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Abstract 

Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models 

from photographs and can form a valuable component of hazard monitoring at active volcanic 

domes. However, model generation from visible imagery can be prevented due to poor lighting 

conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a 

SfM workflow to mitigate these issues and provide more continuous time-series data than visible 

counterparts. We demonstrate our methodology by producing georeferenced photogrammetric 

models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima 

(Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from 

visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, 

despite being less detailed than their DSLR counterparts, the thermal models are more than 

adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived 

using the DSLR.  
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Significantly, we were able to construct thermal models in situations where degassing and poor 

lighting prevented the construction of models from DSLR imagery, providing substantially better 

data continuity than would have otherwise been possible. We conclude that thermal 

photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing 

associated volcanic risks. 

Key words: Lava Dome, Photogrammetry, Thermal Imaging, Volcán de Colima 

1. Introduction 

Lava domes are known to pose significant volcanic hazards, due to their tendency to generate 

collapse related pyroclastic flows and their association with explosive eruptions (Fink and Anderson, 

2000). For example, successive dome collapses at Soufrière Hills on the island of Montserrat, starting 

in 1995, caused the evacuation and eventual abandonment of the capital Plymouth and surrounding 

areas (Wadge et al., 2014), while the 1994 collapse of Mount Merapi (Indonesia) resulted in 95 

deaths and damage to several villages (Abdurachman et al., 2000). A similar event at Volcán de 

Colima in 2015 generated pyroclastic flows that travelled ~10 km, fortunately causing only minor 

damage.  

Monitoring of dome geometry (e.g. volume and height), growth rate and deformation is key to 

forecasting such dome collapse events (Voight, 2000), and photogrammetry and structure from 

motion (SfM) are increasingly being used for this purpose (e.g. Herd et al., 2005; Ryan et al., 2010; 

Diefenbach et al., 2012; James and Varley, 2012; Diefenbach et al., 2013). Using these techniques, 

morphological and geometric data can be safely and inexpensively acquired, and used to track 

eruption progress, identify signs of instability or changes in effusion rate, and forecast changes in 

volcanic risk. These methods, however, rely on clear viewing conditions and so are highly sensitive to 

degassing, cloud and poor lighting conditions.  
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Thermal imaging techniques are also widely used for monitoring purposes (Spampinato et al., 2011), 

as they allow quantitative evaluation of heat flux from volcanic vents (e.g. Harris and Stevenson, 

1997; Sahetapy-Engel et al., 2008), domes (e.g. Hutchison et al., 2013; Pallister et al., 2013), flows 

(e.g. Calvari et al., 2003; James et al., 2006) and fumaroles (e.g. Stevenson and Varley, 2008; Harris 

et al., 2009). Importantly, the spatial distribution of heat flux can reveal features that are difficult to 

detect using reflected visible light, such as fumaroles, fractures and rock fall traces (Hutchison et al., 

2013; Mueller et al., 2013).  

Changes in the distribution and intensity of thermal anomalies can also precede volcanic eruptions 

or changes in eruptive style (Spampinato et al., 2011) and thus have potential for hazard forecasting. 

However, to facilitate inter-survey comparisons, thermal data need to be spatially referenced, and 

producing orthorectified thermal maps usually requires additional topographic data, knowledge of 

the camera location and viewing direction (e.g. James et al., 2006; James et al., 2009; Lewis et al., 

2015).  

This study demonstrates a method for deriving topographic data and georeferenced thermal maps 

directly from oblique thermal imagery using SfM techniques and imagery captured during an 

episode of dome growth at Volcán de Colima (Mexico) between 2013 and 2015. We suggest that the 

resulting three-dimensional thermal models provide intuitive and georeferenced representations of 

dome surface temperature and valuable measurements of dome geometry. Furthermore, we 

demonstrate that despite the lower spatial resolution of thermal images, dome volume estimates 

are comparable to those estimated using SfM reconstructions deriving from visible-light digital single 

lens reflex (DSLR) photographs, and that unlike the DSLR models, the thermal models can be 

constructed during periods of poor lighting and extensive degassing. 

