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Abstract. The diversity and community composition of ground arthropods is routinely analyzed by pit-
fall trap sampling, which is a cost- and time-effective method to gather large numbers of replicates but also
known to generate data that are biased by species-specific differences in locomotory activity. Previous
studies have looked at factors that influence the sampling bias. These studies, however, were limited to
one or few species and did rarely quantify how the species-specific sampling bias shapes community-level
diversity metrics. In this study, we systematically quantify the species-specific and community-level sam-
pling bias with an allometric individual-based model that simulates movement and pitfall sampling of 10
generic ground arthropod species differing in body mass. We perform multiple simulation experiments
covering different scenarios of pitfall trap number, spatial trap arrangement, temperature, and population
density. We show that the sampling bias decreased strongly with increasing body mass, temperature, and
pitfall trap number, while population density had no effect and trap arrangement only had little effect. The
average movement speed of a species in the field integrates body mass and temperature effects and could
be used to derive reliable estimates of absolute species abundance. We demonstrate how unbiased relative
species abundance can be derived using correction factors that need only information on species body
mass. We find that community-level diversity metrics are sensitive to the particular community structure,
namely the relation between body mass and relative abundance across species. Generally, pitfall trap sam-
pling flattens the rank-abundance distribution and leads to overestimations of ground arthropod Shannon
diversity. We conclude that the correction of the species-specific pitfall trap sampling bias is necessary for
the reliability of conclusions drawn from ground arthropod field studies. We propose bias correction is a
manageable task using either body mass to derive unbiased relative abundance or the average speed to
derive reliable estimates of absolute abundance from pitfall trap sampling.
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INTRODUCTION

Quantification of animal densities in the field
is essential to understand impacts of climate and
land-use change on community biodiversity
(Iknayan et al. 2014). This is particularly true for
the large group of ground-dwelling arthropods
(here referred to as ground arthropods) as they
are highly responsive to environmental changes
and influence a large number of ecosystem func-
tions such as predation and decomposition
(Finke and Snyder 2010, Chaplin-Kramer et al.
2011, Prather et al. 2013). The passive sampling
of ground arthropods with pitfall traps, that is,
small containers buried to the ground, was used
in many biodiversity and conservation studies
across the recent decades and is still being used
today (Greenslade 1964, Zhao et al. 2013, Brown
and Matthews 2016). The benefits of pitfall trap
sampling are its time efficiency and the high
probability to detect rare and nocturnal species
that other methods might miss (Spence and
Niemel€a 1994, Lang 2000, Cardoso et al. 2008).
There are, however, a number of factors that pro-
duce biases in the species abundance estimated
from pitfall trap sampling affecting the species-
specific sampling efficiency. Sampling bias has
been shown to depend on, for example, popula-
tion density and factors that change locomotory
activity such as body mass and ambient tempera-
ture (Halsall and Wratten 1988, Mommertz et al.
1996, Lang 2000, Perner and Schueler 2004,
Woodcock 2005, Saska et al. 2013, Brown and
Matthews 2016). Hence, the sampling bias likely
varies across species and environmental condi-
tions hampering field experiments to get insight
into how environmental changes affect arthro-
pod communities.

Population density of ground arthropods var-
ies across years and habitats; though, limited
knowledge exists about how accurate the sam-
pled density reflects variation in the real density
(Collins et al. 2003, Hutchison 2007, Woodcock
2005). Variation in the ambient temperature can
produce considerable bias in pitfall sampling
because the locomotory activity of most ground
arthropods varies with ambient temperature,
and sampled densities are proportional to loco-
motory activity (Thomas et al. 1998, Woodcock
2005). The number of pitfall traps and their spa-
tial arrangement have been shown to strongly

influence the reliability of sampled densities for
estimations of real densities (Scheller 1984, Par-
menter and MacMahon 1989, Perner 2003, Zhao
et al. 2013). Moreover, only limited knowledge
exists about how the species-specific sampling
bias may impact community-level metrics con-
sidering variation in community structure across
ecosystems, such as the distribution of species
body masses across the abundance ranks (Top-
ping and Sunderland 1992).
Previous empirical studies that aimed at ana-

lyzing the species-specific pitfall sampling bias
and providing recommendations for statistical
corrections focused on only one or few of the
confounding factors, mostly covering small
ranges of parameter values (e.g., Greenslade
1964, Spence and Niemel€a 1994, Thomas et al.
1998, Work et al. 2002). Today, there is only frag-
mented knowledge about how the pitfall trap
sampling bias affects both sampled population
densities and estimated metrics of community
diversity across different combinations of, for
example, trap number, trap arrangement, species
body mass, community structure, and climatic
conditions.
Computational simulations can reduce knowl-

edge gaps by simulating ground arthropods
movement and sampling across many factors,
such as trap number, trap arrangement, and
ambient temperature (Perner and Schueler 2004,
Pyke 2015). Nevertheless, the simulation of large
numbers of different ground arthropod species is
limited by the great parameterization effort neces-
sary to model realistic movement of many species.
This parameterization effort, consequently, also
proved to be a methodological frontier to analyses
of how the species-specific sampling bias may
affect community-level metrics, such as the spe-
cies rank-abundance distribution (RAD) and
Shannon diversity (McGill et al. 2007, Locey and
White 2013). Recent simulation studies simulated
the movement of one or two ground arthropod
species specifically emphasizing the impact of the
spatial arrangement of traps on efficiency and reli-
ability of sampled densities (Crist and Wiens
1995, Perner and Schueler 2004, Ellis and Bed-
ward 2014). These studies simulated the move-
ment of virtual individuals in a homogeneous
two-dimensional landscape. The virtually sam-
pled population densities were compared to the
simulated densities to validate the efficiency of
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trap arrangements and reveal the species-specific
sampling bias. The basic idea behind these model-
ing exercises was to simulate data and observer
models to mimic real species and their sampling,
being in control of all conditions and aware of
any sampling bias. This basic idea was formalized
by Zurell et al. (2010) as evaluation framework
for the assessment of sampling protocols and
analysis in ecology, naming it the “virtual ecolo-
gist” approach. When applying the virtual ecolo-
gist approach to ground arthropod pitfall
sampling, the effectiveness of sampling designs
can be rigorously tested against a simulated
known truth, providing a strong basis for future
field experiments and empirical validation.

Here, we apply the virtual ecologist approach
to investigate the pitfall sampling bias at the spe-
cies and the community level. We developed an
individual-based model for simulating the move-
ment and pitfall trap sampling across 10 “generic
species” of actively hunting ground arthropods
that differ in body mass ranging from 1 to
330 mg. We parameterized the simulated ground
arthropod movement applying allometric rela-
tionships and empirical sampling data integrat-
ing knowledge about temperature and body
mass effects on arthropod movement (e.g., Kla-
zenga and Devries 1994, Thomas et al. 1998,
Hurlbert et al. 2008). We conducted 840 simula-
tion experiments to identify how (1) the species-
specific sampling bias, (2) the observed RAD,
and (3) the estimated community diversity met-
rics are affected by (i) trap number (1, 2, 4, 8, and
12), (ii) trap arrangement (Appendix S3: Fig. S1),
(iii) body mass, (iv) body temperature (15–30°C),
(v) population density (0.15–8 individuals/m2),
and (vi) community structure (sequence of body
masses across the abundance ranks). We aimed
for simple ways to retrieve correction factors that
would allow reasonable estimates of unbiased
relative and absolute species densities from pit-
fall trap sampling.

