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Abstract

In this paper, we will consider scattering diagrams in the context of infinite-
derivative theories. First, we examine a finite-order, higher-derivative scalar
field theory and find that we cannot eliminate the growth of scattering di-
agrams for large external momenta. Then, we employ an infinite-derivative
scalar toy model and obtain that the external momentum dependence of scat-
tering diagrams is convergent as the external momenta become very large. In
order to eliminate the external momentum growth, one has to dress the bare
vertices of the scattering diagrams by considering renormalised propagator and
vertex loop corrections to the bare vertices. Finally, we investigate scattering
diagrams in the context of a scalar toy model which is inspired by a ghost-free
and singularity-free infinite-derivative theory of gravity, where we conclude that
infinite derivatives can eliminate the external momentum growth of scattering
diagrams and make the scattering diagrams convergent in the ultraviolet.
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1 Introduction

Scattering diagrams play an important role in Quantum Field Theory (QFT). By
studying scattering diagrams, one can obtain the scattering matrix element and, ul-
timately, the cross section. A cross section that blows up at high energies indicates
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an unphysical theory. Typically, in non-renormalisable theories, the cross section
blows up at finite-order, see [1]. For instance, higher than 2-derivative scalar field
theories are one such example. Another example is indeed General Relativity (GR);
also, in supergravity, see [2], where high-energy scatterings of gravitons have been
studied. Besides studying whether the amplitudes are finite or not, there are very
interesting applications in cosmology and in formation of mini black holes in trans-
Plankian scatterings of plane waves [3, 4, 5, 6, 7, 8, 9, 10, 11]. In all these cases,
the cross section of a scattering diagram, especially involving gravitons, blows up
for large external momenta, i.e., in the ultraviolet (UV). On the other hand, string
theory has been conjectured to be UV-finite [12]; however, the problem here lies in
higher-order corrections in string coupling gs and α′, which would naturally induce
corrections beyond Einstein-Hilbert action. Unfortunately, many of these corrections
cannot be computed so easily in a time-dependent cosmological background. Never-
theless, there has been many studies in a fixed background in the context of string
scatterings, see [13, 14, 15, 16], see for details [12, 17]. Indeed, none of these analyses
motivated from strings or supergravity can probe the region of space-time singularity;
neither string theory nor supergravity in its current form can avoid forming a black
hole or cosmological singularity. Besides string theory, there are other approaches
of quantum gravity, such as in Loop Quantum Gravity (LQG) [18, 19], or in Causal
Set approach [20], where it is possible to setup similar physical problems to study
the behaviour at short distances and at small time scales, as well as high momentum
scatterings.

One common thread in all these quantum and semiclassical approaches is the
presence of non-locality, where the interactions happen in a finite region of spacetime.
It has been conjectured by many that such non-local interactions may ameliorate the
UV behaviour of scattering amplitudes, see [8, 9, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30], see also Refs. [31, 32, 33, 34] for finite temperature effects of non-local field
theories. It is also expected that any such realistic theory of quantum gravity should
be able to resolve short-distance and small-timescale singular behaviour present in
Einstein’s gravity, both in static and in time-dependent backgrounds. Indeed, close
to the singularity or close to super-Planckian energies, one would naturally expect
higher-derivative corrections to the Einstein-Hilbert action. Such higher-derivative
corrections may as well open a door for non-local interactions in a very interesting
way.

Typically, higher derivatives present a problem of ghost. For instance, it is well
known that a quadratic curvature gravity is renormalisable, but would contain ghosts
by virtue of having four derivatives in the equation of motion. The issue of ghost
persists for any finite-order, higher than 2-derivative theory for any spin. The issue
of ghosts can be addressed in the context of an infinite-derivative 1 theory of gravity,
see Refs. [35, 37, 38, 39, 40]. The graviton propagator is definitely modified in this

1Infinite derivatives are also present in (open) string field theory [42] and in p-adic strings [43].
The nonlocality of the invariant string field action was shown in [44]. One would naturally expect
them to be present from higher-order α′ corrections.
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case as compared to the Einstein-Hilbert action. We should point out that infinite-
derivative theories represent a novel approach of addressing some of the most impor-
tant problems physics is facing. Among other things, the formulation of the initial
value problem within the context of infinite-derivative theories remains a challenge;
in Ref. [41] it was shown that, in infinite-derivative theories, there are sometimes only
two pieces of initial value data per pole under the assumption that temporal Fourier
transforms exist. Numerically, one requires an ansatz to solve equations of motion
containing infinite derivatives, such as in the case of cosmology, see Ref. [37]. In
this paper, we shall avoid these important issues by working perturbatively about a
specific background in Euclidean momentum space.

In particular, in Ref. [38], the authors constructed the most general covariant
construction of quadratic-order gravity with infinite derivatives around Minkowski
background. Similar construction is also possible around any constant-curvature
backgrounds such as in deSitter and (anti)-deSitter backgrounds [45] 2. In all these
constructions [38, 45], it is possible to make the graviton propagator ghost-free, with
no additional poles, other than the familiar 2 massless degrees of freedom of Einstein-
Hilbert action, by assuming that any modification which occurs as a result of infinite
derivatives can be expressed by an entire function. An entire function as such does
not introduce any pole in the complex plane. Furthermore, if the choice of an entire
function is such that it falls off in the UV exponentially, while in the IR the function
approaches unity in order to match the expectations of GR, then it can indeed soften
the UV aspects of gravitational interactions. The fact that the propagator becomes
exponentially suppressed in the UV, also leads to exponential enhancement in the ver-
tex operator by virtue of derivative interactions. The interplay between the vertices
and propagator give rise to this non-locality in gravity in the UV. Indeed, this non-
locality is responsible for some nice properties, such as the resolution of cosmological
and black hole type singularities 3.

For instance, it has been shown that for the above construction, it is possible to
avoid cosmological singularity for a flat Universe Refs. [37, 38, 47, 48, 49], which yields
naturally a UV modification for Starobinsky inflation [50, 51] 4. It is also possible
to avoid a black hole singularity in the linearised limit; the Newtonian potential is
always finite in the UV in the limit r → 0, close to the source, see Ref. [38, 52, 53].
In Refs. [54, 55, 56], authors have studied the time-dependent spherical collapse of
matter for such non-local gravity [38], and found that the singularity can be resolved
at a linear regime. Such time-dependent results are remarkable and clearly absent in
Einstein Gravity and in finite-order higher-derivative modifications of gravity, such
as in 4th derivative gravity [57, 58].

2The quadratic curvature action is parity-invariant and torsion-free in both these cases [38, 45].
3In [46], one can see examples of non-local field theories which are not infinite-derivative ones;

however, the approach cannot be helpful to address how to ameliorate the singularity problems at
short distances and small time scales.

4In GR, for a flat Universe it is extremely hard to avoid Big Bang singularity, the null congruence
always converge in a finite time [36], one requires softening of gravity in the UV in order to avoid
cosmological singularity [37, 38].
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Furthermore, in Ref. [59], a toy model has been constructed inspired by an infinite-
derivative extension of quadratic order gravity. Within this framework, quantum
properties have been investigated, where UV divergences originating from Feynman
diagrams have been studied explicitly up to 2-loop order, and it was found that the
Feynman diagrams become finite. A generic prescription was also provided on how
to make higher loops finite and, in fact, renormalisable [59].

Inspired by these recent developments, the aim of this paper is to study the high
energy scatterings for ghost-free and infinite-derivative theories 5 .We will study the
s, t, u channels of scattering diagrams for a scalar field theory. In this respect we
will be extending some of earlier the computations of Refs. [30] and [59]. We will also
study scattering diagrams within the scalar toy model of infinite-derivative quadratic
curvature ghost-free and singularity-free gravity. In particular, we will show the
following computations:

1. 2-derivative massless scalar field, with higher derivative interactions:
We will consider tree-level scattering diagrams, computed in Euclidean space.
Then, we will look at the external momentum dependence of the scattering
diagram if we insert a 1-loop diagram in the middle. Next, we will replace
the bare propagator in the tree-level diagram with the dressed one and see how
the external momentum dependence of the diagram is modified. Finally, we will
consider scattering diagrams with dressed vertices and propagators. In all cases,
we will find that the scattering diagrams blow up in the UV limit. We will also
compute the scattering diagrams by taking into account dressed propagators
and dressed vertices, and the result would be the same.

2. Infinite-derivative Lagrangian and interactions: The results of the first
computation motivate us to study a ghost-free, infinite-derivative Lagrangian
with interaction terms containing infinite derivatives. We will show that the
scattering amplitude still blows up with and without dressed propagator. How-
ever, dressing the vertices by taking renormalised propagator and vertex loop
corrections to the bare vertices eliminates the external momentum growth of the
scattering amplitudes in the limit of the centre-of-mass energy going to infinity.