Volcán de Colima is an andesitic and frequently erupting stratovolcano, located at the western limit 

of the Trans-Mexican Volcanic Belt. During the most recent eruptive periods, six episodes of dome 

growth have been observed at the volcano (1998–1999, 2001–2003, 2004, 2007–2011, 2013–2015 
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and an ongoing episode initiated in February 2016). This represents the most active period at the 

volcano since its last catastrophic eruption in 1913. A range of effusion rates have been estimated, 

with the longer-lived eruptions associated with rates as low as 0.01 m3 s-1. During the current 

eruption the volcano has exhibited the continuous generation of small Vulcanian explosions with a 

frequency of the order of hours. Larger magnitude explosions usually follow periods of dome 

emplacement, which re-excavate the summit crater.  

The episode of dome growth investigated in this study began in January 2013 when lava erupted 

into the base of a ~150 m wide and ~50 m deep crater formed (by several large explosions that same 

month) on top of a previous (2007 to 2011) lava dome. The new dome proceeded to fill this crater 

and by April 2013 overflowed to form several lava flows and eventually fill the entire summit crater 

(~300 m across). Several partial collapses (accompanied by increased volcanic activity) resulted in 

dome destruction on 10 – 11 July 2015; pyroclastic density currents generated by these collapses 

travelled up to ~10.6 km along the ravine of Montegrande, threatening several ranches and the 

town of Quesaría (pop. 8611 in 2010). This eruption was the largest (by volume) at Volcán de Colima 

since 1913.  

2. Methods 

2.1. Image capture and pre-processing 

Images (Fig. 1) were acquired using a consumer DSLR (Nikon D90) and a thermal camera (Jenoptik 

VarioCAM HiRes) from a light aircraft during 30 observation flights, conducted at intervals of 

approximately one month. The DSLR had an 18–105 mm zoom lens (most images were captured 

using the 105 mm setting), while the thermal camera used a 75 mm fixed-focal lens. Thermal images 

had an order of magnitude lower resolution than the DSLR images (640×480 pixels and 4288×2848 

pixels respectively). 

Observational flights involved 2–3 circuits around the crater at a slightly higher elevation than the 

summit. Typical viewing distances varied between ~1–3 km, corresponding to ground sampling 
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distances of ~5-15 cm/pixel for the DSLR camera (at full zoom) and ~25-75 cm/pixel for the thermal 

camera. Both cameras were operated by hand, with DSLR photographs captured every ~5–10 

seconds and the thermal camera programmed to take an image every 3.5 seconds. 

Blurry and poorly exposed images were manually removed from the resulting image sets (of ~100 

DSLR images and ~200–400 thermal images) prior to photogrammetric processing. Normally, ~50–75 

DSLR images and ~100–200 thermal images were considered usable, though this varied substantially 

with viewing conditions. 

The thermal images were converted from Jenoptic’s proprietary IRB format to JPEG (using a colour 

scale selected to maximise the amount of detail visible on the dome and volcanic flanks) before 

photogrammetric processing. A second set of JPEG images were additionally created from the 

thermal images using a fixed colour scale, and later projected onto the photogrammetric model to 

create a thermal texture map that can be compared between models. 
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Figure 1. Examples of typical DSLR (left) and thermal (right) images from two different observation 

flights. Both views are looking to the north-west, and the summit region is ~300 m across. 

2.2. Structure from Motion 

Photogrammetric processing of both the DSLR and thermal datasets was performed using Agisoft 

Photoscan Professional Edition (v1.2.3).  Prior to 3D reconstruction, both photosets were masked to 

remove degassing plumes, aircraft parts and unnecessary background, ensuring that only the edifice 

region was reconstructed. SfM methods were applied to estimate camera locations, orientations and 

internal parameters and produce a ‘sparse point cloud’ containing the location of tens of thousands 

of automatically detected features. These data were then used to constrain a detailed 

reconstruction of the volcanic edifice, producing a ‘dense point cloud’ (typically containing 10 – 20 

million points for the DSLR models and ~0.5 million points for the thermal models).  

Finally, a continuous triangulated surface model was derived from the dense point cloud for image 

rendering. For practical reasons, we limited the model to 1 million triangles, prior to texturing by 

projecting the original images onto its surface. For the thermal models, the photoset used to 

construct the model was exchanged with the photoset with a consistent colour-scale prior to the 

texturing step. 

