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Abstract 

Channel bank erosion processes are controlled by numerous factors and as such are both temporally 

and spatially variable. The significance of channel bank erosion to the sediment budget is difficult to 

quantify without extensive fieldwork/data analysis. In this study, the importance of key physical factors 

controlling channel bank erosion, including channel slope, upstream catchment area, channel 

confinement, and sinuosity were explored using regression analysis. The resulting analysis can be used 

in practical studies to provide a first approximation of bank erosion rates (in catchments similar to 

those investigated). A dataset of channel bank erosion rates covering eight contrasting river catchments 

across England and Wales, over a time period of up to 150 years was created using a modified GIS 

methodology. The best predictors were found to upstream area, channel confinement and sinuosity 

with respect to dimensionless width averaged retreat rates (m m
-1

yr
-1

). Notwithstanding these 

relationships, the results highlight the variability of the magnitude of sediment production by channel 

bank erosion both within and between catchments.  
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1. Introduction 

Channel bank erosion processes  are a source of sediment within river catchments and have 

been shown to represent a significant component of the catchment sediment budget (Collins et al., 

1997; Owens et al., 2000; Wilkinson et al., 2005; De Rose et al., 2005; Walling and Collins, 2005; 

Walling, 2005; Walling et al., 1999, 2008; Collins et al., 2012; Kronvang et al., 2013; Lu et al., 2014; 

Neal and Anders, 2015). Bank erosion may entrain fine-grained sediment with high loading of 

pollutants (e.g. nutrients including phosphorus and heavy metals). Additionally, enhanced sediment 

mobilisation and delivery can result in detrimental biological and ecological impacts in river systems 

such as a reduction in biodiversity (e.g. decreased salmon spawning success as observed by Theurer, 

1998 and Soulsby et al., 2001), and lowering of productivity due to a reduction in the depth of the 

photic zone (Devlin et al., 2008). The EU Water Framework Directive (WFD) requires Member States 

to achieve chemical and ecological standards for rivers and these are strongly influenced by fine 

sediment mobilisation and transport. Therefore, while explicit sediment thresholds are not defined in 

the WFD, there is growing recognition of the need for improved unders tanding of sediment generation 

mechanisms for supporting the development of river basin management plans aimed at controlling 

diffuse pollution problems (Collins et al., 2011).  

Rates of channel bank erosion are influenced by numerous factors such as the composition of 

bank material (Hooke, 1980; Bull, 1997; Couper, 2003; Julian and Torres, 2006), bank geometry 

(Michelli and Kirchner, 2002; Laubel et al., 2003; Walling, 2005; Walling et al., 2006), discharge 

magnitude (Knighton, 1973; Gautier et al., 2007; Hooke 2008) and riparian vegetation (Micheli and 

Kirchner, 2002; Simon and Collinson, 2002; Laubel et al., 2003; Mattia et al., 2005). The effects of 

anthropogenic factors include, amongst others, removal of bank vegetation increasing bank erosion 

(Allan et al., 1997), trampling and poaching by livestock (Kondolf et al., 2002; Collins et al., 2013), the 

influence of flood control structures reducing peak flows (Michalkova et al., 2011) and increased bank 

erosion in urban areas due to flashier runoff (Neller, 1988). As such, bank erosion rates are highly 

spatially and temporally variable (Hooke, 1980; Bull, 1997; Lawler et al., 1999; Leys and Werritty, 

1999; Couper et al., 2002; Collins and Anthony, 2008; Collins 2009a,b).   

The influence of channel radius of curvature on bank erosion rates has been noted in several 

studies (Hickin and Nanson, 1975; Thorne 1991; Hooke 2003) as a result of changes to flow geometry 
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within the channel with changes in curvature. As radius of curvature decreases, high velocity flow is 

directed towards the outer channel bank, increasing bank erosion rates. Below a threshold value, bank 

erosion rates decline with further lowering of radius of curvature due to the formation of secondary 

cells, protecting the bank (Hey and Thorne, 1975; Bathurst et al., 1977). Knighton (1998) also noted 

the change in shear stress distribution within channels of low radius of curvature resulting in 

accelerated downstream migration. This is due to the point of maximum flow velocity (and hence 

maximum shear stress) being located downstream of the bend apex in highly sinuous channels.  

Channel curvature (and curvature ratio; radius of curvature divided by channel width) is inversely 

related to sinuosity up to sinuosities of approximately 1.5, above this value channel curvature ratio 

decreases with increasing sinuosity (Julien, 2002). A relationship between bank erosion and channel 

sinuosity has also been noted (Abam 1993; Schilling and Wolter, 1999).  

Channel bank erosion (and therefore lateral migration) may also be restricted by valley walls. 

Lewin and Brindle (1977) first identified channel confinement and described three degrees of 

confinement based on decreasing valley width relative to channel width: 1) wide-floored valleys with 

infrequent contact with valley walls, 2) floodplains narrower than the amplitude of meander bends, and 

3) well-developed meandering restricting further meander development. Links between channel 

sinuosity and confinement have been observed; lower values of sinuosity  are found within confined 

sections of river channel (Milne, 1983; Tooth et al., 2002; Nicoll and Hicken, 2010). However, little 

has been done to investigate the influence of confinement on channel bank erosion rates.   

        Previous empirical studies have observed bank erosion rates over timescales of months to years 

using a range of field techniques (Collins and Walling, 2004) such as erosion pin monitoring (Lawler, 

1993; Ashbridge, 1995), repeated cross channel surveys (Hickin and Nanson, 1975) and aerial 

photographs (Hooke; 1980; Micheli and Kirchner, 2002). Photo-electronic erosion pin (PEEP) 

monitoring (Lawler, 1991) is based on a development of standard erosion pin measurements and 

provides information regarding the temporal variability of bank erosion during the monitoring period 

(Bull, 1997; Lawler et al, 1997). Consecutive cross-channel surveys provide a measurement of total 

channel bank erosion and deposition (Lawler, 1993; Julian and Torres, 2006). Although labour 

intensive, these methodologies are capable of quantifying bank erosion over relatively small spatial 

scales (channel reaches of a few kilometers, to single channels). Aerial photogrammetry (Kondolf et al, 
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2002; Michalková et al, 2011) in conjunction with LIDAR data (De Rose and Basher, 2011) has also 

been used to observed planimetric changes. However, these methods are limited by the availability and 

temporal coverage of both photogrammetric and LIDAR data. 