3. Scalar toy model of infinite-derivative, ghost-free and singularity-free
gravity: By taking the cue from our previous computations, we will then
study a scalar toy model motivated from an infinite-derivative, ghost-free and
singularity-free theory of gravity [37, 38, 59]. We will show that a similar con-
clusion holds true for this class of action, where dressing the vertices by taking

5In principle, one can discuss breakdown of partial wave unitarity in Minkowski spacetime. A
partial wave unitarity bound does not mean that beyond some energy scale unitarity is lost. It
merely says that unitarity would be lost if perturbativity were assumed. In our case, we cannot
define partial wave unitarity bound in Euclidean spacetime, as we shall see; instead we are keen to
understand the scattering amplitudes which do not become arbitrarily large. This issue will become
clear at later stages.
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Figure 1: The s-channel, tree-level scattering diagram p1p2 → p3p4.

Figure 2: Left: The t-channel, tree-level scattering diagram p1p2 → p3p4. Right: The

u-channel, tree-level scattering diagram p1p2 → p3p4.

both propagator and vertex loop corrections to the bare vertices makes, at suf-
ficiently high loop order, the external momentum dependence of any scattering
diagram convergent in the UV.

The paper is organised as follows: in section 2, we introduce a finite-order higher-
derivative scalar field theory and examine the UV external momentum dependence
of scattering diagrams. In section 3, we write down an infinite-derivative scalar field
theory and study the external momentum dependence of scattering diagrams. In
section 4, we investigate external momentum dependence of scatterings of a scalar
field theory analogue of infinite-derivative theory of gravity, and in section 5, we
conclude by summarising our results.

2 Scatterings in scalar field theory with higher-

derivative interactions

Let us now begin with a simple massless scalar field with a higher-derivative interac-
tion term:

S = Sfree + Sint , (2.1)

where

Sfree =
1

2

∫
d4x (φ�φ) (2.2)
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and

Sint = λ

∫
d4x (φ�φ�φ) , (2.3)

where we treat λ � O(1), so that we are within the perturbative limit. We will be
working in an Euclidean space 6, the propagator in the momentum space is then given
by

Π(k2) =
−i
k2

, (2.4)

while the vertex factor is given by:

λV (k1, k2, k3) = 2iλ
(
k2

1k
2
2 + k2

2k
2
3 + k2

3k
2
1

)
, (2.5)

where
k1 + k2 + k3 = 0 . (2.6)

We can compute the tree-level amplitudes for the s, t, u channels, see Fig. 1,

iT s−channel
tree−level = −25

4
λ2s4

(
i

s

)
, (2.7)

where s = −(p1 + p2)2. Similarly, see Fig. 2 (left),

iT t−channel
tree−level = −4λ2s2

(
t+

s

4

)2
(
i

t

)
(2.8)

and, see Fig. 2 (right),

iT u−channel
tree−level = −4λ2s2

(
u+

s

4

)2
(
i

u

)
, (2.9)

where t = −(p1 − p3)2 and u = −(p1 − p4)2. Hence, the total amplitude is given by:

Ttree−level = −4λ2s2

((
5s
4

)2

s
+

(
t+ s

4

)2

t
+

(
u+ s

4

)2

u

)
. (2.10)

Since the scattering matrix element Ttree−level in Eq. (2.10) blows up as s→ −∞, the
total cross section σtree−level in the centre-of-mass (CM) frame (see Eqs. (A.1) & (A.4)
in appendix A for the definition of σ) also blows up as s→ −∞.

2.1 Dressing the propagator

Since the tree-level amplitude blows up, we should now study the 1-loop, 2-point func-
tion in the propagator for the above interaction, see Eq. (2.1). We can compute the

6In Minkowski space (“mostly plus” metric signature), k2 = −k20 + ~k2, where ~k2 = k21 + k22 + k23.

After analytic continuation, k2E = k24 + ~k2, where k4 = −ik0. For brevity, we will suppress the
subscript E in the notations. For the rest of the paper we will continue our computations in
Euclidean space.
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Figure 3: The 1-loop, 2-point contribution of 1PI diagrams. The cross denotes a counter-

term vertex.

Figure 4: The s-channel, 1-loop scattering diagram p1p2 → p3p4.

1-loop, 2-point function with arbitrary external momentum, p. Therefore, regarding
the 1-loop, 2-point function with external momenta p, −p and symmetrical routing
of momenta, see Fig. 3, we have

Γ2,1(p2) =
iλ2

2

∫ Λ d4k

(2π)4

4
[
p2(p

2
− k)2 + p2(p

2
+ k)2 + (p

2
+ k)2(p

2
− k)2

]2
(p

2
− k)2(p

2
+ k)2

=
iλ2

2

∫ Λ

0

dk

∫ 1

−1

dx
4πk3

√
1− x2

(2π)4

4
[
p2(p

2
− k)2 + p2(p

2
+ k)2 + (p

2
+ k)2(p

2
− k)2

]2
(p

2
− k)2(p

2
+ k)2

= iλ2

(
− p8

48π2
+

Λ2p6

8π2
+

81Λ4p4

256π2
+

17Λ6p2

96π2
+

Λ8

32π2

)
, (2.11)

where k is the internal loop momentum, x is the cosine of the angle between p and k
(p · k = p kx, where p and k are the norms of p and k in Euclidean space) and Λ is
a hard cutoff. The counter-term, which is needed to cancel the divergences denoted
by powers of Λ in Eq. (2.11), and which should be added to the action in Eq. (2.1),
is given by

Sct =
λ2Λ2

16π2

∫
d4x

(
φ�3φ− 81Λ2

32
φ�2φ+

17Λ4

12
φ�φ− Λ6

4
φ2

)
, (2.12)

which yields

Γ2,1,ct(p
2) = −iλ

2Λ2

8π2

(
p6 +

81Λ2p4

32
+

17Λ4p2

12
+

Λ6

4

)
. (2.13)

Thus, the renormalised 1-loop, 2-point function is

Γ2,1r(p
2) = Γ2,1(p2) + Γ2,1,ct(p

2) = −iλ
2p8

48π2
. (2.14)

We observe that the maximum power of p appearing in the renormalised 1-loop, 2-
point function with arbitrary external momenta, Eq. (2.14), is p8. Hence, in the UV,
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Figure 5: Top: The dressed propagator as the sum of an infinite geometric series. The

dressed propagator is denoted by the shaded blob. Bottom: The s-channel, scattering

diagram p1p2 → p3p4 in which the bare propagator is replaced by the dressed propagator.

The shaded blob indicates a dressed propagator.

i.e., in the limit s→ −∞, Γ2,1r(−s) ∝ (p1 +p2)8 = s4, where Γ2,1r is the renormalised
1-loop, 2-point function. Since

iT1−loop = λ2(p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)

(
i

s

)2

Γ2,1r(−s)

+ λ2V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)

(
i

t

)2

Γ2,1r(−t)

+ λ2V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)

(
i

u

)2

Γ2,1r(−u) , (2.15)

the s-channel of T1−loop goes as s2s2s−2s4 = s6 when s → −∞, see Fig. 4 (the two
bare propagators go as 1/s each while the two bare vertices go as s2 each). Hence, as
s → −∞, T s−channel

1−loop diverges. T t−channel
1−loop and T u−channel

1−loop also diverge except for θ = 0
and θ = π, respectively.

Now what if we had an infinite series of loops in the scattering diagrams, see Fig. 5
(top), that is, if we had replaced the bare propagator with the dressed propagator?
As we shall see below, the external momentum dependence of the 1-loop, 2-point
function shall actually determine the UV behaviour of the dressed propagator.

The dressed propagator, see Fig. 5 (top), represents the geometric series of all the
graphs with 1-loop, 2-point insertions, analytically continued to the entire complex
p2-plane. Mathematically, the dressed propagator, Π̃(p2), is given by [59]

Π̃(p2) =
Π(p2)

1− Π(p2)Γ2,1r(p2)
. (2.16)
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Hence, for our example, we have

Π̃(p2) =
− i
p2

1−
(
− i
p2

)(
− iλ2p8

48π2

)
=

−i
p2 + λ2p8

48π2

. (2.17)

For large p, p8 dominates p2 in the denominator of Eq. (2.17), and we have

Π̃(p2) ≈ −48π2i

λ2p8
. (2.18)

Since

iTdressed = λ2V (p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)Π̃(−s)
+ λ2V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)Π̃(−t)
+ λ2V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)Π̃(−u) , (2.19)

then, if we replace the bare propagator with the dressed propagator in the tree-level
scattering diagrams, see Fig. 5 (bottom), we will have

T s−channel
dressed = −25

4
λ2 s3

1− λ2s3

48π2

, (2.20)

T t−channel
dressed = −4λ2

(
3s

4
− s

2
cos θ

)2
2s

(1− cos θ)
[
1− λ2s3(1−cos θ)3

384π2

] , (2.21)

T u−channel
dressed = −4λ2

(
3s

4
+
s

2
cos θ

)2
2s

(1 + cos θ)
[
1− λ2s3(1+cos θ)3

384π2

] . (2.22)

Hence, we can make the following observations:

• T s−channel
dressed does not blow up as s→ −∞.

• T t−channel
dressed blows up as s→ −∞ when cos(θ) = 1⇒ θ = 0.

