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Abstract:  Condition Monitoring (CM) is considered an effective method to improve the 8 

reliability of wind turbines and implement cost-effective maintenance. This paper presents a 9 

single hidden-layer feed forward neural network (SLFN), trained using an extreme learning 10 

machine (ELM) algorithm, for condition monitoring of wind turbines. Gradient-based 11 

algorithms are commonly used to train SLFNs; however, these algorithms are slow and may 12 

become trapped in local optima. The use of an ELM algorithm can dramatically reduce 13 

learning time and overcome issues associated with local optima. In this paper, the ELM model 14 

is optimized using a genetic algorithm. The residual signal obtained by comparing the model 15 

and actual output is analyzed using the Mahalanobis distance measure due to its ability to 16 

capture correlations among multiple variables. An accumulated Mahalanobis distance value, 17 

obtained from a range of components, is used to evaluate the heath of a gearbox, one of the 18 

critical subsystems of a wind turbine. Models have been identified from supervisory control 19 

and data acquisition (SCADA) data obtained from a working wind farm. The results show that 20 

the proposed training method is considerably faster than traditional techniques, and the 21 

proposed method can efficiently identify faults and the health condition of the gearbox in wind 22 

turbines. 23 

1. Introduction 24 

There has been a dramatic increase in the construction of wind farms over the past 25 

decade in UK, especially offshore wind installations, contributing to the UK achieving 26 

national targets for reducing CO2 emissions and the production of sustainable energy. 27 

Compared to their onshore counterparts, the major advantages of offshore wind turbines 28 

(WTs) include increased turbine size, improved wind conditions due to higher wind speed and 29 

lower turbulence, and reduced visual impact and noise intrusion. However, the high cost of 30 

routine inspection and maintenance has been problematic, particularly when the WTs are 31 

operating in harsh environments and are sited in deep sea waters. Over an operating life of 20 32 

years, maintenance costs of wind farm may reach 15% and 30% of the total income for 33 

onshore and offshore wind farms, respectively [1]. Condition monitoring (CM) is considered 34 

an effective method to schedule cost-effective maintenance activities and enhance the 35 

reliability of wind turbines [2]-[5]. Clearly, it is essential to develop effective CM techniques 36 

for wind turbines, providing information regarding the past and current condition of the 37 

turbines and to enable the optimal scheduling of maintenance tasks.  38 

Among CM techniques, data-driven model-based methods (referred to as data-based 39 

methods thereafter in this paper) do not need to consider the mathematical model of the 40 

Page 1 of 22

IET Review Copy Only

IET Renewable Power Generation
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



2 

 

physical system; instead models are purely based on data obtained by investigating the 41 

relationship between measured inputs and outputs. In the data-based method, data gathered 42 

using a CM system or equivalent are used as the inputs for models predicting the output 43 

signals of a physical process. Actual output signals generated by the system are then compared 44 

to the predicted outputs for the corresponding input signals. Any differences between these 45 

output signals could be caused by changes to the system, and may be caused by the occurrence 46 

of a fault [6]. In this regard, the residual signal can provide an early warning of imminent 47 

component failure. 48 

Although the residual signal can show impending component failure, it does not provide 49 

accurate details regarding the failure of components or subsystems in a wind turbine. One of 50 

the important aims of a CM system is to assist the operators to operate safely and reliably the 51 

wind turbines in order to avoid unnecessary operating outages. The outputs from such 52 

condition monitoring systems allow turbine operators to make decisions with regards to 53 

maintenance scheduling through improved understanding of the turbine’s health condition. 54 

Reasonable maintenance strategies can therefore be implemented, which can significantly 55 

reduce the maintenance cost and enhance the availability and reliability of a wind turbine [7].  56 

This paper proposes a new method for condition monitoring and fault diagnosis of the 57 

gearbox in the wind turbines. The faults associated with the gearbox account for a 58 

considerable proportion of total faults, which could contribute to approximately 20% of the 59 

downtime of a doubly-fed induction generator-based wind turbine, particularly for offshore 60 

wind farms [8]-[9]. For data-based condition monitoring systems, accurate models are 61 

essential for the relationships between those parameters being monitored. In this regard, 62 

artificial intelligence (AI) techniques are utilized by many researchers for data-based CM 63 

schemes, such as artificial neural networks (ANNs) [10]-[12], support vector machines 64 