        Against this context, predictive models are required to help estimate river bank erosion rates over 

large spatial scales and representative and meaningful time periods. This paper aims to: 1) provide a 

dataset of observed channel bank erosion rates  for several contrasting catchments across England and 

Wales and timescales of up to 150 years , 2) establish the significance of key physical controls on bank 

erosion rates including slope, sinuosity, upstream catchment area and channel confinement  for 

developing simple predictive tools . The control variables selected for analysis within this study can be 

efficiently calculated across river catchments, and corresponding input parameter values can be 

incorporated within catchment scale sediment models. It is thus envisaged that the findings from this 

study will provide a basis for further development of simple bank erosion modelling tools and a dataset 

to validate such models over long timescales . 

 

2. Methods  

A GIS methodology, similar to ‘polygon overlay’ as reported by Gurnell et al. (1994) was 

used within this study covering seven catchments (65 WFD cycle 1 sub-catchments) from England and 

Wales. River channels were digitised using historical Ordnance Survey (OS) maps (for scales, see 

Table 2) thereby allowing observation of channel migration over a period of up to 150 years. The 

desktop data collection and analysis were conducted on the 65 sub-catchments located within the seven 

study catchments  (Figure 1); Avon (Hampshire), Exe (Devon), Test and Itchen (Hampshire), Stour 

(Kent), Ouse (Yorkshire), Eye (Leicestershire) and Wye (Herefordshire). The main channels and 

tributaries within each of these catchments were digitised (Table 2). The study catchments were 

selected to represent a range of different catchment types (i.e. underlying geologies, channel 

characteristics and land use) and to cover the range of annual precipitation totals across England and 

Wales since rainfall/runoff has identified as a key driver for channel bank erosion (Collins and 

Anthony, 2008). See Table 1 for further details. Collectively, the study catchments are more 

representative of permeable than impermeable geologies and ass ociated soils and of rural areas 
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dominated by different types of mixed farming. This should be considered in terms of the scope for 

extrapolation. 

Figure 1 here. 
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Table 1: Study catchments and channels digitised, and corresponding dates of OS map data. 

Catchment 
Drainage area 

(km
2
) 

Annual 

precipitation 

(mm/pa) 

Land-use 
Average 

channel 

slope 

Geology 
Channels 

digitised 
Map years 

Exe 1500 
800 - 2,300 Predominately rural - grazing 

0.004 
Sandstone and 

mudstones 

Exe 

1890, 1962, 1970, 2010 Culm 

Creedy 

Avon 1750 
833 - >1,000 

98% rural - arable, improved pasture grasslands 

and woodlands. 0.002 Chalk 

Avon 

1890, 1926, 1985, 2010 

Bourne 

Ebble 

Nadder 

Wylye 

Ouse 4847 
600 - 1,700 95% agriculture 

 

Limestone and 

sandstone 

Ouse/Ure 

1860, 1940, 1975, 2010 
0.002 Swale 

 Nidd 

 Wharfe 

Test 
1760 

800 - 1,000 Predominately arable and pasture 
0.002 Chalk 

Test 
1875, 1940, 1985, 2010 

Itchen Itchen 

Wye 4100 
744 - >2500 96% rural, predominately agriculture.  

 

Sandstones 

Wye 

1890, 1975, 2010 0.008 Monnow 

 Lugg 

Stour 1200 
600 - 850 83% agriculture. 

0.005 Chalk 

Stour 

1875, 1940, 1985, 2010 
East Stour 

Little Stour 

Sarre Penn 
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Eye 339 
642 Rural, predominately agriculture 

0.001 Sandstone Eye 1890, 1950, 1983, 2010 

 

Table 2: Historical mapping series, and scales used for each time period digitised. 

Catchment 

Historical maps 

Time period 1 Time period 2 Time period 3 Time period 4 

Year Map series and scale Year Map series and scale Year Map series and scale Year Map series and scale 

Exe 1890 County Series 1:2500 1962 National Grid 1:10560 1970 National Grid 1:2500 2010 Mastermap 1:2500 

Avon 1890 County Series 1:2500 1926 County Series 2nd revision 1:10560 1985 National Grid (latest) 1:10000 2010 Mastermap 1:2500 

Ouse 1890 County Series 1:10560 1940 County Series 3rd revision 1:10560 1975 National Grid 1:2500 2010 Mastermap 1:2500 

Test and Itchen 1875 County Series 1:10560 1940 County Series 3rd revision 1:10560 1985 National Grid (latest) 1:10000 2010 Mastermap 1:2500 

Wye 1890 County Series 1:10560 no data 1975 National Grid 1:2500 2010 Mastermap 1:2500 

Stour 1875 County Series 1:10560 1950 County Series 3rd revision 1:10560 1983 National Grid (latest) 1:10000 2010 Mastermap 1:2500 

Eye 1890 County Series 1:10560 1950 County Series 3rd revision 1:10560 1983 National Grid (latest) 1:10000 2010 Mastermap 1:2500 
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Historical Ordnance Survey maps were downloaded for various years (taken from different 

mapping series, see Table 2) for each of the study catchments. As the dates and coverage varies 

between mapping series , the corresponding dates of maps varied between the study catchments (Table 

1). Neighbouring maps within the same map edition also have different survey and revision dates. 

Therefore, an estimate of the date of one map layer was taken from the range of years of map creation 

(often up to 15 years).  

Channel bank lines at each time period were manually digitised and the corresponding 

polygons created. Channel polygons of 2 consecutive time periods were overlain (i.e. 1890-1940, 

1940-1970, 1970-2010) providing an area of channel erosion between these two time periods (as per 

Table 3). It was noted that this method of erosion calculation would underestimate bank erosion in any 

areas where the channel had migrated to a degree that the polygons from the two time periods 

represented did not overlap (and no channel is present at either time period, see Figure 2). In such 

cases, an ‘erosion island’ would be omitted from the estimation. Consequently, each overlay was 

examined individually for areas where channel migration between the time periods of the two digitised 

channels was sufficient to result in a gap between the positioning of both channels . These gaps were 

digitised and their area added to the erosion area calculated for the corresponding sub -catchment from 

the overlay process. However, it was also noted that this methodology would overestimate bank 

erosion where channel movement has occurred by cutoff rather than lateral migration. As erosion 

island digitisation was conducted manually, channel cutoffs were not included (see Figure 2). 

 

Figure 2 here. 

 

Table 3: Simple polygon overlay analysis method used to estimate bank erosion. 

  

Year 1 

  

Channel No Channel 

Year 2 
Channel No change Erosion 

No Channel Deposition No change 

 

The polygon overlay and ‘erosion island’ method was used to calculate a total area of bank 

erosion (m
2
) within each of the digitised 65 sub-catchments comprising the seven study catchments. 
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This was converted into a lateral retreat rate (m) and a corresponding yield of sediment (kg yr
-1

). 