• Similarly, T u−channel
dressed blows up as s→ −∞ when cos(θ) = −1⇒ θ = π.

Since we have that Tdressed = T s−channel
dressed + T t−channel

dressed + T u−channel
dressed , one can verify

that the total cross section σdressed corresponding to Tdressed blows up as s → −∞.
The summary is that the dressed propagator is not sufficient to prevent the scattering
diagram from blowing up as s→ −∞ since the polynomial suppression coming from
the dressed propagator cannot overcome the polynomial enhancement originating
from the two bare vertices in Fig. 5 (bottom). In subsection 2.2, we shall dress the
vertices to see whether we can eliminate the external momentum divergences of the
scattering diagrams.
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Figure 6: 1-loop, 3-point diagram with bare vertices and bare internal propagators and

symmetrical routing of momenta. The external momenta are p1, p2, p3 and the internal

(that is, inside the loop) momenta are k + p1

3 −
p2

3 , k + p2

3 −
p3

3 , k + p3

3 −
p1

3 .

2.1.1 1-loop, 3-point diagram with bare vertices and bare propagators

As a prelude to subsection 2.2, suppose we consider a 1-loop, 3-point diagram, see
Fig. 6, with external momenta p1, p2 and p3 (we assume that the propagators and
the vertices are bare), and symmetrical routing of momenta. Then the propagators
in the 1-loop triangle are given by Eq. (2.4):

− i
(
k +

p1

3
− p2

3

)−2

,−i
(
k +

p2

3
− p3

3

)−2

,−i
(
k +

p3

3
− p1

3

)−2

, (2.23)

and the vertex factors are given by Eq. (2.5):

2iλ

(
p2

2

(
k +

p1

3
− p2

3

)2

+ p2
2

(
k +

p2

3
− p3

3

)2

+
(
k +

p1

3
− p2

3

)2 (
k +

p2

3
− p3

3

)2
)
,

2iλ

(
p2

3

(
k +

p2

3
− p3

3

)2

+ p2
3

(
k +

p3

3
− p1

3

)2

+
(
k +

p2

3
− p3

3

)2 (
k +

p3

3
− p1

3

)2
)
,

2iλ

(
p2

1

(
k +

p3

3
− p1

3

)2

+ p2
1

(
k +

p1

3
− p2

3

)2

+
(
k +

p3

3
− p1

3

)2 (
k +

p1

3
− p2

3

)2
)
. (2.24)

Hence, the 1-loop, 3-point diagram, Γ3,1(p2), will be given by

Γ3,1(p2) = iλ3

∫ Λ d4k

(2π)4

8
(
p2

2

(
k + p1

3
− p2

3

)2
+ p2

2

(
k + p2

3
− p3

3

)2
+
(
k + p1

3
− p2

3

)2 (
k + p2

3
− p3

3

)2
)

(
k + p1

3
− p2

3

)2 (
k + p2

3
− p3

3

)2 (
k + p3

3
− p1

3

)2

×
(
p2

3

(
k +

p2

3
− p3

3

)2

+ p2
3

(
k +

p3

3
− p1

3

)2

+
(
k +

p2

3
− p3

3

)2 (
k +

p3

3
− p1

3

)2
)

×
(
p2

1

(
k +

p3

3
− p1

3

)2

+ p2
1

(
k +

p1

3
− p2

3

)2

+
(
k +

p3

3
− p1

3

)2 (
k +

p1

3
− p2

3

)2
) .

(2.25)

After integration with respect to the internal loop momentum k and renormalisation
of the loop integral divergences, i.e., the terms involving powers of Λ, we are left with
a polynomial function of the three external momenta p1, p2, p3. We will require these
computations in the following subsection.
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Figure 7: 3-point diagram constructed out of lower-loop 2-point & 3-point diagrams. The

dark blobs indicate renormalised vertex corrections and the dashed lines inside the triangle

denote bare internal propagators. The loop order of the dark blob on the left is n while the

loop order of the dark blobs on the right is n− 1. The external momenta are p1, p2, p3 and

the internal (that is, inside the loop) momenta are k + p1

3 −
p2

3 , k + p2

3 −
p3

3 , k + p3

3 −
p1

3 .

2.2 Dressing the vertices by making vertex loop corrections
to the bare vertices

Based on the results of subsection 2.1.1, suppose we want to dress the vertices by
making renormalised vertex loop corrections to the bare vertices at the left- and right-
ends of the scattering diagrams, see Fig. 7. As we saw in Eq. (2.25), both the bare
propagators and the bare vertices can be written in terms of powers of momenta. After
integration with respect to the internal loop momentum k, we obtain a polynomial
expression involving powers of the external momenta p1, p2, p3. As the loop-order
increases, the 3-point function can still be written as a polynomial function of the
external momenta; this happens because, as previously, the (bare) propagators are
polynomials in momenta while the (dressed) vertices are also polynomials in momenta.
Therefore, we expect the external momentum dependence of the 3-point function, see
Fig 7, in the UV limit, i.e., as pi →∞, where i = 1, 2, 3, in terms of the three external
momenta, p1, p2, p3, to follow as:

Γ3
UV−→

∑
α,β,γ

p2α
1 p2β

2 p
2γ
3 , (2.26)

with the convention
α ≥ β ≥ γ . (2.27)

The reason we expect the external momentum dependence of 3-point function to
be given by Eq. (2.26) is that, once all the (lower-) loop subdiagrams have been
integrated out, what remains are polynomial expressions in terms of the corresponding
external momenta. Some of these external momenta can then become the internal
loop momentum in a subsequent higher-loop diagram.

First, let us consider how one can get the largest sum of all the exponents, i.e.,
α+β+γ. Although all the arguments below can be conducted for three different sets
of exponents in the three 3-point vertices making up the 1-loop triangle, see Fig. 7,
for simplicity, here we will look at what happens when all the three vertices have the
same exponents.
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Clearly, the best way to obtain the largest exponents for the external momenta is
to have the α exponent correspond to the external momenta. Assuming a symmetric
distribution of (β, γ) among the internal loops and considering the n-loop, 3-point
diagram with symmetrical routing of momenta, see Fig. 7, the propagators in the
1-loop triangle are given by Eq. (2.23) and the vertex factors are 7

ip2αn−1

1

(
k +

p3

3
− p1

3

)2βn−1 (
k +

p1

3
− p2

3

)2γn−1

,

ip2αn−1

2

(
k +

p1

3
− p2

3

)2βn−1 (
k +

p2

3
− p3

3

)2γn−1

,

ip2αn−1

3

(
k +

p2

3
− p3

3

)2βn−1 (
k +

p3

3
− p1

3

)2γn−1

. (2.28)

Conservation of momenta then yields, in the UV, i.e., as pi →∞, where i = 1, 2, 3,

Γ3,n−→
∫

d4k

(2π)4

[
p2αn−1

1 p2αn−1

2 p2αn−1

3(
k + p1

3
− p2

3

)2 (
k + p2

3
− p3

3

)2 (
k + p3

3
− p1

3

)2

×
(
k +

p1

3
− p2

3

)2(βn−1+γn−1) (
k +

p2

3
− p3

3

)2(βn−1+γn−1) (
k +

p3

3
− p1

3

)2(βn−1+γn−1)
]
,

(2.29)

where p1, p2, p3 are the external momenta for the 1-loop triangle and the superscript
in the α, β, γ indicates that these are coefficients that one obtains from contributions
up to n − 1 loop level. Now, let us proceed to obtain the n-th loop coefficients. We
can read from Eq. (2.29):

αn = βn = γn = αn−1 + 2(βn−1 + γn−1) . (2.30)

For 3-point bare vertices, we have now α0 = β0 = 1 and γ0 = 0. As n increases,
αn, βn and γn increase; this means that, as the number of loops increases, the exter-
nal momentum dependences of the dressed vertices become larger and larger as the
external momenta become larger.

If we now dress the vertices by making renormalised vertex loop corrections to the
bare vertices at the left- and right-ends of the tree-level scattering diagrams, we will
have, see Fig. 9 (for n ≥ 1, αn = βn = γn),

T s−channel
vertex corrections ∼ s2αn

(s
2

)4αn 1

s
, (2.31)

T t−channel
vertex corrections ∼ t2α

n
(s

2

)4αn 1

t
=
[s

2
(1− cos θ)

]2αn−1 (s
2

)4αn

, (2.32)

T u−channel
vertex corrections ∼ u2αn

(s
2

)4αn 1

u
=
[s

2
(1 + cos θ)

]2αn−1 (s
2

)4αn

. (2.33)

Since α0 = β0 = 1 and γ0 = 0, using Eq. (2.30), we can see that α1 = 3; therefore,
αn ≥ 3 for n ≥ 1. Hence, we can make the following observations from the above
expressions:

7The superscripts in αn−1, βn−1, γn−1 denote the loop-order; clearly, they are not powers.
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=

Figure 8: 3-point diagram constructed out of lower-loop 2-point & 3-point diagrams. The

shaded blobs indicate dressed internal propagators and the dark blobs indicate renormalised

vertex corrections. The loop order of the dark blob on the left is n while the loop order of

the dark blobs on the right is n− 1. The external momenta are p1, p2, p3 and the internal

(that is, inside the loop) momenta are k + p1

3 −
p2

3 , k + p2

3 −
p3

3 , k + p3

3 −
p1

3 .