(SVMs) [13]-[14] and fuzzy logic [15]-[17]. ANN-based methods are robust to signal noise, 65 

making them suitable for dealing with data acquired in noisy environments. However, the long 66 

training times associated with ANN models can limit their application. SVMs tend to have 67 

better generalized performance and more accurate training results than neural network models; 68 

however, training SVM models with large datasets is not straightforward. A fuzzy logic 69 

system, based on fuzzy sets of linguistic variables, uses predefined rules to enable reasoning. 70 

A fuzzy logic system is based upon fuzzified features of the faults and then uses these features 71 

to diagnose faults by using the predefined rules. It is clear that a fuzzy logic system requires 72 

full knowledge of failure mechanisms of a wind turbine in order to design these rules, which is 73 

usually unfeasible in practice. In this paper, an extreme learning machine (ELM) algorithm is 74 
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employed to train a neural network model for data-based condition monitoring, overcoming 75 

the drawbacks of a traditional feedforward ANN. The preliminary results obtained by the 76 

authors of this paper using the ELM for condition monitoring of wind turbines can be found in 77 

reference [18]. In this paper, the ELM algorithm is firstly optimized by a genetic algorithm in 78 

order to optimize the initial weight values and the biases of the hidden neurons; then a 79 

classification method based on the accumulated value of the Mahalanobis distance (MD) from 80 

multiple components are used as the measure to assess the health condition of the wind turbine 81 

gearbox. The proposed method is able to integrate the optimized ELM algorithm with an 82 

appropriate classification method utilizing different components in the gearbox system, 83 

facilitating fast and reliable condition monitoring and fault diagnosis of the wind turbines. 84 

The remainder of this paper is organized as follows. The working principle of the 85 

extreme learning machine algorithm is presented in Section 2, while Section 3 describes the 86 

genetic algorithm employed to optimize the ELM model. Section 4 demonstrates the 87 

Mahalanobis distance method and proposes an accumulated MD method in order to diagnose 88 

the health condition of a gearbox. Case studies using SCADA data obtained from a working 89 

wind farm are discussed in Section 5. Finally, Section 6 contains conclusions and suggestions 90 

for further research. 91 

2. The extreme learning machine algorithm 92 

Feed-forward neural networks with a single hidden layer (SLFNs) are particularly 93 

efficient and are used widely in several research areas, including mode recognition and state 94 

prediction [19-21]. Gradient-based back-propagation training algorithms, traditionally used 95 

during the learning procedure for a SLFN, have some disadvantages, which can cause long 96 

training times of the model during the learning process. Other issues include being stuck in 97 

local optima, improper learning rate, and over-fitting. In this regard, the extreme learning 98 

machine (ELM) algorithm was first proposed by Huang as a non-iterative algorithm to 99 

improve the learning process of a SLFN [22]. Compared with gradient-based learning 100 

methods, the ELM algorithm incorporates the following merits [23]-[24]: 101 

(i) It arbitrarily initializes the weights on the input and the biases, and calculates 102 

analytically the weights on the output. Note that the output weights do not need be iterated 103 

repeatedly during training, resulting in faster learning than other algorithms. 104 

(ii) Traditional gradient-based learning algorithms are iterative and may become trapped in 105 

local optima. Other problems include overtraining and overfitting. These issues may interfere 106 
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with the training result, especially when modelling a nonlinear system. In contrast, the ELM 107 

algorithm is better at the generalization of training, thus overcoming these issues. 108 

Fig.1 shows a diagram of a feed forward neural network with a single hidden-layer. The 109 

network consists of an input layer, a hidden layer and an output layer of neurons. For this 110 

example, the input layer has n neurons; the hidden layer has L neurons, and the output layer 111 

has m neurons. Finally, x1, x2, · · · , xn are the inputs to the network and y1, y2, · · · , ym are the 112 

outputs from the network. 113 

 114 

Input Layer Hidden Layer Output Layer

xn

ym

g(w,b,x)

w
β

x1

.