2.3. Georeferencing and Alignment 

Due to difficult access and high risk, ground control points were not available for any of the models. 

Instead, similar to the approach used by James and Varley (2012), models generated from the DSLR 

images were georeferenced (within Agisoft Photoscan) by minimising the distance between features 

identified on the models and equivalent features located in Google Earth imagery. Here, we 

additionally used 1-arc second SRTM (Shuttle Radar Topographic Mission) data from February 2000 

to derive elevations. As the morphology of the summit area changed substantially over the study 

period, it was necessary to use Google Earth imagery from different dates for some models, causing 
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relative translations of the results (reflecting the georeferencing error within Google Earth; 

coordinates of some static features changed by >20 meters between imagery from different dates).  

To improve the registration between models and facilitate direct comparisons, the relative 

georeferencing of each model was optimised by aligning to one reference model (from 11 January 

2013) using the iterative closest point (ICP) alignment implementation in Cloud Compare (Girardeau-

Montaut, 2015). Model location, orientation and scale was allowed to vary during this step, during 

which areas known to have changed (i.e. the dome and associated flows) were manually excluded.  

Models constructed using thermal images could not generally be georeferenced from the Google 

Earth imagery due to difficulties identifying corresponding features in the thermal data. Instead, 

they were aligned to the DSLR model from the same flight (or from a previous flight if the DSLR 

model had failed), using a manual 3-D point-matching approach in Meshlab (Cignoni et al., 2008) to 

achieve an initial alignment that was then optimised using ICP. 

Where possible, the similarity (and alignment) of the DSLR and thermal models was assessed by 

comparison with DSLR models generated from the same flight. As the ICP alignment algorithm only 

applies a scaling and rigid body transformation, similarities between the DSLR and thermal models 

suggest that the photogrammetric reconstructions converge on a consistent surface shape, adding 

confidence to the results. Note that while this assessment provides an indication of uncertainty in 

the overall model shapes, it cannot evaluate the full geospatial uncertainty because the thermal 

models are not independently georeferenced. 

2.4. Volume Calculation 

Dome volume was estimated by determining the difference between each photogrammetric model 

and the pre-dome reference model created photogrammetrically using data from a flight on 11 

January 2013. The difference calculations (performed using a Java implementation of the signed 

tetrahedral method; Zhang and Chen, 2001) determined the volume between the surfaces in up to 
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four ‘regions of interest’ (ROI; Fig. 2). In this instance, a ROI containing the lava dome was defined 

for each of the photogrammetric models (both DSLR and thermal), and the volume of the dome 

estimated by comparison with a reference surface representing the pre-dome topography. Where 

the dome overflowed the crater (and transitioned into a lava flow), a consistent (but visually 

estimated) ‘dome boundary’ was defined (the boundary between regions a and b in Fig. 2), and the 

volume of the upper portion of a lava flow was also determined. 

 In order to better evaluate the uncertainty of the volume estimates, change within two stable 

reference areas on the flanks of the volcano was also calculated; because these areas should not 

vary, detecting volume change within them suggests greater uncertainty in the topographic models 

or their relative registration. These changes were expressed as mean vertical offsets that could then 

be used to estimate the dome volume (positive or negative) that likely resulted from alignment 

errors. Note however, that these reference areas were always located on the eastern flanks of the 

volcano, as the western flanks changed substantially over the study period (due to lava flows), and 

hence are not equally sensitive to all types of alignment error (e.g. translations or rotations) in dome 

area. 
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Figure 2: Oblique view of the ‘regions of interest’ defined for the 27/4/13 photogrammetric model. 

Region (a) contains the growing lava dome, and (b) the incipient lava flow. Regions (c) and (d) are the 

reference areas. The colour map represents the vertical distance between the comparison and 

reference surfaces. The dome region (a) is ~140 m across. 

3. Results and Discussion 

The 30 survey flights allowed the construction of 19 usable models from visible imagery and 22 

models from the thermal imagery, although thermal data was only available for 23 flights. These 

datasets provide a reconstruction of the summit lava dome geometry at ~monthly intervals for the 

entire dome-forming eruption. 