• T s−channel
vertex corrections blows up as s→ −∞.

• T t−channel
vertex corrections blows up as s→ −∞ except when cos(θ) = 1⇒ θ = 0.

• Similarly, T u−channel
vertex corrections blows up as s → −∞ except when cos(θ) = −1 ⇒

θ = π.

Thus, one can check that the cross section σdressed vertices corresponding to Tvertex corrections =
T s−channel

vertex corrections + T t−channel
vertex corrections + T u−channel

vertex corrections blows up as s→ −∞.

We see that dressing the vertices by making just vertex loop corrections to the bare
vertices does not ameliorate the external momentum growth of scattering diagrams
in the UV in our example, see Eq. (2.1). In fact, it makes the growth increase.
In the next subsection, we shall dress the vertices by making both propagator and
vertex loop corrections to the bare vertices at the left- and right-ends of the scattering
diagrams.

2.3 Dressing the vertices by making propagator & vertex
loop corrections to the bare vertices

In this subsection, we shall dress the vertices by making renormalised propagator and
vertex loop corrections to the bare vertices at the left- and right-ends of the scattering
diagrams, see Fig. 8. Again, we expect the external momentum dependence of the
3-point function to be given in the UV limit, i.e., as pi → ∞, where i = 1, 2, 3, by
Eq. (2.26).

As previously, the best way to obtain the largest exponents for the external mo-
menta is to have the α exponent correspond to the external momenta. Assuming
a symmetric distribution of (β, γ) among the internal loops and considering the n-
loop, 3-point diagram with symmetrical routing of momenta, see Fig. 8, the (dressed)

13



Figure 9: An s-channel scattering diagram p1p2 → p3p4. The shaded blob indicates a

dressed propagator and the dark blobs indicate renormalised vertex corrections.

propagators in the 1-loop triangle are

− i
(
k +

p1

3
− p2

3

)−8

,−i
(
k +

p2

3
− p3

3

)−8

,−i
(
k +

p3

3
− p1

3

)−8

, (2.34)

while the vertex factors are

ip2αn−1

1

(
k +

p3

3
− p1

3

)2βn−1 (
k +

p1

3
− p2

3

)2γn−1

,

ip2αn−1

2

(
k +

p1

3
− p2

3

)2βn−1 (
k +

p2

3
− p3

3

)2γn−1

,

ip2αn−1

3

(
k +

p2

3
− p3

3

)2βn−1 (
k +

p3

3
− p1

3

)2γn−1

. (2.35)

Conservation of momenta then yields, in the UV, i.e., as pi →∞, where i = 1, 2, 3,

Γ3,n−→
∫

d4k

(2π)4

[
p2αn−1

1 p2αn−1

2 p2αn−1

3(
k + p1

3
− p2

3

)8 (
k + p2

3
− p3

3

)8 (
k + p3

3
− p1

3

)8

×
(
k +

p1

3
− p2

3

)2(βn−1+γn−1) (
k +

p2

3
− p3

3

)2(βn−1+γn−1) (
k +

p3

3
− p1

3

)2(βn−1+γn−1)
]
,

(2.36)

where p1, p2, p3 are the external momenta for the 1-loop triangle and the superscript
in the α, β, γ indicates that these are coefficients that one obtains from contributions
up to n − 1 loop level. Now, let us proceed to obtain the n-th loop coefficients by
inspecting Eq. (2.36), we have

αn = βn = γn = αn−1 + 2(βn−1 + γn−1) . (2.37)

For the 3-point bare vertices, we have that α0 = β0 = 1 and γ0 = 0. As n increases,
αn, βn and γn increase; this means that, as the number of loops increases, the external
momentum growth of the dressed vertices increases.

If we now dress the vertices by making renormalised propagator and vertex loop
corrections to the bare vertices at the left- and right-ends of the tree-level scattering
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diagrams, see Fig. 9, we obtain, as s→ −∞,

T s−channel
both corrections ∼ s2αn

(s
2

)4αn 1

s4
, (2.38)

T t−channel
both corrections ∼ t2α

n
(s

2

)4αn 1

t4
=
[s

2
(1− cos θ)

]2αn−4 (s
2

)4αn

, (2.39)

T u−channel
both corrections ∼ u2αn

(s
2

)4αn 1

u4
=
[s

2
(1 + cos θ)

]2αn−4 (s
2

)4αn

. (2.40)

Since αn ≥ 3 for n ≥ 1, we can make the following observations:

• T s−channel
both corrections blows up as s→ −∞.

• T t−channel
both corrections blows up as s→ −∞ except when cos(θ) = 1⇒ θ = 0.

• Similarly, T u−channel
both corrections blows up as s→ −∞ except when cos(θ) = −1⇒ θ =

π.

Thus, one can check that the cross section σboth corrections corresponding to Tboth corrections =
T s−channel

both corrections + T t−channel
both corrections + T u−channel

both corrections blows up as s→ −∞.

We see that dressing the vertices by making propagator and vertex loop corrections
to the bare vertices cannot ameliorate the UV external momentum growth of scat-
tering diagrams in our toy model example, Eq. (2.1). This motivates us to consider
something very different; in the following section, we shall not consider a finite-order,
higher-derivative theory, but an infinite-derivative massless scalar field theory with
cubic interaction in φ. Both the free and interaction parts of the action will contain
infinite derivatives.

3 Scatterings in infinite-derivative theory

We saw in section 2 that, within the context of a finite-order higher-derivative scalar
toy model, we cannot tame the UV external momentum growth appearing in scatter-
ing diagrams. In particular, we need to “soften” the external momentum contributions
coming from the dressed vertices; as we saw in subsections 2.2 & 2.3, dressing the
vertices in a finite-order higher-derivative toy model cannot help us tame the external
momentum growth of the scattering diagrams. Since this is not possible for a finite-
order higher-derivative toy model, we shall examine an infinite-derivative scalar toy
model. Therefore, let us consider the following action, which has a cubic interaction
where λ� O(1), and treat it perturbatively:

S = Sfree + Sint , (3.1)

where

Sfree =
1

2

∫
d4x (φ�a(�)φ) (3.2)
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and

Sint = λ

∫
d4x (φ�φa(�)φ) . (3.3)

Now, let us demand that the propagator for free action retains only the massless
scalar degree of freedom. In which case, we assume that the kinetic term obtains an
entire function correction. For simplicity, we take such a function to be Gaussian:

a(�) = e−�/M
2

, (3.4)

where M is the mass scale at which the non-local modifications become important.
With this choice, the infinite-derivative theory can be made ghost-free [38, 39]. Such
a choice of a(�) is also well motivated by p-adic strings [43]. The propagator in
momentum space is then given in the Euclidean space, by

Π(k2) =
−i
k2ek̄2

, (3.5)

where barred 4-momentum vectors denote k̄ = k/M . The vertex factor for three
incoming momenta k1, k2, k3 satisfying the following conservation law,

k1 + k2 + k3 = 0 , (3.6)

is given by

λV (k1, k2, k3) = −iλ
[
k2

1(ek̄
2
2 + ek̄

2
3) + k2

2(ek̄
2
3 + ek̄

2
1) + k2

3(ek̄
2
1 + ek̄

2
2)
]
. (3.7)

We can compute the tree-level s, t, u channels in the CM frame and we obtain

iT s−channel
tree−level = −λ2s2

[
3e−s/2M

2

+ e−s/M
2
]2
(

i

se−s/M2

)
, (3.8)

iT t−channel
tree−level = −λ2

[
(s+ 2t)e−s/2M

2

+ se−t/M
2
]2
(

i

te−t/M2

)
, (3.9)

iT u−channel
tree−level = −λ2

[
(s+ 2u)e−s/2M

2

+ se−u/M
2
]2
(

i

ue−u/M2

)
. (3.10)

We note that, as s→ −∞, Ttree−level = T s−channel
tree−level + T t−channel

tree−level + T u−channel
tree−level blows up.

Now, in order to compute the dressed propagator, we have, first, to write down
the 1-loop, 2-point function with external momenta p and −p. We have

Γ2,1(p2) =
iλ2

2

∫
d4k

(2π)4

1

(p
2

+ k)2(p
2
− k)2e( p̄

2
+k̄)2

e( p̄
2
−k̄)2

×
[
p2(e( p̄

2
+k̄)2

+ e( p̄
2
−k̄)2

) + (
p

2
+ k)2(ep̄

2

+ e( p̄
2
−k̄)2

) + (
p

2
− k)2(ep̄

2

+ e( p̄
2

+k̄)2

)
]2

.

