i) + 1, . . . , n (∆I) | n (∆) + 1]

π [n (∆1) , . . . , n (∆i) , . . . , n (∆I) | n (∆)]
× π [n (∆) + 1 | η]

π [n (∆) | η]
× 1

q (ξ∗, δ∗ |∆)
× pDeath
pBirth

.

where ξ∗i = {ξi,j : j = 1, . . . , n (∆i)} ∪ ξ∗ and δ∗i = {δi,j : j = 1, . . . , n (∆i)} ∪ δ∗. By using

conditional probabilities and evaluating the prior densities, this term can be simplied to

T∏
t=1

f (yt | λ∗ (xt) ,θ)

f (yt | λ (xt) ,θ)
× π (δ∗ |∆, ξ∗)× π (δ1, . . . , δi, . . . , δI | ξ1, . . . , ξ

∗
i , . . . , ξI)

π (δ1, . . . , δi, . . . , δI | ξ1, . . . , ξi, . . . , ξI)
× 1

|Xi|
×(n(∆)+I−1

n(∆)

)(n(∆)+I
n(∆)+1

) × (1− 1

η

)
× 1

q (δ∗ |∆, ξ∗)× q (ξ∗)
× pDeath
pBirth

.

This equation is simplified further as follows: Firstly, π (δ1, . . . , δi, . . . , δI | ξ1, . . . , ξ
∗
i , . . . , ξI)

in the numerator is independent of the proposed location ξ∗ and hence cancels with the term

π (δ1, . . . , δi, . . . , δI | ξ1, . . . , ξi, . . . , ξI) in the denominator. Secondly, the proposal density q (ξ∗)

is equal to 1/ |Xi| and hence cancels with the second term of the prior ratio. Finally, π (δ∗ |∆, ξ∗)

is a uniform density on the interval of marks which satisfy the monotonic constraints imposed

by the locations in ∆∗. As this is identical to the proposal density, π (δ∗ |∆, ξ∗) cancels with

q (δ∗ |∆, ξ∗). Consequently, the acceptance probability for a Birth yields

min

{
1,

T∏
t=1

f (yt | λ∗ (xt) ,θ)

f (yt | λ (xt) ,θ)
× n (∆) + 1

n (∆) + I
×
(

1− 1

η

)
× pDeath
pBirth

}
.

Diametrically, in case the proposed move is Death, the proposed set ∆∗ of marked point
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processes contains n(∆)− 1 points. Hence, the acceptance probability for Death results in

min

{
1,

T∏
t=1

f (yt | λ∗ (xt) ,θ)

f (yt | λ (xt) ,θ)
× n (∆) + I − 1

n (∆)
×
(

1− 1

η

)−1

× pBirth
pDeath

}
.

Finally, a Shift proposes to shift both the location and level of an existing support point

while preserving the current partial ordering of the support points. The point (ξi,j , δi,j) ∈ ∆i

to be shifted is selected with equal probability. A new location ξ∗i,j is then sampled uniformly

with the lower and upper bounds in each covariate being given by the next higher and lower

covariate values; see Saarela and Arjas (2011) for details. The proposed mark δ∗i,j∗ is then

sampled uniformly on the set of possible values which preserve the monotonic constraint. This

approach implies that the current and proposed set of marked point processes, ∆ and ∆∗,

respectively, have the same prior and proposal density. Hence, the acceptance probability is

equal to the likelihood ratio.

After deriving the acceptance probabilities for ω = 0, the case ω > 0 is considered. As

the general prior π (∆1, . . . ,∆K | ω, η) is the product of φ (∆k | η) and the defined dependence

model π (λ1, . . . , λK | ω), the acceptance probability has to be extended by the ratio in the

dependence components, but remains the same otherwise. For instance, in case a Birth is

proposed for process ∆k,i, the acceptance probability is given as

min

{
1,

Tk∏
t=1

f (yk,t | λ∗k (xk,t) ,θk)

f (yk,t | λk (xk,t) ,θk)
×
π (∆1, . . . ,∆

∗
k, . . . ,∆K | ω, η)

π (∆1, . . . ,∆k, . . . ,∆K | ω, η)
× 1

q (ξ∗, δ∗ |∆)
× pDeath
pBirth

}

= min

{
1,

Tk∏
t=1

f (yk,t | λ∗k (xk,t) ,θk)

f (yk,t | λk (xk,t) ,θk)
×
π (λ1, . . . , λ

∗
k, . . . , λK | ω)

π (λ1, . . . , λk, . . . , λK | ω)
×
φ (∆∗k | η)

φ (∆k | η)
×

1

q (ξ∗, δ∗ |∆)
× pDeath
pBirth

}
.