.

.

y1

.

.

.

 115 

Fig. 1 Diagram of a feedforward neural network with a single hidden-layer (SLFN) 116 

 117 

Consider an ELM based upon the network illustrated in Fig. 1 with an activation 118 

function g(.). It is assumed that the ELM is able to estimate N training outputs with zero error. 119 

The algorithm can be represented by the following expression: 120 
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where wij is the weight between the ith hidden neuron and jth input neuron; �� =122 

���� ��� ⋯ ���		is the vector of output weights connecting the ith hidden neuron and m 123 

output neurons; �� = ���� ��� ⋯ �
�	�	(� = 1, 2, … , �)  are the input signals; �� =124 

��� �� ⋯ ��	
� is the bias of the ith hidden neuron.  125 
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Eq. (1) can be rewritten, 126 

TMH =β                                                               (2) 127 

in which M
T
 is the transpose of matrix M and H is the output matrix of the hidden layer. The 128 

matrix H can be represented as, 129 
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where the ith column of H is the vector of outputs of the ith hidden neuron given inputs x1, 131 

x2, · · ·, xn. Following initialization of the input weight matrix w (L×n dimensions) and the 132 

hidden layer bias vector b (length L), the matrix H (N×L dimensions) is uniquely determined. 133 

The matrix of output weights, β (L×m dimensions), can then be calculated by simply finding 134 

a matrix β̂  in order to minimize the error function,  135 

TMH −β
β

min                  (4) 136 

It is worth noting that the input weights w and the hidden layer biases b are not changed 137 

during this procedure. The solution is expressed as the following: 138 

T
MH

+=β̂         (5) 139 

Minimizing this function is equivalent to obtaining the unique smallest norm least-140 

squares solution of the linear system in eq. (4). The matrix H
+
 is the generalized Moore-141 

Penrose inverse of the matrix H, which can be found using the singular value decomposition 142 

(SVD) method.  Details about the SVD method can be found in reference [25].  143 

3. Genetic Algorithm Optimization 144 

As described in Section 2, arbitrary values are assigned to the weights of the inputs and 145 

the biases of the hidden neurons of the ELM model at the beginning of learning; clearly these 146 

parameters may not be the optimum values for the ANN. However, the training results of the 147 

ELM model largely depend on both the input-to-hidden weights and hidden-to-output 148 

weights, hence the ANN tends to have better generalization performance given small values 149 

for the weights. The selection of optimal initial input weights and biases would therefore be 150 

essential for an effective ELM model. Thus, a genetic algorithm (GA) is adopted to optimize 151 

these weights and biases. GAs were originally proposed by Holland [26], and are a kind of 152 
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parallel adaptive search algorithm based on the mechanics of natural selection and genetic 153 

systems, where individuals are usually represented by binary strings, as here. The algorithms 154 

have unique advantages, particularly in the fields of searching, optimization, and machine 155 

learning [27]. The purpose of using a genetic algorithm in this study is to obtain optimum 156 

values for the initial input weights and the initial hidden neuron biases so that the weights β 157 

can be calculated using eq. (5). In general, a genetic algorithm has five steps, including 158 

initialization, fitness evaluation, selection, crossover and mutation operations.  159 

The purpose of the selection operation is to obtain the probability of an individual being 160 

able to contribute to the next generation, This is based upon each individual’s ‘fitness’, in this 161 

case, the optimum values for the initial input weights and biases. In order to achieve this, a 162 

roulette wheel selection technique is employed in the GA. There needs to be a balance in order 163 

to maintain the selection pressure and the diversity of the population. The crossover operation 164 

obtains new individuals from two ‘parents’. Here a kind two-point crossover is used where 165 

two points are chosen on the parent chromosome strings. Two child chromosomes are 166 

obtained by swapping the elements between two points on the parent binary strings. Finally, 167 

the mutation operation introduces a random element to the individuals of the population. The 168 

rate of mutation decreases exponentially as the number of generations increases. For each 169 

mutation, a random number is generated. If the random number is smaller than the mutation 170 

rate, the value of the bit is flipped; otherwise, the value remains the same. More details about 171 