(3.11)
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After renormalising the divergent (in terms of the internal loop momentum kµ)
terms 8, we have that the most divergent part (in terms of the external momentum
pµ) of the 1-loop, 2-point function is given by

iλ2M4e
3p̄2

2 (4M2 + p2)

32π2p2
. (3.12)

Thus, the renormalised 1-loop, 2-point function goes as (1+4p̄−2)e
3p̄2

2 when p is large.

As s→ −∞, Γ2,1r(−s) goes as e−
3s

2M2 . Since

iT1−loop = λ2(p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)

(
i

se−s/M2

)2

Γ2,1r(−s)

+ λ2V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)

(
i

te−t/M2

)2

Γ2,1r(−t)

+ λ2V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)

(
i

ue−u/M2

)2

Γ2,1r(−u) , (3.13)

we have that the s-channel of T1−loop, see again Fig. 4, goes as e−
2s
M2 e

2s
M2 e−

3s
2M2 = e−

3s
2M2

when s → −∞. Hence, as s → −∞, T s−channel
1−loop diverges. T t−channel

1−loop and T u−channel
1−loop

also diverge as s→ −∞.

3.1 Dressing the propagator

Since for large p, the dressed propagator goes as

Π̃(p2) ≈ (1 + 4p̄−2)−1e−
3p̄2

2

we observe that the dressed propagator is more strongly exponentially suppressed
than the bare propagator.

Since

iTdressed = λ2V (p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)Π̃(−s)
+ λ2V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)Π̃(−t)
+ λ2V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)Π̃(−u) , (3.14)

then, if we now replace the bare propagator with the dressed propagator in the tree-

8Within the context of dimensional regularisation, we obtain an ε−1 pole, where ε = 4− d and d
is the number of dimensions.

17



level scattering diagrams, see Fig. 5 (bottom), we will have, as s→ −∞,

T s−channel
dressed ∼

[
3e−

s
2M2 + e−

s
M2

]2

e
3s

2M2 ∼ e−
s

2M2 , (3.15)

T t−channel
dressed ∼

[
(s+ 2t)e−

s
2M2 + se−

t
M2

]2

e
3t

2M2 =
[
s(2− cos θ)e−

s
2M2 + se−

s(1−cos θ)

2M2

]2

e
3s(1−cos θ)

4M2 ,

(3.16)

T u−channel
dressed ∼

[
(s+ 2u)e−

s
2M2 + se−

u
M2

]2

e
3u

2M2 =
[
s(2 + cos θ)e−

s
2M2 + se−

s(1+cos θ)

2M2

]2

e
3s(1+cos θ)

4M2 .

(3.17)

Hence, we can make the following observations:

• T s−channel
dressed blows up as s→ −∞.

• T t−channel
dressed blows up as s→ −∞ for all values of θ.

• T u−channel
dressed blows up as s→ −∞ for all values of θ.

Since Tdressed = T s−channel
dressed + T t−channel

dressed + T u−channel
dressed , one can verify that the total

cross section σdressed corresponding to Tdressed blows up as s→ −∞. We also observe
that the external momentum dependence of Tdressed exhibits less growth for large
external momenta as compared to the external momentum dependence of Ttree−level

(or T1−loop).

To conclude, the use of the dressed propagator ameliorates the external momentum
growth of the scattering diagrams, but this is not sufficient by itself. In subsection 3.2,
we shall dress the vertices to see whether we can eliminate the external momentum
growth of the scattering diagrams.

3.2 Dressing the vertices by making vertex loop corrections
to the bare vertices

In this subsection, we shall dress the vertices by making renormalised vertex loop
corrections to the bare vertices at the left- and right-ends of the scattering diagrams,
see Fig. 7. We have that both the bare propagators and the bare vertices can be
written as exponentials in momenta; after integration with respect to the internal
loop momentum k, we obtain an exponential expression where the exponents are in
terms of the external momenta p1, p2, p3. As the loop-order increases, the 3-point
function can still be written as an exponential function of the external momenta; this
happens because, as previously, the (bare) propagators are exponentials in momenta
while the (dressed) vertices are also exponentials in momenta.Thus, in the UV limit,
i.e., as pi → ∞, where i = 1, 2, 3, the 3-point function, again see Fig. 7, can be
written as

Γ3
UV−→

∑
α,β,γ

eαp̄
2
1+βp̄2

2+γp̄2
3 , (3.18)
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with the convention
α ≥ β ≥ γ , (3.19)

where p1, p2, p3 are the three external momenta. The reason we expect the external
momentum dependence of the 3-point function to be given by Eq. (3.18) is that,
once all the (lower-) loop subdiagrams have been integrated out, what remains are
exponential expressions in terms of the three external momenta p1, p2, p3.

The best way to obtain the largest exponents for the external momenta is to
have the α exponent correspond to the external momenta. Assuming a symmetric
distribution of (β, γ) among the internal loops and considering the n-loop, 3-point
diagram with symmetrical routing of momenta, see Fig. 7, the propagators in the
1-loop triangle are given by

e−(k̄+
p̄1
3
− p̄2

3 )
2

, e−(k̄+
p̄2
3
− p̄3

3 )
2

, e−(k̄+
p̄3
3
− p̄1

3 )
2

, (3.20)

and the vertex factors are

eα
n−1p̄2

1+βn−1(k̄+
p̄3
3
− p̄1

3 )
2
+γn−1(k̄+

p̄1
3
− p̄2

3 )
2

,

eα
n−1p̄2

2+βn−1(k̄+
p̄1
3
− p̄2

3 )
2
+γn−1(k̄+

p̄2
3
− p̄3

3 )
2

,

eα
n−1p̄2

3+βn−1(k̄+
p̄2
3
− p̄3

3 )
2
+γn−1(k̄+

p̄3
3
− p̄1

3 )
2

. (3.21)

Conservation of momenta then yields, in the UV, i.e., as pi →∞, where i = 1, 2, 3,

Γ3,n−→
∫

d4k

(2π)4

[
eα

n−1p̄2
1+βn−1(k̄+

p̄3
3
− p̄1

3 )
2
+γn−1(k̄+

p̄1
3
− p̄2

3 )
2

e−(k̄+
p̄1
3
− p̄2

3 )
2

e−(k̄+
p̄2
3
− p̄3

3 )
2

e−(k̄+
p̄3
3
− p̄1

3 )
2

× eα
n−1p̄2

2+βn−1(k̄+
p̄1
3
− p̄2

3 )
2
+γn−1(k̄+

p̄2
3
− p̄3

3 )
2

eα
n−1p̄2

3+βn−1(k̄+
p̄2
3
− p̄3

3 )
2
+γn−1(k̄+

p̄3
3
− p̄1

3 )
2

]

=

∫
d4k

(2π)4

eα
n−1(p̄2

1+p̄2
2+p̄2

3)

e[1−βn−1−γn−1][3k̄2+ 1
3

(p̄2
1+p̄2

2+p̄2
3)]
, (3.22)

where p1, p2, p3 are the external momenta for the 1-loop triangle, and the superscript
in the α, β, γ indicates that these are coefficients that one obtains from contributions
up to n− 1 loop level.

Integrating Eq. (3.22) with respect to the loop momentum k and reminding our-
selves that αn, βn and γn are the coefficients of p̄2

1, p̄2
2 and p̄2

3, respectively, appearing
in the exponentials in Eq. (3.18), we have

αn = βn = γn = αn−1 +
1

3
(βn−1 + γn−1)− 1

3
. (3.23)

In particular, for the 1-loop, 3-point graph, one has to use the 3-point bare vertices
(see Eq. (3.7)): α0 = 1 and β0 = γ0 = 0. One then obtains

α1 = β1 = γ1 =
2

3
, (3.24)
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leading to an overall symmetric vertex: e
2
3

(p̄2
1+p̄2

2+p̄2
3) and α1 +β1 +γ1 = 2. We observe

that, as n increases, αn, βn and γn increase; this means that, as the number of loops
increases, the external momentum contributions of the dressed vertices become larger
and larger.

We conclude that dressing the vertices by considering just vertex loop corrections
to the bare vertices does not ameliorate the external momentum growth of scattering
diagrams in the UV in our toy model example Eq. (3.1); in fact, it makes that growth
increase. In the next subsection, we shall dress the vertices by considering both
propagator and vertex loop corrections to the bare vertices.

3.3 Dressing the vertices by making propagator & vertex
loop corrections to the bare vertices

As our next step, let us now consider Tdressed
9. We know that Tdressed diverges as

s → −∞. Let us now dress the vertices by making renormalised propagator and
vertex loop corrections to the bare vertices at the left- and right-ends of the diagram.