= min

1,

Tk∏
t=1

f (yk,t | λ∗k (xk,t) ,θk)

f (yk,t | λk (xk,t) ,θk)
×

K∏
k′=1
k′ 6=k

exp
[
−ω · dk,k′ ·Dp,q (λ∗k, λk′)

]
exp

[
−ω · dk,k′ ·Dp,q (λk, λk′)

] × (1− 1

η

)
×

n (∆k) + 1

n (∆k) + I
× pDeath
pBirth

}
.

as only the pairs in π (λ1, . . . , λK | ω) involving λk have to be evaluated.
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C.3 Detection of Discontinuities via Sampled Point Processes

Interest lies in the detection of discontinuities in λk based on the samples obtained via the

RJMCMC algorithm. For notational simplicity, the index k is dropped in the following as the

outlined procedure considers the K functions independently. To detect discontinuities, sampled

points have to be distinguished into those representing a jump and those approximating a

continuous shape. In general, discontinuities are expected to occur in most of the samples,

i.e. they are removed with low probability and a shift is only likely to be accepted if it changes

the point marginally in both location and mark. Assume that a functional change in λ is defined

as a discontinuity if the change in the functional level exceeds a threshold ρ.

Based on these considerations, each sampled point is classified as follows: Consider the

r + 1th sample, ∆(r+1). Further, let Ψ(r) =
{
ψ

(r)
1 , . . . ,ψ

(r)

n(Ψ(r))

}
denote the set of potential

discontinuities after iteration r = 1, . . . , R. A point
(
ξ

(r+1)
j , δ

(r+1)
j

)
, j = 1, . . . , n

(
∆(r+1)

)
, in

∆(r+1), is then examined as follows:

1. If the functional level difference of λ(r+1) at ξ
(r+1)
j is smaller than ρ, the point is not

classified as potential discontinuity. Formally, it is checked whether

λ
(r+1)
k

(
ξ

(r+1)
j

)
= δ

(r+1)
j < λ

(r+1)
k

(
ξ

(r+1)
j − ε

)
+ ρ,

where ξ
(r+1)
j − ε refers to close point on which ξ

(r+1)
j puts a monotonic constraint.

2. Given that the functional level difference exceeds ρ, we examine whether it coincides

with one of the potential discontinuities in Ψ(r). Consider one potential discontinuity

ψ
(r)
h =

(
ξ̃

(r)
ψh
, δ̃

(r)
ψh
, ñ

(r)
ψh

)
, h = 1, . . . , n(Ψ(r)), where the third entry denotes the number of

occurrences of this discontinuity in the first r samples. Then,
(
ξ

(r+1)
j , δ

(r+1)
j

)
is considered

as the same discontinuity as ψ
(r)
h if is close to it in both its location and mark. Formally,

we check whether

(a)
∥∥∥ξ(r+1)

j − ξ̃(r)
ψh

∥∥∥2

2
≤ τ , i.e the points are close in the covariate space and,

(b)
∣∣∣δj − δ̃ψh∣∣∣ ≤ υ, i.e. the points have similar functional level,

where τ and υ are prespecified constants. If no point in Ψ fulfills these two properties,(
ξ

(r+1)
j , δ

(r+1)
j

)
is added to the set. Otherwise, the current discontinuity ψh is updated
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via

ξ̃
(r+1)
ψh

=
ñ

(r)
ψh

ñ
(r)
ψh

+ 1
ξ̃

(r)
ψh

+
1

ñ
(r)
ψh

+ 1
ξj component-wise,

δ̃
(r+1)
ψh

=
ñ

(r)
ψh

ñ
(r)
ψh

+ 1
δ̃

(r)
ψh

+
1

ñ
(r)
ψh

+ 1
δj ,

ñ
(r+1)
ψh

= ñ
(r)
ψh

+ 1

Based on this classification, potential discontinuities are listed and their empirical occurrence

rate across the R samples is derived.