METHODS

The present study used an allometric individ-
ual-based model to simulate the movement of
individuals across 10 generic species of actively
hunting ground arthropods. The simulated indi-
viduals were “virtually” sampled applying
different pitfall trap numbers and spatial

arrangements. The 10 generic species (here
referred to as species) differed only in body mass;
that is, no specific real species were modeled. We
applied an empirical relationship between move-
ment speed and body mass plus body tempera-
ture to adequately simulate the species-specific
movement speed (Hurlbert et al. 2008). Addition-
ally, movement parameters across species were
improved and validated using a different set of
published empirical data (Klazenga and Devries
1994, Thomas et al. 1998, Byers 2001).
The model predicted the number of individu-

als per species sampled by pitfall traps across 14
simulation days. We defined the sampling bias
as the species-specific proportion of simulated
individuals that were not sampled. Multiple sim-
ulation experiments were conducted modeling
all 10 species across various combinations of trap
number, trap arrangement, population density,
and body temperature.
The following sections describe the simulation

model accordingly to the ODD protocol (over-
view, design concepts, and details; Grimm et al.
2010), the simulation experiments with the par-
ticular parameter values used, and the data anal-
ysis. The parameterization and validation of
arthropod movement as well as the local sensi-
tivity analysis are covered in Appendices S1 and
S2. The model was implemented using the pro-
gramming language C++.

Model description
Purpose.—The purpose of the model is to pre-

dict the number of individuals per species that
are sampled by pitfall traps during the simula-
tion experiment. The simulation experiments
enable reliable estimations of the pitfall trap sam-
pling bias for various parameter combinations of
body mass, population density, body tempera-
ture, trap number, and trap arrangement, for
which no empirical data exist. The sampling of
ground arthropod individuals is not imposed,
but emerges from the movement of individuals
within the simulated area. The model simulates
movement patterns of arthropod species that are
actively hunting at the ground.
State variables and scales.—Model entities were

individuals resembling actively hunting ground
arthropods of a distinct class of body mass. All
state variables characterizing an individual are
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listed in Table 1. During one simulation experi-
ment, the body mass and the body temperature
were fixed, but individuals were different in their
position in the simulated area, their direction of
movement, and the mortality status. Species-
specific activity periods were simplified such that
all individuals across all species were active at the
same time. Body temperature of each individual
was assumed to exceed ambient temperature by
8°C simplifying effects from variation in micro-
habitat conditions (Casey 1976, Morgan 1985).

The simulated, homogeneous, and featureless
area spanned 20 9 20 m with a resolution of
1 9 1 cm, resulting in a grid of 2000 9 2000 cells.
We assumed that the simulated area is enclosed
in a very large field with a population density
equal to the density within the simulated area
(Perner and Schueler 2004). The boundaries of the
area were simulated as permeable allowing indi-
viduals to leave and enter the simulated area. In
the simulation experiments, an individual that left
the area immediately re-entered the area at the
opposite (i.e., the area was simulated as torus).
One time step in the model was a discrete event
corresponding to 10 s. Simulation experiments
were run for 14 d, totaling 120,960 time steps, cor-
responding to the sampling period often used in
empirical studies (e.g., Topping and Sunderland
1992, Diekotter et al. 2010). The pitfall traps had a
diameter of 5 cm and were located according to
the specific trap number and trap arrangement
(Appendix S3: Figs. S1, S2).

Process overview and scheduling.—At each time
step, the processes presented in Fig. 1 were com-
puted in the given order starting with “activity.”
Per time step the individuals were processed one
by one using always the same sequence. Changes
in state variables were updated immediately. All
processes are briefly described below and in
detail in the “submodels” section.

1. Activity: Whether an individual was active
or not depended on the predefined activity
period, which spanned eight consecutive
hours and was assumed to be equal across
species (e.g., Brunsting 1982).

2. Speed: The speed of an individual depended
on body mass and body temperature (Mor-
gan 1985, Hurlbert et al. 2008) and was calcu-
lated by applying the empirical relationship
presented by Hurlbert et al. (2008).

3. Displacement: The displacement of an indi-
vidual per time step depended on the speed
of the individual and the directional persis-
tence of movement during the particular
time step.

4. Turning angle: The direction of movement
of an individual was correlated across suc-
cessive time steps, simulating a correlated
random walk (Codling et al. 2008).

5. New position: The new position at the end
of a time step was calculated from the previ-
ous position, the displacement, and the
movement direction.

Table 1. State variables of simulated individuals.

Variable name Description Possible values Units

Body mass Fixed species-specific body mass of species 1–10 1, 2, 4, 7, 13, 25, 48,
91, 173, 330†

mg

Body temperature Fixed body temperature across the simulation 288, 291, 294, 297, 300,
303 (~15–30)

Kelvin (°C)

Position x:y coordinate of the grid cell in the area 1–2000:1–2000 . . .
Previous direction Direction of movement in the previous time step 0–360 degree
New direction Direction of movement in the current time step 0–360 degree
Mortality status Individual is alive or dead following a trapping event Alive, dead . . .
Activity Whether an individual is active and moves Yes, no . . .
Start activity period First time step of activity period; assumed to equal

across individuals
3601 time step per day

End activity period First time step where the individual is inactive
following an activity period; assumed to equal
across individuals

6481 time step per day

† Values are logarithmically spaced covering a proper subset of the body mass range of ground-dwelling arthropod species
sampled in two Central European grasslands (Table S1 in Rzanny and Voigt 2012, Gossner et al. 2015); species smaller than
1 mg (≤3 mm body length) were not covered in our study.
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6. Trapping event: An individual died and was
added to the number of sampled individu-
als if it was caught in a pitfall trap during
the movement from the previous to the new
position.

Design concepts.—
1. Basic principles: Animal movement is a con-

tinuous process of changes in speed and

direction that is generally discretized to a
sequences of steps in order to facilitate model
simulations (Pyke 2015). The movement of
ground arthropods at the scale of multiple
body lengths has been identified as correlated
random walk; that is, the movement direction
at a time step depends on the direction at the
previous step (directional persistence; Kareiva
and Shigesada 1983, Bovet and Benhamou
1988, Wallin and Ekbom 1988, Codling et al.
2008, Pyke 2015). The specific assumption
about the degree of directional persistence
influences the simulated movement pattern
of ground arthropods and, thus, affects the
probability of a “trapping event” and the
sampling bias, which concerns the purpose of
our study (see empirical model parameteriza-
tion in Appendix S1).