Regarding the dressed propagator, we have Π̃(p2)
UV−→ e−3p̄2/2. Therefore, following

the prescription given in section 3.2, the 3-point function can again be written as an
exponential function of the external momenta; this happens because, as previously,
the (dressed) propagators are exponentials in momenta while the (dressed) vertices
are also exponentials in momenta. Hence, in the UV limit, i.e., as pi → ∞, where
i = 1, 2, 3, the 3-point function Γ3, see Fig. 8, is again given by Eq. (3.18). As
previously, the best way to obtain the largest exponents for the external momenta is
to have the α exponent correspond to the external momenta. Assuming a symmetric
distribution of (β, γ) among the internal loops and considering the n-loop, 3-point
diagram with symmetrical routing of momenta, see Fig. 8, the propagators in the
1-loop triangle are given by

e−
3
2(k̄+

p̄1
3
− p̄2

3 )
2

, e−
3
2(k̄+

p̄2
3
− p̄3

3 )
2

, e−
3
2(k̄+

p̄3
3
− p̄1

3 )
2

, (3.25)

and the vertex factors are

eα
n−1p̄2

1+βn−1(k̄+
p̄3
3
− p̄1

3 )
2
+γn−1(k̄+

p̄1
3
− p̄2

3 )
2

,

eα
n−1p̄2

2+βn−1(k̄+
p̄1
3
− p̄2

3 )
2
+γn−1(k̄+

p̄2
3
− p̄3

3 )
2

,

eα
n−1p̄2

3+βn−1(k̄+
p̄2
3
− p̄3

3 )
2
+γn−1(k̄+

p̄3
3
− p̄1

3 )
2

. (3.26)

9We could equally well consider Ttree−level, T1−loop, etc. By making renormalised propagator &
vertex loop corrections to the bare vertices at the left- and right-ends of the scattering diagram
under consideration, the external momentum growth would be eliminated at sufficiently high loop
order.
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In the UV, i.e., as pi →∞, where i = 1, 2, 3, conservation of momenta gives

Γ3,n−→
∫

d4k

(2π)4

eα
n−1p̄2

1+βn−1(k̄+
p̄3
3
− p̄1

3 )
2
+γn−1(k̄+

p̄1
3
− p̄2

3 )
2

e−
3
2(k̄+

p̄1
3
− p̄2

3 )
2

e−
3
2(k̄+

p̄2
3
− p̄3

3 )
2

e−
3
2(k̄+

p̄3
3
− p̄1

3 )
2

× eαn−1p̄2
2+βn−1(k̄+

p̄1
3
− p̄2

3 )
2
+γn−1(k̄+

p̄2
3
− p̄3

3 )
2

eα
n−1p̄2

3+βn−1(k̄+
p̄2
3
− p̄3

3 )
2
+γn−1(k̄+

p̄3
3
− p̄1

3 )
2

=

∫
d4k

(2π)4

eα
n−1(p̄2

1+p̄2
2+p̄2

3)

e[ 3
2
−βn−1−γn−1][3k̄2+ 1

3
(p̄2

1+p̄2
2+p̄2

3)]
, (3.27)

where p1, p2, p3 are the external momenta for the 1-loop triangle, and the superscript
in the α, β, γ indicates that these are coefficients that one obtains from contributions
up to n− 1 loop level.

After integrating Eq. (3.27) with respect to the loop momentum k, one obtains

αn = βn = γn = αn−1 +
1

3
(βn−1 + γn−1)− 1

2
. (3.28)

For the 3-point bare vertices, we have α0 = 1 and β0 = γ0 = 0. Employing Eq. (3.28),
one then obtains

α1 = β1 = γ1 =
1

2
. (3.29)

We observe that α1 + β1 + γ1 = 3
2
. We anticipate that the exponents become smaller

as the loop order becomes larger; hence, we posit that the following inequality holds:

αn + βn + γn ≤ 3

2
. (3.30)

Using Eq. (3.28), we see that Eq. (3.30) is satisfied as long as the following condition
is also satisfied:

αn−1 +
1

3
(βn−1 + γn−1) ≤ 1 . (3.31)

To recap, we have shown that if, up to loop order n−1, Eq. (3.31) holds, then, at loop
order n, Eq. (3.30) holds too. In order to conclude the recursive argument (see [59]
for more details regarding the recursive argument), we have to show that Eq. (3.31)
holds at loop order n as well. Consequently, we have

αn +
1

3
(βn + γn) =

5

3

[
αn−1 +

1

3
(βn−1 + γn−1)− 1

2

]
≤ 5

6
< 1 . (3.32)

We have verified that Eq. (3.31) does hold at loop order n. As a result, the loops stay
finite as the loop order increases.

Now, since α1 = β1 = γ1 = 1
2
, and using Eq. (3.28),we obtain that, for n = 2,

α2 = β2 = γ2 =
1

3
, (3.33)

for n = 3,

α3 = β3 = γ3 =
1

18
, (3.34)
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for n = 4,

α4 = β4 = γ4 = −11

27
. (3.35)

We conclude that, for n ≥ 4, αn, βn and γn become negative. The fact that
αn, βn and γn become negative for sufficiently large n should be emphasised since it
is precisely this negativity which eliminates the external momentum growth of the
scattering diagrams in the UV.

For n = 4, we have the following results:

• We find that the largest external momentum contribution of the s-channel, see
Fig. 9, goes as

e
44s

27M2 e
3s

2M2 = e
169s

54M2 , (3.36)

which tends to 0 as s→ −∞.

• Regarding the t-channel, the largest external momentum contribution goes as

e
22t

27M2 e
22s

27M2 e
3t

2M2 = e
s(213−125 cos θ)

108M2 , (3.37)

which, again, tends to 0 as s→ −∞ for all values of θ.

• Regarding the u-channel, the largest external momentum contribution goes as

e
22u

27M2 e
22s

27M2 e
3u

2M2 = e
s(213+125 cos θ)

108M2 , (3.38)

which, again, tends to 0 as s → −∞ for all values of θ. Hence, for sufficiently
large n (specifically, for n ≥ 4), there is no exponential growth for the s-, t- and
u-channels as s→ −∞.

Let us also point out that we do not have to worry about polynomial growth in
s since any polynomial functions of s will be multiplied by exponential functions of
s and their product will tend to 0 as s → −∞, keeping in mind that exponential
functions always dominate polynomial ones at large values.

Dressing the vertices by making both propagator and vertex loop corrections to
the bare vertices ameliorates and, in fact, completely eliminates, for sufficiently large
n, the external momentum growth of the scattering diagrams in the UV. In the next
section, we will study an infinite-derivative scalar toy model inspired by a ghost-free
and singularity-free theory of gravity.

4 Scattering in infinite-derivative theories of grav-

ity

Inspired by the results of previous section, let us now investigate scattering dia-
grams in the context of infinite-derivative theories of gravity, which is ghost-free and
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singularity-free, for brevity we call it BGKM gravity [38]. In [59], we studied the
quantum loops for an infinite-derivative scalar field theory action as a toy model
to mimic the UV properties of the BGKM gravity. Expanding the BGKM action
around the Minkowski vacuum 10, one can obtain, for instance, the “free” part that
determines the propagator from the O(h2) terms; hµν denotes a small perturbation
around Minkowski spacetime: gµν = ηµν + hµν . The O(h3) terms determine cubic in-
teraction vertices. Unfortunately, O(h3) terms are technically challenging and some
of the expressions involve double sums. Instead of getting involved with too many
technicalities, we shall, therefore, choose to work with a simple toy model action that
respects a combination of shift and scaling symmetry at the level of equation of mo-
tion. This will allow us to capture some of the essential features of BGKM gravity,
such as the compensating nature of exponential suppression in the propagator and
an exponential enhancement in the vertex factor.

The infinite-derivative action that can modify the propagator of the graviton with-
out introducing any new states is of the form [38]

S = SEH + SQ , (4.1)

where SEH is the Einstein-Hilbert action,∫
d4x
√
−g R

2
, (4.2)

and SQ is given by

SQ =

∫
d4x
√
−g
[
RF1(�)R +RµνF2(�)Rµν +RµνλσF3(�)Rµνλσ

]
, (4.3)

where the Fi’s are analytic functions of � (the covariant d’Alembertian operator):

Fi(�) =
∞∑
n=0

fin�
n , (4.4)

satisfying
2F1 + F2 + 2F3 = 0 , (4.5)

and the constraint that the combination

a(�) = 1− 1

2
F2(�)�− 2F3(�)� , (4.6)

is an entire function with no zeroes. In Eq. (4.4), the fin ’s are real coefficients.
Eqs. (4.1)-(4.6) define the BGKM gravity models. For BGKM gravity, we have the
propagator [38, 39],

Π(k2) = − i

k2a(−k2)

(
P2 − 1

2
P0
s

)
=

1

a(−k2)
ΠGR , (4.7)

10One could expand the BGKM action and, subsequently, derive the propagator for a different
background metric such as (A)dS [45]. Computing graviton-graviton scattering diagrams in (A)dS
spacetime is a topic for future investigation.
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for the physical degrees of freedom for a graviton propagating in 4 dimensions; see [38,
39, 60] for the definitions of the spin projector operators P2 and P0

s .