C.4 Posterior Mean Plots for Sensitivity Analysis on η

In the following, the posterior mean plots for regions 1 and 2 for the four settings and five studies

in Table 4.3.1 on page 90 are presented. While the posterior mean plots for the settings with

ω 6= 0 are more or less the same, some differences are found, when we compare them to the case

ω = 0. The plots show that, due to the lack of information for extrapolation, the functional

levels are different from the truth at the border of the sample space. Hence, the performance

was only evaluated based on the convex hull of the observations for the region itself. In other

words, the poor fit in the lower left and upper right corner does not affect the results in Table

4.3.1. This section further presents some trace plots which were used to confirm convergence

and to assess the mixing of the sampled Markov chains. All trace plots indicate convergence and

also a moderate to good mixing, in particular, for region 2. The quality of mixing also correlates

negatively with the number of points as a higher number means that the functional level at an

arbitrary point changes less frequently. For instance in Study 1 for η = η̂, the average number

of points for region 1 is 280 while it is about 60 for region 2.
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Study 1

Setting Region 1 Region 2

ω = 0

η = 10

η = 1000

η = η̂

Figure C.4.1: Posterior mean plots for region 1 (left column) and region 2 (right column) for different
settings of η and ω = 0.
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Region 1 Region 2
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Figure C.4.2: Trace plots of the functional level at five random points for region 1 (left column) and
region 2 (right column) for η = η̂.
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Study 2

Setting Region 1 Region 2

ω = 0

η = 10

η = 1000

η = η̂

Figure C.4.3: Posterior mean plots for region 1 (left column) and region 2 (right column) for different
settings of η and ω = 0.
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Region 1 Region 2
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Figure C.4.4: Trace plots of the functional level at five random points for region 1 (left column) and
region 2 (right column) for η = η̂.
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Study 3

Setting Region 1 Region 2

ω = 0

η = 10

η = 1000

η = η̂

Figure C.4.5: Posterior mean plots for region 1 (left column) and region 2 (right column) for different
settings of η and ω = 0.
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Region 1 Region 2
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Figure C.4.6: Trace plots of the functional level at five random points for region 1 (left column) and
region 2 (right column) for η = η̂.
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Study 4

Setting Region 1 Region 2

ω = 0

η = 10

η = 1000

η = η̂

Figure C.4.7: Posterior mean plots for region 1 (left column) and region 2 (right column) for different
settings of η and ω = 0.
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Region 1 Region 2
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Figure C.4.8: Trace plots of the functional level at five random points for region 1 (left column) and
region 2 (right column) for η = η̂.
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Study 5

Setting Region 1 Region 2

ω = 0

η = 10

η = 1000

η = η̂

Figure C.4.9: Posterior mean plots for region 1 (left column) and region 2 (right column) for different
settings of η and ω = 0.
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Figure C.4.10: Trace plots of the functional level at five random points for region 1 (left column) and
region 2 (right column) for η = η̂.



APPENDIX C. SUPPLEMENTARY MATERIAL CHAPTER 4 176

C.5 Posterior Mean Plots for Sensitivity Analysis on p and q

Study 1 - Region 1

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.1: Posterior mean plots for Region 1 for different settings of p and q, and for ω = 0.
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Study 1 - Region 2

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.2: Posterior mean plots for Region 2 in Study 1 for different settings of p and q, and for
ω = 0.
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Study 2 - Region 1

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.3: Posterior mean plots for Region 1 in Study 2 for different settings of p and q, and for
ω = 0.
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Study 2 - Region 2

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.4: Posterior mean plots for Region 2 in Study 2 for different settings of p and q, and for
ω = 0.
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Study 3 - Region 1

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.5: Posterior mean plots for Region 1 in Study 3 for different settings of p and q, and for
ω = 0.
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Study 3 - Region 2

p = 1, q = 1 p = 1, q = 2

p = 0.1, q = 1 p = −1, q = 1

p = 2, q = 1 ω = 0

Figure C.5.6: Posterior mean plots for Region 2 in Study 3 for different settings of p and q, and for
ω = 0.
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C.6 Posterior mean plots for Case Study

Figure C.6.1: Posterior mean plots for ω = ωopt for the Norwegian municipalities of Hurum (top) and
Oslo (bottom) considered in Section 4.4.
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D.1 Threshold-stability of the IGPD

Lemma 1. Let N be an integer-valued random variable with N | N > u ∼ IGPD(σu, ξ, u),

u ∈ R. Then for any threshold v > u, the distribution N | N > v corresponds to a IGPD with

scale σu + ξ (bvc − buc) and shape ξ.

