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ABSTRACT
Recent works have explored the concept of movement cor-
relation interfaces, in which moving objects can be selected
by matching the movement of the input device to that of the
desired object. Previous techniques relied on a single modality
(e.g. gaze or mid-air gestures) and specific hardware to issue
commands. TraceMatch is a computer vision technique that
enables input by movement correlation while abstracting from
any particular input modality. The technique relies only on
a conventional webcam to enable users to produce matching
gestures with any given body parts, even whilst holding ob-
jects. We describe an implementation of the technique for
acquisition of orbiting targets, evaluate algorithm performance
for different target sizes and frequencies, and demonstrate use
of the technique for remote control of graphical as well as
physical objects with different body parts.
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Author Keywords
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INTRODUCTION
TraceMatch is a new input technique designed for users to
be able to perform simple selection tasks with minimal effort,
with only a camera as an input device, but without specifying
which body part to use (see Fig. 1). The technique leverages
previous work on movement correlation interfaces, where a
target device presents a control as a moving object, which

Figure 1. TraceMatch is a generic sensing technique for input by tracing:
(1) A device displays a control as moving target; (2) The user selects the
control by following the displayed motion with any part of their body;
(3) A webcam serves as generic input device; (4) TraceMatch analyses
the scene video for matching motion and triggers input accordingly.

the user can select by simply following its motion. As pre-
vious works have shown, it is intuitive for users to trace a
displayed motion, with their hands [3], eyes [20], or a pointing
device [22, 6]. Prior work has also demonstrated the versa-
tility of the approach as the motion used for matching can
take different shapes [3, 6], and be displayed in different ways
including animated content [20, 14], widgets with moving
elements [5], and tangible objects with moving parts [19].

Previous input tracing systems have relied on dedicated hard-
ware for tracking of gestures [3], eye gaze [20, 5], and move-
ment produced with mouse [6] or trackpad [22]. The use of
dedicated input devices constrains deployment of the tech-
nique and limits the ways in which users can trace a displayed
motion. TraceMatch, in contrast, is vision-based and depends
only on a general-purpose camera for input, while providing
users with flexibility in how they can produce a body move-
ment that matches the movement of an animated control.

TraceMatch is a generic technique that lends itself to deploy-
ment in wide-ranging contexts, for input to any type of device
that can display controls in animated form. However, our work
is specifically motivated to provide users with ‘lazy’ input op-
tions that require minimal effort for mundane tasks, such as
controlling a Smart TV or ambient lighting while lounging
on a couch (see Fig. 2). In such a situation the user might
lean on one hand and hold a cup in their other, but they should
nonetheless be able to provide input – for example by tracing
the displayed motion with their head, or with their hand with-
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Figure 2. Two example applications of TraceMatch. Left: A Smart TV
interface where users can open and close pop-ups by tracing the motion
of animated widgets (Orbits). Right: A lamp with a physical ‘windmill’
interface where users can switch the colour of the light by tracing the
movement of one the windmill’s arms.

out having to put the cup down. Hence, we do not assume
any specific posture of the user, or preference for producing
gestures, but capture the entire video scene and analyse it for
occurrence of any motion that matches a displayed control.

TraceMatch analyses a scene in two stages. The first stage is
‘generous’ and considers any motion in the scene as potential
input. We do not segment the user, hands or other body parts
but track movement of any feature. For example, the user can
hold an object while they perform a hand gesture, or perform
the gesture with an object. The second stage matches the ob-
served motion against the movement of any control displayed,
using a combination of path correlation and model-fitting. To
avoid the Midas touch, a control should exhibit movement that
is unlikely to be inadvertently matched, by the user or other
activity in their environment. We use circular motion for this
purpose, as a movement that a user can easily produce with
different parts of their body but that we would not expect to be
produced accidentally. Prior work has also provided inspiring
designs of controls displaying circular motion [5, 19].

In this paper, we present the system implementation of Trace-
Match, and an evaluation of the system’s sensitivity for detect-
ing input for different target sizes and speeds while avoiding
unintended activation. The evaluation is based on a data col-
lection with users, where they followed the motion of orbiting
targets in a variety of ways (with their head, dominant hand,
non-dominant hand, and while holding a pen or a cup), demon-
strating the flexibility afforded by the technique.