3.1. Comparison of Thermal and DSLR models 

Both sets of photogrammetric models (thermal and DSLR) reconstructed the crater and dome 

complex on Volcán de Colima with varying degrees of completeness, detail and accuracy (Fig. 3). It is 

clear that, in general, models constructed using the thermal images were substantially less detailed 

than DSLR equivalents. This will be due to a combination of the thermal images having a lower 

spatial resolution than the DSLR images and a lack of high-frequency image texture, due to low 

thermal contrast on the volcano flanks. 
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Figure 3. Selected DSLR and thermal photogrammetric models illustrated by hillshade (top and 

middle), and associated thermal orthomosaics (bottom). Grid cells are 50×50 m and oriented north-

south and east-west. The model shown in (a) was captured before lava dome growth and was used 

as the reference model in volume calculations. 

Nevertheless, 3D reconstruction using the thermal images was found to be far more robust to poor 

photography conditions than the DSLR models. In particular, thermal models could be constructed in 

situations where degassing made useful reconstruction from the DSLR images impossible. This is 

because water droplets in the degassing plume cause near complete scattering of visible light (and 

hence the plumes appear white), whilst the thermal infrared radiation (7.5-14 μm) is less affected 

(Fig. 4). Of all flights for which both thermal and DSLR data was available, ~30% of the DSLR surveys 

failed to generate a model while only ~5% of the thermal models failed, even though image locations 

and overlap were approximately the same. Hence, in addition to providing a useful map of estimated 
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temperature across the crater complex, the thermal models provide greater data continuity than the 

models from the DSLR. 

 

Figure 4. Thermal (a) and DSLR (b) images captured at approximately the same time and location 

(looking towards the east), under strong degassing conditions. The dome is generally resolvable in 

the thermal image, but is substantially obscured in the DSLR image. A photogrammetric model of the 

dome was successfully reconstructed from the thermal images, and is of particular importance as it 

was captured on 5/7/15, days before the major July 2015 eruption. A model was not attempted using 

the DSLR data due to the degassing. 

Shortest distance comparisons between associated DSLR and thermal models show generally good 

agreement (Fig. 5a and b). As thermal models tend to be smoother than the DSLR models (Fig. 3), 

differences tend to be focused around sharp topographic features such as the crater rim. However, 

in a few cases, the thermal models did differ significantly from their DSLR counterparts (Table 1). The 

largest dome volume difference was observed at the time when the dome area was largest (Fig. 5b), 

but the second largest observed dome volume difference resulted from the thermal model locating 

the dome surface ~5 m higher than the DSLR model (Fig. 5c). The reason for this difference is 

unclear, but highlights our ability to identify uncertainty by comparing the different datasets. A few 

of the thermal models also contained substantial error (±10 m; Fig. 5d), which was mostly apparent 

in areas of low thermal contrast, where image alignments and surface reconstructions are likely to 
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be weakest. Although the active lava surfaces were not directly influenced by this effect, the noisy 

surfaces did impair the ICP process and probably increased registration error. 

 

Figure 5. The shortest distance between corresponding DSLR and thermal models. Regions where the 

thermal model is above the DSLR model are yellow-red, while areas where the DSLR model is on top 

are shaded green-blue. Histograms showing the distribution of the difference values are shown 

below each map. Examples of typical models are shown in (a) and (b), with few large differences 

except along sharp features (e.g. the crater rim) and towards model boundaries. Examples of models 

showing greater differences are presented in (c) and (d), where reconstructed dome geometries do 

not match well (c) or where substantial error is present (d). 

Table 1: The five largest differences between the thermal and DSLR volume estimates. Volumes and 

differences are in million m3. Percentages are relative to the DSLR volume estimate. 