the GA can be found in reference [28]. 172 

When the internal weights and biases are initialized, the ELM model calculates a 173 

predicted output. The fitness value can be found by calculating the sum of the absolute errors 174 

of the expected output and actual output of the ELM,  175 

)(
1

∑
=

−=
m

i

ii oykF        (6) 176 

where m is the number of outputs; yi is the ith predicted output of the ELM model; oi is the ith 177 

actual output of ELM model; although k is an application dependent constant, k=1 is normally 178 

selected [29]. 179 

The steps of the optimal extreme learning machine incorporating a genetic algorithm are 180 

described as follows: 181 

Step 1: Define the structure of the SLFN, including the number of input layer neurons 182 

and hidden layer neurons, n and L respectively; arbitrary initial values are assigned to input 183 

weights w and hidden neuron biases b. 184 
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Step 2: The input weights and hidden neuron biases are forwarded to the genetic 185 

algorithm. Through the five steps of the GA described above, optimal initial values of the 186 

input weights and biases are determined. It is worth emphasizing that when the input weights 187 

and biases are initialized, the optimal output weights are uniquely determined, as described in 188 

the above section; thus output weights need not to be optimized by the GA. 189 

Step 3: The ELM model is then updated using the initial values of w and b. The model is 190 

subsequently trained with the training data, with the hidden-to-output weights β being adjusted 191 

until the output data from the model match the target output data.  192 

  Step 4: A set of input data are then used to test the model to observe how well the 193 

corresponding outputs are predicted. In this case, the output values are predicted signals of the 194 

process being modelled. The actual outputs are then compared with the model prediction for 195 

given input signals, and the residual signals between them are obtained. 196 

4. Health Condition Identification 197 

In this section, faults in a wind turbine gearbox are investigated by comparing the 198 

difference between the actual signal detected in real time and the predicted signal from the 199 

optimized extreme learning machine. Although a method relying on residual signals alone can 200 

detect faults effectively, it is not able to provide accurate characteristics about the failure of 201 

components. Furthermore, the gearbox in a wind turbine generally has several components, 202 

and traditional methods have only focused on detecting faults or identifying the health of an 203 

individual component [10]. Clearly, it would be desirable to use a more appropriate method in 204 

order to identify the health condition of the gearbox system as a whole.  205 

A minimum-redundancy maximum-relevance feature approach is adopted in this paper 206 

to optimize the residual signal, taking into account interactions between signals measured 207 

from different components in the gearbox. The Mahalanobis distance (MD) is a measure of the 208 

distance between a point and a distribution without consideration of the units used for the 209 

measurement. This means that the MD measure has the capability to describe correlations 210 

among variables in a process or a system. Thus, the MD measure can provide a univariate 211 

distance value for multivariate data, which is ideal for estimating the deviation values of a 212 

complex system [30] [31]. Consequently, the MD measure is selected to help obtain the 213 

deviation from the group data, which can be used to identify the health condition of the 214 

gearbox. For the ith observation vectors Xi = (x1i, x2i, ..., xni) and Yi = (y1i, y2i, ..., yni), the MD is 215 

given by matrix 216 

T

iiii YXCYXMD )()( 1 −−= −       (7) 217 
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where n is the number of parameters x1, x2, · · · , xn to be analyzed, for example, the 218 

temperatures and pressures of oil in the gearbox; the matrix C is the covariance matrix of Xi 219 

and Yi , i.e., C =cov(Xi ,Yi), where cov is a function for calculating covariance matrix . In this 220 

paper, the residual signals from the ELM are used to form an observation vector Xi. Yi is 221 

regarded as the reference vector with a reasonable deviation value.  In ideal conditions, the 222 

values in the reference vector can be considered to be zero. 223 

MD values can be accumulated over a period of time t, indicating the deviation of the 224 

calculated MD value from the expected value for different components in the gearbox. 225 

However, it is necessary for a confidence band for the accumulated MD values to be defined. 226 

In this paper, the value of the confidence band is set to unity. If the accumulated MD values 227 

are below this level, the deviations are attributed to signal interference, which are therefore 228 

ignored in the accumulation of MD values. Otherwise, the values are added to the accumulated 229 