RELATED WORK
This work builds upon previous movement matching selec-
tion techniques. The principle behind such techniques has
been referred to by several names including rhythmic path
mimicry [3], periodical motion coincidence [6], and feedback-
based active selection [21], but is essentially the same across
them: each selectable target on the interface presents a distinct
movement and the user selects the desired target by matching
(e.g. PathSync [3]) or counteracting (e.g. Eggheads [21]) the
corresponding movement. Advantages of this principle in-
clude multiple users having the ability to interact with a shared
display without a cursor [22, 3], enabling interaction with feed-
back modalities not suited for pointing [22, 19], no need to
split the user’s attention between the target and the cursor [6],
the possibility of fitting many targets in a small space due to
target size independence [20, 5], and the high discoverability
of the available gestures as they are continuously displayed [6,

3]. TraceMatch implements the principle for matching of cir-
cular movement, but the technique is extendable to other forms
of movement.

Movement correlation has been explored in a wide variety of
contexts and modalities. Early work demonstrated the concept
with mouse-operated graphical user interfaces [6, 22, 21]. Pur-
suits employed it to enable calibration-free gaze interaction
with public screens [20]. Orbits showed that the concept can
be used to distinguish which of several moving targets a user is
looking at on the small screen of a smart watch [5]. AmbiGaze
showed how even physical movements can elicit the eye move-
ments necessary to control ambient devices [19]. PathSync
implemented the concept for mid-air gestures, enabling multi-
user touchless and cursor-less interaction with public screens
[3]. TraceMatch generalizes these previous systems by ab-
stracting the interaction technique from the input modality. As
long as the movement is large enough to be captured by the
RGB camera, it can be used for input, be it a hand, arm, head,
or even leg movement.

Gestural interaction techniques usually fall into one of two cat-
egories: cursor-based pointing or discrete gesture sets [3]. In
cursor-based pointing, the position of the user’s hand (or other
body part) controls the position of an on-screen cursor. From
then on, the interaction is similar to a desktop mouse, though
another modality is often necessary for the confirmation of
the selection once the cursor hovers the target. In discrete
gesture libraries, the system continuously waits until a move-
ment it recognises is performed by the user. A pre-defined
set of gestures has to be trained beforehand. TraceMatch ex-
tends PathSync, which introduced body-based path mimicry
as an alternative to these. Rather than relying solely on the
spatial matching of a gesture, it also relies on the temporal
coincidence, so the same gesture shape can represent multi-
ple commands, depending on which point of the gesture it is
synchronised with.

The concept of matching two similar signals as a selection
mechanism has also been explored for authentication and
cross-device interaction. Techniques have been demonstrated
where users perform a displayed gesture with their phone
in hand to pair it with a display [13], shake two mobile de-
vices together to pair them securely [12], use their phones for
direct touch input on interactive surfaces [17], or employ syn-
chronous gestures to define continuous screen space across de-
vices [8]. In contrast to these, TraceMatch provides a generic
gestural input method.

TraceMatch is not tied to any specific application domain but
motivated to provide low-effort input for mundane control
tasks. A recent study estimated that by 2010 most British
households had 4 or more remote controls in their living room
[10], increasing the complexity of otherwise trivial tasks such
as changing TV channels and dimming the lights [9]. There is
a wide range of works on universal remote control devices, in-
cluding switchable [24], personalisable [7], spatially-aware [1,
23, 18] and smartphone-based remote controls [15, 4]. Trace-
Match, in contrast, facilitates universal remote control with
just a camera and computer vision.



Figure 3. The stages of TraceMatch for matching the motion of a rotary target with a hand movement. Left: Features detected from FAST and previous
optical flow iteration. Centre: Candidate features (green) and non-candidate features (red). Right: Features below the Pearson product-moment
correlation coefficient threshold (red), features above the threshold (green), and the first feature to be matched is shown with its trajectory and the fitted
circle from RANSAC (blue).

TRACEMATCH DETECTION OF MATCHING MOTION
TraceMatch takes a video of the scene as input and subjects it
to an image processing pipeline that results in identification of
features associated with movement. These form ‘candidates’
for further analysis, in which their motion is matched against
the movement of a target control (see Figure 3).

Image Processing
We first convert the images captured by the camera to gray
scale for feature and optical flow processing and smooth them
by applying a 5× 5 Gaussian kernel to reduce image noise.
After preprocessing, we use the FAST corner feature detector
to find points of interest in the scene [16], specifically those
relating to users. These are fed into an optical flow algorithm
which aims to find the same feature in the following frame.
FAST is not immune to high levels of noise and is also depen-
dent on a threshold, which can be set to balance number of
features detected in a scene versus processing time. We use
a threshold of 20 for the difference between intensity of the
central pixel and pixels of a circle around the centre.