Retreat rates were calculated by dividing the erosion area polygon of each sub -catchment by the length 

of the channel network therein. This was converted into an annual retreat rate (m yr
-1

) by dividing by 

the number of years covered by the time period between maps, and a width averaged retreat rate (m m
-1

 

yr
-1

) by dividing by the average river channel width. 

To convert the area of bank erosion to a mass  of sediment, values of bulk density and bank 

height were required (to estimate a volume of bank eroded sediment; m
3
). Estimates of river bank 

height from 175 locations across the 65 sub-catchments were taken from the UK River Habitat Survey 

database (RHS, Environment Agency, 2008). As RHS survey points are located randomly within 

individual WFD sub-catchments, the values of bank height within any individual sub-catchment were 

averaged to produce a spatially-averaged estimate. As bank heights may vary considerably within 

individual sub-catchments (see Table 4) this method of bank height estimation will inevitably introduce 

errors. Although bank height may influence bank erosion rates (through changes to shear stress acting 

on the bank face), the influence of this factor was not considered within this study due to the errors 

associated with the estimation of this variable. Sediment volume was then converted to a  corresponding 

mass by multiplying by bulk sediment density  (Table 4). An average sediment bulk density was 

estimated for each of the 65 sub-catchments using LandIS (2014) soil association data. As in the 

estimation of bank height, the estimation of sediment bulk density using this method is associated with 

unavoidable uncertainty.  

 

Table 4: Statistics of bank height data and values of sediment bulk densities for each catchment. 

Sediment bulk density values indicate the average bulk density within each catchment. 

  
Minimum bank 

height (m) 

Maximum bank 

height (m) 

Average bank 

height (m) 

Sediment bulk density 

(kg m
-3

) 

Exe  0.2 3.4 1.6 1243 

Avon 0.1 2 0.9 1252 

Ouse 0.1 6 2.3 1300 

Test and Itchen 0.2 1.4 0.6 1016 

Wye 0.5 6 2.6 1314 

Stour 0.3 3 1.3 1328 

Eye 0.2 2.2 0.6 1234 
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Potential sources of error within the GIS ‘erosion island’ overlay methodology include 

inaccuracies within the geo-referencing of historical Ordnance Survey maps. Downward et al. (1994) 

outlined a methodology where Ground Control Points (GCPs) are used to quantify the error associated 

with the geo-rectification processes. Previous studies have illustrated the use of buffers around 

digitised channels to ensure the magnitude of measured channel change using the overlay methodology 

is greater than the mapping error; RMSE of geo-rectifying errors are used to inform the magnitude of 

buffers (cf. Hughes et al., 2006 – 5m buffer; Rhoades et al., 2009 – 2m buffer). Therefore, as geo-

referencing of historical OS maps has been completed prior to download , a similar buffer methodology 

was used to account for potential geo-referencing errors. Channel overlays and erosion estimation were 

carried out in two ways: 1) using no buffers and, 2) with a 3.5 m buffer (median value from existing 

literature) applied to the older channel within the overlay. With the buffer applied any channel 

migration less than 3.5 m during the overlay time period was not included within the estimation of 

bank erosion. This method therefore provides a minimum estimate of channel bank erosion. 

Additionally, the digitised channel overlays were checked manually for geo-referencing errors and any 

obvious problems. 

For each WFD sub-catchment (n=65) and for each time overlay (of which there were up to three, 

depending on data availability) bank erosion rate was calculated as a yield (kg ha
-1

yr
-1

) and a width-

averaged retreat rate (m m
-1

yr
-1

) both with, and without, a buffer applied to produce a lower and upper 

estimate of each. Time periods of channel overlays may coincide with flood rich/poor years, or 

particular high magnitude geomorphic events. As this study sought to investigate the influence of 

physical characteristics on channel bank erosion rates, as opposed to the specific influence of high 

flows, bank erosion rates across all time periods were averaged for each study sub-catchment.  

2.1. Estimation of variables potentially controlling river bank erosion 

The potential controlling variables upstream catchment area, slope, sinuosity and channel 

confinement, were measured within each study sub-catchment using GIS. Upstream catchment area 

was calculated by summing the area of upstream sub-catchments using GIS shapefiles (provided by the 

Environment Agency). Slope was measured using OS contours (at 5 m intervals) with a single value of 

slope calculated for each sub-catchment. In some catchments the value of slope was 0 (6 of 65 sub-

catchments). In these catchments the resolution of the elevation data resulted in no observable slope.  
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The use of higher resolution topography data (Lidar data – 2m resolution) was not feasible due to the 

large spatial coverage of data collection (>15000km
2
). Furthermore the resolution of topographic data 

used is similar to or greater than that used in estimates of sediment generation at the catchment scale 

(Biswas and Pani, 2015 – 30m; Hessel and van Asch, 2003 – 5m; Lu et al, 2004 – 30m; Vente et al, 

2008 – 100m). Sinuosity was measured at 750m intervals along the channel centreline and then 

averaged to provide one value of sinuosity for each channel per sub -catchment. This measurement 

length was chosen as it was found to represent the average length of multiband loops across the study 

catchments (see Janes, 2013). The degree of channel confinement within a valley can be expressed in 

several different ways and, as a result, three different methods were used to estimate channel 

confinement and its relationship with bank erosion rates. The three methods included were: 

 1) Confinement ratio based on the channel width, calculated as the floodplain width divided 

by the bankfull channel width (Rapp and Abbe, 2003; Hall et al., 2007). Hall et al., (2007) reported that 

confined channels had a ratio of ≤3.8 and unconfined channels >3.8.  

 2) Confinement ratio based on meander belt width version A. From field observations, 

Mackey and Bridge (1992) observed a relationship (R=0.94) between belt width (B) and channel width 

(w). This relationship took the form:  

𝐵 =  6.89. 𝑤 0.99                   (1) 

The confinement ratio was then calculated as floodplain width divided by belt width, as estimated from 

this relationship.  

 3) Confinement ratio using meander belt width version B, which is a slightly modified form of 

equation 2 above. Williams (1986) observed a relationship (R=0.96) between belt width (B) and 

channel width (w) taking the form:  

𝐵 =  4.3. 𝑤 1.12             (2) 

Again, the confinement ratio was calculated as floodplain width divided by belt width as estimated 

from this empirical relationship.  
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Channel width was measured using the digitised channels at 5 km intervals within each sub-

catchment and an average channel width was calculated on this basis. Floodplain width was measured 

using shapefiles for the Environment Agency’s flood zone 3, representing the inundated floodplain area 

for an annual flood with >1% probability (up to 100 year return period). The floodplain width for each 

sub-catchment was derived from this  area by dividing by the corresponding sub-catchment valley 

length. 