MD value. Three relationships are considered in this study, including gearbox pump oil 230 

pressure with gearbox oil temperature, gearbox pump oil pressure with gearbox bearing 1 231 

(main speed shaft bearing connected to the rotor) temperature, and gearbox pump oil pressure 232 

with gearbox bearing 2 (high speed shaft bearing connected to the electric generator) 233 

temperature, assessing the condition of each component in the gearbox. The definition of these 234 

signals will be described in the subsequent section. The MD values described in this section 235 

can therefore be extended to multiple processes.  236 

However, the durability and failure modes of each component in a gearbox can be 237 

different; thus weights are allocated to represent the health impact of each component on the 238 

performance of a gearbox. Here, a multiple MD model is defined as sum of all MD values 239 

above the confidence band observed during a defined period of time. This multiple MD model 240 

can be used as the basis of an early warning system, with an alarm raised if the threshold is 241 

exceeded. 242 

The accumulated MD model with multiple components is described as follows: 243 

1;)( 32
0

1 =++++= ∫ γβαγβα dtMDMDMDRIV
t

   (8) 244 

where RIV is the risk indicator value of the gearbox as a whole; MD1 is the MD value of the 245 

gearbox pump oil pressure to the gearbox oil temperature; MD2 is the MD value of the 246 

gearbox pump oil pressure to the gearbox bearing 1 temperature; MD3 is the MD value of the 247 

gearbox pump oil pressure to the gearbox bearing 2 temperature; α, β and γ are the weights of 248 

these MD values, respectively. The RIV takes the variability of each MD value into account 249 

when determining its distance from the multivariate center of the distribution, thus providing 250 
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a more sensitive indicator. As can be seen from eq. (8), the RIV and its derivative change over 251 

time and a higher value of the derivative represents an indication of higher risk, indicating 252 

worsening health of the gearbox. 253 

5. Case Studies  254 

5.1 SCADA data 255 

 256 

Supervisory control and data acquisition (SCADA) systems utilize hardware and 257 

software elements and IT technologies to monitor, gather, and process data. In power systems, 258 

SCADA systems are used for a range of functions, including data acquisition, control, 259 

adjustment of parameters, and generating warning signals. The SCADA data used here have 260 

been obtained from a working wind farm. The use of operational SCADA data is an effective 261 

way to demonstrate the algorithms described in this paper. These data represent 12 months’ 262 

operation and consist of 128 variables, comprising temperatures, pressures, vibrations, power 263 

outputs, wind speed, and digital control signals. Note that SCADA signals are usually 264 

processed and stored at 10 minute intervals, although sampled in the order of 2 s. 265 

Power curves of two wind turbines, obtained from the SCADA data, are shown in Fig. 2. 266 

Fig. 2 (a) illustrates a power curve of a healthy turbine. It can be seen that power varies with 267 

the cube of wind speed below the rated speed of 15 m/s. When the wind speed is below the 268 

cut-in speed of 4 m/s, the rotor torque is not sufficient for the turbine to produce any power. 269 

When the speed of the wind is greater than the cut-out speed of 25 m/s, the turbine is shut 270 

down and does not generate any power. At wind speeds above the rated speed but below the 271 

cut-out speed, power output is restricted to the rated power of the turbine. This turbine has 272 

been chosen as the ‘reference turbine’, and forms the basis of the ELM model. 273 

In contrast, Fig. 2 (b) shows the power curve of a faulty wind turbine. It can be seen that 274 

this turbine has, at some point, operated with reduced power output. After studying the fault 275 

log of the turbine, it has been concluded that this power reduction followed a fault with the 276 

gearbox. 277 
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 278 

a 279 

 280 

b 281 

Fig. 2 Examples of two power curves of wind turbines 282 

a Power curve of a fault-free turbine 283 

b Power curve of a faulty turbine  284 

5.2 Gearbox 285 

 286 

This paper is focused on gearbox faults and the health condition of the wind turbine 287 

gearbox. The gearbox is one of the key components in indirect-drive wind turbines because 288 