For each feature point we must track its position over a window
of frames, W , and keep a history of its previous positions. We
use the iterative pyramidal implementation [2] of the Lucas-
Kanade optical flow method [11] to track features across image
frames using a maximum of 3 pyramid levels and optical flow
window size of 51× 51. The Lucas-Kanade tracker is used
to find a feature in all subsequent frames until it is not found,
either because the feature is no longer in the scene or due to
an error. We also continue to apply the FAST feature detector
to every frame, in case an object we want to track enters the
scene. To remove duplicates, we discard a feature if it falls
within a 20×20px area of another feature.

After optical flow processing we may have hundreds of fea-
tures for a scene. Only features that have been tracked for at
least W frames with a minimum average displacement of 0.5px
calculated over the frames, are retained for motion-matching.

Motion Matching
The first step of the motion matching process is to assess the
similarity between the candidate features and each orbiting
target using the Pearson product-moment correlation coeffi-
cient (PCC). The PCC is calculated using the trajectories of

the feature and rotary control over a window of size W for the
x axis, corrx, and y axis, corry, separately.

Related work relied solely on PCC for motion matching [3,
5, 20], however the PCC is calculated independently for each
axis which means that the circular motion of a control can
be matched by elliptical and, in the extreme, up-and-down or
side-to-side movement. If corrx and corry are greater than a
minimum threshold, thcorr, the feature’s trajectory is fitted to a
circle using a simple version of Random Sampling Consensus
(RANSAC) to further refine the matching.

The centre of a circle can be found using only three points
which are chosen randomly from the feature’s trajectory (i.e.
from the W points tracked within a window). The radius of
the circle, r, is the average Euclidean distance of the three
points to the centre of the circle. The Euclidean distance to the
centre of the circle is calculated for each point in the window
to assess if the feature’s trajectory is circular. A data point is
classed as an inlier if:

(1− thin)r < di < (1+ thin)r (1)

where di is the Euclidean distance from the data point to the
centre of the circle, and thin is the inlier threshold which should
satisfy 0 < thin < 1.

If at least 98% of the points on the feature’s trajectory are
classed as inliers, the trajectory is classed as circular. If there
are insufficient inliers another three points are randomly se-
lected and another circle is fitted. This continues until suf-
ficient inliers are found or 20 iterations have elapsed. For
features with a circular trajectory the arc length of the trajec-
tory, aF , is compared with the arc length of the rotary control’s
trajectory, aRC. The motions of the feature and the rotary
control are matched if aF falls in the range aRC ±0.1.

EVALUATION
We conducted a study to evaluate the effectiveness of Trace-
Match as an input technique. Our objective was to evaluate
the system’s sensitivity and its robustness to accidental motion
matching. Our method was to collect data from users follow-
ing an orbiting target under different conditions, as well as a
data set representing viewing and browsing activity without
intent to trigger any target.



Participants & Apparatus
Five participants (3M/2F) aged between 23 and 32 years
(mean=26.6) were selected to take part in the study. Four
participants were right-handed, one was was left-handed, and
none of the users had previous experience with the system.
The study setup was designed to represent a living room sce-
nario, with a 55" Smart TV and a couch placed 2.23m from
the TV (based on a TV size to viewing distance calculator).
An unmodified, off-the-shelf Logitech C920 web camera was
mounted on the top of the TV. The Logitech C920 is capable
of capturing 1080p (1920×1080) at 30fps, however we took
a 640 x 480 region of interest in the centre of the image to
control that only movement related to the simulated applica-
tion setting was captured. As the data collection took place
in a busy lab, a white screen was placed behind the couch to
occlude the experiment.