Since we know that the field equations of GR exhibit a global scaling symmetry,

gµν → λgµν . (4.8)

When we expand the metric around the Minkowski vacuum,

gµν = ηµν + hµν , (4.9)

the scaling symmetry translates to a symmetry for hµν , whose infinitesimal version is
given by

hµν → (1 + ε)hµν + εηµν . (4.10)

The symmetry relates the free and interaction terms just like gauge symmetry does.
Thus, we are going to use this combination of shift and scaling symmetry,

φ→ (1 + ε)φ+ ε , (4.11)

to arrive at a scalar toy model, whose propagator and vertices preserve the compen-
sating nature found in the full BGKM gravity. Now, let us write down explicitly the
scalar toy model action and the Feynman rules for that action, i.e., the propagator
and the vertex factors. Our scalar toy model action is given by:

Sscalar = Sfree + Sint , (4.12)

where

Sfree =
1

2

∫
d4x (φ�a(�)φ) (4.13)

and

Sint =
1

MP

∫
d4x

(
1

4
φ∂µφ∂

µφ+
1

4
φ�φa(�)φ− 1

4
φ∂µφa(�)∂µφ

)
. (4.14)

For the purpose of this paper, we are going to choose:

a(�) = e−�/M
2

, (4.15)

where M is the mass scale at which the non-local modifications become important.
The propagator in momentum space for Eq. (4.13) is then given by

Π(k2) =
−i
k2ek̄2

, (4.16)

where barred 4-momentum vectors from now on will denote the momentum divided
by the mass scale M . The vertex factor for three incoming momenta k1, k2, k3

satisfying the conservation law:

k1 + k2 + k3 = 0 , (4.17)
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is then given by

1

MP

V (k1, k2, k3) =
i

MP

C(k1, k2, k3)
[
1− ek̄2

1 − ek̄2
2 − ek̄2

3

]
, (4.18)

where

C(k1, k2, k3) =
1

4

(
k2

1 + k2
2 + k2

3

)
. (4.19)

For the above set-up, 1-loop, 2-point diagram, both with zero and arbitrary external
momenta have been computed in Ref. [59], which gives a Λ4 divergence, where Λ
is a momentum cut-off. Further, 1-loop, N -point diagrams with vanishing external
momenta were also computed. The 2-loop diagrams with zero external momenta also
give a Λ4 divergence, suggesting that we do not get new divergences as we proceed
from 1-loop to 2-loop. In Ref. [59], the authors have computed 1-loop and 2-loop
computations with external momenta and paid extra care in understanding the 1-
loop, 2-point function which appeared as a subdivergence in higher-loop diagrams.

Typically, in the 1-loop, 2-point function, the authors obtained e
3p̄2

2 external mo-
mentum dependence in the UV, which indicates that, for p̄2 →∞, the 1-loop, 2-point
function tends to infinity. This may appear as an initial setback, but, actually, this
external momentum dependence is what, we believe, makes all higher-loop and higher-
point diagrams finite once the bare propagators were replaced by dressed propagators.
The dressed propagator is given by (see Ref. [59])

Π̃(p2) =
Π(p2)

1− Π(p2)Γ2,1r(p2)
=

−i
p2ep̄2 − M4

M2
P
f (p̄2)

, (4.20)

where f(p̄2) grows as e
3p̄2

2 as p̄2 →∞. For such an external momentum dependence,
the dressed propagator is more strongly suppressed than the bare one. The finiteness
of all higher-loop and higher-point diagrams became possible because the exponential

suppression in the dressed propagator, which is e−
3p̄2

2 in the UV, overcame the expo-
nential enhancement arising from the vertices. The 1-loop, N -point functions with
zero external momenta became UV-finite, and so did the 2-loop integrals for vanish-
ing external momenta. The basic reason is simple; even for the 1-loop diagrams, the
suppression coming from the propagators is stronger than the enhancements com-
ing from the vertices. This ensures two things - first, it makes the loops finite and,
second, the UV growth of the finite diagrams with respect to the external momenta
becomes weaker in every subsequent loops. Thus, finiteness of higher loops is ensured
recursively.

With this adequate information, we now concentrate on the scattering problem for
BGKM gravity. We can compute the s, t, u-channels, tree-level scattering diagram
p1p2 → p3p4, see Fig. 1, which is given by in the Euclidean space, as:

iT s−channel
tree−level =

1

M2
P

V (p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)

(
i

se−s/M2

)
. (4.21)
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iT t−channel
tree−level =

1

M2
P

V (p1,−p3, p3 − p1)V (p2,−p4, p4 − p2)

(
i

te−t/M2

)
, (4.22)

iT u−channel
tree−level =

1

M2
P

V (p1,−p4, p4 − p1)V (p2,−p3, p3 − p2)

(
i

ue−u/M2

)
. (4.23)

Therefore, we have

Ttree−level =
1

16M2
P (p1 + p2)2 e(p̄1+p̄2)2

[
p2

1 + p2
2 + (p1 + p2)2] [p2

3 + p2
4 + (p1 + p2)2]

×
[
1− ep̄2

1 − ep̄2
2 − e(p̄1+p̄2)2

] [
1− ep̄2

3 − ep̄2
4 − e(p̄1+p̄2)2

]
+ (p2 ↔ −p3)

+ (p2 ↔ −p4) . (4.24)

In the CM frame, we obtain:

Ttree−level = − 1

16M2
P se

− s
M2

(−2s)2
(

1− 2e−
s

2M2 − e−
s
M2

)2

− 1

16M2
P te
− t
M2

(−s− t)2
(

1− 2e−
s

2M2 − e−
t
M2

)2

− 1

16M2
Pue

− u
M2

(−s− u)2
(

1− 2e−
s

2M2 − e−
u
M2

)2

. (4.25)

Let us again point out that s, t, u are all negative in Euclidean space and satisfy
s = u+ t. Clearly, the cross section σtree−level corresponding to Ttree−level blows up as
s→ −∞ since |T |2 diverges in that limit.

Before we compute the scattering amplitude, let us first consider the 1-loop, 2-
point function, see Fig. 3, with arbitrary external momenta, which is given by

Γ2,1(p2) =
i

2i2M2
P

∫
d4k

(2π)4

V 2(−p, p
2

+ k, p
2
− k)

(p
2

+ k)2(p
2
− k)2e(

p̄
2

+k̄)
2

e(
p̄
2
−k̄)

2 . (4.26)

Using the dimensional regularisation scheme, we obtain an ε−1 pole,

Γ2,1,div(p
2) =

ip4

64π2M2
P

1

ε
, (4.27)

as expected, which can be eliminated using a suitable counter-term. The counter-
term, which is needed to cancel the ε−1 divergence and which should be added to the
action in Eq. (4.12), is given by

Sct = − 1

128επ2M2
P

∫
d4xφ�2φ , (4.28)

yielding

Γ2,1,ct(p
2) = − ip4

64π2M2
P

1

ε
. (4.29)
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Had we employed a hard cut-off Λ, the maximum divergence would have been Λ4.

Therefore, regarding the renormalised 1-loop, 2-point function, Γ2,1r, with external

momenta p,−p, we have Γ2,1r = iM4

M2
P
f(p̄2), where

f(p̄2) =
p̄4

128π2

(
− log

(
p̄2

4π

)
− γ + 2

)
+

e−p̄
2

512π2p̄2

[
− 2ep̄

2
(
e2p̄2 − 1

)
p̄6Ei

(
−p̄2

)
+
(
ep̄

2 − 1
)(
− 2

(
p̄4 + 3p̄2 + 2

)
+

(
e

3p̄2

2 − e
p̄2

2

)(
2p̄4 + 5p̄2 + 4

)
+ ep̄

2
(
ep̄

2 − 1
)
p̄6Ei

(
− p̄

2

2

)
+ 2ep̄

2 (
7
(
p̄4 + p̄2

)
+ 2
))]

.

(4.30)

Now, regarding the 1-loop scattering diagram, see Fig. 4, we obtain:

T1−loop = V (p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)

(
i

se−s/M2

)2
M4

M4
P

f(−s)

+ V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)

(
i

te−t/M2

)2
M4

M4
P

f(−t)

+ V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)

(
i

ue−u/M2

)2
M4

M4
P

f(−u) , (4.31)

where Γ2,1r = iM4

M2
P
f(−s) = iM4

M2
P
f(p̄2), where f(p̄2) is given by Eq. (4.30) and f(p̄2) is

a regular analytic function of p̄2 which grows as e
3p̄2

2 as p̄2 →∞.

As s → −∞, Γ2,1r(−s) (and f(−s)) goes as e−
3s

2M2 . The s-channel of T1−loop

goes as e−
2s
M2 e

2s
M2 e−

3s
2M2 = e−

3s
2M2 when s → −∞. As s → −∞, T s−channel

1−loop diverges.

T t−channel
1−loop and T u−channel

1−loop also diverge.