 The relationship between channel bank erosion rate (m m
-1

yr
-1

) and the study catchment 

characteristics (upstream catchment area, slope, sinuosity and channel confinement) was analysed 

using Pearson’s correlation and regression analysis. The distribution of all input variables was assessed 

prior to statistical analysis to ensure normality for parametric testing. Normality was assessed by 

checking similar values of mean, median and mode, a skewness statistic between +1 and -1, and 

kurtosis between +3 and -3. Non-normally distributed variables were log transformed. Correlation 

analysis was used initially to assess relationships between bank erosion rate and each of the 

independent variables individually. Independent variables were then correlated to ensure no 

multicollinearity. Multiple regression analysis was performed to investigate the proportion of channel 

bank erosion that can be explained by the combination of independent variables. Due to uncertainty 

associated with channel bank height and sediment bulk density estimates, the annual mass of bank 

eroded sediment (kg ha
-1

yr
-1

) within each catchment was calculated, but not included within the 

regression analysis.  

 

3. Results  

Table 5 presents the estimates of mean rates of bank erosion for both overlay methodologies 

(with and without buffers) calculated for each of the seven study catchments for which data were 

collated. The results suggest that the highest erosion rate calculated as a yield of sediment (kg ha
-1

yr
-1

) 

was observed in the River Exe catchment, and the corresponding lowest rate in the Rivers Test and 

Itchen catchment. The highest annual retreat rates were observed in the River Avon catchment, the 

largest width averaged retreat rate in the River Stour catchment, and the lowest retreat rates were 

estimated for the River Wye catchment. The data presented here are the average values of all time 
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period overlays for each sub-catchment (Figure 1). The histograms in Figure 3 show the variability of 

estimated channel bank erosion rates between all 65 WFD sub-catchments comprising the seven study 

areas. 
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Table 5: Mean channel bank erosion rates for each of the study catchments. Lower and upper estimates (with and without 3.5m buffer used in overlay 

methodology) shown. 

  No Buffer With 3.5m Buffer 

  

Erosion  

(kg ha
-1

yr
-1

) 

Retreat rate  

(m yr
-1

) 

Width averaged retreat rate  

(m m
-1

yr
-1

) 

Erosion  

(kg ha
-1

yr
-1

) 

Retreat rate  

(m yr
-1

) 

Width averaged retreat rate  

(m m
-1

yr
-1

) 

Exe 907 0.114 0.0078 388 0.051 0.0035 

Wye 732 0.074 0.0039 347 0.04 0.0023 

Ouse 701 0.105 0.0049 447 0.066 0.003 

Eye 570 0.086 0.0072 302 0.046 0.0038 

Avon 322 0.117 0.0082 298 0.129 0.008 

Stour 113 0.075 0.0091 52 0.039 0.0049 

Test and Itchen 65 0.09 0.0059 32 0.047 0.0032 
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Figure 3 here. 

The range of estimates of the annual mass of sediment produced by bank erosion calculated 

for each of the channels digitised within this study (see Table 1) is presented in Table 7. These values 

are the maximum and minimum estimates from the individual overlay time periods for each channel 

network (as opposed to the average of all overlay time periods) and are from overlay methodologies 

with and without buffers applied, respectively. The uncertainty within these estimates is large (as 

indicated by the magnitude of difference between the upper and lower estimates). This uncertainty is 

due to both error and uncertainty within the methodology, including error within the mapping process 

(accounted for by the buffers). Lower estimates are from the overlay methodology with 3.5 m buffers 

applied, and upper estimates are from the overlay methodology without buffers. It is possible that inter-

annual variability of bank erosion (primarily a result of annual variability in rainfall and resulting river 

discharge) may also account for some of this uncertainty. As these values are taken from individual 

overlay time periods (as opposed to the averaged value from the three overlay time periods) variation 

between upper and lower estimates will increase due to temporal variation of bank erosion rates  across 

the time periods; flood rich periods would be expected to produce higher rates of bank erosion than 

flood poor periods. These values represent the gross yield of sediment released by channel bank 

erosion, and therefore incorporate bank eroded sediment that will be subsequently re-deposited within 

the channel network. The range of values shown in Table 6 therefore account for error associated with 

the mapping process but do not account for errors associated with the channel bank height and 

sediment bulk density estimation. The limitations associated with the accuracy of these data will 

introduce further uncertainty into these estimates of mass of bank eroded sediment that has not been 

accounted for explicitly. The estimates in Table 7 provide a good illustration of the variability of 

channel bank erosion not only between, but also within, the individual study catchments. Data 

generated by other studies is presented in Table 8.  
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Table 6: Upper and lower estimates of the annual mass of sediment released by bank erosion 

(tonnes per year) for each channel digitised within this study.  

Catchment  Channel Annual bank erosion (t yr
-1

) 

Exe 

Exe 5874-67627 

Culm 2905-42486 

Creedy 259-16955 

Avon 

Avon 6654-18301 

Bourne 673-2702 

Ebble 668-1945 

Nadder 2102-8876 

Wylye 2402-7013 

Test and Itchen 
Test 441-1763 

Itchen 970-2811 

Stour 

Stour 2570-7505 

Little Stour 536-1044 

East Stour 461-1632 

Sarre Penn 54-510 

Wye 

Wye 25666-73340 

Monnow 1064-11032 

Lugg 5949-13345 

Eye Eye 91-10239 

Ouse 

Ouse 26614-68359 

Swale 7393-61232 

Nidd 977-19507 

Wharfe 6088-19874 

 

Table 7: Values of the mass of bank eroded sediment reported by previous studies. Studies 

marked with an asterisk used erosion pin methodologies and all others are based on sediment 

source fingerprinting. The percentages of sediment budgets within the Exe catchment from 

sediment fingerprinting studies are converted to a mass of bank erosion using values of annual 

suspended sediment load measured at the catchment outlet (Walling and Webb 1987; Walling 

and Bradley, 1989). 