Model DSLR Volume Thermal Volume Difference % Difference 

7/06/2015 1.16 1.05 0.11 9% 

4/02/2015 1.10 1.20 0.10 9% 

20/06/2013 0.51 0.56 0.05 9% 

14/02/2014 0.51 0.55 0.04 7% 

2/12/2013 0.54 0.52 0.02 3% 

 

Using consumer cameras, and in the absence of ground control points sufficient to help constrain 

photogrammetric processing, SfM-based data have been previously shown to provide topographic 

data with an overall precision of ~1/1000 of the viewing distance (James and Robson, 2012). Thus, 
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over viewing distances of ~1-3 km, the 1-5 m differences between models are in line with this rule of 

thumb. These results are reasonable given the low resolution of the thermal camera and the 

relatively narrow angular field of view of both cameras (12° for the DSLR camera at full zoom and 10° 

for the thermal camera), which can cause difficulties for precise photogrammetric reconstruction. It 

is likely that the orbital flight paths play a strong role in helping to reduce error by naturally 

providing convergent imagery, which mitigates systematic model deformation effects when ground 

control points cannot be incorporated into the photogrammetric processing (Wackrow and 

Chandler, 2008; James and Robson, 2014).  

3.2. Dome volume calculations 

Dome volumes calculated independently using the DSLR and thermal models generally correspond 

well (Fig. 6), and differ by <10%. Likewise, the volume difference within the reference areas tended 

to be small, averaging 5% of the dome volume estimates.  

While the volcanological significance and the implications of these results for understanding the 

2013 – 2015 eruption are beyond the scope of this paper, it is clear that they provide valuable 

information on phases of dome growth (and volume loss) at Volcán de Colima between 2013 and 

2015 (Fig. 6). Average effusion rates could also be estimated from the rate of dome volume change, 

although the effect of volume loss through explosive activity and lava flows would need to be 

accounted for.  

Finally, where both DSLR and thermal models were successful, the two independent reconstructions 

also provide a valuable indication of uncertainty in model shape. Future studies could extend this 

approach and use GPS devices to “geotag” image locations at the time of capture, allowing 

additional evaluation of georeferencing uncertainty as the thermal models would no longer rely on 

ICP registration against a similar visible-light model for their georeferencing. For high quality camera 

position data, this ‘direct georeferencing’ approach has been shown capable of delivering 

decametric accuracies (Nolan et al., 2015). Alternatively, where sufficient topographic features are 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

  

 

recognisable in the thermal models, a single georeferenced model or high resolution digital 

elevation model of known accuracy could be used for georeferencing, avoiding the need for closely 

associated DSLR models. 

 

Figure 6. Volume of the lava dome (dotted) and lava flow top (dashed) between initiation of dome 

growth in January 2013 and dome collapse in July 2015.  Where both DSLR (squares) and thermal 

(circles) models were available, the lines represent an average estimate. It is clear that there is 

generally good agreement between volumes calculated with the DSLR and thermal models.  

Reference area volumes (which would be zero under error-free conditions) are shown in grey to give 

an indication of relative accuracy.  

4. Conclusions 

We have successfully used SfM techniques and oblique thermal images to produce a time-series of 

georeferenced, three-dimensional thermal models of an active lava dome at Volcán de Colima. 

Comparisons between these models and equivalents derived from DSLR images suggest that, while 
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less detailed, the thermal models provide a valuable representation of dome geometry. Estimates of 

the lava dome volume correspond well between the DSLR and thermal datasets. 

The thermal models were found to be substantially more robust to the adverse effects of degassing 

and poor lighting. Because degassing is common at Volcán de Colima (as at many other volcanoes) 

thermal imaging provided important data continuity at times when DSLR image quality was 

restricted. Where both DSLR and thermal models were available, the thermal models provided a 

useful complementary geometry estimate, helping to identify uncertainty in the models, and a 

georeferenced map of temperature distribution that allows identification of thermally active regions 

on the dome surface.  

The combined DSLR and thermal datasets provided detailed information about the evolution of the 

dome on Volcán de Colima between 2013 and 2015. It is possible that, if employed as a monitoring 

technique (rather than retrospectively), the rapid change in dome volume, morphology and 

temperature distribution documented by the models in the months leading up to July 2015 may 

have provided prior warning of the dome collapse. 
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Highlights 

 We apply structure from motion to oblique thermal images of Volcán de Colima  

 Dome geometry between 2013 and 2015 is reconstructed at monthly intervals 

 These models are compared to visible-light equivalents and found to correspond well 

 The thermal models were more robust to degassing and poor lighting 

 Thermal photogrammetry provides a useful additional tool for volcano monitoring 
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