2. Emergence: A trapping event, and thus the
number of sampled individuals, emerged
purely from the movement of ground
arthropod individuals across the simulated
area with pitfall traps integrated. To limit
side-effects of the specific position of each
individual at simulation start, each simula-
tion experiment with a particular parameter
set was repeated 50 times and results were
averaged for model analysis.

3. Interaction: No interactions were consid-
ered among ground arthropod individuals
or between ground arthropod individuals
and pitfall traps, such as repelling or attrac-
tion due to preservative type in the trap
(simplifying findings from Knapp and
Ruzicka 2012 and Brown and Matthews
2016).

4. Stochasticity: Some key processes of ground
arthropod movement were modeled by
assuming they are random and follow a cer-
tain probability distribution including
speed, displacement, and turning angle (see
probability distributions within Fig. 1). Con-
sidering probability in model simulations
was important to reflect differences in the
specific movement path across individuals
of one species.

5. Observation: During simulation experiments,
individual and species-level factors were
observed. This includes the trapping events
across individuals and the proportion of
sampled individuals per species.

Fig. 1. Overview of model processes during one
model time step. The processes “speed” and “displace-
ment” use a truncated Cauchy probability distribution.
The shown Cauchy distributions represent actual dis-
tributions used in the model (see Appendix S1 for
empirical parameterization).
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Input data.—The model does not use time-
varying inputs, that is, input data representing
time-varying processes in the model (Grimm
et al. 2010).

Initialization.—At the start of each simulation
experiment, each individual was placed at a ran-
dom cell of the 400-m2 simulated area, where x
and y coordinates of the cell were each randomly
chosen from a uniform distribution. In case an
individual was placed at a cell defined as pitfall
trap, new x and y coordinates were drawn. The
initial movement direction of each individual
was randomly chosen from a uniform distribu-
tion between 0 and 359, where 0 would create
movement along the y-axis with a constant x
coordinate value. The body mass and body tem-
perature of each individual were set at the start
of a simulation experiment. Pitfall traps were
installed across the whole simulation experiment
at a position specific to one of the six trap
arrangements as shown in Appendix S3: Fig. S1.

Submodels.—
1. Activity: At the first time step of each full

hour, it was checked across all individuals
that are alive whether the activity period
starts or finishes, applying the values of the
state variables “start activity period” and
“end activity period” (Table 1). The activity
status of an individual may changed or not
changed accordingly. During the activity
period, resting behavior and intermittent
movement were excluded; that is, speed
was always larger than zero (simplifying
findings of Firle et al. 1998 and Reynolds
et al. 2015). An individual could be active
only if it is alive (see process “trapping
event”).

2. Speed: The speed of a ground arthropod
individual depends mostly on the body
mass, the body temperature, and the behav-
ioral mode (Morgan 1985, Hurlbert et al.
2008, Benhamou 2014). In our model, the
actual speed Si (cm/s) of an individual i per
time step was derived by a two-step process.

First, the potential maximum speed Mi
(cm/s) of the individual i was calculated
considering both body temperature ti
(Kelvin) and body mass mi (g) (Hurlbert
et al. 2008):

Mi ¼ 4:3" 1011 " ðmi
0:25Þ " e

%E
k" ti

! "

(1)

where a general temperature effect on biologi-
cal rates based on reaction kinetics is des-
cribed by a Boltzmann factor e(%E/kT), with T
being the temperature in Kelvin, E the average
activation energy of reactions involved in
metabolism (E = 0.65 eV), and k the Boltz-
mann’s constant (8.62 9 10%5 eV&K%1; Gil-
looly et al. 2001). This model provides an
accurate relationship between metabolic rate
and temperature over the range of most bio-
logical activity (0–40°C).

Second, Si was drawn randomly from a Cau-
chy distribution ranging from 0.001 to Mi. To
ensure a constant shape of the Cauchy distri-
bution across different Mi, the Cauchy distri-
bution was truncated to the range from 0.001
to 20 yielding a random value Si,20. The actual
speed Si was subsequently scaled to have the
maximumMi by Si = Si,20/20 9 Mi.
The Cauchy distribution is characterized by a
“fat tail” yielding a low number of high-
speed values but a high number of low-speed
values, which relates to empirical proportions
of the movement and the search behavioral
mode of animals in general (Benhamou 2004,
2014). The specific shape of the Cauchy distri-
bution is defined by the two parameters scale
(c) and location (x0; see Appendix S1 for
empirical parameterization).

3. Displacement: The air-line displacement Di
of an individual i during one time step (10 s)
does depend on both the speed Si (cm/s) and
the degree of directional persistence during
this time step. The displacement Di was
drawn randomly from a Cauchy distribu-
tion truncated to the range from 0 to 10 9 Si.
This can result in rare events of either no dis-
placement (Di = 0) or moving straight
(Di = Si 9 10). Similar to the calculation of
Si, an initial value Di,20 was drawn from a
Cauchy distribution truncated to 0–20, and
then, Di was subsequently scaled to have the
maximum 10 9 Si by Di = Di,20/20 9
10 9 Si (see Appendix S1 for empirical para-
meterization).
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4. Turning angle: At the beginning of each time
step, the movement direction of an individ-
ual i during the previous time step may be
changed by the turning angle Ai. The turn-
ing angle Ai was randomly chosen from a
normal distribution with a certain standard
deviation (SD). Values outside %180 and 180
degree were rejected and new values drawn,
effectively creating a wrapped normal distri-
bution. The mean of the normal distribution
was set to zero assuming an equal propor-
tion of left and right turns. Individuals
change the movement direction at scales
related to their body length (Pyke 2015) and
may increase directional persistence across
time steps with increased speed. We calcu-
lated SD per individual i from a linear equa-
tion with a negative slope:

SDi ¼ a"Mi þ b (2)

where Mi is the maximum speed at the partic-
ular time step and a and b are constants (see
Appendix S1 for empirical parameterization).
SDi decreases with increasing maximum
speed Mi. Thus, increasing body mass and
temperature results in an increasing direc-
tional persistence across modeled time steps.
The new direction of movement A0

i (i.e., an
absolute angle) was calculated by adding the
turning angle Ai to the previous direction of
movement. To ensure 0 ≤ A0

i ≥ 360 degree,
360 is either added to A0

i if A0
i < 0 or sub-

tracted from A0
i if A

0
i > 360.

5. New position: The new values for the x and
y coordinates were calculated as follows:

Xi;new ¼ Xi;prev þ ðDi " cosA0
iÞ (3a)

Yi;new ¼ Yi;prev þ ðDi " sinA0
iÞ (3b)

where A0
i was converted from degree to

radian beforehand (A0
i;radian = A0

i;degree 9 p/
180). In case Xi,new or Yi,new was lower than
one or larger than 2000 (outside of the simu-
lated area), the value 2000 was either added
or subtracted. Positional x and y coordi-
nates were rounded to integer values.