Catchment Mass of bank erosion (t yr
-1

) Reference 

Exe 1193 Collins et al. (1997) 

Culm 3500+ Ashbridge (1995)* 

Culm 750 Walling and Woodward (1995) 

Culm 900 He and Owens (1995) 
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All independent variables showed non-normal distributions. Width-averaged retreat rate 

without buffers was the only normally distributed variable. Log10 transformation achieved normal 

distributions for all independent variables except slope. As the independent variable slope contained 

some 0 values, a standard log10 transformation alone was unsuitable, therefore a constant of 0.0001 was 

added to all values before log10 transformation (similarly to previous studies; Berry, 1987; Yamamura, 

1999).  

Correlations between each of the independent variables and each dependent variable were  

then calculated (Table 9). As no statistically significant correlations were observed between retreat rate 

and any of the independent variables, no further statistical analysis of this dependent variable was 

conducted. Scatterplots were used to assess linearity of the relationships  for the remaining dependent 

variables and all independent variables individually (Figure 4). The two methods of channel 

confinement estimation using meander belt (CC2 and CC3) width were more normally distributed than 

methodology 1, therefore these two variables were chosen for further analysis (see Table 9). 
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Table 8: Correlations between all independent and dependent variables from all 65 sub-catchment. Statistically significant correlations are indicated by an 

asterisk; * at 95%  level, and ** at 99%  level. 

 

  Without buffers With 3.5 m buffers 

  

Erosion rate  

(kg ha
-1

yr
-1

) 

Retreat rate  

(m yr
-1

) 

Width averaged retreat rate 

 (m m-1yr
-1

) 

Erosion rate 

 (kg ha
-1

yr
-1

) 

Retreat rate 

 (m yr
-1

) 

Width averaged retreat rate  

(m m
-1

yr
-1

) 

Sinuosity (log10) -0.114 0.124 0.289* -0.039 0.217 0.346** 

Slope (log10) -0.054 0.052 0.219 -0.124 -0.129 -0.013 

Upstream area (log10) 0.305* -0.029 -0.507** 0.225 -0.140 -0. 430** 

CC1 (log10) 0.069 -0.030 0.532** 0.120 0.111 0.437** 

CC2 (log10) 0.072 -0.028 0.528** 0.123 0.112 0.434** 

CC3 (log10) 0.031 -0.045 0.572** 0.084 0.104 0.464** 
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Figure 4 here. 

 

Table 10 shows the correlation matrix for the transformed independent variables. All 

independent variables entered into a regression model should be independent from each other (i.e. there 

should be no significant correlations between pairs of independent variables) to avoid statistical 

redundancy. Variables were assumed independent where the statistical significance of the relationship 

was less than the 95% level. 

Table 9: Correlation matrix of all independent variables. Significant correlations are indicated 

with an asterisk; * at 95%  level, ** at 99%  level. CC2 indicates Channel confinement method 2, 

CC3 indicates Channel confinement method 3.  

  

Sinuosity 

(log10) 

Slope 

(log10) 

Upstream area 

(log10) 

CC2 

(log10) 

CC3 

(log10) 

Slope (log10) 0.191         

Upstream area (log10) -0.211 -0.179       

CC2 (log10) -0.022 -0.102 0.066     

CC3 (log10) -0.005 -0.082 0.014 0.997**   

 

 Table 10 indicates that the variables CC2 and CC3 are significantly correlated (at the 99% 

level) and therefore should not be included in the regression analysis  together. This is to be expected as 

all these variables represent channel confinement, so are characterising the same potential control on 

bank erosion. On this basis, only one of the channel confinement variables was selected for each 

regression analysis. Table 8 also indicates a significant relationship between upstream area and 

sinuosity at the 95% level and therefore, these two variables were not included within the same final 

regression models. Additionally, the tolerance statistic (output from the regression models) should be 

>0.1, confirming that multicollinearity is not an issue within the statistical model.  

 Stepwise regression was used; all independent variables were entered into the initial 

regression models. Although individual variables may not be statistically significant, when combined 

with other variables they may show a significant relationship and enhance the R and R
2
 values 

associated with the model. The contribution of each variable to the model is shown by the t statistic, 
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and any independent variables that did not show a statistically significant contribution at the 95% level 

or above were removed from the final regression model.  

 

3.1. Width averaged retreat 

 The variables upstream area and channel confinement showed statistically significant 

relationships with width averaged bank retreat rate (at the 99% level) both with and without buffers 

applied. Sinuosity and slope showed weak relationships with width averaged retreat rate (sinuosity: 

R=0.289, R=*-0.120, slope: R=0.219, R=-0.013 without and with buffers , respectively).  

The regression model was initially run with all 65 data points (i.e. for all WFD sub-

catchments comprising the seven study areas). One data point 61, (River Monnow) showed a 

disproportionate influence on the corresponding regression coefficients; centred leverage value of 

0.175). Centered leverage values indicate the influence of each individual data point on the regression 

equation, highlighting points with a disproportionate influence. High leverage values can be identified 

as greater than  

2𝑝/𝑁 

(4) 

where p is the number of independent variables and N is the number of cases. This point has the 

smallest value of upstream area within the data set, which could partially explain this influence. This 

data point was therefore removed prior to the final regression model presented here. Additionally, the 

variable sinuosity was found to not contribute significantly to either regression model (t statistic 1.739, 

p=0.087). Sinuosity was therefore not included within the final regression model of width averaged 

bank retreat rate presented here. The independent variables that were entered into the regression model 

for dependent variable width averaged retreat rate (m m
-1

 yr
-1

) without buffers were therefore upstream 

area, slope and channel confinement version 3. The regression output is shown in Table 10. The 

absolute correlation and percentage of variance explained are 0.812 and 65.9%, respectively. The R
2
 

and adjusted R
2
 values indicated that the model generalises well (0.659 and 0.642, respectively).  
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Table 10: Regression output statistics of the model dependent variable width averaged retreat 

rate (m m
-1

yr
-1

) without buffers applied to overlay methodology. 

R R Square Adjusted R Square Durbin-Watson ANOVA F  Sig. 

0.812 0.659 0.642 1.624 38.666 0.000 

 

Variable B Std. Error Beta t Sig.  Tolerance 

(Constant) 0.017 0.002 

 

10.229 0 

 Log10 Slope 0.005 0.001 0.232 3.061 0.003 0.989 

Log10 Upstream area -0.003 0 -0.508 -6.711 0 0.99 

Log10 CC3 0.005 0.001 0.565 7.485 0 0.998 

 

Figure 5 here. 