the turbine rotor cannot match the synchronous speed of the generator. The gearbox is used to 289 

transmit kinetic energy from the turbine rotor to the electric generator, adjusting rotational 290 

speed and torque accordingly. However, the gearbox can be a major contributor to a turbine’s 291 

downtime, with common failure modes being bearing faults and gear teeth faults. Surveys 292 

have shown that the root cause of gearbox failure is due to rapid changes of torque from 293 

stochastic wind profiles, which create an uneven load for the bearing and misalignment of gear 294 

teeth. Other causes of bearing and gear teeth failure are elevated operating temperature and 295 

excessive contamination of the cooling lubricant due to failure of the gearbox cooling system. 296 
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Any fault from the gearbox can result in an abnormal input to the generator, reducing 297 

efficiency or, in extreme cases, damaging the generator [32] [33]. 298 

Fig. 3 shows a schematic diagram of the structure of a three-stage gearbox. The gearbox 299 

consists of three types of components, specifically, gears, bearings and the cooling system 300 

(usually oil cooling). In this paper, gearbox temperature and oil pressure measurements at 301 

different locations of the gearbox obtained from the SCADA data [34] [35] are selected to 302 

monitor the condition of gearbox, which contain specifically temperature readings for gearbox 303 

bearing 1 (main speed shaft bearing connected to the rotor), gearbox bearing 2 (high speed 304 

shaft bearing connected to the electric generator) and the gearbox oil (the temperature of 305 

gearbox oil is close to actual gear temperature) and the pressure in the oil pump. The oil 306 

pressure shows the operating condition of the gearbox cooling system.  307 

Bearing 2

Bearing 1
Generator shaft

Main shaft

Low speed stage 
Intermediate speed stage 

High speed stage 

 308 

Fig. 3 Schematic diagram of gearbox structure 309 

 310 

5.3 Model predictions 311 

 312 

The model predictions for the gearbox oil temperature, gearbox bearing 1 temperature 313 

and bearing 2 temperature using the optimized ELM model are illustrated in figures 4 to 6. 314 

Fig. 4 (a) shows the gearbox oil temperature obtained from the SCADA data for the faulty 315 

turbine. Fig. 4 (b) illustrates the predicted gearbox oil temperature obtained from the ELM 316 

model. Fig. 4 (c) illustrates the residual signal between the actual temperature and predicted 317 

temperature of the gearbox oil. It can be seen that the actual temperature deviates from the 318 

prediction at hour 2850 indicating the onset of the fault. Fig. 5 and Fig 6 show actual SCADA 319 

data, the signals predicted by the model, and the residual signals of the temperatures of 320 
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gearbox bearing 1 and gearbox bearing 2, respectively. The temperatures of gearbox bearing 1 321 

and bearing 2 deviate from the model predictions at hour 2850. At the same time, the actual 322 

gearbox oil temperature deviates from the predicted temperature. Clearly, it can be concluded 323 

that the models provide a reliable and effective indication of the onset of the gearbox fault. 324 

 325 

a 326 

 327 

b 328 

 329 

c 330 

Fig. 4 ELM model prediction compared to SCADA data for gearbox oil temperature 331 

  a SCADA output  332 

  b Model output  333 

   c Residual signal  334 
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 336 

a 337 

 338 

b 339 

 340 

c 341 

Fig. 5 ELM model prediction compared to SCADA data for gearbox bearing 1 temperature 342 

     a SCADA output  343 

     b Model output  344 

              c Residual signal  345 
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a 348 

 349 

b 350 

 351 

c 352 

Fig. 6 ELM model prediction compared to SCADA data for gearbox bearing 2 temperature 353 

         a SCADA output  354 

     b Model output  355 

     c Residual signal  356 

 357 

In addition to the temperature of the gearbox, the pressure of oil in the gearbox pump is 358 

another important signal that can be used to detect the faults of the gearbox in a wind turbine. 359 
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Abnormal levels of oil pressure in the gearbox pump will affect heat dissipation from the 360 

gearbox, which is usually caused by faults in the gearbox oil pump, filter blocking of oil-361 

conveying pipes or deterioration of the condition of the cooling oil. Thus, the modelled 362 

predictions for the oil pressure in the oil pump are also considered here. Note that the gearbox 363 

pump oil pressure changes with the power output of the turbine. Fig. 7 (a) shows the actual oil 364 

pressure in the oil pump, while Fig. 7 (b) illustrates the pressure of the oil as predicted by the 365 