6. Trapping event: A trapping event occurred;
namely, an individual was caught in a trap
and died, if at least one cell of the movement

path from the previous to the new position
equals a cell of the simulated area designated
as pitfall trap. The movement path during
one time step was modeled explicitly, simpli-
fied to an almost straight path between the
previous and the new position using Bresen-
ham’s line algorithm (Bresenham 1965). We
represented a round pitfall trap by means of
the quadratic cells assuming a certain catch-
ing probability per pitfall trap cell (App-
endix S3: Fig. S2). The cell-specific catching
probability equals the proportion of the cell
covered by the pitfall trap. In case an individ-
ual moves at a cell that is defined as trap but
covered by the trap <100%, the occurrence of
a trapping event was drawn randomly from a
uniform distribution between 0 and 100. The
individual got caught if the random number
drawn is lower than the proportion of the cell
covered by the trap.

Simulation experiments
We conducted 840 simulation experiments sys-

tematically varying pitfall trap number, pitfall
trap arrangement, body temperature, and popu-
lation density to assess the species-specific sam-
pling bias. In each simulation experiment, the
movement and sampling of individuals across all
10 species were modeled, covering body masses
between 1 and 330 mg (Table 1).
Five different numbers of pitfall traps were

simulated (1, 2, 4, 8, and 12). Simulation experi-
ments with pitfall trap numbers 4, 8, and 12 cov-
ered four different spatial arrangements of pitfall
traps (nested cross, two circle, transect, and grid;
Appendix S3: Fig. S1). These four trap arrange-
ments were either frequently used in field studies
or subject of model simulation studies aiming to
improve the reliability of pitfall trapping (Crist
and Wiens 1995, Perner and Schueler 2004, Zhao
et al. 2013, Chenchouni et al. 2015).
Ten different population densities were simu-

lated (0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 2, 4, and 8 indi-
viduals/m2). This range of population densities
covers empirical data of arthropod taxa obtained
by true density measurements, such as mark–re-
lease–recapture experiments, across arable land
and grasslands (Lovei and Sunderland 1996,
Thomas et al. 1998, Elliott et al. 2006). The
selected population densities follow a logarith-
mic curve.
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The particular body temperature across all
individuals ranged from 15° to 30°C (Table 1).
This range fits well the ambient temperatures in
places such as Central Europe and northeast
China throughout the vegetation period
(Appendix S4: Fig. S1), assuming that the body
temperature exceeds the ambient temperature by
8°C (see section State variables and scales). We
modeled a constant temperature for each simula-
tion experiment, simplifying variation between
day and night as well as variation across the 14 d
of sampling.

Animation of simulated arthropod movement
In addition to the theoretical description of

how the model simulates the movement of
ground arthropod species, an animation is pro-
vided showing in top view the simulated move-
ment of three species (see Video S1; details
described in Appendix S6, with Appendix S6:
Fig. S1 providing a screenshot of the animation).

Data analysis
The data analysis covered (1) the simulated

movement pattern across species and (2) the
sampling bias. The latter consisted of two main
parts: the species-specific sampling bias and cor-
rection factor, and the bias in community-level
metrics. The R language version 3.2 together
with the vegan package version 2.3-5 was used
for data analysis (R Core Team 2015, Oksanen
et al. 2016).

According to the virtual ecologist approach,
we differentiate between “simulated,” “sam-
pled,” “observed,” and “estimated” values of
certain parameters. “Simulated” corresponds to
the model input parameters, “sampled” corre-
sponds to the individuals that fell into a pitfall
trap virtually (i.e., trapping event), “observed”
corresponds to species-specific parameters that
were directly derived from the number of sam-
pled individuals, and “estimated” corresponds
to community-level metrics derived from
“observed” parameters. In a simulation experi-
ment, for example, the “simulated” abundance
of a species may be 400 and the number of “sam-
pled” individuals 100, resulting in the “ob-
served” sampling bias of 0.75 (species-specific
proportion of simulated individuals not sam-
pled). Subsequently, the RAD and the Shannon
diversity could be “estimated” for a particular

community of multiple species with certain “sim-
ulated” abundance and an “observed” sampling
bias per member species.
Movement pattern.—We used extra model simu-

lations without pitfall trapping to analyze the
species-specific movement pattern across 10 spe-
cies with 1–330 mg body mass at 24°C body tem-
perature. Across 8 h of movement, we recorded
four key elements of animal movement for 1000
simulated individuals per species: the movement
speed, the turning angle, the displacement at
each time step, and the air-line displacement
after 8 h.
Species-specific bias.—For each of the simulation

experiments, the number of sampled individuals
was recorded per species and per day. For the
data analysis, the averaged results of 50 repeti-
tions per simulation experiment were used,
essentially eliminating effects of the random start
position of individuals. The information about
the number of sampled individuals was used to
calculate per simulation experiment the observed
pitfall trap sampling bias after 14 d of simulated
sampling.
Analyses covered individual and combined

effects on the observed sampling bias from varia-
tion in pitfall trap arrangement, pitfall trap num-
ber, population density, and body temperature.
Specifically, we analyzed (1) how the mean, the
minimum, and the maximum sampling bias
across species were affected by trap number and
trap arrangement, each for three different body
temperatures (15°C, the average across all body
temperatures considered, and 30°C); (2) how the
sampling bias of each species was affected by its
median speed, considering each combination of
trap number and trap arrangement separately;
(3) how the sampling bias was affected by (i)
body temperature, (ii) simulated population den-
sity, and (iii) body mass; (4) how species-specific
correction factors, for deriving unbiased relative
abundance, are related to species body mass.
The observed species-specific sampling bias of

species i was defined as:

Bi ¼ 1% ni
Ni

(4)

where Ni is the simulated abundance and ni is
the sampled abundance of the species i. Accord-
ingly, the simulated abundance of species i (the
unbiased absolute abundance in the field) can be
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calculated from the sampling bias and the sam-
pled abundance of this species:

Ni ¼
ni

ð1% BiÞ
(5)

We defined the species-specific correction fac-
tors for deriving unbiased relative species abun-
dance as proportional to the inverse of the
proportion of caught individuals:

di (
Ni

ni
¼ 1

1% Bi
(6)

where i is the species index, d is the correction
factor, and B is the observed sampling bias
(Eq. 4). Multiplying the sampled abundance ni of
species i by the correction factor di gives the unbi-
ased relative species abundance NR,i (i.e., relative
to the simulated number of individuals or the
unbiased absolute abundance in the field):

NR;i ¼ ni " di (7)

We analyzed the relationship between the cor-
rection factor d and species body mass m, which
has a high relevance in community ecology and
can be easily estimated for each species. This
relationship we assumed to be of the form:

di (mb
i (8)

where b is the strength of the body mass effect
on the correction factor, or rather the slope of the
relation between correction factors and body
mass.

