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ABSTRACT
Over the past decades, different drought indices have been suggested in the literature. This study tackles the problem
of how to characterize droughts by defining a framework and proposing a generalized family of drought indices that is
flexible regarding the use of different hydrological fluxes in the water balance. The sensitivity of various indices and its
skill to represent drought conditions is evaluated using a regional model simulation for Europe spanning the last two
millennia as test bed. The framework combines an exponentially damped memory with a normalization method based
on quantile mapping. Both approaches are more robust and physically meaningful compared to the existing methods
used to define drought indices. Still, the framework is flexible with respect to hydrological fluxes used for the water
balance, enabling users to adapt the index formulation to the data availability of different locations. Based on it, indices
using different hydrological fluxes in the water balance are compared with each other showing that a drought index
considering only precipitation in the water balance is sufficient for western to central Europe. In the Mediterranean,
temperature effects via evapotranspiration rather than potential evapotranspiration, need to be considered to produce
meaningful indices representative of water deficit. In addition, our results indicate that in north-eastern Europe and
Scandinavia, snow and run-off effects need to be considered simultaneously in the index definition to obtain accurate
results.
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1. Introduction

Droughts are natural hazards with devastating effects on nature
and human activities, as the latest drought in California has
demonstrated (Arndt et al., 2015). Indeed, droughts have played
an important role in the rise or downfall of civilizations in the
past (Haug et al., 2003; Cook et al., 2015), as availability of
water is essential for human development. In the light of current
and future climate change, the increasing population demands
an enhanced intensity in the use of agricultural resources, which
then leads to a higher demand in water and makes the socio-
economic system in general more vulnerable to droughts (Mishra
and Singh, 2010). Consequently, a better understanding of the
processes generating and driving droughts, as well as their pre-
dictability, are of high relevance and have attracted a growing
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attendance in the scientific community (Mariotti et al., 2013;
Heim, 2002; Keyantash and Dracup, 2002; Cook et al., 2015).

Despite the importance of droughts for mankind, there are sev-
eral caveats that limit our current understanding of this
phenomenon. Droughts are rare phenomena that require long
observational data records to identify and characterize them.
Unfortunately, this information is not available for many regions
of interest. There is no objective quantitative and universal def-
inition of what a drought is, as a multitude of factors may play
a role in it, challenging the characterization in a quantitative
way (Wilhite, 2000; Keyantash and Dracup, 2002). Moreover,
droughts are classified in four different types, namely meteo-
rological, agricultural, hydrological and socio-economic (e.g.
Svoboda et al., 2002; Andreadis and Lettenmaier, 2006). This
study focuses on meteorological droughts defined as a reduction
of available water during an extended time period.
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The latter caveat is illustrated by the fact that several drought
index definitions exist in literature: one of the first attempts to
characterize droughts is the so-called Palmer Drought Severity
Index (PDSI; Palmer, 1965). Palmer’s definition of a drought
is ‘an interval of time, generally of the order of months or
years in duration, during which the actual moisture supply at
a given place rather consistently falls short of the climatically
expected or climatically appropriate moisture supply’ (Palmer,
1965). With this definition, it is possible to quantitatively rep-
resent drought severity and to make different locations compa-
rable. Still, this index uses a number of subjective criteria, e.g.
a fixed timescale, and empirical relations for specific locations,
which may reduce the universality and applicability of this index.
In this context, Alley (1984) argued that having one inherent
timescale renders the PDSI not suitable for different kinds of
droughts. Additionally, the index does not consider snow and
the normalization procedure used in the PDSI produces different
distributions for different locations. Hence, spatial compara-
bility is not straightforward (Mishra and Singh, 2010). Some
of the caveats with the PDSI led to the self-calibrated Palmer
Drought Severity Index (Wells et al., 2004), where some of the
subjectively determined empirical constants are replaced with
values calibrated with the local climatic conditions and ensuring
a spatial comparability. Further, Mo and Chelliah (2006) sug-
gested to use the Noah Land Surface Model (Ek, 2003; Chen and
Dudhia, 2001) instead of Palmer’s simple soil model. Still, these
improvements do not solve the arbitrary nature of the calculation
and normalization procedure of the index.

Another index commonly used is the standardized precipi-
tation index (SPI; McKee et al., 1993; Edwards and McKee,
1997). This rather simple approach is only based on monthly
precipitation. As for the PDSI, the SPI depends on various as-
sumptions, in particular the fit of the precipitation data to a given
probability density distribution (PDF) used within the procedure
(Lloyd-Hughes and Saunders, 2002; Mishra and Singh, 2010;
Wu et al., 2007). Recently, Farahmand andAghaKouchak (2015)
suggested non-parametric normalization procedure for the SPI,
which avoids this conceptual drawback. Another caveat of the
SPI is that it is based only on precipitation and thus ignores
other processes like evaporation, temperature, run-off or soil–
water content, which are known to affect the water balance but
are difficult to measure (Vicente-Serrano et al., 2010). There-
fore, Vicente-Serrano et al. (2010) developed the Standardized
Precipitation Evapotranspiration Index (SPEI) taking temper-
ature effects in the SPI into account by introducing potential
evapotranspiration (Thornthwaite, 1948; Penman, 1948). Still,
the SPEI suffers from the same conceptual drawbacks as the
SPI, as the normalization procedure requires fitting a match-
ing model to the PDF. Still, Ma et al. (2014) argued that the
influence of temperature is strongly overestimated in the SPEI
because potential evapotranspiration is generally much higher
than evapotranspiration, especially in dry areas where soil wa-
ter is limited (Bouchet, 1963; Hobbins et al., 2004). This is

in contrast to Beguería et al. (2014) who found the choice of
potential evapotranspiration to be sufficient, as it represents the
water demand of the atmosphere, while the evapotranspiration
is influenced by the availability of precipitation.

