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Abstract—Energy usage in data centres continues to be
a major and growing concern as an increasing number of
everyday services depend on these facilities. Research in this
area has examined topics including power smoothing using
batteries and deep learning to control cooling systems, in
addition to optimisation techniques for the software running
inside data centres. We present a novel real-time power-cycling
architecture, supported by a media distribution approach and
online prediction model, to automatically determine when
servers are needed based on demand. We demonstrate with
experimental evaluation that this approach can save up to 31%
of server energy in a cluster. Our evaluation is conducted on
typical rack mount servers in a data centre testbed and uses
a recent real-world workload trace from the BBC iPlayer, an
extremely popular video on demand service in the UK.
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I. INTRODUCTION

Video on demand services have become increasingly
popular over the last decade, with services like Netflix,
Amazon Instant Video, and IP-based broadcast solutions.

These services are supported by data centres, which
stream requested content to users. In many cases these
facilities use dedicated servers (rather than shared cloud
hosting) so that available latency and bandwidth, and there-
fore Quality of Service (QoS), is predictable. Data centres
like this also often over-provision resources based on a
projected peak load to ensure that all requests can be served
with acceptable QoS at peak times [1]. This tends to mean
that servers are not fully utilised at all times, however,
leading to energy waste [2]. These services are also known to
experience fluctuations in demand over the course of a day,
week, month and year as new popular content is released [3].

At the same time, data centres are known to be significant
energy consumers, with a broad range of efforts under way to
reduce this level of energy consumption, such as, power dis-
tribution [4], improving cooling system efficiency [5] or data
centre network architectures [6], among other techniques.

We propose an approach in which we use real-time
prediction to determine the number of servers needed at any
point in time, allowing those that are not currently needed
to be temporarily switched off until demand increases. To
enable this our approach uses three novel features for a video

on demand service, including both prediction and content
distribution within the server cluster:

• A predictive model of which videos will and will not
be requested by users in the near future (considering
the upcoming 30 minutes of requests), using a fused
model of the last two hours of requests together with
the same two hour period from the previous week.

• A framework in which popular content is co-located on
a subset of available servers in the cluster, increasing
the probability that servers with unpopular content can
be turned off when no requests are projected for them.

• The use of short intro clips, distributed to all servers
in the cluster, which allow users to view the first two
minutes of a video while a server with the full copy is
being turned on, in case of prediction errors.

We use standard Linux rack mount servers, with a user-
level signal to switch servers off and a Wake-on-LAN signal
to turn them on. Our approach is the first example of
a predictive model that is automatically and continuously
updated in real-time based on ongoing requests for a video
on demand service. Our approach is tested in real-world
case using real trace data from BBC iPlayer achieving 31%
reduction in energy use without impacting QoS

II. BACKGROUND

The British Broadcasting Corporation (BBC) is a UK-
based public service broadcaster of radio and television, in
addition to an extensive online platform. The BBC iPlayer
platform is an online streaming service that allows users to
watch and listen to live TV and radio programmes, across
9 TV channels and 57 radio stations. In addition, users
can access any content from across these channels that was
broadcast in the last 30 days. The iPlayer supports a range
of client devices, including mobile phones, tablets and PCs.

By 2013, BBC iPlayer was the second most popular on-
demand streaming application in the UK after YouTube, with
around 40% of UK households using it regularly [7].

The BBC operates a set of dedicated data centres around
the UK for streaming iPlayer videos; our approach targets
the software infrastructure of these facilities. The data set
that we utilise for experimental evaluation is real iPlayer data
from two weeks of access logs, from 3rd of October 2016
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Figure 1: Overview of our system architecture.

to 16th of October 2016. We use this data to validate our
approach on a test server cluster by replaying the trace in
real-time to simulate the same client request pattern.

III. APPROACH

An overview of our system architecture is shown in Fig. 1.
A server acting as a load balancer receives video requests
from clients and directs them to an appropriate media
server. It also runs our prediction algorithm and controls
the activation and deactivation of servers.

The load balancer contains a hash map storing which con-
tent is present on which media servers (where each content
item may be replicated across multiple media servers) in
addition to a second hash map containing an on/off status
flag for each media server reflecting its current status.