Community-level bias.—Communities were not
simulated in extra simulation experiments. Spe-
cies-specific values of simulated and sampled
abundance from the above-described simulation
experiments were used to create virtual commu-
nities and calculate community-level metrics.
Communities were assembled from 10 differ-
ently sized species with 1–330 mg body mass
(Table 1) and characterized by a specific RAD. In
a community, the simulated population densities
of the 10 member species followed a log curve.
Species at ranks from 1 to 4 (with 3200, 1600, 800,
and 400 individuals) were defined as dominant
because their population abundance is larger
than 10% of the most abundant species (sensu
Grime 1998). We refer to the remaining species at
ranks 5–10 as subordinate species. 50,000 random
communities of ground arthropods were created

by arranging the 10 species into different
sequences along the abundance ranks. Of these
communities, 378 were selected for analysis,
using the ones with a realistic relationship
between body mass and population abundance,
that is, small species having a higher rank than
larger species (for details, see Appendix S6).
Additionally, we created two communities where
the body mass across the abundance ranks
strictly increases or decreases.
We calculated for all combinations of trap

number and trap arrangement, averaged across
all simulated body temperatures: (1) the simu-
lated and the estimated relative abundance per
species, displaying the RAD for the two “strict”
communities and the average of the 378 random
communities.
Further, we calculated for only the 378 random

communities the following metrics across the
combinations of all trap numbers, all trap
arrangements, and three body temperatures
(15°C, the average across all body temperatures
considered, and 30°C): (2) the deviation of the
estimated from the simulated species-specific
abundance rank, (3) the proportion of simulated
dominant species that were classified as subordi-
nate species based on the estimated abundance
ranks, and (4) the estimated and simulated Shan-
non diversity and Fisher’s alpha.

RESULTS

Body mass-related movement pattern
The relation between maximum speed and

body mass was central to our simulations of pit-
fall trapping ground arthropod species (Eq. 1).
Appendix S7: Fig. S1 presents the variation in
four key elements of animal movement across
the body masses used in our simulations. The
median movement speed per time step increased
with body mass from 0.2 for small species to
0.85 cm/s for large species. The median turning
angle decreased from 37.9 to 8.4 degree. The
median displacement during one time step and
one day increased from 0.77 to 3.24 cm and 0.83
to 15.84 m, respectively. The simulated ground
arthropod movement included rare events of
extreme values in speed, displacement, and turn-
ing angle across all species, meeting an essential
property of animal movement in general.

 ❖ www.esajournals.org 9 April 2017 ❖ Volume 8(4) ❖ Article e01790

ENGEL ET AL.



Species-specific sampling bias
Trap number and arrangement.—Our model

simulations highlight a strong decrease in the
sampling bias with increasing pitfall trap num-
ber, consistently across trap arrangements
(Fig. 2). When increasing the trap number from 1
to 2, 4, 8, and 12, the sampling bias decreased
from 0.94 to 0.89, 0.82, 0.71, and 0.62 averaged
across all species, temperatures, trap arrange-
ments, and population densities (Fig. 2B). Impor-
tantly, the difference in the sampling bias
between small and large-sized species increased
with increasing pitfall trap number from 0.13 to
0.23, 0.36, 0.52, and 0.60, respectively. Conse-
quently, the increase in trap numbers strongly
affected two important metrics at the same time:
lowering the mean sampling bias and increasing
the variation in the sampling bias between small
and large species.

We found considerable differences across the
four trap arrangements nested cross, two circle,
transect, and grid only when applying eight or
12 pitfall traps (Fig. 2; Appendix S6; animation
in Video S2). Notably, eight traps arranged as
grid or two circle produced about the same aver-
age sampling bias as 12 traps arranged as nested
cross or diagonal transect. Body temperature had
a strong impact on the absolute values of the
sampling bias, but not on the relative differences
in the sampling bias across pitfall trap number
and arrangement.

Movement speed.—Our simulation experiments
reveal a non-linear relationship between the sam-
pling bias of a species and its median movement
speed (Fig. 3). The shape of this relationship was
considerably affected by the number of pitfall
traps, but not so much by the specific trap
arrangement. The sampling bias of very slow-
moving species was high across all pitfall trap
numbers. The sampling bias of fast-moving spe-
cies varied strongly with changes in trap number.

Temperature, population density, and body mass.—
The sampling bias decreased non-linearly with
an increasing body temperature (Appendix S8:
Fig. S1). With an increasing number of pitfall
traps, the effect of body temperature on the sam-
pling bias increased. A rise in body temperature
from 15° to 30°C decreased the average sampling
bias across species by about 0.1 if one trap was
used and 0.5 if 12 traps were used (Appendix S8:
Fig. S1).

Surprisingly, an increase in population den-
sity from 0.15 to 8 individuals per m2 had no
effect on the sampling bias (Appendix S8:
Fig. S2). Clearly, the absolute number of sam-
pled individuals increased with increasing pop-
ulation density but the proportion of simulated
individuals that were sampled remained unaf-
fected. This can be explained as a consequence
of the random distribution of the individuals at
the start of each simulation experiment, which
ensures a certain species-specific probability for
an individual to become sampled during the
simulation experiment. This probability may
equal “1 minus the species-specific sampling
bias” and did not depend on population density
because interactions between individuals were
not considered.
The body mass of a species had a non-linear

negative impact on the sampling bias
(Appendix S8: Fig. S3, log–log scaled). The sam-
pling bias was non-linearly related to body mass
due to the non-linear effects of body mass on
maximum speed adding to the non-linear effects
speed on sampling bias (Eq. 1 and Fig. 3).
Correction factor.—The correction factors were

linearly related to species body mass on a log–
log scale (Fig. 4A; see Appendix S9: Fig. S1 for
temperature effects). The fitted linear models had
very high R2 values around 0.99. The slopes var-
ied significantly between trap numbers and tem-
peratures (Fig. 4B; Appendix S9: Fig. S2). Slopes
were steeper and more negative with lower num-
bers of pitfall traps and temperatures indicating
larger differences in the sampling bias and the
correction factor between small and large spe-
cies. For example, the slope was %0.44 for eight
and %0.49 for four pitfall traps arranged as
nested cross. Realistic estimates of unbiased rela-
tive species abundance can be obtained by apply-
ing the slope (b) to Eq. 8 and the resulting
species-specific correction factor (d) to Eq. 7.
Assuming eight traps arranged as nested cross,

for example, the correction factor would be 0.105
for a species of 100 mg (100%0.49) and 0.712 for a
species of 2 mg (2%0.49) yielding unbiased relative
species abundance when applied to Eq. 7. The
nested cross arrangement of pitfall traps may be
particularly useful for estimations of unbiased
relative species abundance because of the small
95% confidence interval of the slope, implying
that the relation between the correction factor
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Fig. 2. Species-specific sampling bias, that is, the proportion of simulated individuals not sampled, per pitfall
trap number and trap arrangement (Appendix S3: Fig. S1) after simulated pitfall trap sampling of 14 d, with 8 h
of activity per day. Values for 10 different species (1–330 mg body mass) and the mean across these species are
shown. Values are averaged across simulation experiments with 10 different population densities. The pitfall trap
arrangement is color-coded (see legend). The minimum and maximum values of the sampling bias per trap
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and the body mass is more linear than for other
trap arrangements. Note that the correction fac-
tor derived from Eq. 8 is proportional to the sam-
pling bias (see Eq. 6).