Proof. We prove the lemma via the survival function P (N > n | N > v), where n is integer. By

applying conditional probabilities, P (N > n | N > v) can be expressed by

P (N > n | N > v) =
P (N > n | N > u)

P (N > v | N > u)

=
P (H > n − buc)
P (H > bvc − buc)

where H is GPD with parameters µ = 0, σu and ξ. Next, the two cases ξ = 0 and ξ 6= 0 are

considered separately. For ξ = 0, P (N > n | N > v) simplifies to

P (N > n | N > v) =
1−

[
1− exp

(
− n −buc

σu

)]
1−

[
1− exp

(
− bvc−bucσu

)]
=

exp
(
− n −buc

σu

)
exp

(
− bvc−bucσu

)
= exp

(
−n− bvc

σu

)
.

This corresponds to the survival function of a IGPD for threshold v with scale σu and shape

183
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ξ = 0. Next, for ξ 6= 0, P (N > n | N > v) can be expressed as

P (N > n | N > v) =

[
1 + ξ( n −buc)

σu

]− 1
ξ

+[
1 + ξ(bvc−buc)

σu

]− 1
ξ

+

=

[
σu + ξ ( n − buc)
σu + ξ (bvc − buc)

]− 1
ξ

+

=

[
σu + ξ ( n − bvc+ bvc − buc)

σu + ξ (bvc − buc)

]− 1
ξ

+

=

[
1 +

ξ ( n − bvc)
σu + ξ (bvc − buc)

]− 1
ξ

+

,

which is the survival function of a IGPD above threshold v with scale parameter σu+ξ (bvc − buc)

and shape parameter ξ. Consequently, the threshold stability is proven for each threshold v > u

and any pair of parameter values σu > 0 and ξ.

D.2 Threshold-stability of the mixture tail

Lemma 2. Let N be an integer-valued random variable with N | N > u having distribution

function

P (N = n | N > u) = p P(Y = n) + (1− p) P(Z = n)

where Y ∼ IGPD(σu, ξ, u) and Z being a truncated Poisson above threshold u with parameter κ.

Then for any v > u, the random variable N | N > v, is distributed according to a mixture of

an IGPD(σu + ξ (bvc − buc) , ξ, v) and a truncated Poisson above v with rate parameter κ and

mixture probability

pv =
p P(Y > v)

p P(Y > v) + (1− p) P(Z > v)
.

Proof. Consider any combination n > v > u. Then, based on conditional probabilities,

P(N > n | N > v)

=
P(N > n | N > u)

P(N > v | N > u)

=
p P(Y > n) + (1− p) P(Z > n)

p P(Y > v) + (1− p) P(Z > v)

=
p P(Y > n | Y > v) P(Y > v) + (1− p) P(Z > n|Z > v) P(Z > v)

p P(Y > v) + (1− p) P(Z > v)
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By defining

pv =
p P(Y > v)

p P(Y > v) + (1− p) P(Z > v)
,

we obtain

P(N > n | N > v) = pv P(Y > n | Y > v) + (1− pv) P(Z > n | Z > v).

Based on the threshold-stability in Appendix D.1, Y | Y > v ∼ IGPD(σu + ξ(bvc − buc), ξ, v).

Further, Z | Z > v is a truncated Poisson above v with rate κ. Hence, N | N > v is distributed

according to a mixture of an IGPD and a truncated Poisson.

D.3 Details of the MCMC algorithm

Let D = {(ñi, x̃i) , i = 1, . . . ,m} denote the set of observed claim numbers and covariates effects.

Further, a latent binary variable vi is introduced for each observation ñi which is defined by

vi =


1 if ñi is a realization from the distribution Ỹ

0 otherwise.

We set a Beta(1, 1) prior on the mixing probability p and an improper prior on the remaining

parameters, π(β, δ, ξ, κ) ∝ 1. Hence, the posterior distribution π(p,β, ξ, δ, κ, v1, . . . , vI |D) is

proportional to

m∏
i=1

{[
p P

(
Ỹ = ñi | β, ξ, δ, x̃

)]vi [
(1− p) P

(
Z̃ = ñi | κ

)]1−vi
}
π(p)

Realizations from this posterior distribution are sampled by a Metropolis-within-Gibbs algorithm

which runs for a fixed number of iterations J . Let p(0),β(0), ξ(0), δ(0) and λ(0) denote the initial

parameter values. The update procedure for all parameters within one iteration step j = 1, . . . , J

is as follows:

At the start of iteration step j, the latent variables v
(j)
1 , . . . , v

(j)
m are sampled from a Bernoulli

distribution

v
(j)
i ∼ Bernoulli

[
w

(j)
i

]
.