Target Following
In order to assess the sensitivity of the system, users were
tasked with following an orbiting widget displayed in the
centre of the TV screen with five different body parts: head,
dominant hand, non-dominant hand, with a pen in hand, and
with a cup half filled with water in the hand. The pen and
cup were chosen as common objects that a user might hold in
an everyday situation. We use two blocks of testing to form
a balanced Latin Square in order to minimize carrying over
effects among conditions. In order to evaluate the system we
varied the direction, size and frequency of the orbiting widgets.
In total there were 24 different orbiting widgets presented to
the user for each movement condition:

• Frequency (f) The frequency of the orbiting widget, i.e.
0.50Hz is half a revolution per second. [0.25, 0.50, 1.00Hz]

• Radius (r) The radius of the motion of the orbiting target.
[25, 50, 100, 450px]

• Direction (D) The direction of the orbiting target. [clock-
wise, anti-clockwise]

Participants were presented with all variations of orbiting wid-
gets in a random order. They were instructed to use whichever
motion felt natural for a given movement condition, i.e. the
way in which they held the cup or pen, and that it was not
necessary to mimic the size of the rotary widget. For each vari-
ation the user is presented with a single widget at the centre
of the screen, showing the orbit as a circle and the target as a
‘dot’ moving around the circle. Before the widget appeared, a
3 second countdown is shown to allow the user to rest. The
widget is then presented for 7 seconds whilst the user attempts
to mimic its motion with the selected movement condition.
This is then repeated for all widget variations and movement
conditions. A true positive is recorded when the participant
successfully mimics the motion (frequency, direction, and
phase) of the orbiting target, and a false negative otherwise.
These were then used to measure the sensitivity of the system.

TV Watching/Internet Browsing
In between the widget acquisition blocks participants were
tasked with watching TV or browsing the internet for ten min-
utes, to record cases where the widget should not be activated.
Participants were free to choose either activity, and in addition

also casually engaged in conversation with the researcher to
elicit further physical movement. This resulted in fifty min-
utes of recordings in which the participants were not explicitly
trying to trace a control. This data set was used to assess the
system’s robustness to false positives (FP): when the partic-
ipant inadvertently produces a movement that would match
an orbiting target. When the recordings were processed, 16
orbiting targets (8 clockwise, 8 anti-clockwise) were simulated
with their phases spaced equally by π

4 radians to detect any
accidental matching.

Parameter Optimization
The recordings were then processed using a number of differ-
ent parameters in order to find the optimum system parameters
to minimize false positives whilst maximizing the system’s
sensitivity. The window size, W , was fixed according to the
desired arc length. The system parameters were varied as
follows:

• PCC threshold (thcorr) The threshold of the minimum
value for the horizontal PCC, corrx, and vertical PCC, corry.
The lower the value the more features are passed to the circle
fitting stage of the system. [0.86, 0.89, 0.92, 0.95, 0.98]

• Inlier threshold (thin) The threshold which determines
whether a data point is classed as an inlier or an outlier. The
lower the value the closer the motion must be to a circle for
it to be counted as a match. [0.05, 0.10, 0.15, 0.20]

• Arc length (a) The arc length of the rotary widget that must
be matched, i.e. 0.5 indicates the user must follow the rotary
widget for half a rotation. [0.5, 0.75, 1.0]

RESULTS
Two parameters sets were chosen for each frequency based on
their sensitivity and false positives (see Table 1). Strict param-
eters correspond to those that exhibited the highest sensitivity
when aggregating all sizes, users, and movement conditions
of the respective frequency whilst having zero false positives.
Relaxed parameters are those with the highest sensitivity when
aggregating all sizes, users, and movement conditions of the
relevant frequency that produced less than 10 false positives
over the 50 minute recording of background activity.

Figure 4 shows sensitivity results for different target sizes and
frequencies. We observed the highest sensitivity for rotary
widgets with a frequency of 0.25Hz (i.e. slow rotation of a
target completing a circle in 4 seconds), and low sensitivity
for ‘fast’ targets with a frequency of 1.00Hz. Widgets with a

Freq. (Hz) Type thcorr thin a W FP

0.25 Strict 0.95 0.20 0.5 60 0
Relax 0.92 0.15 0.5 60 6

0.50 Strict 0.95 0.20 0.75 45 0
Relax 0.86 0.05 0.5 30 6

1.00 Strict 0.86 0.10 0.75 23 0
Relax 0.86 0.15 0.75 23 4

Table 1. Parameter sets used for testing. Strict sets required no false
positives (FP), relaxed sets had to have less than 10 FP.
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Figure 4. Sensitivity plotted against size for frequencies of 0.25Hz
(green), 0.50Hz (orange), and 1.00Hz (red) for aggregated movement
conditions and users. Strict parameter sets are shown with solid lines,
relaxed parameters sets are shown with dashed lines. Standard devia-
tion across users for strict parameter sets are shown with error bars.

frequency of 0.50Hz show a greater standard deviation across
users, and for this frequency we also observed that relaxation
of parameters resulted in a more significant increase in sensitiv-
ity. Note we found a striking difference in optimal parameters
for strict versus relaxed conditions specifically for the 0.50Hz
case. We also observed that both frequencies of 0.25Hz and
0.50Hz yield the same strict parameters aside from arc length.