One possibility to tackle the variety of drought indices, their
shortcomings and their underlying ad hoc assumptions is to
assess a number of indices and combine them in a monitoring
system as, e.g., suggested by the Drought Monitor for the United
States (Svoboda et al., 2002). Another possibility, which is the
purpose of this study, is to integrate the various drought indices
in a stepwise framework which helps to identify shortcomings.
Based on this framework, we introduce a new drought index,
which combines advantages of different existing indices in a
new way, and which is flexible enough to be applied to different
regions and climate conditions. The flexibility of the framework,
and thus the new index formulation, also allows adjusting the
hydrological fluxes included in the water balance. Thus another
purpose of this study is to investigate the complexity of the
water balance which is necessary to sufficiently describe drought
conditions on the regional scales. Both, the evaluation of the
framework as well as the issue of complexity of the water bal-
ance, are performed in an idealized test bed that consists of a
regional climate model simulation for Europe for the last two
millennia (Gómez-Navarro et al., 2013, 2015).

Recent advances in climate modelling make it possible to
realistically simulate climate processes of the water balance
at regional scales being able to reproduce the major precipita-
tion regimes in Europe (Gómez-Navarro et al., 2013, 2015). An
advantage of such simulations is that they guarantee physical
consistency and thus provides an ideal test bed for assessing
drought indices over long timescales. Note that the focus of the
study is on the methods introduced rather than on the variability
during the last two millennia, so the latter will be therefore not
shown.

The structure of the study is as follows. Section 2 provides an
overview of the model data used as test bed. Then, the framework
of drought indices is presented discussing how existing drought
indices fit in this framework (Section 3). Based on it, a new
index is presented, which remains flexible in the selected fluxes
included in the water balance (Section 3). In Section 4, the
framework is applied to a regional climate model simulation
for the last two millennia to test the newly introduced memory
and normalization procedure and to demonstrate the differences
and similarities of the drought indices which include different
fluxes in the water balance (Section 5). Finally, the results are
summarized and conclusions are presented in Section 6.

2. Regional climate simulation and analysis
methods

To evaluate the framework for drought indices including the
new index, a simulation of the last two millennia for Europe is
considered as test bed. It is based on a model chain consisting of
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a regional climate model (RCM) driven by a coupled atmosphere
– ocean general circulation model (AO-GCM). Both models use
identical reconstructions of greenhouse gas concentrations and
solar irradiance for the last two millennia as external forcing
factors. Volcanic activity is not included as there were no reliable
estimates available for first millennium when the simulations
were performed.

The AO-GCM is the so-called ECHO-G model, which con-
sists of the spectral atmospheric European Centre Hamburg
model (Roeckner et al., 1996, ECHAM4; version 4) and the
ocean model Hamburg Ocean Model in Primitive Equations
(Legutke and Maier-Reimer, 1999, HOPE-G). The atmospheric
model has a horizontal resolution of T31 (approximately 3.75◦)
and 19 σ -pressure levels in the vertical. The ocean model has a
horizontal resolution of 2.8◦, which is refined to 0.5◦ in tropics.
In the vertical, HOPE-G is discretized in 20 unevenly distributed
layers. Additionally, the two components are coupled with a
flux adjustment constant in time. A description of the model
set of ECHO-G is given in Legutke and Voss (1999), a control
simulation for 1990 conditions is described in Raible et al. (2001,
2004) and Luksch et al. (2005), and the set-up of the transient
two millennia simulation is presented in Zorita et al. (2004).

The RCM is a climate version of a mesoscale model for
atmospheric research (MM5, version 5; Skamarock et al., 2008)
coupled to the Noah land surface model (Chen and Dudhia,
2001). Horizontally, two two-way nested domains with spatial
resolutions of 135 km and 45 km are employed, respectively. The
RCM is driven by theAO-GCM at its outer boundary by blending
over five grid points. Nudging of the large-scale circulation is
not used. Further, 24 σ levels are used in the vertical, with the
highest level at 100 hPa. This setting, in particular the land
model, is selected because of its skill in dry areas compared
to simpler soil models (Jerez et al., 2010). Topography, land use,
vegetation and soil types are given as input, but remain fixed at
the present-day value throughout the entire simulation, as there
is no reliable reconstruction of these parameters for the last two
millennia. For this study, only the data of the inner domain with
a resolution of 45 km was used. A detailed analysis of this model
set-up focusing on the added value of the RCM in comparison
to the AO-GCM shows that the RCM simulation is superior in
particular for precipitation (Gómez-Navarro et al., 2013) and
resembles hydroclimatic field reconstructions (Gómez-Navarro
et al., 2015).

The overview of the variety of drought indices in Section 1
showed that there is no reference drought index which makes it
difficult to show the skill of new drought indices. To overcome
this problem, the different indices are evaluated by the Pearson
Correlation analysis between each pair of indices for each grid
point using the years 1 to 1800 AD. The choice of this period,
which excludes the anthropogenic forcing, guarantees that the
correlation coefficients are not influenced by any trends in the
period 1850-2000AD – a prerequisite for meaningful correlation
analysis.

3. Framework of new drought indices

Droughts can be characterized by indices, which incorporate
the drought intensity, duration and severity at a given location
and time. An appropriate index shall be applicable for different
timescales and ideally is normalized to ensure comparability
between different locations. As a number of meteorological and
hydrological processes are involved in generating droughts, a
universal definition of an index remains a challenge. Several
indices are suggested in the literature (Mishra and Singh, 2010;
Vicente-Serrano et al., 2010), briefly presented in Section 1. In
the following, we introduce a framework for drought indices, in
which most commonly used indices can be integrated. Finally,
a new index is proposed, which overcomes some of the short-
comings of existing drought indices.

3.1. The framework

The framework of the design of a drought index considers four
steps:

(i) The user defines the hydrological fluxes (e.g. precipi-
tation, run-off, evaporation, etc.) considered relevant for
the water balance. Ideally, these variables have a monthly
(or even sub-monthly) resolution and high horizontal res-
olution (either gridded or weather station network). More-
over, long-time series of these fluxes are required, as all
approaches require some type of data fitting, which may
become problematic for rare events such as droughts.

(ii) The hydrological fluxes are combined in a water balance
model, which defines the surplus or deficit of water d(r, t)
in a specific time step:

d(r, t) = M
(
a1(r, t), a2(r, t), . . . , an(r, t)

)
(1)

where r = (x, y) is the location in longitude and latitude,
t is the time step, ai with i = 1, ..., n are the fluxes, n the
number of fluxes and M is the function of the user-defined
water balance model.