The probability of observation ñi being sampled from the covariate-driven component Ỹ , w
(j)
i ,
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is given by

w
(j)
i =

p(j−1) P
[
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

]
p(j−1) P

[
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

]
+
[
1− p(j−1)

]
P
[
Z̃ = ñi

] .
Since we placed a conjugate Beta prior on p, the parameter value is updated by sampling from

the full-conditional Beta posterior

p(j) ∼ Beta

(
I∑
i=1

v
(j)
i + 1, I −

I∑
i=1

v
(j)
i + 1

)
.

The model parameters β, ξ and δ are updated separately via Random-Walk-Metropolis with

Gaussian proposal. For the covariate effects β, the proposal β∗ is accepted with probability

min

1,
∏

v
(j)
i =1, ñi>u

P
[
Ỹ = ñi | β∗, ξ(j−1), δ(j−1), x̃i

]
P
[
Ỹ = ñi | β(j−1), ξ(j−1), δ(j−1), x̃i

]
 ,

whilst the proposal ξ∗ has acceptance probability

min

1,
∏

v
(j)
i =1, ñi>u

P
[
Ỹ = ñi | β(j), ξ∗, δ(j−1), x̃i

]
P
[
Ỹ = ñi | β(j), ξ(j−1), δ(j−1), x̃i

]
 .

Note, the likelihood needs only to be evaluated for the observations with latent variable v
(j)
i = 1

and the number of observations ñi greater than the threshold. Next, the covariate effects for

the rate parameter κ are updated. Here, the likelihood has to be evaluated for all observations

with v
(j)
i = 1 as δ effects the threshold exceedance model. The acceptance ratio is thus given by

min

1,
∏
v
(j)
i =1

P
[
Ỹ = ñi | β(j), ξ(j), δ∗, x̃i

]
P
[
Ỹ = ñi | β(j), ξ(j), δ(j−1), x̃i

]
 .

Finally, the rate parameter κ is updated via an independence sampler with uniform proposal

distribution. The acceptance probability then yields to

min

1,
∏
v
(j)
i =0

P
[
Z̃ = ñi | κ∗

]
P
[
Z̃ = ñi | κ(j−1)

]
 .
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D.4 Estimates for Leaving Highest Observation Out

Table D.4.1: Posterior mean estimates, lower 5% quantile (q0.05) and upper 5% quantile (q0.95) of
the model parameters for the municipalities of Oslo, Bærum and Bergen with thresholds
uk = 4, 2 and 4, respectively, when leaving the highest claim observation out.

City Statistic p β0 β1 β2 β3 ξ δ0 δ1 δ2 δ3 κ

Oslo Mean 0.89 0.24 0.07 0.22 0.75 -0.30 -0.17 0.42 0.32 0.71 2.20
q0.05 0.83 -0.37 -0.12 0.10 0.43 -0.69 -0.31 0.29 0.22 0.57 1.66
q0.95 0.95 0.91 0.25 0.33 1.04 0.10 -0.04 0.56 0.42 0.86 2.89

Bærum Mean 0.81 -1.19 0.25 0.26 0.81 0.11 -0.94 0.49 0.35 0.97 1.06
q0.05 0.61 -2.20 0.08 0.10 0.31 -0.30 -1.65 0.18 0.21 0.57 0.67
q0.95 0.95 -0.37 0.44 0.44 1.32 0.54 -0.57 1.05 0.58 1.68 1.65

Bergen Mean 0.88 -0.46 0.01 0.19 0.26 0.58 -0.53 0.14 0.14 0.41 1.20
q0.05 0.79 -1.51 -0.15 0.04 -0.04 0.14 -0.73 0.09 0.07 0.34 0.66
q0.95 0.95 0.48 0.17 0.34 0.55 1.23 -0.36 0.20 0.21 0.49 1.89
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (2013). Modelling Extremal Events: for In-

surance and Finance, volume 33 of Stochastic Modelling and Applied Probability. Springer.

Eshita, N. (1977). An estimation of claims distribution. ASTIN Bulletin, 9(1-2):111–118.

Fang, Z. and Meinshausen, N. (2012). LASSO isotone for high-dimensional additive isotonic

regression. Journal of Computational and Graphical Statistics, 21(1):72–91.