 

 The regression model produced the following predictive equation:    

𝑊𝑖𝑑𝑡ℎ  𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑  𝑟𝑒𝑡𝑟𝑒𝑎𝑡  𝑟𝑎𝑡𝑒 = 0.017 + (0.001 × 𝐿𝑜𝑔10 (𝑆 + 0.0001 )) − (0.003 × 𝐿𝑜𝑔10 𝑈𝐴) +

(0.005 × 𝐿𝑜𝑔10 𝐶𝐶3)                                            (4) 

 where S is channel slope and UA is upstream area. 

High residuals were classified as a standardised residual <-2.58 or >2.58 (Norusis, 2005). The 

only residual was data point number 5 (River Bourne), which had the highest value of width averaged 

retreat rate (0.0138 m m
-1

y
-1

). Regression models often have less accuracy predicting high and low 

values which explains this elevated residual value. The low leverage value (0.012) indicates this data 

point does not disproportionately influence the regression coefficients , and removal will not have a 

significant impact on regression coefficients (R=0.837 R
2
=0.701). Consequently, this data point was 

not removed on this basis. 

With buffers applied, the initial regression analysis including all 65 data points indicated one 

high residual value (River Wye = -2.67, number 58). This data point also showed a high leverage value 

(0.097) and therefore had a disproportionate influence on regression coefficients. This point has the 

smallest value of width averaged retreat rate (0.00009 m m
-1

yr
-1

) within the data set, which could 

partially explain this influence. This data point was therefore removed prior to th e derivation of the 

final regression model. Additionally the variable slope was found to not contribute significantly to the 
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model and was therefore removed (t statistic = -1.046, p = 0.300). The regression output is  provided in 

Table 14. The absolute correlation and percentage of variance explained were 0.585 and 34.2%, 

respectively.  

Table 11: Regression output statistics of the model dependent variable width averaged retreat 

rate (m m
-1

yr
-1

) with buffers applied to overlay methodology. 

R R Square Adjusted R Square Durbin-Watson ANOVA F  Sig. 

0.637 0.406 0.376 1.271 13.681 0.000 

 

Variable B Std. Error Beta t Sig.  Tolerance 

(Constant) -2.204 0.192 

 

-11.47 0 

 Log10 Upstream area -0.227 0.064 -0.361 -3.565 0.001 0.994 

Log10 CC3 0.471 0.104 0.453 4.540 0 0.995 

Log10 Sinuosity 2.212 0.871 0.257 2.539 0.014 0.967 

 

Figure 6 here. 

 

One residual, River Wye no.55 (-2.91) was observed from the regression output. This data 

point had the lowest value of width averaged retreat rate (0.00018 m m
-1

yr
-1

). This point did not have a 

disproportionate influence on the regression coefficients  (leverage value 0.061) and therefore removal 

of this point did not have a significant impact on the regression coefficient R and R
2
 values (0.620 and 

0.385, respectively). On this basis it was therefore retained in the final statistical model. 

 

4. Discussion 

The results here have shown the potential for physical factors to be used as predictors of catchment 

scale bank erosion. Upstream catchment area showed a statistically significant correlation at the 99% 

level with channel bank erosion measured as a width averaged retreat rate when measured using 

overlay methodologies with and without buffers (R=-0.507 and -0.430, respectively). Additionally, 

when measured as a yield of sediment (kg ha
-1

yr
-1

) without buffers a significant correlation at the 95% 

level was observed with upstream catchment area (0.305). The sign of the relationship switches from 

positive to negative when measuring bank erosion as a width averaged retreat rate , as opposed to a 
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sediment yield, because dividing retreat rate by the width normalises the data. On this basis, the data 

from this study therefore suggest that bank erosion rates increase with upstream area.  Hooke (1980) 

noted that bank erosion rate was related to catchment area, and this explained 53% and 39% of 

variation in mean and maximum erosion rates , respectively. It is suggested that this is because 

catchment area represents a surrogate of discharge and hence indicates the positive relationship 

between bank erosion rate and river discharge; as discharge increases the shear stress acting on the 

channel banks increases , causing increased bank erosion (cf. the bank erosion index reported by Collins 

et al., 2009a,b). Furthermore, as bank height increases downstream, the shear stress acting on banks 

increases, thus raising the risk of bank failure (Bull, 1997; Michelli and Kirchner, 2002; Walling et al, 

2006) and the volume of sediment yield from bank erosion processes.   However, Lawler et al, (1999) 

noted a non-linear relationship between bank erosion and upstream area within the Swale -Ouse 

catchment and observed a peak in bank erosion rates in the middle reaches. The middle reaches (in 

their study) were surrounded by upland environments with a combination of peak stream power and 

erodible bank materials, hence the observed high flows. They also noted  that erosion at downstream 

sites was more consistently seasonally active. The non-linear relationship that was observed in their 

study was based on 11 sites for 14-15 months. The lack of a non-linear relationship observed within 

this study could be due to the considerable difference in timescale of the observations; in the Lawler et 

al, (1999) study a large/sequence of events may dominate the observations with particular areas of the 

catchment being more sensitive to bank erosion than others. In the present study the effects of localised 

sensitivity to individual events and within the catchment are not observed due to the longer temporal 

scale. 

Width averaged retreat rate (m m
-1

yr
-1

) showed a significant relationship with channel 

sinuosity at the 99% and 95% level with and without buffers applied respectively. This relationship is 

positive. However, closer scrutiny of the scatterplot in Figure 4A suggests that the relationship between 

bank erosion and sinuosity may not be completely linear; bank erosion  appears to increase with 

sinuosity up to a point (equivalent to a sinuosity of approximately 1.4). Channel sinuosity is inversely 

related to channel curvature ratio (the radius of channel curvature divided by the channel width) up to 

sinuosities of approximately 1.5. Further data analysis could be undertaken by splitting the dataset to 

assess high and low curvature.  
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Channel confinement was measured as a ratio between floodplain or meander belt width and 

channel width. For each of the three methodologies used to estimate this potential control on river bank 

erosion, a decrease in channel confinement ratio represents an increase in confinement of the channel 

within the floodplain. Only a very weak positive relationship between channel bank erosion  sediment 

yield (kg ha
-1

yr
-1

) and channel confinement was observed. However, none of these relationships were 

statistically significant; all R values were <0.2 both with and without buffers used in the overlay 

methodology. The relationship between bank erosion and channel confinement measured as a width 

averaged retreat rate (m m
-1

 yr
-1

) was statistically significant at the 99% level for all methods of 

channel confinement estimation, both with and without buffers applied in the overlay methodology. 