ELM model. At 2850 hours, the residual signal in Fig. 7 (c) shows that the oil pressure begins 366 

to deviate from the model prediction. In general, the cooling system is able to keep the 367 

gearbox at the normal operating temperature to ensure that no damage is caused, but when the 368 

temperature of the gearbox becomes abnormal, the residual signal of the oil pressure in Fig. 7 369 

(c) fluctuates between positive and negative values. This indicates that the cooling system is 370 

attempting to restore the normal working conditions of the gearbox, but it is unable to do so 371 

effectively.  372 

  373 

a 374 
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b 376 
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 377 

c 378 

Fig. 7 ELM model prediction compared to SCADA data for gearbox pump oil pressure 379 

a SCADA output  380 

b Model output  381 

c Residual signal  382 

 383 

A desktop PC with a Xeon E3-1271 v3 3.6GHz CPU and 16GB RAM was used to 384 

implement the ELM. The time taken to train the ELM was compared with that taken to train a 385 

traditional BP back propagation neutral network using a threshold training algorithm, an 386 

algorithm commonly used to train ANNs. The ELM algorithm learns on an average of 0.16s 387 

compared to 22s using the BP method for the same training sets. Consequently, the ELM 388 

learning algorithm run around 138 times faster than the BP method. The root mean square 389 

error (RMSE) is also employed here as a measure of how well the models explain the actual 390 

output data. The RMSE values for the models with ELM and BP are 0.0915 and 0.0862 391 

respectively. This indicates that the ELM model also provides a good fit with considerably 392 

reduced learning time.  393 

 394 

5.4 Fault identification 395 

 396 

In order to assess further the condition of gearbox components, a MD measure of 397 

residual signals is used in this section to establish a relationship between the temperature 398 

change of gearbox components and oil pressure in the gearbox oil pump. The residual signal 399 

of the oil pressure is shown in Fig. 7(c). The gearbox component residual temperatures, shown 400 

in Fig. 4(c), 5(c) and 6(c), have been selected as the observation vectors. Hence, MD values of 401 

temperatures for the gearbox oil, gearbox bearing 1, and gearbox bearing 2 in relation to the 402 

working condition of the cooling system are obtained. Figure 8 shows the MD values 403 

calculated using equation (7) for these gearbox components. It can be seen that the MD values 404 

increase significantly at hour 2850, indicating the onset of the fault. Compared to individual 405 
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residual signals from the predicted models shown in the figures in Section 5.3, these MD 406 

values can identify the fault more clearly by taking into account different monitoring signals 407 

from the system. 408 

 409 

a 410 

 411 

b 412 

 413 

c 414 

Fig. 8 MD calculated for gearbox components 415 

a Gearbox bearing 1  416 

b Gearbox bearing 2  417 

c Gearbox oil  418 
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The accumulated MD values, referred to here as the ‘risk indicator’, describing 419 

relationships between the oil pressure and the bearing temperature changes are shown in Fig. 420 

9. As can be seen from the figure, the risk indicators of pump oil pressure to gearbox oil 421 

temperature, pump oil pressure to gearbox bearing 1 temperature and pump oil pressure to 422 

gearbox bearing 2 temperature demonstrate an almost same change in the derivative over time, 423 

representing an approximately equal share of risk of failure of each component. Therefore, for 424 

this case, the weightings of gearbox pump oil pressure to gearbox oil temperature, α, gearbox 425 

pump oil pressure to gearbox bearing 1 temperature, β, and gearbox pump oil pressure to 426 

gearbox bearing 2 temperature, γ, are each set to 1/3. The accumulated MD values from these 427 

components are then calculated using eq. (8) to indicate the health condition of the gearbox as 428 

a whole. Fig 10 shows the observed risk indicator values of oil pressure to bearing 1 429 

temperature for the gearboxes of one faulty and two fault-free wind turbines over a period of 1 430 

month; the gearbox failure in the faulty wind turbine occurs at the middle of the month. When 431 

the fault begins to occur, the risk indicator value increases dramatically to 3500, after 16 days 432 

of the fault occurring. Conversely, the observed risk indicator values for the two fault-free 433 

wind turbines over the same month increases slowly, simply because of component aging.  434 