(iii) The drought variable D(r, t) in a given time step may
depend on previous time steps. To account for this mem-
ory effect, a recursive function R is implemented, which
depends on previous time steps:

D(r, t) = R
(
d(r, t), d(r, t − 1), . . . , d(r, t − m + 1)

)
(2)

where m is the number of time steps of d , which have an
influence on the current D at time t .

(iv) Finally, the drought variable D is normalized, leading
to the drought index I . This procedure guarantees spa-
tial comparability, as the same value of D may have a
different meaning at different locations:
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I (r, t) = Z
(
r, D(r, t)

)
(3)

where Z is the user-defined normalization function. It
depends on the PDF of D, which is different for each
location and month, ensuring that the index is always
normalized across the annual cycle and locations.

To illustrate these steps, we translate three common indices
into this framework, i.e. the SPI, the SPEI and the PDSI. Note
that the last two steps, i.e. the introduction of memory and
normalization, are interchanged for the PDSI.

The SPI relies only on the monthly precipitation P(r, t). Thus,
the water balance model is trivial and states that only precipita-
tion is sufficient to establish drought conditions. Hence, Equation
(1) becomes

d(r, t) = M
(
P(r, t)

) = P(r, t).

The SPI takes the memory of the system into account by
summing over the previous m months (where m is usually set
between 3 and 48) so that Equation (2) becomes

D(r, t) =
m−1∑
i=0

d(r, t − i) =
m−1∑
i=0

P(r, t − i).

Note that each month included in the memory has the same
weight. The fourth step of the framework implies the normaliza-
tion of D. To obtain the SPI, the drought variable D is normalized
at each location r and for each month of the year separately. The
latter is necessary to remove the annual cycle if the memory
length m is not a multitude of 12. The normalization is done by
mapping the PDF of D onto a Gaussian distribution. Thereby,
a user-defined distribution function (typically the gamma dis-
tribution) is fitted to the histogram of D (McKee et al., 1993;
Edwards and McKee, 1997).

A variant of this index was introduced as an attempt to in-
clude temperature effects into the SPI through evaporation ef-
fects (SPEI; Vicente-Serrano et al., 2010). This effect is mainly
due to evapotranspiration (Appendix 1). However, evapotran-
spiration is a variable difficult to measure directly, so the SPEI
uses the potential evapotranspiration, i.e. the maximum possi-
ble evapotranspiration if the soil contained an unlimited water
reservoir. Although less informative than evapotranspiration,
the advantage of potential evapotranspiration is that it can be
easily estimated by the Thornthwaite method (Thornthwaite,
1948) or the Penman method (Penman, 1948, Appendix A for
further details). Using the potential evapotranspiration P ET
in the water balance model by simply subtracting it from P
leads to

d(r, t) = M
(
P(r, t), P ET (r, t, T, a1, a2, . . . , an)

)
= P(r, t) − P ET (r, t)

where T is the temperature and ai the variables used to calculate
P ET depending on the selected approach (see Appendix 1).
The memory is then introduced in the same way as for the SPI.
Beguería et al. (2014) showed that a three parameter log–logistic
distribution provides meaningful results within the normaliza-
tion step for most locations, as d can become negative when
P ET exceeds P .

A more elaborate method is the PDSI Palmer (1965). In con-
trast to the relatively simple SPI and the SPEI, the PDSI takes
a complex function of the water demand P̂ into account. Thus,
the water balance model described by Equation (1) becomes

d(r, t) = P(r, t) − P̂(r, t).

The water demand P̂ is obtained from the water balance of a
soil model based on evapotranspiration ET , potential evapo-
transpiration P ET , recharge R to the soil, potential recharge
P R, run-off RO , potential run-off P RO , loss L from the soil
and potential loss P L .

P̂(t) = α j P ET (t) + β j P R(t) + γ j P RO(t) − δ j P L(t)

where α j (r) = ET j

P ET j
, β j (r) = R j

P R j
, γ j (r) = RO j

P RO j
, and

δ j (r) = L j

P L j
are ratios and j is the month in the annual cycle

and the bar above the symbols denotes the average over all time
steps t of month j . The calculation is done for each month of the
year separately in order to account for the annual cycle. Thus, to
obtain the water demand P̂ , a set of additional variables needs to
be known on a monthly basis: P ET , P R, P RO and P L . Note
that in the approach of Palmer, step (iii) and (iv) of the framework
are exchanged, i.e. first a normalization is applied, and then
the memory effect is taken into account. The normalization is
obtained by multiplying d(r, t) with a climate characteristic K j ,
which was originally estimated for nine different locations in the
United States, and which renders this index not very universal.
Finally, the memory is introduced using the recursive formula:

I (r, t) = 0.897 I (r, t − 1) + 1

3
K j d(r, t) . (4)

The duration factors 0.897 and 1
3 were estimated by Palmer for

two locations (central Iowa and western Kansas, US), to obtain
a ‘nice? distribution with few extreme values and the maximum
and mean value close to zero. This ad hoc selection questions
the applicability of this index for other areas than those studied
by Palmer.
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3.2. A new standardized drought index

As outlined above, the existing approaches to characterize
drought partly suffer from shortcomings – be it arbitrary selected
functions fitted to the histogram of D as used for the SPI, the
equally weighted memory effect of the SPI or the SPEI, or the
arbitrary determined factors to normalize the PDSI. This calls
for a new approach taking advantage of different existing index
properties and being flexible to include various combinations of
hydrological fluxes in the water balance. The latter remark is im-
portant especially in climate variability studies due to the scarcity
of the data availability in the past. To guarantee flexibility, the
new approach concentrates on the way memory is introduced
and how the index is normalized, leaving the hydrological fluxes
entering in the water balance model free to be selected by the
user. This flexibility enables the users to adjust the drought index
definition to the data availability and the requirements of the
climatic features of the area of interest (see the recommendations
for the European climate in Section 6).