This positive relationship suggests that as channel confinement decreases (channel confinement ratio 

increases) the width averaged retreat rate increases. Channels can migrate freely where they are un -

confined by valley margins and therefore it follows that bank erosion/retreat rates will be higher in 

these scenarios compared with confined channels where lateral migration is restricted. It was noted that 

as this measure of bank erosion is calculated using channel width, as is channel confinement, this may 

lead to spurious correlations as a result of collinearity. Although no statistically significant correlations 

were observed between bank erosion measured as a retreat rate (m yr
-1

) and the channel confinement, a 

slight positive relationship (0.104-0.112) was observed between retreat rate and channel confinement 

with buffers applied (with no buffers correlations were extremely low; between -0.028 and -0.045). 

This suggests that although some collinearity between these variables is inevitable, a positive 

relationship between width retreat rate and confinement ratio is genuine. 

The level of channel confinement may indirectly influence bank erosion by influencing the 

sinuosity of the channel. Milne (1983) found that low sinuosity in channels was partly due to lateral 

confinement of the channel network by valley walls preventing free meander development. 

Additionally Tooth et al. (2002) observed channel sinuosities of ~1.1-1.3 in areas confined by bedrock 

geology, and ~1.75 where channel migration was unrestricted. Nicoll and Hicken (2010) observed that 

confined channels had a higher wavelength and curvature than unconfined rivers, with few channel cut -

offs occurring. Unconfined and freely meandering rivers migrate by increasing bend amplitude, thereby 

decreasing channel-bend radius and channel curvature ratio, and increasing sinuosity. Within confined 

channels, sinuosity, channel migration and hence bank erosion are restricted. However in this study no 

statistically significant relationship was observed between channel confinement and sinuosity (see 
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Table 9). Reasons for this could include the small number of channels classified as confined within the 

study; according to the definition of confined by method 1 (Hall et al, 2007) only 8 of the 64 channels 

within this study are classed as confined. The relationship between confinement ratio and sinuosity 

may not be significant as the dataset here is largely of unconfined and freely migrating channels , the 

sinuosity of which will be influenced by additional factors. 

Slope did not show a statistically significant relationship with bank erosion measured as a 

sediment yield (kg ha
-1

yr
-1

) or as a width averaged retreat rate (m m
-1

yr
-1

) when considered 

individually. However, slope was included within the regression model of width averaged retreat rate 

(without buffers) and in combination with upstream catchment area and channel confinement as 

independent variables was found to significantly contribute to the regression model (at the 95% level). 

Previous studies have noted the influence of slope on channel planform (Schumm and Khan, 1972; 

Montgomery and Buffington, 1997). Slope may indirectly influence bank erosion rates through the  

influence on channel planform, which may explain the lack of a significant correlation observed when 

considering slope individually as an independent variable. However in this study slope did not show a 

statistically significant relationship with sinuosity (R=0.191). 

Several additional factors known to influence bank erosion rates have not been considered 

within this analysis . These include vegetation, lithology and underlying geology, meteorological and 

climatic influences (e.g. freeze-thaw cycles), flow regimes, channel bank geometry and anthropogenic 

influences (e.g. poaching by livestock accessing rivers for drinking water). Therefore, it is expected 

that the regression models would not completely explain the variance within the observed bank erosion 

data. For data points that the regression model predicts with a lower accuracy (those with high residual 

values) additional factors not considered within the regression are a likely source of error.  

The GIS based data collection and analysis methodology used within this study focu ses on 

bank erosion resulting in lateral migration of channels yet excludes sediment generated through bank 

erosion processes that do not result in lateral migration. The importance of subaerial processes, such as 

freeze-thaw has been observed, particularly in upper catchments  during winter months  (Lawler et al, 

1999; Couper 2003). Fluvial entrainment and incision resulting in bank retreat at the water-line level of 

the bank has also been observed (Hooke, 1979; Lawler et al, 1999).  Where these forms of bank 

erosion are dominant the GIS methodology used here may underestimate bank eroded sediment yield.  
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These processes form the preliminary stages of bank erosion and lead to undermining and weakening 

of banks and later bank collapse, resulting in channel migration. Due to the long timescales over which 

bank erosion has been observed within this study the errors due to omission of these processes is likely 

to be small. 

The catchments selected for this study differ significantly in their geology and annual rainfall 

totals (see Table 1) and therefore have very different flow regimes and geomorphological histories. 

Differences in these local factors that have previously been observed to influence bank erosion rates 

(Henshaw et al., 2013) may also account for some of the scatter within the data that is observed in 

Figure 4. For example, in study catchments with high permeability (such as the Test and Itchen) bank 

erosion rates are likely to be lower due to the dominance of weathering processes  as an erosion 

mechanism (Test and Itchen annual retreat rate <0.1m yr
-1

). Furthermore, many of the catchments 

within this study have a history of agricultural and flood management. Land use also has been noted in 

several previous studies to influence bank erosion rates through trampling and overgrazing by livestock 

(Kondolf et al, 2002), removal of vegetation (Michalkova et al 2011), and construction of flood 

protection measures (Winterbottom and Gilvear, 2000; Michalkova et al 2011). The magnitude of 

influence of various land uses is individual to channel type therefore   these localised factors have not 

been considered within the methodology developed here and may obscure any trends relating to the 

physical factors analysed. Additional analysis of the temporal variation of bank erosion using the 

dataset could also prove interesting. 

The correlation and regression coefficients when bank erosion rate is calculated as a width 

averaged retreat rate are higher than when bank erosion is calculated as a sediment yield. This is likely 

to be due to the error introduced to the calculation of bank erosion when calculating sediment volumes 

using estimates of bank height and sediment density. The RHS data used for bank height estimation 

included a total of 180 channel survey points across the 65 WFD sub-catchments for which bank 

erosion rates were estimated. However, channel bank heights are likely to be highly spatially variable, 

so estimates based on only one bank height per sub-catchment will introduce an error when estimating 

sediment mass released by bank erosion. Additionally, the bank heights within the RHS data have been 

recorded over a short time period (a few years). Channel bank heights are also temporally variable, 

particularly in areas of active channel bank erosion, therefore although bank height may be 
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representative for the digitisation period 2010 it is not possible to assess the accuracy of bank height 

data across the catchments for the previous digitised time periods. As the digitising covers up to 150 

years, estimation of one bank height for all time periods will introduce an error within the calculation 

of bank erosion sediment yield. Any comparison of estimates of sediment erosion masses generated by 

this study with those reported by previous work (Table 8) s hould also bear in mind the temporal 

inconsistencies of the datasets  since the latter were generally based on short-term studies using 

sediment fingerprinting or erosion pins. 