When a client requests a video, the load balancer checks
which media servers can serve that video, checks their
current load level, and also verifies whether or not they are
currently on. If all media servers that can serve the full video
are switched on, the client request is simply directed to the
server with the lowest load in that group.

Otherwise, if no servers that contain the full video are
switched on, or if only some such servers are switched on
but are at peak capacity (where the peak capacity level of
each server is defined via a local policy), this implies there
is another server available to serve the full video which is
currently switched off. In this case, the load balancer sends
a powerOn signal to that server and directs the client to
another server which contains an intro clip version of the
video. This means that the prediction algorithm made an
error in its estimation of which servers need to be turned on,
triggering our error mitigation strategy of just-in-time server
start-up. Such prediction errors are automatically learned by
our prediction model to help avoid them in the future.

Intro clips used in our approach are two minutes long
and so can have a much higher replication factor across

all media servers. Two minutes was selected because, in our
tests, media servers needed an average of 46 seconds to turn
on and be operational after receiving a powerOn message.

When a client is reaching the end of the intro clip version
of their requested video, the load balancer redirects that
client to the newly activated media server with the full-length
version, allowing a seamless handoff. This is imperceptible
to users, who have the impression of one continuous stream.

A. Media distribution

Our approach requires two decisions to be made on the
distribution of media content: the replication factor of full
versions of each media item, and the size and replication
factor of intro clips. Because not all servers are switched on
at all times, the co-location of full media content items is
also important; we choose to co-locate popular media on
the same servers to increase the probability that popular
media can be served without needing to power up another
machine, therefore heuristically reducing the overall amount
of power cycling that takes place. The replication factor, and
co-location affinity, of full media content is recalculated once
per day based on observations of popularity in that day.

In detail, our media distribution protocol stores all intro
clips for the entire media library at all servers in the cluster.

For full versions of media items, we define a peak load ca-
pacity of each media server, which is set to 100 simultaneous
connections for our experiments1. We then attempt to ensure
that no server needs to handle more than this number of
simultaneous connections by sufficiently replicating popular
content across servers in the cluster. This replication is
performed between 3 am and 4 am, reflecting studies that
show relatively few user connections to data centres between
1 am and 6 am compared to the rest of the day [8].

Our strategy for media distribution consists of two steps:
distribution and replication. Firstly, each server is given a
rank index from 1 to N , where N is the number of servers
in the cluster and 1 is considered to be the highest rank. The
way in which this ranking is assigned is configurable; in this
paper we use the performance and capacity level of servers
as our ranking metric. Each video is then ranked based on
its total number of requests in the last 24 hours, where the
highest ranked video has the highest number of requests. The
contents of the entire media library V are divided across
the set of servers N in the cluster, such that the highest-
ranked server has the V/N most popular videos, and the
following server contains the next V/N popular videos from
the library, etc. At the end of this process a cleanup phase
occurs in which any videos that do not belong at a server
according to the above assignment protocol are deleted.

1Determining the actual peak capacity of a server depends on a large
range of factors, including its network bandwidth, the network infrastructure
characteristics in the data centre, and the kinds of clients that connect to
a server (i.e., smartphones may take less bandwidth than PC users as their
videos have lower bitrates). We assume that peak capacity can be estimated
by network administrators and assigned as a policy for each server.
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When the distribution stage is complete, our replication
stage is performed. This is used to control the load of
servers, copying videos among the servers to avoid exceed-
ing specified peak loads. It works by predicting the number
of connections that each video will receive in each hour
of the day, and copying a video to the next highest ranked
server if the server’s overall connection volume exceeds the
peak load specification in any hour; this copying is repeated
until videos are sufficiently replicated that peak load capacity
is not exceeded or there are no more servers to copy to.

B. Server activation and deactivation

During the course of a day our framework needs to turn
servers on and off as user activity changes. To turn a server
off we use an agent running on each server which listens
for powerOff commands, sending a shutdown signal to the
operating system when this command is received.

Turning a server on is more complex, with several possible
protocols that can be used, such as Intelligent Platform
Management Interface (IPMI) or Wake-on-LAN (WoL). In
our current implementation we use Wake-on-LAN. It is
important to ensure that the length of intro clips is longer
than the average startup time of a server, measured from the
time at which a powerOn signal is sent. We measure this
to be 46 seconds on average and use 2 minutes as our intro
clip length to allow for unexpected delays in server startup.