The introduction of memory in the new approach is inspired
by the fact that the SPI and SPEI consider each of the m months
to have the same influence (or weight) in the drought condition at
time t , while all other months have no influence at all. However,
the water deficit of the current month is expected to have the
strongest influence, with a continuously decreasing influence of
previous months. Thus, we propose an approach inspired by the
recursive procedure of the PDSI, that once developed, can be
reformulated as:

D(r, t) = p D(r, t − 1) + c d(r, t)

= p
(

p D(r, t − 2) + c d(r, t − 1)
) + c d(r, t)

= c d(r, t) + p c d(r, t − 1) + p2 D(r, t − 2)

= c
l∑

i=0

pi d(r, t − i)

= c
l∑

i=0

eln(p)i d(r, t − i) (5)

where c > 0 is an arbitrary constant (not important due to the
normalization in the last step) and l the number of previous
time steps having an influence on a drought in the current time
step. The recursive formula is interpreted as an average over
all previous time steps, weighted with the exponential damping
constant ln(p). Hence, p is a characteristic timescale of the
phenomenon drought, rather than a fitting constant (as in the
PDSI formulation). Consequently, the recursive formula from
the PDSI can be used to implement a more realistic memory. For
instance, the p value of 0.897 suggested in the PDSI approach
corresponds to a characteristic time (or e-folding time) of 6.6
time steps (in the case of PDSI, 6.6 months). Note, however,
that we do not propose a given damping constant p, but we
leave it open to be defined by the user depending on its particular
necessities.

Finally, the normalization procedure of the new index is based
on the approach of the SPI, i.e. mapping the D values on the
Gaussian distribution. However, fitting a particular distribution
to the histogram of D is avoided (which is in contrast to the SPI
and SPEI approach). Instead, we propose using a non-parametric
method, the so-called quantile mapping approach: calculating
percentiles of all D values at one location from the histogram and
mapping them to the corresponding percentile of the Gaussian
distribution, which finally results in the index I . The mapping
has to be performed for each month of the year separately to
account for the annual cycle. Quantile mapping is regularly used
in downscaling and bias correction of model output (Raible et al.,
2012; Themessl et al., 2011; Gudmundsson et al., 2012; Rajczak
et al., 2016) and is similar to non-parametric approaches used in
drought index definitions (Farahmand andAghaKouchak, 2015).

4. Testing the new framework during the last two
millennia over Europe

To illustrate the strengths and flexibility of this framework, the
newly proposed memory and normalization procedures are com-
pared to the methods used in the definitions of the commonly
used indices.As discussed above, 1800 years of the regional sim-
ulation over Europe, explicitly excluding the period dominated
by anthropogenic forcing, are used as test bed of the analysis.

4.1. Impact of memory

The new index uses an exponential function with a damping
coefficient p (inspired by the recursive formula of the PDSI)
and is compared to the block mean approach of the SPI, i.e. a
running mean of the preceding m − 1 months and the current
month. For the sake of focusing on the role of the memory, we use
the index which is based on the water balance model of the SPI
and explore several damping coefficients around the one which is
used in the classical PDSI definition, i.e. p = 0.9. In following,
we show results for p = 0.86; 0.90; 0.94, which corresponds to
e-folding times of 4.6, 6.6 and 11.2 months, respectively. Then,
the results are compared with the ones obtained from the block
mean approach for m = 1, 3, 6, 9, 12, 18, 24, and 48. The calcu-
lation is repeated for each grid point over Europe and for the 1800
years of the model simulation. Pearson correlation coefficients
between all combinations are estimated at each grid point to
illustrate agreement or disagreement between different indices
(Section 2).

The highest correlations of above 0.9 are found when the
e-folding time correspond to the length of the block mean. The
results show that an e-folding time of 4.6/6.6/11.2 months cor-
respond to approximately 9/12/18-month window in the block
mean (Table 1). Low correlations of around 0.4 to 0.6 are found
when the e-folding time and the block mean deviate strongly,
e.g. 1-month or 48-month block mean compared to the selected
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Table 1. Mean Pearson correlation over all grid points between block memory and exponentially damped memory using different e-folding times
for the SPI and only the e-folding time 6.6 months for PDSI.

Block memory (in mon)

Index e-folding time 1 3 6 9 12 18 24 48

SPI 4.6 0.5 0.75 0.89 0.91 0.9 0.82 0.74 0.54
SPI 6.6 0.43 0.68 0.84 0.90 0.92 0.89 0.82 0.61
SPI 11.6 0.36 0.58 0.75 0.85 0.91 0.95 0.90 0.68
PDSI 6.6 0.44 0.68 0.84 0.91 0.93 0.91 0.84 0.64

e-folding time. The correspondence is expected, as drought in-
dices depend on the length of the period on which they are based
(Steinemann and Cavalcanti, 2006), so other indices show the
same behaviour (PDSI only shown for p = 0.9 in Table 1, SPEI
not shown but is similar to PDSI).

As an additional test, drought indices are used to classify
the severity of simulated droughts. To illustrate the effect of
the memory implementation on the severity of droughts, we
evaluate how often the indices fall below a certain threshold
simultaneously in the same location. This is done for the pair
with the highest correlation, so an e-folding time 6.6 months
and 12-month block mean. For severe droughts with an index
below –2, both agree in 63% of the time. For extreme droughts
with an index below -3, the agreement between the two memory
implementation drops to 48%. These results indicate that ex-
tremes in drought indices are highly dependent on the memory
method selected.

In summary, the memory implementation and the length of
the memory has an effect on the drought index and the classi-
fication of severity. In particular, it is important to ensure that
the length of memory is consistent when comparing results from
different drought indices (Steinemann and Cavalcanti, 2006). In
this sense, the PDSI is not flexible since it implicitly fixes a
given memory length. Moreover, the implementation of expo-
nential damping memory is justified, as it is physically more
realistic, having a continuously decreasing influence of a given
month over time until it becomes negligible, instead of having a
constant influence that instantaneously drops to zero. Thus, the
memory implementation proposed harmonizes the advantages
from various existing indices.

4.2. Impact of the normalization procedure

Besides the implementation of the memory, a non-parametric
procedure for normalizing the drought index is introduced, i.e.
the so-called quantile mapping. This approach is compared to the
standard SPI procedure, based on fitting a gamma distribution.
For simplicity, we concentrate on the drought indices SPI and
PDSI and three memory lengths (1, 6 and 12 months), the latter
with the block mean method. Quantile mapping and fitting of
a gamma distribution is applied to each location and month of

the year separately. The quality of the fit is assessed with the
Kolmogorov–Smirnov test using the D-value, i.e. the maximum
distance between the empirical cumulative distribution function
of the data (representing the quantile mapping) and the cumula-
tive gamma distribution.