Community-level effects of the sampling bias
Rank-abundance distribution.—The estimated

RAD generally differed from the simulated RAD
across pitfall trap numbers and trap arrange-
ments (Fig. 5). Differences between the simu-
lated and estimated RAD were mainly driven by
the body mass–dominance relationship. The esti-
mated RAD was flatter than the simulated RAD
for arthropod communities with reasonable
species abundance ranks, structured in the way
that large species were rare and small species

abundant (Fig. 5B, C; Appendix S5: Fig. S1). Lar-
ger, rarer species are relatively over-represented
in pitfall trap catches from such arthropod
communities, thus inflating diversity estimates
using Shannon diversity and Fisher’s alpha
(Appendix S10). The opposite pattern, that is, the
estimated RAD was steeper than the simulated
RAD, was found when large species were abun-
dant and small species rare (Fig. 5A). Further,
the difference between the estimated RAD and
the simulated RAD decreased with increasing
trap numbers (Fig. 5).
Species-specific abundance rank.—Pitfall trap

sampling can produce a bias in the estimated
abundance rank of a species (Fig. 6). We find that
generally the estimated rank of small species is
higher than the simulated rank, while the esti-
mated rank of large species is lower than the sim-
ulated rank (notes: Low rank means dominance;
in Fig. 5, a low rank is consistent with a lower
number at the x-axis with the highest-abundant
species at rank 1). The difference between the
estimated and the simulated abundance rank
decreased with increasing pitfall trap number
and body temperature.
Classification of dominant species as subordinate.—

Our model simulations revealed that an average
proportion of about 25% of the simulated domi-
nant species were classified as subordinate spe-
cies by pitfall trap sampling due to the bias in
estimated abundance ranks (Fig. 7B). In return,
this means that an equal number of simulated
subordinate species was estimated as dominant
species. On average, across 378 random commu-
nities (Appendix S5), this finding remains valid
for changes in pitfall trap number, trap arrange-
ment, and body temperature (see median
[orange bars] and average [red dots] of commu-
nities in Fig. 7). For low body temperatures and
low pitfall trap numbers in particular, the pro-
portion of simulated dominant species that are
detected as subordinate strongly varied between
zero and 75%, thus depending mainly on the
community structure in terms of the body
mass distribution across the abundance ranks.
The effect of community structure, however,

Fig. 3. The relationship between the species-specific
sampling bias and the median speed of the species,
shown for different combinations of pitfall trap num-
ber (color-coded) and trap arrangement (symbols;
applicable for 4–12 traps). Speed values are averaged
across individuals per species and cover six different
body temperatures (Table 1).

number and arrangement correspond with the largest and smallest species, respectively. Panels show results for
(A) 15°C body temperature, (B) averages across six different body temperatures spanning 15–30°C, and (C) 30°C
body temperature.

(Fig. 2. Continued)
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generally diminished with increasing numbers of
pitfall traps.

DISCUSSION

Our study clearly shows that the pitfall trap
sampling bias strongly decreases with increasing
body mass, body temperature, and trap number,

while the spatial arrangement of pitfall traps has
only limited effects (Fig. 2). The population den-
sity does not affect the sampling bias; hence, a
specific parameterization of bias correction
across different studies or study years is accept-
able even if the densities of sampled species vary
strongly. We derived species-specific correction
factors that allow unbiased estimates of relative

Fig. 4. (A) The relationship between body mass and the correction factor for deriving unbiased relative species
abundance per trap number and trap arrangement (Appendix S3: Fig. S1), averaged across six different body
temperatures (15–30°C; see also Appendix S9: Fig. S1). The individual values per species (dots) and the linear
regression line are shown. (B) The slope of the regression lines from panel A is shown together with the 95% con-
fidence interval.
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Fig. 5. The rank-abundance distribution (RAD) of the simulated population abundance (dark blue; logarithmi-
cally spaced from 8 to 0.15 individuals/m2) and the observed population abundance (see legend for colors). The

 ❖ www.esajournals.org 14 April 2017 ❖ Volume 8(4) ❖ Article e01790

ENGEL ET AL.



species abundance to be derived knowing only
species body mass (Fig. 4). Interestingly, our
analyses reveal that the variation in the sampling
bias between differently sized species scales up
to a bias in community metrics that is clearly
indicated by a less steep RAD, which results in
an overestimation of community diversity and
incorrect identification of species dominance
(Figs. 5, 7). We presented an allometric individ-
ual-based model that can simulate the movement
and pitfall trap sampling of multiple, actively
hunting ground arthropod species across the
range of body masses from 1 to 330 mg.

The species-level bias
Our model simulations highlight considerable

changes in the movement of ground arthropods
with increasing body mass. Large species move
at higher speeds and change their direction of
movement less often than small species do.
Hence, with increasing body mass, species dis-
place more and may be considered more active.
This is consistent with the commonly known
biases of activity density measures in pitfall trap
sampling toward larger, faster species (Mom-
mertz et al. 1996, Lang 2000).

Our study reveals that the spatial arrangement
of pitfall traps has only limited effects on the sam-
pling bias (Figs. 2, 3). This is an unexpected result
considering the effort of previous studies in find-
ing an optimized trap arrangement to provide
reliable pitfall trap samples (Crist and Wiens
1995, Perner and Schueler 2004, Zhao et al. 2013).
Yet, we find that the sampling bias is clearly lower
for the two-circle arrangement than for the nested
cross, which is consistent with theoretically and
empirically derived findings of Zhao et al. (2013).