C. Prediction

We use prediction to help determine when to turn servers
on and off. Servers are turned on either proactively when it
is predicted that they will be needed in the next 5 minutes,
or reactively when a client request has arrived which cannot
be served by a media server that is currently on. Servers are
turned off when they have no clients using them and it is
predicted that they will not be needed within the following
5 minutes and so can be powered down to save energy.

Prediction is performed in real-time using two data
sources: a window wr of the most recent media requests,
of configurable length, and a window wh of media requests
from the period as wr but from one week ago. Each request
item in these two windows contains the time at which a user
made a request, the media item requested, and the length of
time they watched that item. The data for wr is stored on the
load balancer, while wh is retrieved from an SQL database.

Both streams of data are fed together into a prediction
model, for which we use Naive Bayes. This is done incre-
mentally for the two streams, so that time step n from wr and
wh are fed together into the prediction model, followed by
time step n+1 from wr and wh, and so on. This effectively
results in the predictive model’s output being informed with
equal weight by the data from both time windows.

For this paper we use 2 hours as the length of wr and
wh, with a forward prediction duration of 30 minutes. This
forward prediction indicates which media items are likely

to be requested at each time point through that 30-minute
window, and can thus be used to determine which servers
likely need to be switched on versus those that can safely
be switched off during that 30-minute time window.

The prediction model is continually updated on a rolling
basis every 1 minute using Naive Bayes Inference [9],
moving wr and wh ahead in step with real time as more
requests arrive, incrementally feeding new requests into the
model and removing requests from the model that are no
longer within the prediction data time window.

IV. EXPERIMENTAL SETUP

In this section we present our experiment setup, including
the model by which we characterise energy consumption. In
the following section we then present our results.

A. Hardware and Software Platforms

Hardware infrastructure: Our experiments attempt to
replicate the BBC iPlayer service data centre setup, using
a data centre testbed and a real trace of user requests
from the iPlayer to model actual user dynamics over a two
week period. Specifically, we use five machines for our
experiments. Four are used as media servers, which are Dell
PowerEdge R210 II rack mount servers. Each has a 16-core
Intel Xeon CPU E5-2620 v4 @ 2.10GHz with 16 GB of
DDR4 RAM. A fifth server is used as a load balancer, which
is a Dell Optiplex 9020 with 4-core Intel i7-4790 CPU @
3.60Hz with 8 GB of DDR3 RAM.

Software infrastructure: We deploy our systems on
Ubuntu Server with Linux kernel 16.04. Our framework is
implemented in Java, for which we use version 1.8.0 91.
Additionally, our prediction model in particular made use of
Weka 3 [10], a machine learning algorithm collection library
that can be used by Java applications. Our long-term iPlayer
request data is stored in a MySQL database.
B. Evaluation Methodology

Although we have access to the set of user requests for
content, we do not have access to the actual media content
to which requests refer. We therefore created similar content
that matches the request sequence. For this purpose we
created 80 unique videos for requests spanning 7 days. Our
experiments were conducted in real-time by simulating client
requests from the trace, such that 1 second in the real world
is equivalent to 1 second in the experiments.

The trace covers a period from 00:00 on 3rd of Octo-
ber 2016 to 23:59 on 16th of October 2016. Our experiments
use the second half of this data, from 00:00 on 10th of
October 2016 to 23:59 on 16th of October 2016, so that we
can use the first half as our historical prediction window wh.

At the beginning of our experiments all servers were
turned on, as the prediction model has not yet gathered any
data. Consequently, during the first two hours of 10th of
October all machines are on and our framework is collecting
the information required about user connections and media
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Power at Full Load 130W
Measured Idle Power 44W
Off 20W

Table I: Server power consumption

demand. After this two first hours, windows wr and wh have
enough information to start performing the user demand
prediction mechanism. While the prediction is performed
continually, the media distribution algorithm is executed
once every day between 3 am and 4 am.

Energy Consumption: During the course of our exper-
iment we did not have a mechanism to directly measure
the actual energy consumption of a server (for example
by attaching energy monitoring equipment). Instead, we
estimate this using a simple energy model in which servers
are in one of three states: off, idle and full load.

Table I shows server power consumption in each state,
according to manufacturer specifications. In the table, ‘full
load’ represents the energy utilisation when the machine has
100% CPU load and ‘off’ its Wake-on-LAN standby power.