The D-values show that there are strong deviations from the
empirical distribution and the gamma distribution in some re-
gions, here shown for January (Fig. 1). A similar range of D-
values is found for other months, like July (not shown). These
deviations exceed the error of the quantile mapping, which has
maximal error of 0.024 for a record length of 1800 years. High
values are found around the Mediterranean using a block mem-
ory of 1 month using the SPI (Fig. 1(a)). This is independent from
the number of fluxes considered in the water balance used in the
index definition as the comparison to the PDSI shows (Fig. 1(c)).
The reason is that a substantial number of months have zero
precipitation in these regions, like North Africa, which hampers
a reasonable fit to a gamma distribution. For the SPI, the D-values
decrease, i.e. the fit improves, when applying a block memory
of 6 months (Fig. 1(b)) as 6-month periods without precipitation
are rarely found. Also other regions like France and the United
Kingdom show higher D-values when using the SPI and a block
memory of 1 month, suggesting that fitting a gamma distribution
is problematic in this case. The drought index PDSI shows partly
a different behaviour, e.g. a block memory of 1 month leads to
low D-values over France, which increase when using block
memory of 6 months (Fig. 1(b), (d)). A similar behaviour is also
found in eastern Europe (Fig. 1(b), (d)).

To further assess the deviations between the empirical and
gamma distribution, we show the median 90th and 95th per-
centile of the distribution of all D-values for block memories
of 1, 6 and 12 months (Table 2). In agreement to Fig. 1, the
median D-value distribution is reduced with increasing memory
regardless of the water balance used in the index definition. Still,
the tails of the D-value distribution (as illustrated by the 90th and
95th percentiles) show that in particular for the PDSI high D-
values (of more than 0.17 in the case of a memory of 1 month)
occur in 5% of the locations (Table 2). This illustrates that the
water balance used in an index definition needs to be tested
for each location a priori in order to assess whether a gamma
distribution can be reasonably fitted.
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Table 2. Median, 90th and 95th percentiles of the distribution of maximum D-values of the Kolmogorov–Smirnov test for all locations and three
block memories. The percentiles are presented for the SPI and the PDSI.

Percentiles of D-value distribution

Index Block memory Median 90th 95th

SPI 1 month 0.029 0.055 0.104
6 months 0.018 0.029 0.033
12 months 0.018 0.027 0.03

PDSI 1 month 0.028 0.064 0.167
6 months 0.020 0.04 0.053
12 months 0.019 0.036 0.054

(a) (b)

(c) (d)

Fig. 1. Maximum distance between the empirical cumulative distribution of drought indices and the cumulative gamma distribution for January:
(a), (b) SPI, (c), (d) PDSI. In panels (a), (c) a block memory of 1 month is used, in (b), (d) a block memory of 6 months. Stippling denotes the 5%
significance level.

As stated above, there is also uncertainty associated with
the quantile mapping, i.e. the uncertainty, in which percentile
a certain values falls. This uncertainty increases with decreasing
sample size. To illustrate this, we show the error of estimating an
extreme index (90th percentile; Table 3). The result suggests that
the quantile mapping is superior to the method fitting a gamma

distribution at least up to 250 years and delivers compatible
results also for shorter sample sizes like 100 years (comparing
the values of Table 3 to ones of Table 2).

Results above indicate that the ability of a gamma distribution
to fit the empirical values critically depends on the region, the
memory length applied, and the hydrological fluxes incorporated
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Table 3. Error in percentile of the estimating 90th percentile of a
drought index using the quantile mapping based on N values (time steps).
Note that the error (95% confidence interval) is calculated based on, in
which percentile a certain values falls.

N Error in percentiles

2000 0.1
1000 0.14
500 2
250 2.8
100 4.8

in the water balance. This implies that the applicability of a
gamma distribution fit has to be critically tested a priori, as it
depends on the location and hydrological fluxes entering in the
water balance, which renders the introduction of a drought index
using fits to a gamma distribution controversial, and favours
the application of the quantile mapping in the normalization
procedure. The latter is independent on assumptions about the
distribution of the index and shows superior or similar results
also for shorter time series (up to 100 years). These findings
agree with Farahmand and AghaKouchak (2015) who used also
paramedic approaches in their drought indices.

5. Impact of the different hydrological fluxes in-
cluded in the water balance

Based on the experience of the previous sections, we now assess
the impact of different hydrological fluxes included in the water
balance within the framework of drought indices. As no absolute
reference exists, we select an approach consisting of the com-
parison of different indices with each other through correlation
analysis. Later, deviations from high correlations are addressed
under the light of the different physical mechanisms introduced
by the variable complexity of such water balances (Section 2).
The assumption is that the more components of the water balance
are incorporated in a water balance model, the more realistic and
representative of real situations a drought index is. However, this
is at the expense of requiring more input variables, which are
often not available on long timescales or are sparsely available
in space, in particular when considering observations. Thus, in
some cases it can be desirable to use a simple water balance
model, such as the one of the SPI, that may explain the major
part of the phenomenon while requiring only few variables easily
recorded. The simulation enables us to analyse and identify, as a
function of the season and the region of interest within Europe,
which drought indices based on a simple water balance model
are sufficient, compared to situations where more complex water
balance models become necessary.

Before we start with the analysis, we recall and extend the
water balance models introduced in Section 3. Additionally,

different parametrizations for evapotranspiration and potential
evapotranspiration are tested (Appendix 1).