The number of pitfall traps strongly impacts
the sampling bias. This effect varies across species
revealing a trade of concerning the optimal

number of pitfall traps: The mean sampling bias
decreased when the number of traps increased
but at the same time the differences in sampling
bias between small and large species strongly
increased (Fig. 2). Thus, a higher number of pitfall
traps mainly reduces the sampling bias of large
species and increases the importance of correcting
the species-specific sampling bias. Overall, we rec-
ommend either the grid or two-circle arrangement
of 4–8 traps per 400 m2 to both moderate the
drawbacks of a high pitfall trap number and yield
a low average sampling bias.
Environmental conditions in general and the

ambient temperature in particular are important
factors that constrain arthropod movement and
thus affect the pitfall trap sampling bias (Mel-
bourne 1999, Hurlbert et al. 2008, Wang et al.
2014). This is because the body temperature of
ground arthropods is correlated with the ambi-
ent temperature (Casey 1976, Morgan 1985). We
find accordingly that the sampling bias strongly
decreases with increasing body temperature
(Appendix S8: Fig. S1). Our findings are consis-
tent with field experiments and a statistical corre-
lation approach showing that the number of
sampled individuals increases with mean daily
temperature (Brunsting 1981, Thomas et al. 1998,
Saska et al. 2013, Wang et al. 2014).
The species-specific sampling bias is strongly

related to the movement speed and the number
of pitfall traps (Fig. 3). Knowledge of this bias
could be used to estimate unbiased absolute spe-
cies densities in the field. The movement speed
of ground arthropod species can either be mea-
sured by observations directly in the field or esti-
mated from body mass and body temperature.
Body mass of species sampled in field studies
can be measured or derived from the literature.
Body temperature can be estimated if the ambi-
ent temperature is measured frequently (e.g.,

(Fig. 5. Continued)
RAD from observed abundance is shown for each of the 14 different combinations of pitfall trap number and
trap arrangement, but only differences in trap number are color-coded. The y-axis shows relative abundance per
species and the x-axis the abundance rank where species with rank 1 is the species with highest relative abun-
dance. Panels show different community structures, that is, different sequences of species body mass across
abundance ranks: (A) Body mass decreases with increasing simulated abundance rank—the largest species is
most abundant (rank 1); (B) body mass increases with increasing simulated abundance rank—the smallest species
is most abundant; and (C) average of 378 random communities, which are characterized by a reasonable body
mass–abundance relationship (smaller species having generally a higher rank than larger species, Appendix S5).

 ❖ www.esajournals.org 15 April 2017 ❖ Volume 8(4) ❖ Article e01790

ENGEL ET AL.



Fig. 6. Difference between simulated and estimated abundance rank per species, shown for different
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hourly) and knowledge on species’ activity peri-
ods is available. For arthropod species with
known activity periods, we propose using the
species-specific median movement speed as sim-
plifying proxy for estimating the sampling bias
across trap numbers, because the movement
speed in the field integrates many other factors
that shape the sampling bias (Fig. 3). Further
works are needed to test the practicability of this
approach in field studies and the extent to which
the sampling bias can be determined or reduced
when compared to population densities esti-
mated from, for example, quadrat sampling
(Topping and Sunderland 1992, Spence and
Niemel€a 1994). For species with unknown activ-
ity periods, we suggest using body mass to cal-
culate unbiased relative densities.

Relative species abundance is of prime impor-
tance for community ecology research being the
basis for metrics such as the RAD. Our study
reveals that a species-specific correction factor
can be derived from species body mass alone,
providing reasonable estimates of unbiased rela-
tive species abundance (similar to Hancock and
Legg 2012). This correction factor offers a simple
method to adjust pitfall trap data, as body mass
could be easily measured for the species sampled
and the sampling bias does not depend on popu-
lation density (Appendix S8: Fig. S2; contrary to
Perner and Schueler 2004). Bias correction would
work across plots and studies along environmen-
tal and land-use gradients when taking into
account potential differences in temperature and
trap number and how these may affect the cor-
rection factor (Appendix S9: Fig. S2). Thus, there
is potential to improve real-world data from pre-
vious and future sampling campaigns enabling
much more reliable understanding of the impacts
of climate and land-use change on community
biodiversity.

The community-level bias
Our study provides one of the first attempts to

quantify the impact of the species-specific sam-
pling bias on the community-level metrics: RAD,
the dominance of species, and the species diver-
sity, that is, Fisher’s alpha and Shannon diversity.
The RAD of species is one of the most com-

monly analyzed patterns in ecology, generally
showing a few dominant species and many less
abundant or rare species in a community (McGill
et al. 2007, Locey and White 2013). Our model
results clearly show that the estimated RAD,
based on observed species abundance from pit-
fall trap sampling, can strongly differ from the
simulated RAD or rather the true RAD of the
study community (Fig. 5). We find that the simu-
lated distribution of species body masses across
the abundance ranks essentially determines
whether the estimated RAD is either more or less
steep than the simulated, unbiased RAD. Gener-
ally, our results imply that a RAD estimated from
pitfall trap sampling campaigns may be less
steep than the real RAD (see Fig. 5B, C), because
dominant species are commonly small, resulting
in a high sampling bias, where the less abundant
species are rather large, resulting in a compara-
bly low bias (Siemann et al. 1999, Gossner et al.
2015). Any factor that increases the difference in
the sampling bias between species may further
increase the bias in the estimated RAD, such as
elevating temperatures, higher trap numbers,
and a larger range of body masses. The body
masses we considered in our study range from 1
to 330 mg, which covers a subset of the body
masses of arthropod species found by Gossner
et al. (2015) in Central European grasslands.
Hence, field studies that attempt to include all
species occurring in a habitat may face an even
larger bias in the estimated RAD as estimated
from our simulations.

(Fig. 6. Continued)
combinations of pitfall trap number and trap arrangement (full colored symbols for “one trap” and “two traps”
arrangements; see legend for open symbols). Species are color-coded (orange: species 1 with 1 mg body mass,
dark blue: species 10 with 330 mg body mass). A positive value means: The estimated abundance rank from pit-
fall trap sampling is higher than the simulated rank; that is, the estimated relative abundance is lower than the
simulated one. A negative value means the inverse, and zero means no difference between simulated and esti-
mated ranks. Values are averaged across 378 random communities (Appendix S5). Panels show results for (A)
15°C body temperature, (B) averages across six different body temperatures spanning 15–30°C, and (C) 30°C
body temperature.
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Fig. 7. Boxplot of the proportion of simulated dominant species that are classified as subordinate species based
on estimated abundance ranks. The values are averaged across 378 random communities (Appendix S5). Values

 ❖ www.esajournals.org 18 April 2017 ❖ Volume 8(4) ❖ Article e01790

ENGEL ET AL.



The RAD is clearly related to diversity indices
that are important for both evaluating the condi-
tion of a community and estimating its vulnerabil-
ity to environmental changes. Our results show
that the estimated Shannon diversity and Fisher’s
alpha are generally larger than what we would
expect from the simulated species abundance
(Appendix S10: Figs. S1, S2). We argue that real
Shannon diversity and Fisher’s alpha values are
generally lower than suggested from pitfall trap
sampling campaigns; thus, population abundance
within communities is less even and follows more
the log series distribution than previously esti-
mated. The Shannon diversity index, in particular,
depends strongly on the body mass distributions
across the abundance ranks, suggesting a high
sensitivity to changes in the community structure.
Importantly, this can jeopardize conclusions
drawn from diversity analysis across communi-
ties differing in the species composition in general
and the community structure in particular. Hence,
the Shannon diversity of two communities can
appear to be significantly different due to varia-
tions in body mass distributions. To avoid biased
conclusions about differences between communi-
ties, field studies may need to apply species-
specific correction factors of the sampling bias of
pitfall trap data, or should test for differences in
the body mass distributions.