 435 

Fig. 9 Observed risk indicators for the gearbox of a faulty turbine in relation to oil pressure and oil 436 

temperature, respectively 437 

 438 

Fig. 9 also shows the observed risk indicators describing the relationship between the 439 

bearing temperature changes and the oil temperature. Even though these risk indicators have 440 

demonstrated a similar change over time, the MD values associated with the oil temperature 441 

increase monotonically with the time, and hence do not show the onset of the fault at hour 442 

2850. It can therefore be concluded that the fault occurs in the cooling system, and the oil 443 
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pressure should be selected to diagnose the operating condition of the cooling system in the 444 

gearbox. As is well known, active cooling systems are the main means for dissipating heat, 445 

which, for a wind turbine, include the oil lubrication system of the gearbox and the 446 

ventilation system of the generator. A typical gearbox lubrication system in a wind turbine 447 

consists of an oil pump unit, a heat exchanger, and an oil filter. Oil filters are used to remove 448 

impurities or metal particles within the lubrication oil in order to maintain oil quality and to 449 

prevent further wear of gearbox components. Pressure sensors are installed at both ends of 450 

the filters to monitor their status, while a temperature sensor is installed in the oil sump to 451 

measure lubrication oil temperature. The oil cooling system is started if the oil temperature is 452 

over a certain threshold, usually 60°C [34]. In this paper, the increase in gearbox temperature 453 

is due to an oil filter becoming blocked, as indicated in the alarm log and from an 454 

investigation of the SCADA data. The heat emission efficiency is reduced due to the oil filter 455 

blockage, leading to a rise in gearbox temperature. 456 

   457 

Fig. 10 Observed risk indicator value of oil pressure to bearing 1 temperature for the gearbox of a faulty 458 

and two fault-free wind turbines over a period of 1 month  459 

 460 

6.  Conclusions 461 

In this paper, a data-based approach using an extreme learning machine (ELM) 462 

algorithm optimized with a genetic algorithm has been proposed for condition monitoring of 463 

the gearbox in wind turbines. SCADA data, acquired from a working wind farm, have been 464 

used to demonstrate the effectiveness of the ELM method. These data include the temperature 465 

of the oil in the gearbox, the temperature of the gearbox bearings, and the pressure in the 466 

gearbox oil pump. Models derived from these data have been used to identify faults. It has 467 

been shown that the residual signals between the actual output and the predicted output are 468 
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caused by a gearbox fault, providing an early warning of impending failure. The results also 469 

demonstrate that the ELM learning algorithm can provide a good fit with a considerably 470 

reduced learning time compared to a BP algorithm.  471 

Moreover, Mahalanobis distance (MD) values and accumulated MD values, obtained 472 

from multiple components, are employed to identify the health condition of the gearbox. 473 

These MD values can detect the fault more effectively by taking into account a range of 474 

different monitoring signals from the system. Observed risk indicator values, describing 475 

relationships between different components in the gearbox, have shown that the cooling 476 

system has a significant effect on the performance of the gearbox system.  477 

Note that the data used in this paper are mostly representative of the normal operation of 478 

wind turbines and do not contain a great deal of information regarding the occurrence of 479 

faults; consequently, this paper employs static ELM models only. Future work will therefore 480 

consider dynamic models by taking into account the effect of more past inputs on the model 481 

output, and the different effect each component has on the health condition of the gearbox. In 482 

this paper, the same value is used as the risk indicator for several different gearbox 483 

components. It is clearly worth evaluating different risk indicator values, taking into account 484 

the residual signal produced from the ELM model and the contributions to the downtime 485 

caused by failure of each component. A real-time early warning system, employing an online 486 

sequential ELM, will also be developed in order to predict faults in the operational wind 487 

turbines.  488 
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