 Previous studies have observed annual channel bank retreat rates within the Exe catchment of 

0.18-0.28 m yr
-1

 (Hooke, 1980; Ashbridge, 1995) and within the Ouse catchment of 0.067-0.377 m yr
-1

 

(Lawler et al, 1999). These are broadly comparable to the average annual retreat rates estimated within 

this study; Exe: 0.014-0.163 m yr
-1

, Ouse: 0.026-0.229 m yr
-1

 (lower and upper estimates from 

methodologies with and without buffers respectively). Literature values from previous studies cited 

here were from particularly dynamic reaches (Swale, Ouse catchment, and Culm, Exe catchment) 

which could explain the slightly lower bank retreat rates observed within this study. Table 8 presents 

estimates of the annual mass of bank-eroded sediment reported by previous studies  from the study 

catchments, using sediment fingerprinting and erosion pin methodologies. The values obtained from 

this study are of similar magnitudes to these previous published estimates  however the significant 

methodological differences between this study and literature values should be noted (both temporal and 

scale differences).  

The total mass of sediment generated through bank erosion processes annually within this 

study showed a large range of uncertainty. It is important to note that these values represent the total 

mass of sediment generated through bank erosion. A proportion of bank derived sediment will be 

deposited either within the channel, or during overbank floodplain s edimentation. Therefore, when 

compared to estimates of net sediment loss from bank erosion from studies using techniques such as 

sediment fingerprinting coupled with suspended sediment yields and statistical modelling (e.g. Collins 

and Anthony, 2008; Collins et al., 2009a,b, 2010) which focus on the clay and silt-sized fractions only, 

excluding sand-sized material, the values presented in this paper can be expected to be considerably 

higher.  This study does not consider bank toe deposition, again emphasizing that the values reported 

herein represent the gross rather than net release of bank eroded sediment. Finally, the analysis herein 

does not consider the impact of channel margin protection or engineering works in reducing the bank 
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erosion in specific reaches. Previous strategic predictive models for England and Wales have also 

generated bank sediment loss estimates without such corrections (e.g. Collins and Anthony, 2008; 

Collins et al., 2009a,b). Comparison of bank erosion estimates within the Ouse catchment generated by 

this study with annual suspended sediment load estimates  presented in Walling et al, 1999 indicate the 

estimate of bank erosion contribution to the sediment budget as between 35 and 91%. This range in 

bank contribution is  higher than expected due to the total bank eroded sediment being compared with 

suspended sediment load at the catchment outlet; some bank eroded sediment will be deposited 

elsewhere, and will contain bedload sediments. The contrasting time periods covered by the estimates 

used in this comparison should also be considered.  

 

5. Conclusions 

The channel bank erosion rates estimated by this study from GIS data suggest that river bank 

erosion generates a significant mass (representing gross sediment loss) of sediment in several 

contrasting catchments across England and Wales . Additionally, the variability of observed bank 

erosion rates both within and between catchments has been highlighted. Channel bank erosion rates 

vary both spatially and temporally due to the numerous factors which influence bank retreat, and these 

factors are likely characterised by complex interactions.  

The statistical analysis performed by this study indicates a significant correlation between 

upstream area, channel confinement, sinuosity and channel  bank erosion when calculated as a width 

averaged retreat rate  (m m
-1

yr
-1

). The analysis therefore suggests that these variables are useful 

predictors of bank erosion. The regression model of width averaged retreat rate (without buffers) 

showed the highest predictive accuracy and this equation could be used to  estimate bank erosion rates 

within catchments across England and Wales  that share similar characteristics to the basins examined 

here. Further investigation of the relationships including variables influenced by climate zone or 

projected change would be beneficial. Sediment generation can be heavily influenced by gradients in 

rainfall and runoff responses  across climate zones, as illustrated nationally for bank erosion across 

England and Wales by Collins and Anthony (2008) and Collins et al., (2009a,b).  Sediment 

mobilisation is forecast to change with future climate scenarios  and this change is likely to impact on 

bank erosion as well as other sediment generation processes and sources. 
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The methodology used within this study has enabled spatial coverage of data that is 

considerable in comparison to similar previous studies  (Hooke, 1980; Gurnell et al. 1994; Lawler et al, 

1997; Hooke, 2008) and therefore the findings from this study build upon existing literature. The 

identification of key factors influencing bank erosion and their relative significance can therefore be 

used to identify catchments at risk of significant channel bank erosion as a result of physical factors, 

and to inform future bank erosion model development. The need to consider bank erosion as a 

potentially important sediment source is critical for the development of catchment sediment budget 

models which can be used for scenario analysis to inform improved management of sediment-related 

problems impacting on water quality and ecological status. 
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Fig. 1 Location of the study catchments. The channels digitised and WFD sub-catchments are 

also shown 

Fig. 2 A) Yorkshire Ouse catchment and digitized channels. Square shows location of B. B) 

Section of the River Swale sub-catchment illustrating the overlay island inclusion methodology. 

Flow is from top to bottom. Grey channel: 1940, Blue channel: 1975, White: Channel present 

both in 1940 and 1975, Dark blue sections: ‘erosion islands’. Arrows indicate flow direction 

Fig 3 Histograms showing the variability of channel bank erosion measured for all 65 WFD sub-

catchments comprising the seven study catchments. Blue bars indicate upper estimate (no buffer 
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used in overlay methodology) and red bars lower estimate (with 3.5m buffer overlay 

methodology). A - Erosion rates (kg ha
-1

yr
-1

), B - Retreat rate (m yr
-1

), C - Width averaged 

retreat rate (m m
-1

yr
-1

). 

Fig. 4 Scatterplots illustrating the relationship between width averaged retreat rate (m m
-1

yr
-1

) 

and (transformed) independent variables. Square data points and solid trendlines, regression 

equations and R
2
 values indicate values from overlay methodology without buffers applied, and 

diamonds and dashed trendlines indicate data from the overlay methodology with 3.5 m buffers 

applied. A-Sinuosity, B-Slope, C-Upstream area, D-Channel confinement (version 3) 

Fig. 5 Scatterplot of observed vs. predicted values of width averaged retreat rate (m m
-1

yr
-1

) 

without buffers applied and the regression line. The wider dashed lines represent the 95%  

prediction intervals and curved dotted lines indicate 95%  confidence intervals of predicted 

values 

Fig. 6 Scatterplot of observed vs. predicted values of width averaged retreat rate (m m
-1

yr
-1

) with 

buffers applied and the regression line. The wider dashed lines represent the 95%  prediction 

intervals and curved dotted lines indicate 95%  confidence intervals of predicted values 

 