In addition to the RAD of a community, the
specific abundance rank is an important property
of each single species enabling the assessment of
the role it might play in ecosystem functioning.
Dominant species are considered as particularly
important for key ecosystem functions, while
rare species may either work as insurance against
future uncertainties or provide additional func-
tions (Grime 1998, Mouillot et al. 2013). Our
model simulations highlight that the estimated
abundance rank of species can differ significantly
from the simulated, unbiased abundance rank

(Fig. 6). Generally, the relative population abun-
dance is underestimated for small species and
overestimated for large species by pitfall trap
sampling. Empirical studies that analyze the
arthropod community structure based on pitfall
trap sampling may yield a bias in the functional
importance of species underestimating small spe-
cies and overestimating large species.
The classification of species into dominant and

rare ones is an important tool in ecology to
explore relationships between community diver-
sity and functioning (Grime 1998). A difference
between the estimated and the true abundance
rank of species, however, can considerably
impact the reliability of this classification. Our
simulations reveal that a considerable proportion
(about 25%) of the simulated dominant species
are observed as subordinate (Fig. 7). Accord-
ingly, an equal number of subordinate species is
observed as dominant. This can constitute seri-
ous implications for the conclusions of studies on
ecosystem function that focused on dominant
species only. Furthermore, analysis of which spe-
cies traits may drive key functions may need to
be tested for reliability against variation in the set
of species observed as dominant, for example, by
statistically testing for effects of the body mass in
general or its distribution across abundance
ranks in particular.
In summary, pitfall trap sampling in field stud-

ies may generally produce flattened RAD yield-
ing overestimations of community diversity and
likely providing false results for the dominance
classification of some species. Our findings
extend the widely accepted species-specific bias
in pitfall trap sampling campaigns to commu-
nity-level metrics and urge caution to previous
conclusions about the diversity and structure of
ground arthropod communities when solely
sampled with pitfall traps without bias correc-
tion.

(Fig. 7. Continued)
are shown for different combinations of pitfall trap number and trap arrangement (see legend for colors). Hori-
zontal orange bars indicate the median, and the red dots show the arithmetic mean. The colored box ranges from
the upper to the lower quartile, and the dotted whiskers cover the maximum and minimum values excluding
outliers (black dots, if present). For some combinations of trap number and arrangement, the box and the whis-
kers match with the median. Species with one of the simulated abundance ranks 1–4 were defined as dominant
species (see Methods section). Panels show results for (A) 15°C body temperature, (B) averages across six differ-
ent body temperatures spanning 15–30°C, and (C) 30°C body temperature.
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Model assumptions
We deliberately used a simple model to simu-

late the movement and pitfall trap sampling of
ground arthropods. Yet, we expand on previous
simulation studies of pitfall trap sampling by
considering parameter variation of multiple fac-
tors important for both ground arthropod move-
ment and the design of a pitfall trap sampling
campaign. In our simulations, we did not cover,
however, other factors that were shown to influ-
ence the pitfall trap sampling bias of individual
species, such as precipitation, litter depth, vege-
tation density, and the design of pitfall traps
(Greenslade 1964, Spence and Niemel€a 1994,
Melbourne 1999, Lang 2000, Work et al. 2002,
Koivula et al. 2003, Thomas et al. 2006, Cheli
and Corley 2010, Brown and Matthews 2016).
Though, our simplifying assumptions of a homo-
geneous, featureless landscape and plain traps
are unlikely to affect the conclusions of our study
as all simulation experiments were, in this
respect, equal. Future simulation studies may
particularly aim at integration of a plant diver-
sity gradient facilitating sampling bias correction
of multitrophic diversity studies in grassland
(Rzanny and Voigt 2012), farmland (Klaus et al.
2013) and forest (Schuldt et al. 2015). Modeling
the effects of vegetation structure and density on
movement of ground arthropods should include
plant individuals explicitly, so that the move-
ment paths of ground arthropods result from a
combination of external factors and the internal
navigational capacity (Nathan et al. 2008).

Implications
The results of our individual-based model

simulations help field studies to increase the reli-
ability of species-specific data and any commu-
nity-level metric estimated from pitfall trap
sampling. The main factors that shape the spe-
cies-specific sampling bias are body mass, tem-
perature, and the number of pitfall traps (Fig. 2).
Although the arrangement of traps is of minor
importance when compared to trap number, the
reliability of pitfall trap sampling can be
increased by distributing traps uniformly within
the sampling area. The bias in community-level
metrics is linked to the species-specific biases
and additionally shaped by the distribution of
body masses across the abundance ranks (Fig. 5).
To simplify the bias correction, studies should

keep constant the trap number and trap arrange-
ment across sampling sites and sampling periods
whenever possible. Following the call of Brown
and Matthews (2016) for standardized trap
designs, we suggest to use either the nested cross
or grid arrangement with standard trap numbers
and spacing. For data analysis, species may be
grouped into size classes assuming a similar bias
for the species in one class and, thus, lowering
the workload for bias correction across species.
Species size classes may preferably cover loga-
rithmically increasing ranges of body mass as
body mass non-linearly affects the species-
specific sampling bias (Appendix S8: Fig. S3).
Most research in community ecology derives

diversity and community metrics based on spe-
cies relative abundance, such as the RAD and spe-
cies dominance within the community. One
therefore may not need to correct observed spe-
cies abundance on an absolute scale but rather on
a proportional scale. Our analyses of the correc-
tion factor showed that species relative abun-
dance can be re-set to unbiased values by species
body mass when controlling for temperature vari-
ation, pitfall trap number and arrangement
(Fig. 4B, Appendix S9: Fig. S2). For instance, a
field study using two pitfall traps could correct
relative abundance from species body mass with
two scaling factors from the range between %0.55
and %0.37. The resulting interval in diversity and
community metrics would be unbiased by pitfall
trap sampling and could be used as a sensitivity
test for conclusions drawn from individual stud-
ies or a meta-analysis across several studies.
We conclude that (1) the correction of the spe-

cies-specific sampling bias to derive realistic
absolute species abundance and (2) the use of
body mass-related correction factors to derive
true relative species abundance are a manageable
task and necessary to reliably identify changes in
species abundance and community diversity
across time or habitats. Given that the species
body masses are easily estimated for ground
arthropods, the bias correction for true relative
abundance should be a simple, practical
approach for field studies to be widely adopted
and tested. Also, the ambient temperatures (as
proxy for body temperature) across the sampling
periods are often available, facilitating estima-
tions of the median movement speed and, subse-
quently, realistic indications of the sampling bias
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and absolute densities per species (Fig. 3). Future
studies may attempt to reanalyze available “ac-
tivity density” data from previous pitfall trap
sampling campaigns to advance our understand-
ing of arthropod community structure both
within certain habitats and along environmental
gradients.
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