Farah, M., Kottas, A., and Morris, R. D. (2013). An application of semiparametric Bayesian

isotonic regression to the study of radiation effects in spaceborne microelectronics. Journal of

the Royal Statistical Society: Series C (Applied Statistics), 62(1):3–24.



BIBLIOGRAPHY 194

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of

Statistics, 1(2):209–230.

Fotheringham, A. S., Brunsdon, C., and Charlton, M. (2002). Geographically Weighted Regres-

sion: The Analysis of Spatially Varying Relationships. John Wiley & Sons.

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. Journal of the American

Statistical Association, 76(376):817–823.

Frigessi, A., Haug, O., and Rue, H. (2002). A dynamic mixture model for unsupervised tail

estimation without threshold selection. Extremes, 5(3):219–235.

Fuchs, A. and Wolff, H. (2011). Concept and unintended consequences of weather index insur-

ance: the case of Mexico. American Journal of Agricultural Economics, 93(2):505–511.

Furman, E. and Zitikis, R. (2008). Weighted premium calculation principles. Insurance: Math-

ematics and Economics, 42(1):459–465.

Gelfand, A. E., Diggle, P., Guttorp, P., and Fuentes, M. (2010). Handbook of Spatial Statistics.

CRC press.

Gelfand, A. E., Kottas, A., and MacEachern, S. N. (2005). Bayesian nonparametric spatial

modeling with Dirichlet process mixing. Journal of the American Statistical Association,

100(471):1021–1035.

Gelfand, A. E. and Kuo, L. (1991). Nonparametric Bayesian bioassay including ordered polyto-

mous response. Biometrika, 78(3):657–666.

Gelfand, A. E. and Sahu, S. K. (1999). Identifiability, improper priors, and Gibbs sampling for

generalized linear models. Journal of the American Statistical Association, 94(445):247–253.

Gerber, H. U. (1974). On additive premium calculation principles. Astin Bulletin, 7(3):215–222.

Ghosal, S., Sen, A., and van der Vaart, A. W. (2000). Testing monotonicity of regression. The

Annals of Statistics, 28(4):1054–1082.

Goovaerts, M. J. and Haezendonck, J. (1984). Insurance Premiums: Theory and Applications.

North-Holland.



BIBLIOGRAPHY 195

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82(4):711–732.

Green, P. J. and Richardson, S. (2002). Hidden Markov models and disease mapping. Journal

of the American Statistical Association, 97(460):1055–1070.

Guttorp, P. (1991). Spatial statistics in ecology. In National Research Council, editor, Spatial

Statistics and Digital Image Analysis, pages 129–146. The National Academy Press, Wash-

ington, DC.

Handcock, M. S. and Wallis, J. R. (1994). An approach to statistical spatial-temporal modeling

of meteorological fields. Journal of the American Statistical Association, 89(426):368–378.

Hastie, T. J. and Tibshirani, R. J. (1986). Generalized additive models. Statistical Science,

1(3):297–310.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman & Hall.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their appli-

cations. Biometrika, 57(1):97–109.

Haug, O., Dimakos, X. K., V̊ardal, J. F., Aldrin, M., and Meze-Hausken, E. (2011). Future

building water loss projections posed by climate change. Scandinavian Actuarial Journal,

2011(1):1–20.

Hawn, M. T., Graham, L. A., Richman, J. S., Itani, K. F., Henderson, W. G., and Maddox,

T. M. (2013). Risk of major adverse cardiac events following noncardiac surgery in patients

with coronary stents. JAMA, 310(14):1462–1472.

He, X. and Shi, P. (1998). Monotone B-spline smoothing. Journal of the American Statistical

Association, 93(442):643–650.

Heikkinen, J. (2003). Trans-dimensional Bayesian non-parametrics with spatial point processes.

In Green, P. J., Hjort, N. L., and Richardson, S., editors, Highly Structured Stochastic Systems,

pages 203–207. Oxford University Press.

Heikkinen, J. and Arjas, E. (1998). Non-parametric Bayesian estimation of a spatial Poisson

intensity. Scandinavian Journal of Statistics, 25(3):435–450.



BIBLIOGRAPHY 196

Heimfarth, L. E. and Musshoff, O. (2011). Weather index-based insurances for farmers in the

North China Plain: An analysis of risk reduction potential and basis risk. Agricultural Finance

Review, 71(2):218–239.
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