The simplest water balance model only considers precipi-
tation denoted in the following as SPI index. An increase in
complexity is obtained when effects of evapotranspiration
or potential evapotranspiration are additionally considered.
Two parametrizations of potential evapotranspiration are used
(Appendix 1): the Penman–Monteith method (Penman, 1948),
and Thornthwaite method (Thornthwaite, 1948). As a third ap-
proach, evapotranspiration is deduced from the latent heat trans-
fer (Appendix 1). The corresponding drought indices are called
Standardized Precipitation Penman Evapotranspiration Index
(SPPEI), the second Standardized Precipitation Thornthwaite
Evapotranspiration Index (SPTEI) and the third Standardized
Precipitation Latent Heat Evapotranspiration Index (SPLEI), re-
spectively. Then, the water balance model is extended to include
snow effects (named SPPEIs), which acts as a water storage. The
water balance model becomes

d(r, t) = P(r, t) − �SW (r, t) − P ET (r, t)

where �SW is the water equivalent of snow and P ET the po-
tential evapotranspiration after Penman (1948) or Thornthwaite
(1948). Finally, the most complex water balance model addi-
tionally includes also the run-off effects (similar to the PDSI):

d(r, t) = P(r, t) − �SW (r, t) − P̂(r, t)

where P̂ is taken from the PDSI definition. This index is referred
hereafter as Normalized Snow PDSI (PDSIs).

To concentrate on the effect of the number of fluxes included
in the water balance (complexity of the water balance model),
the memory is set to an e-folding time of 4.6 months (p = 0.86)
and quantile mapping is used as normalizing procedure in all
tests hereinafter. Further, all correlations are estimated for each
month of the year separately and then averaged to seasonal means
(December, January, February, DJF; March, April, May, MAM;
June, July, August, JJA; September, October, November, SON).

In a first step, the simplest drought index, SPI, is compared
to SPEI in order to study the effect of evapotranspiration pa-
rameterized by three different methods. The correlation pattern
between these drought indices shows that the agreement between
the SPI and the SPPEI is high, with correlations above 0.9 in most
of the regions and all seasons except North Africa (Fig. 2(a)).
The lower correlation in North Africa can be attributed to an
artefact in the potential evapotranspiration, which is much larger
than the actual evapotranspiration due to long sunshine hours
and low air humidity, thus having a stronger influence on the
final index. The strong agreement between SPI and SPEI is not
found when using the Thornthwaite method to estimate potential
evapotranspiration (SPTEI; Fig. 2(b)). The reason is that the
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(a)

(b)

(c)

Fig. 2. Pearson correlation pattern between SPI and (a) the SPPEI, (b) the SPTEI and (c) the SPLEI for each season separately. Note that all
correlations are significant at the 1% level.

Thornthwaite method depends only on average temperature and
the maximum possible radiation depending on the time of the
year. However, it does not include other effects such as actual
incoming radiation and cloud cover. Using evapotranspiration
estimated from the latent heat transfer, we find strongest devia-
tions in summer around the Mediterranean and north to the Black
Sea (SPLEI; Fig. 2(b)). The correlation pattern is also not similar
to the correlation of SPI and SPPEI, and thus there seems to be
an important discrepancy between the indices, depending on if
potential evapotranspiration or evapotranspiration is used.

To gain additional insight on why indices based on different
parametrizations of evapotranspiration or potential evapotran-
spiration are found, the seasonal means of these variables are
shown in Fig. 3 for winter and summer. The comparison of the
Penman-based and the Thornthwaite-based potential evapotran-
spiration shows that the latter overestimates the potential evapo-
transpiration in summer in high latitudes due to the long daytime
duration (Fig. 3(a), (b)). The Penman method reduces poten-
tial evapotranspiration due to cloud cover, and thus adds more

regional details to potential evapotranspiration. Comparing the
evapotranspiration, as estimated by latent heat release, (Fig. 3(c))
with potential evapotranspiration (Fig. 3(b)) shows higher values
for the latter, which is expected as potential evapotranspiration
is defined as the maximum of evapotranspiration. Still, the high
values in summer around the Mediterranean seem unrealistic.
Beguería et al. (2014) argued to compare the water supply to the
water demand stating that the subsequent normalization of the
drought index can compensate such overestimation. However,
the latter seems to be not justified, as the index is dominated
by potential evapotranspiration in the dry areas of the Mediter-
ranean and precipitation plays a minor role.

To account for this, the potential evapotranspiration can be
renormalized to have the same time mean as evapotranspiration.
Comparing the renormalized potential evapotranspiration based
on the Penman method with evapotranspiration, estimated by
latent heat release, (Section 2) shows positive and negative cor-
relations (Fig. 4). Positive correlations indicate areas where the
evapotranspiration is not limited by water supply and, thus, fol-
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(a)

(b)

(c)

Fig. 3. Potential evapotranspiration for winter (DJF) and summer
(JJA) using (a) the method of Thornthwaite, (b) the method of Penman
and (c) the evapotranspiration for both seasons, which is approximated
by the latent heat flux.

lows the potential evapotranspiration as found mainly in autumn
and winter for most of Europe. In summer, only Great Britain,
France and parts of Scandinavia show positive correlations being
the only regions where there is enough water available on most of
the days. Negative correlations are caused by evapotranspiration
not being limited by potential evapotranspiration, but by water
supply. When water supply is low, evapotranspiration will be
low too, but potential evapotranspiration increases simultane-
ously because of reduced cloud cover, eventually inducing these
negative correlations. This is the case for the surrounding of
the Mediterranean and in summer also for eastern Europe. The
different temporal behaviour of the potential evapotranspira-
tion and evapotranspiration, resembling findings from Bouchet

(1963); Hobbins et al. (2004), also explains the differences in
the correlation between the different drought indices in Fig. 2.
Hence, we argue that potential evapotranspiration shall not be
considered as a reasonable parametrizations in dry regions, be-
cause potential evapotranspiration is never reached in those re-
gions and it is anti-correlated to actual evapotranspiration.

To assess the impact of snow effects on drought indices, the
correlation between SPPEI and the same drought index including
snow effects is shown in Fig. 5. As expected, the effects are lim-
ited to winter, when snow accumulates, and in the melting season
spring. The influence of snow, highlighted by lower correlations,
is mainly found in mountain areas like the Alps, the Carpathian
Mountains, in Scandinavia, and in Iceland. Additionally, there is
widespread reduced correlation in north-eastern Europe during
winter and spring. This demonstrates how the influence of snow
accumulation needs to be considered in these regions, which is
in agreement to earlier findings (e.g. van der Schrier et al., 2007).