Size effects were not as pronounced as differences in fre-
quency. For widgets exhibiting slower movement (0.25Hz)
sensitivity increased with size. This effect did not show as
clearly for larger frequencies. As the size increases it may
be easier to discriminate the position of the target, but at a
given frequency it also implies a higher velocity of the target.
The former can explain the performance increase with size
for ‘slow’ targets (0.25Hz), and the latter the performance
decrease we observed for ‘fast’ targets (1.00Hz).

Table 2 gives insight into performance observed for different
users and movement conditions. We observed that for any user
there was at least one condition for which we observed high
sensitivity (0.88 or better with strict parameters, 0.94 or better
with relaxed parameters). Note the differences observed, for
instance between users 001 (performing well with all condi-
tions except head movement) and 005 (highest performance
with head movement). For every condition we also observed
at least one user achieving high sensitivity (0.94 or better with
strict parameters, and 1.00 with relaxed parameters). Interest-
ingly, we observed the highest sensitivity across all users for
movement with the cup in hand, and the worst with the pen in
hand – this surprised us as we thought of a cup as a distractor,
and a pen as natural for tracing. However, a cup provides more
distinctive features for tracking than a pen.

DISCUSSION
Our study of TraceMatch demonstrates that the method is ef-
fective in matching a user’s motion with different sizes of an or-
biting target using an unmodified webcam. We observed high
sensitivity for different movement conditions, highlighting the
system’s ability to abstract the motion matching technique
from the input modality. This gives the users flexibility to em-
ploy the input modality of their choice and enables seamless

Movement Condition

User Params Head DH NH Pen Cup

001 Strict 0.19 1.00 0.94 1.00 1.00
Relax 0.19 1.00 1.00 1.00 1.00

002 Strict 0.56 0.94 0.81 0.63 0.94
Relax 0.56 0.94 0.88 0.69 1.00

003 Strict 1.00 0.81 0.81 0.56 0.88
Relax 1.00 0.81 0.75 0.63 0.94

004 Strict 0.88 1.00 0.44 0.44 1.00
Relax 0.81 1.00 0.44 0.44 1.00

005 Strict 0.88 0.50 0.69 0.50 0.69
Relax 0.94 0.56 0.69 0.50 0.75

All Strict 0.70 0.83 0.73 0.63 0.89
Relax 0.70 0.87 0.75 0.65 0.94

Table 2. Sensitivity for different movement conditions when following a
rotary widget with a frequency of 0.25Hz for aggregated sizes.

interaction during other activities where the user, for instance,
may be holding an object. Our evaluation was focussed on the
performance of the vision-based sensing system and provides
insight on parameter choices for the design of interactive ap-
plications. The results indicate that movement conditions can
affect tracking performance but also show individual differ-
ences prompting further investigation of user preference and
ability in motion following with different parts of their body.

We have built two demonstrators that illustrate the use of Trace-
Match as a remote control in the home (Fig. 2), showing that
the technique can work as input to display devices as well as to
screenless objects. The technique has wider application poten-
tial, for example for spontaneous interaction (e.g., with public
displays) because of its high discoverability, and for multi-user
contexts as it can readily handle input produced by different
users present in a scene. The described implementation of
TraceMatch currently uses circular motion but the technique
is extendable to other shapes. Optical flow processing and
movement correlation are generic, and only the final stage of
model fitting would require adaptation.

In our study, we limited tracing to a single visible target for
data collection, but the applications we built demonstrate se-
lection from among a number of targets, prompting further
work on how the technique scales. As our study was designed
to facilitate parameter exploration, users did not have any feed-
back on how well their movement matched a target. We would
expect that feedback will positively affect input performance.

CONCLUSION
TraceMatch is a versatile technique that supports input by
tracing of animated controls. The technique requires only a
single camera, and is able to detect motion as input that users
can produce with little effort and in flexible ways – with their
head, hand, or while holding an object. The technique lends
itself to interaction with any form of device that is able to
display controls in animated form.
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