Watt-hours =
1

60
∗

(minFullLoad ∗ fullLoadWatts)
+(minIdle ∗ idleWatts)
+(minOff ∗ offWatts)

 (1)

Using these three states, we use Eq. 1 to model the total
energy consumption of a server over an hour. In the equation,
MinFullLoad, minIdle and minOff variables are the minutes
in an hour that a server is in the full load, idle and off states,
respectively. FullLoadWatts, idleWatts and offWatts are the
values in Table I for full load, idle and off statuses.

For instance, if a server spends 30 minutes switched off,
20 minutes in idle mode and 10 minutes at full load, then,
using this equation, we can estimate that the server has
consumed approximately 46.33 Wh in that time.

Using Eq. 1, our experiments compare the data centre
energy spent in four cases:

• Default: The data centre is not using our predictive
mechanism nor our media distribution mechanism, such
that media is randomly distributed across media servers.

• Predictive: The data centre is using our predictive
mechanism but not our media distribution mechanism
(again using random media distribution).

• Distributed: The data centre is using our media distri-
bution mechanism but not our predictive mechanism.

• Both: The data centre is using our predictive mecha-
nism and our media distribution mechanism.

V. EXPERIMENTAL EVALUATION

In this section we first show the energy performance
of the above four test cases. We then provide a detailed
prediction accuracy analysis, including the effects of using
different window sizes, and finally we present a comparison
of different machine learning approaches used for prediction.
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Figure 2: Power consumption in first day experiments.

Case First day Seven days

Both £8.27 60.39 kWh £613.88 640.59 kWh
Predictive £1.33 9.74 kWh £65.36 68.20 kWh
Distributed £5.77 42.15 kWh £282.75 295.05 kWh

Table II: Energy and financial saving in first and seven days,
compared to default case.

A. Energy Consumption

We examine energy consumption both on the first day of
the experiments, when our prediction model is starting from
no information, and also across the whole seven days.

Fig. 2 shows the energy consumed during the first day
of experiments in the above four scenarios. By examining
scenario separately we are able to more clearly see how
much each element of our approach contributes to overall
energy. For each scenario we repeat the experiment twice
and average the results; note that because we run these ex-
periments on real hardware and in real-time, this represents
a total of 8 weeks of experimentation time.

For the first scenario, in which we only use our prediction
method (with random media distribution), we see an energy
saving of 1.11% compared to the baseline of random media
distribution always-on servers. This demonstrates that, even
without a smart media distribution system in which popular
items are co-located, there is still some chance that servers
can be turned off in a realistic trace.

In the second scenario, in which we use our media
distribution approach but not our prediction model, we see
an energy saving of 13.8% compared to the baseline case.
This is because more servers are running at ‘idle’ more of
the time, as popular content is co-located on fewer servers.

Finally, when using both our prediction model and media
distribution approach, we see an energy saving of 19.62%,
due to some servers being switched off some of the time.

Table II shows an estimate of the money saved in the first
day if the system is implemented with our prediction model
and/or media distribution mechanism2.

Fig. 3 shows the energy consumed during the entire seven
days of experiments according to the same four different
scenarios. As we can see in the figure, we achieved an energy

2Based on a UK average energy cost of 13.69p/kWh in September
2016, https://www.sust-it.net/energy-calculator.php?tariff=9
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Figure 3: Power consumption in seven day experiments.
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Figure 4: Prediction error percentage per day.

saving percentage of 15.23% using only our prediction
model, 26.12% using only the media distribution system,
and 31.1% using both mechanisms.

The last two columns in Table II estimate financial sav-
ings over seven days compared to the default case. If we
extrapolate these results out to an entire year, we estimate
that the money saved will be approximately £31,921.76.

B. Prediction Accuracy

Prediction errors occur when a user requests media from
a server that is not currently powered on. This results in the
user being directed to an intro clip version of their media
stream while the server that contains the full version is
turned on; correspondingly there is unexpected extra load
at servers hosting intro clips. In this section we examine the
frequency of prediction errors and their causes. Prediction
error is calculated as the ratio between the total number of
media requests in a 15 minute period, and the number of
prediction errors that occur in the same time period.