Including run-off effects seems to play a minor role as the
correlation between the SPPEIs with snow effects and the PDSIs

shows (Fig. 6). An exception is again north-eastern Europe and
Scandinavia during spring, where snow accumulation and sub-
sequent melting leads to a substantial contribution to run-off.
For north-eastern Europe and Scandinavia, the correlation is
high in winter as both indices include snow accumulation, but
lower in spring because the SPPEIs does not include run-off. The
reduced correlation in North Africa in all seasons is due to the
renormalized potential evapotranspiration in the PDSIs. Thus,
the comparisons of snow and run-off effects suggest that they
need to be considered simultaneously in certain areas in order
to improve the drought index, in particular during winter and
spring.

Another important variable used in drought definitions is the
soil moisture (e.g. Mishra and Singh, 2010). To illustrate the
relation between the PDSIs (using a e-folding time of 4.6 months
as above and evapotranspiration in the water balance model)
and soil moisture content, we estimate the Pearson correlation
at each grid point and for each season separately. Soil moisture
content is a complex process coupled to the atmosphere that
is consistently simulated by the model and naturally introduces
memory whose length is dependent on the depth considered, as
well as the physical properties of the soil and climate feedbacks
in each location. However, as shown in Section 4.1, matching
memory lengths is important to obtain meaningful correlations.
Therefore, we tested various average lengths between 1 and 12
months. The tests show that 3-month averages of soil moisture
lead to patterns with overall highest correlation between the
chosen e–folding time for PDSIs and soil moisture, integrated
over all level of the land model. Focusing on these correlation
patterns, Fig. 7 shows good agreement in most parts of the
simulated region and in all seasons. The skill is quite uniform,
further indicating that PDSIs is able to capture reasonably well
actual soil moisture content, regardless of regional features. Still,
lower correlations are found in spring and summer, as well as
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(a) (b)

Fig. 4. Pearson correlation pattern between the potential evapotranspiration based on Penman and the evapotranspiration approximated by the
latent heat flux: (a) DJF and (b) JJA. Note that the potential evapotranspiration based on Penman is renormalized (see details in the text). Stippling
denotes the 1% significance level.

Fig. 5. Pearson correlation pattern between drought indices SPPEI and the SPPEIs, the latter includes snow effects. Note that all correlations are
significant at the 1% level.

Fig. 6. As Fig. 5, but showing the correlation between SPPEIs including snow effects and an index which additionally includes Run-off in the
water balance (PDSIs). Note that all correlations are significant at the 1% level.
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Fig. 7. Pearson correlation pattern between PDSIs and soil moisture. Note that the soil moisture is averaged over 3 months, which shows the
highest correlation to PDSIs. Stippling denotes the 1% significance level.

Fig. 8. Schematic overview of Europe illustrating which drought
indices is appropriate, based on the correlation patterns of Figs. 2, 5,
and 6.

in mountain regions and known dry regions like North Africa
and southern Spain. Some of the differences may be due to
differences in how soil moisture is integrating water fluxes in
the land model used (Chen and Dudhia, 2001). In particular,
over dry regions, precipitation is restricted to one season but
may have a stronger influence throughout the year in the PDSIs

index due to the memory used than soil moisture and its memory.
Also the processes, which define the memory of the soil moisture,
can change with region, e.g. in regions with snow cover. This
is another source for deviations as the memory in the PDSIs

definition is fixed.

6. Discussion and conclusions

In this study, a flexible framework to define drought indices
is presented and evaluated using a two millennia-long regional
model simulation for Europe. It consists of four steps: (i) selec-
tion of the relevant hydrological fluxes used in the water balance,
which depends on the data availability and requirements of the
area of interest, (ii) combination of these fluxes in a water balance
model, (iii) implementation of a memory using a physically
meaningful exponential damping and (iv) normalization using
quantile mapping.

The comparison to former definitions of drought indices (e.g.
Palmer, 1965; McKee et al., 1993; Edwards and McKee, 1997;
Vicente-Serrano et al., 2010) shows that the exponentially
damped memory procedure shall be compared with the block
mean memory approach (McKee et al., 1993) on similar time-
scales, resembling findings of e.g. Steinemann and Cavalcanti
(2006). Further, it can be argued that the exponentially damped
memory procedure, inspired by the PDSI, is physically more
meaningful than the block mean method and in contrast to the
PDSI it is flexible with respect to the time window (i.e. users
can define the e-folding time, whereas PDSI has a fixed e-
folding time). The quantile mapping used in the normalization
step of the framework additionally leads to further improve-
ments, as it omits fitting to a predefined distribution functions.
The latter is shown to be deficient in some regions, in particular
in arid regions where the index values can be hardly fit to a
gamma distribution and, thus, such fitting shall be carefully
evaluated at each location. The quantile mapping is similar to the
non-parametric approach used by Farahmand andAghaKouchak
(2015). Overall, the framework combines and extends existing
approaches for the memory and normalization step in a new way.

A prominent feature of the framework is its flexibility regard-
ing the hydrological fluxes used in the water balance. This is
important as this step within the framework depends on the
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availability of data, i.e. if only precipitation data is available
the water balance can only be formulated in a very simplistic
way.

The framework is tested using different water balance models
(differing in the number of hydrological fluxes included) to
define various drought indices in variable complexity. The com-
parison of these different drought indices provides insight about
regions where indices with simpler water balance models (i.e.
reduced number of hydrological fluxes included) are sufficient
to characterize a drought. The sketch of Fig. 8 summarized
this for Europe, showing that the simplest index, the SPI, shall
be restricted to western Europe, whereas for southern Mediter-
ranean and eastern Europe, the inclusion of temperature effects
utilizing evapotranspiration becomes mandatory. Note that the
areas in Fig. 8 are based on our results, which rely on a single
model simulation with known shortcomings, like the fixed land
use, which might affect the extent of the regions where indices
with simple water balances are actually suitable. Therefore, this
figure shall be regarded as a qualitative sketch to be refined
in future studies. The analysis further shows that the results are
sensitive to the parametrizations of potential evapotranspiration.
Our findings resemble observational evidence of the different be-
haviour of evapotranspiration and potential evapotranspiration
(Bouchet, 1963; Hobbins et al., 2004). Thus, we suggest to avoid
its use in favour of actual evapotranspiration whenever possible
by data accessibility. For northern Europe, both, snow and run-
off effects, need to be included for accurate representation of
drought conditions.

