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1 Introduction

Motivated by different real life applications, some combinatorial optimization
problems have been generalized to the multimode setting. A primer in this
category is the well-known Resource Constrained Project Scheduling prob-
lem (RCPSP) [1], which consists in determining the starting times of all the
activities of a project in order to minimize the total completion time of the
project. The multimode extension considers the case where each activity may
be executed in one out of a set M of modes.

Recently, we have been investigating the multimode setting in other combi-
natorial optimization problems, e.g., the Set Covering Problem (SCP) [2] and
the Covering Location Problem (CLP) [3]. The former is the combination
of |M | single mode SCP instances, defined on the same ground set I, which
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must be covered in all modes of M . The single mode subproblems are linked
by cardinality constraints, which impose a limit on the number of modes in
which the same column from J can be included in the solution.

The generalization of the CLP to the multimode setting consists in placing
a given numberKm of facilities of each modem ∈ M to serve a set I of demand
centers that require different types of service. The goal is to maximize the
demand coverage over all centers and modes with a cardinality constraint
that limits the number of different modes activated in each facility site.

The decision version of all the multimode problems listed above, i.e.,
RCPSP, SCP and CLP, are NP-complete because they include, as a spe-
cial case, the corresponding single mode version. However, the introduction
of additional modes makes them much more challenging to solve. The higher
level of complexity does not exclusively refer to the worst case analysis (i.e.,
computational complexity and approximability), but indeed also to the aver-
age case (i.e., exact and heuristic algorithms).

In what follows, we focus on the SCP and CLP. We first review some
complexity results for their multimode generalizations and then present the
computational challenges and a viable heuristic approach based on the Vari-
able Neighborhood Search (VNS) framework.

2 Complexity results

Set covering

The single mode SCP admits a logarithmic approximation guarantee and ap-
proximation results are also available for more general covering problems [4].
By contrast, even the feasibility of the multimode SCP is NP-complete.

Theorem 2.1 It is NP-complete to determine whether a given instance of

the multimode SCP is feasible or not, even if |M | = 2.

With the same construction it is possible to prove the inapproximability.

Corollary 2.2 The MM-SCP does not admit any polynomial algorithm with

an approximation guarantee, unless P = NP.

Facility location

The CLP has a constant approximation guarantee, as discussed in Vohra and
Hall [5]. Under mild technical assumptions, we provide two greedy algorithms
that compute feasible solutions with a guaranteed approximation for the mul-
timode CLP. Algorithm Greedy1 selects one column at a time which covers



the uncovered set of rows of maximum weight, satisfying the cardinality con-
straint. Algorithm Greedy2 first builds a solution like Greedy1, but relaxing
the cardinality constraints, then retrieves a feasible solution by removing the
facilities which leave uncovered the minimum weight set of rows as necessary.

Theorem 2.3 Algorithm Greedy1 computes a solution of MM-CLP with a

guaranteed approximation factor of

α1 =

∑

m∈M

KmWm

|J |Wtot

where Wm =
∑

i∈I wim is the total weight of all rows in mode m ∈ M and

Wtot =
∑

m∈M Wm is the total weight of all rows in all modes.

When all modes have the same total weight (Wm = W ) and require the
same number of facilities (Km = K), α1 = K/|J |. If all columns can be
selected in one single mode (bj = 1), the approximation can be refined.

Corollary 2.4 If Km = K and Wm = W for all m ∈ M , and bj = 1 for all

j ∈ J , Algorithm Greedy1 provides a constant approximation factor equal to

α′
1
=

K

|J |

(

1

|M |
+

|J |

K|M |
ln

1

1− K
|J |
(|M | − 1)

)

Theorem 2.5 Algorithm Greedy2 computes a solution of MM-CLP with a

guaranteed approximation factor of

α2 =
bmin

|M |

[

1−

(

1−
1

Kmin

)Kmin

]

where bmin = min
j∈J

bj and Kmin = min
m∈M

Km.

In Table 1, we summarize the complexity results described so far.

3 Computational experience and heuristic approach

Although in terms of computational complexity the mentioned problems are all
NP-hard, the multimode version experimentally proves much harder. Indeed,
whilst state-of-the-art ILP solvers like CPLEX are able to quickly solve to
optimality average-sized instances of the single mode versions, the same is not
true for the multimode instances. Our computational experience shows that



Single-mode Multi-mode

Feas. easy Feas. NP-complete

SCP NP-hard NP-hard

log-APX not APX

MCLP NP-hard NP-hard

APX with αsm APX with αmm ≈ αsm/|M |

Table 1
Comparison of complexity between singlemode and multimode problems

the ILP solver is unable to close the gap in hours of computation on instances
of a few thousands variables and constraints. More specifically, the average
gap for the CLP is always around 10%, whereas the situation is even gloomier
for the SCP, as the ILP in some cases is unable to find a feasible solution.

Given this experience, we developed a metaheuristic approach based on
the VNS framework. We will discuss neighborhoods of different typologies
and exploration strategies (exchange mechanisms), which are very promising
to solve multimode problems. Computational results show that it is possible
to achieve in a matter of minutes a 5% gap with respect to the known bound
provided by the solver (which is unlikely to be tight).
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