Fig. 4 shows the prediction error percentage per day,
divided into time slots of 15 minutes. Note that the first
two hours on Monday have 0 error because the model does
not yet have enough information to make predictions.

The prediction model generally works very well, partic-
ularly during week days from Monday to Friday. However,
these are also clear peaks where prediction performs less
well. This is evident towards the end of a day (approaching
midnight) when there are far fewer user connections in
general and so the trend is harder to extract. There is also a
clear rise in prediction errors from 07:00, which is caused
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Figure 5: Average prediction error percentage per day.

by a continuous increase in users until around 12:00, for
which the prediction model needs to continually account for
until the user population reaches a stable point.

Errors are also evident on weekend days (Saturday and
Sunday), where we find that user activity is simply far less
predictable in general, and there are is also a higher volume
of users suggesting that many of them are occasional users
and therefore more erratic. The majority of peaks are brief,
however, as the prediction model catches up with the change
and returns to making accurate predictions.

To show the effect of different days more clearly, Fig. 5
shows the total average prediction error accuracy per day.
Here we can strongly see that Saturday and Sunday have
the worst average prediction accuracy due to the volume of
users connected and the corresponding probability that they
will make requests for ‘unusual’ videos. Overall however
the average prediction error across our experiments is very
low considering the volume of requests, at around 3.08%.

VI. RELATED WORK

With the increasing number of everyday online services
that rely on data centres, energy and cost efficiency for
data centres has recently received a significant amount of
attention in the research community [11], [12], [13]. Here
we focus specifically on power-cycling techniques.

Chun et al. [14] developed an architecture that uses
heterogeneous platforms to save energy. These platforms are
divided in two systems: a high performance system and a
low performance system. Initially all tasks are run in the high
performance system, and an energy consumption boundary
is defined. When a server from the high performance system
exceeds this boundary, the approach migrates all tasks from
this server to a low performance system server and then
turns off the previous high performance system server.
Our approach avoids the use of real-time migration, which
would be costly for large video files, instead using a media
distribution approach based on recently observed activity.

Nam et al. [15] created a mechanism to turn off network
switches in the data centre network. Network switches are
responsible of redirecting the clients to the correspondent
machine in the data centre. These machines are turned off
using real-time network information, such as network state,
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traffic flows and servers’ states. This work is complementary
to ours; while this paper is concerned with turning on/off
network switches, our approach focuses on turning on/off
service-provider machines in the data centre based on a
predictive machine learning model.

Zhang and Ansari [16] created a mechanism called Hi-
erarchical EneRgy Optimisation (HERO) that reduces the
power consumption of network devices in a data centre. The
authors created a turn on/off schedule for each device in the
data centre, according to a previous analysis made of system
behaviour. The main shortcoming of this approach is that it is
not flexible in adapting to workload fluctuations; instead we
make much finer-grained, real-time predictions using only a
small window of historical data.

Mathew et al. [17] present a similar approach to ours,
focusing on turning off machines in Content Delivery Net-
works (CDNs) during periods of low computation load. They
present two different theoretical algorithms to achieve this
goal, fusing offline and online data. However, the approach
is not evaluated under realistic conditions and does not
consider factors of server power-up time and its effects
on QoS; in contrast, our approach considers the complete
end-to-end system requirements, including the time taken to
switch servers on and the appropriate distribution of media
content, and has been tested against a real-world experiment
trace from the popular BBC iPlayer service.

VII. CONCLUSIONS

We have proposed a predictive power cycling approach
to energy reduction for video on demand data centres.
Our approach is based on a media distribution system, an
intro clip mechanism, and a real-time prediction model. We
have experimentally evaluated our approach on a real server
cluster, using trace data of real user requests from the BBC
iPlayer as input over a two week period. We find that, using
our fused prediction model, average prediction error is low at
around 3.08%. This is done using a computationally cheap
real-time prediction model, without training, and which is
responsive to changes in the request pattern over time.

Overall this results in an energy saving of 31% compared
to an approach that leaves all servers switched on all of
the time, which is the default approach in the majority of
data centres today, demonstrating that our real-time power
cycling approach is a promising avenue for investigation.

In future work, we intend to further improve our predic-
tion mechanism to deal with high-demand real-time events
that might appear, such as Olympic games or football
matches, as well as explore the generalised application of
this approach to areas beyond video on demand services.
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