4.1 Dressing the propagator and the vertices

Similar to the earlier cases, we have found that dressed propagator is more strongly
exponentially suppressed than the bare propagator. Since Π(p2)Γ2,1r(p

2) grows with
large momenta, we have, for large p,

Π̃(p2)→ Γ−1
2,1r(p

2) ≈
(
9− 12p̄−2

)−1
e−

3p̄2

2 . (4.32)
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Now, if we replace the bare propagator with the dressed propagator in the tree-level
scattering diagrams, see Fig. 5 (bottom), we obtain:

Tdressed = V (p1, p2,−p1 − p2)V (−p3,−p4, p1 + p2)

(
1

M2
P se

−s/M2 +M4f(−s)

)
+ V (p1,−p3, p3 − p1)V (p2,−p4, p1 − p3)

(
1

M2
P te
−t/M2 +M4f(−t)

)
+ V (p1,−p4, p4 − p1)V (p2,−p3, p1 − p4)

(
1

M2
Pue

−u/M2 +M4f(−u)

)
,

(4.33)

where, as s → −∞, f(−s) goes as e−
3s

2M2 . An explicit computation, see Fig. 5
(bottom), gives us, as s→ −∞,

T s−channel
dressed ∼

[
2e−

s
2M2 + e−

s
M2 − 1

]2

e
3s

2M2 ∼ e−
s

2M2 , (4.34)

T t−channel
dressed ∼

[
2e−

s
2M2 + e−

t
M2 − 1

]2

e
3t

2M2 =
[
2e−

s
2M2 + e−

s(1−cos θ)

2M2 − 1
]2

e
3s(1−cos θ)

4M2 ,

(4.35)

T u−channel
dressed ∼

[
2e−

s
2M2 + e−

u
M2 − 1

]2

e
3u

2M2 =
[
2e−

s
2M2 + e−

s(1+cos θ)

2M2 − 1
]2

e
3s(1+cos θ)

4M2 .

(4.36)

Hence, we can make the following observations:

• T s−channel
dressed blows up as s→ −∞.

• T t−channel
dressed blows up as s→ −∞ for all values of θ.

• T u−channel
dressed blows up as s→ −∞ for all values of θ.

Since Tdressed = T s−channel
dressed + T t−channel

dressed + T u−channel
dressed , one can verify that the total

cross section σdressed corresponding to Tdressed blows up as s→ −∞. We also observe
that the external momentum dependence of Tdressed grows less for large external mo-
menta as compared to the external momentum dependence of Ttree−level (or T1−loop).
Hence, the use of the dressed propagator ameliorates the external momentum growth
of the scattering diagrams, but it is not sufficient by itself.

To see whether we can eliminate the external momentum growth of the scattering
diagrams, we will dress the vertices by making renormalised vertex loop corrections
to the bare vertices at the left- and right-ends of the scattering diagrams, see Fig. 7.
Following exactly the same prescription as in section 3.2, we obtain the relation

αn = βn = γn = αn−1 +
1

3
(βn−1 + γn−1)− 1

3
, (4.37)

which is Eq. (3.23). Since α0 = 1 and β0 = γ0 = 0, we observe that the coefficients
αn, βn and γn increase as n increases; thus, dressing the vertices by keeping the
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propagators bare and making just vertex loop corrections to the bare vertices at the
left- and right-ends of the scattering diagrams cannot tame the external momentum
growth of the scattering diagrams.

For that reason, and as an example, we will now dress the bare vertices at the left-
and right-ends of the scattering diagram whose scattering matrix element is Tdressed

by making both propagator and vertex loop corrections to the said vertices, see Fig. 8.
Following the same reasoning as in section 3.3, αn, βn and γn become negative for
n ≥ 4.

For n = 4, we have the following conclusions:

• As in section 3.3, the largest external momentum contribution of the s-channel,
see Fig. 9, goes as

e
44s

27M2 e
3s

2M2 = e
169s

54M2 , (4.38)

which tends to 0 as s→ −∞.

• The largest external momentum contribution of the t-channel goes as

e
22t

27M2 e
22s

27M2 e
3t

2M2 = e
s(213−125 cos θ)

108M2 , (4.39)

which, again, tends to 0 as s→ −∞ for all values of θ.

• The largest external momentum contribution of the u-channel goes as

e
22u

27M2 e
22s

27M2 e
3u

2M2 = e
s(213+125 cos θ)

108M2 , (4.40)

which, again, tends to 0 as s → −∞ for all values of θ. Hence, for sufficiently
large n (specifically, for n ≥ 4), there is no exponential growth for the s-, t- and
u-channels as s → −∞. The external momentum growth of Ttree−level, T1−loop

etc. would also be eliminated following this prescription at sufficiently high loop
order.

We observe that, for sufficiently large n, dressing the vertices by making both
propagator and vertex loop corrections to the bare vertices at the left- and right-
ends of the scattering diagrams makes the external momentum dependence of any
scattering diagram convergent in the UV. By considering renormalised propagator and
vertex loop corrections to the bare vertices, we can eliminate the external momentum
growth appearing in scattering diagrams in the regime of large external momenta,
i.e., as s → −∞. In contrast, dressing the vertices by considering just vertex loop
corrections to the bare vertices is not sufficient. Thus, dressing the vertices by making
both propagator and vertex loop corrections to the bare vertices is essential to taming
the external momentum growth of scattering diagrams in the UV and, as a result, we
expect the cross sections of those diagrams to be finite (see Eq. (A.4) in appendix A
for the relation between the differential cross section dσ and the scattering matrix
element T ).
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5 Conclusions

The aim of this paper has been to examine the external momentum dependence of
scattering diagrams in the context of infinite-derivative field theories and gravity. We
have found that for a finite-order, higher-derivative scalar field theory the cross sec-
tion of tree-level scattering diagrams blows up at large momenta. Even considering
dressed propagators and dressed vertices, by making propagator and vertex loop cor-
rections to the bare vertices of the scattering diagrams, is not sufficient to eliminate
the external momentum growth. However, we have noticed that dressing the propa-
gators indeed ameliorates the external momentum growth a bit. Motivated by these
results, we studied an infinite-derivative, non-local scalar field theory with non-local
interactions. In this setup, the propagators are exponentially suppressed and the
vertices are exponentially enhanced.

For such non-local interactions, we have found that the tree-level cross section still
blows up in the UV. Also, dressing the propagator is not sufficient to tame the growth.
On the other hand, dressing the bare vertices by making renormalised propagator and
vertex loop corrections to the bare vertices at sufficiently high loop order (when the
loop order n satisfies n ≥ 4) can potentially yield finiteness of the cross section in
the UV. What leads to this conclusion is the softening of the vertices. At higher
loop order, the dressed vertices lead to negative exponents, which effectively softens
any high-energy scattering amplitude. As a result, the scattering cross section is
expected not to blow up for large external momenta, which is encouraging as to the
infinite-derivative theories of gravity under consideration. We may speculate that,
for such cases, scattering scalar wave packets with non-local interactions would not
lead to black hole singularity. This is indeed an interesting result which can help us
to understand the UV properties of gravity, if gravity itself were treated non-locally
in the UV.

This motivates us to study high-energy scattering diagrams in a scalar toy-model
inspired by the non-local, singularity-free theory of gravity introduced in Ref. [59]. In
this case, we were able to demonstrate that dressing the vertices and the propagators
indeed leads to a cross section that is expected to be finite for the scattering diagrams,
which become convergent in the ultraviolet. This gives rise to a very interesting
possibility that perhaps our recipe could be followed for pure gravity, as in the case of
BGKM, to show that such non-locality indeed softens the trans-Planckian scattering
problem and can avoid forming a black hole singularity. We believe that our results
will have consequences for understanding problems such as black hole singularity and
the cosmological singularity problem in a time-dependent setup.
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7 Appendix

A Definitions and Conventions in Euclidean Space

Let us define s = − (p1 + p2)2 = − (p3 + p4)2 = −E2
CM, where p1 + p2 = p3 + p4.

Moreover, t = − (p1 − p3)2 = − (p2 − p4)2 and u = − (p1 − p4)2 = − (p2 − p3)2. We
have that s, t, u are all negative in Euclidean space and satisfy s = u+ t. We should
keep in mind that we consider massless particles in this paper and, in Minkowski
space (“mostly plus” metric signature), p2

i = −m2
i = 0, where i = 1, 2, 3, 4.

The total cross section, σ, in the centre-of-mass (CM) frame is given by

σ =
1

S

∫ tmax

tmin

dt
dσ

dt
, (A.1)

where tmin and tmax are given by

t = −2E1E3 + 2|p1||p3| cos θ , (A.2)

with cos θ = −1 and +1, respectively (θ is the angle between |p1| and |p3|). S is the
symmetry factor for n

′
i identical outgoing particles of type i,

S =
∏
i

n
′

i! , (A.3)

and, for two outgoing particles (after we analytically continue to Euclidean space),
we have

dσ

dt
= − 1

64πs|p1|2
|T |2 , (A.4)

where T is the scattering matrix element. In the CM frame, we also have

|p1| = |p2| = |p3| = |p4| = E1 = E2 = E3 = E4 =

√
−s
2

. (A.5)

Furthermore, we have that tmin = s and tmax = 0. Since the two outgoing particles
are identical, the symmetry factor is S = 2. Moreover, in Euclidean space,

t =
s

2
(1− cos θ) (A.6)

and
u =

s

2
(1 + cos θ) . (A.7)
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