The comparison with soil moisture shows that in most parts of
Europe, the index with the most complex water balance model
(PDSIs) agrees with the soil moisture, which is also used in
drought definitions (e.g. Mishra and Singh, 2010). Still, in areas
of highly reduced precipitation like North Africa and southern
Spain the indices deviate, potentially due to the different han-
dling of the memory in the land surface model which determines
soil moisture compared to the user-defined, but fixed memory
used in the framework presented in this study.

In summary, the analysis suggests that drought indices based
on simple water balance models are only appropriate in specific
regions. Somehow expected the complexity of the water balance
models reflects the climatic conditions, i.e. in rain-dominated
regions precipitation is sufficient, whereas in arid regions evapo-
transpiration needs to be considered and in regions with seasonal
snow cover the inclusion of snow and run-off in the water balance
model is mandatory. If the aim is to compare droughts in different
regions, we recommend to use a complex water balance model
for all regions to keep consistency. The study also shows that one
has to be cautious when using and interpreting results based on
simple index definitions, as fitting the distribution of the index
to a gamma function is in some regions problematic.

Further studies shall be carried out to extend these conclusions
to other regions and to analyse how different drought indices are
related to external forcing variations and to internal variability

including modes of variability (Gómez-Navarro et al., 2013;
Raible et al., 2014; Ortega et al., 2015). Finally, the study shows
that the current parametrizations of potential evapotranspiration
are inaccurate in dry regions, calling for new approaches to either
measure evapotranspiration directly (Nouri et al., 2015) or derive
new parametrizations for evapotranspiration.
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Appendix 1. Estimation of evapotranspiration
and potential evapotranspiration

For the water balance, also temperature effects needs to be con-
sidered. Thereby, the concept of evapotranspiration ET is used
for describing processes of water loss from the land surface to
the atmosphere. The two major processes considered are evapo-
ration and transpiration. However, direct measurements of ET
are often not available due to technical difficulties. Therefore,
several methods have been developed to estimate the effects of
ET through more readily available data (Zotarelli et al., 2013).

In general, ET depends on solar radiation, air temperature,
relative humidity, wind speed, crop characteristics and land use.
In particular, the latter two variables make the estimation of ET
difficult as they strongly vary on small spatial scales. However,
when the latent heat flux from the Earth’s surface to the atmo-
sphere is known, the monthly ET can be estimated directly:

ET = QL

λ
= FL 2.592 · 106 s

2.25 · 106 J/kg
≈ 1.152 FL

kg s

J

[ET ] =
[ kg

m2

]
≈ [mmofwater]

where FL the latent heat flux, QL is the total latent heat of a
month, which is FL integrated over one month, λ the latent heat
of water vaporization, and 2.592 · 106 is the number of seconds
in a month. The advantage of this method is that the latent heat
flux is calculated by the RCM, whereas ET is not.

Another approach is to use the so-called potential evapotran-
spiration P ET . P ET is defined by Zotarelli et al. (2013) as
the rate of evapotranspiration from a given uniform reference
soil with readily available liquid water, overgrown with a dense,
actively growing vegetation. It represents the evapotranspiration
demand of the atmosphere, without taking into account the crop
and soil type. Thus, P ET is easier to estimate than ET , as only
climatic variables are required.

Two methods are commonly used to estimate P ET . The first
one models P ET using empirical relationships from observa-
tions (e.g. Thornthwaite, 1948). This method is often used be-
cause of its simplicity as it only depends on temperature and
location:

P ET = 16K

(
10T

Iheat

)k

where T is the monthly mean temperature in ◦C. Iheat is a heat
index given by

Iheat =
12∑

i=1

(
Ti

5

)1.514

where Ti is the average temperature for month i . k is calculated
by

k = 6.75 · 10−7 I 3
heat − 7.71 · 10−5 I 2

heat

+ 1.79 · 10−2 Iheat + 0.492 (A1)

and K is a coefficient that accounts for latitude and month. For
a year with 360 days, which is the calendar of the RCM used, it
is given by

K = 2

π
arccos

(
− tan (φ) tan

(
0.4093 sin

( π

12
(2i − 1)

)))
(A2)

where φ is the latitude in radian and i is the month. The obvious
advantage is that monthly temperatures are used to estimate
P ET . However, it is a crude approximation and is not defined for
negative temperatures making it not suitable for many European
regions in winter (Vicente-Serrano et al., 2010).

Another approach to estimate P ET directly models the phys-
ical processes, e.g. the method of Penman–Monteith (Vicente-
Serrano et al., 2010). It is based on an energy balance and
aerodynamic formula, which requires temperature, wind speed,
air humidity, elevation, and latitude (Penman, 1948; Monteith,
1965):

P ET = 0.408�(Rn − G) + γ 900
T +273 u2 (es − ea)

� + γ (1 + 0.34 u2)
(A3)

where � is the slope of the saturation vapour pressure curve,
Rn is the net radiation at the crop surface (MJ m−2 d−1), G is
the soil heat flux density (MJ m−2 d−1), γ is the psychrometric
constant (kPa◦C−1), T the daily mean temperature (◦C), u2 the
wind speed at 2 m above ground (m s−1), es the mean saturated
vapour pressure (kPa) and ea the mean daily ambient vapour
pressure (kPa). Details about how to calculate those variables
from input data can be found in Zotarelli et al. (2013). It can
be calculated daily or hourly and is the recommended method
when sufficient data are available.


	Abstract
	1. Introduction
	2. Regional climate simulation and analysis  methods
	3. Framework of new drought indices
	3.1. The framework
	3.2. A new standardized drought index

	4. Testing the new framework during the last two millennia over Europe
	4.1. Impact of memory
	4.2. Impact of the normalization procedure

	5. Impact of the different hydrological fluxes included in the water balance
	6. Discussion and conclusions
	Disclosure statement
	Funding
	Appendix 1. Estimation of evapotranspiration  and potential evapotranspiration



