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Abstract 16 
 17 
Copper is a redox-sensitive trace element, which can be both, an essential micronutrient and a 18 

pollutant. We therefore analyzed Cu concentrations and stable isotope ratios (δ65Cu values) in a 19 

drained Retisol to trace the response of Cu to a changing hydrological regime and enhanced clay 20 

eluviation. The study soil was artificially drained 16 years before sampling resulting in 21 

macroscopically visible pedogenetic changes and is thus a suitable site to investigate the influence 22 

of pedogenetic processes on the fate of Cu. Samples were collected from all horizons along a 23 
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trench at four distances from the drain: 0.6 m, 1.1 m, 2.1 m and 4.0 m. In the E&Bt horizon, four 24 

different soil volumes (ochre, pale brown, white-grey and black) were sampled at all four distances 25 

from the drain. Furthermore, we analyzed soil solutions sampled with piezometer, porous cups, 26 

and at the drain outlet. The Cu concentrations were lowest in the surface (Ap) horizons (6.5-8.5 27 

µg g-1) and increased with depth to the clay-rich Bt horizons (10.5-12 µg g-1), because of clay 28 

eluviation and associated Cu transport. The δ65Cu values significantly decreased from the surface 29 

(Ap = -0.25±0.07 ‰) to the deeper horizons, but show no significant variation among the deeper 30 

horizons (-0.41±0.28 ‰) and no correlation with the clay content, indicating that clay eluviation 31 

does not significantly affect δ65Cu values. The isotopically heavier δ65Cu values in the Ap horizons 32 

can probably be explained by agricultural management practises like sludge application and 33 

fertilization.  Close to the drain (position 0.6 m), Cu concentrations were depleted and the lighter 34 

Cu isotope was enriched (-0.91±0.15‰) in the uppermost part of the E&Bt horizon. We attribute 35 

this to the changing redox conditions, caused to lowering of the water level close to the drain. 36 

Copper concentrations in black and ochre volumes were significantly higher than in pale-brown 37 

and white-grey volumes. The black volume had significantly higher δ65Cu values than the ochre 38 

volume indicating preferential sorption/occlusion of the heavy Cu isotope by Fe oxides. Enhanced 39 

clay eluviation in bulk soil close to the drain and in specific soil volumes did not affect δ65Cu 40 

values. Cu concentrations (2.1 - 14 µg L-1) and δ65Cu (0.04 - 0.42‰) values in water samples 41 

showed no clear relation with redox changes along the trench perpendicular to the drain. The 42 

enrichment of the heavy Cu isotope in the solution samples (∆65Cu(soil-solution)= -0.61±0.41) 43 

indicates that reductive Cu mobilization is not the main driver of Cu leaching, because this would 44 

preferentially mobilize isotopically light Cu. We conclude that the eluviation of the <2µm fraction, 45 

strongly controlled Cu concentrations, but had no discernible effect on δ65Cu values. The changing 46 



3 

redox conditions did not seem to control Cu concentrations and the stable isotope distribution in 47 

most of the bulk soil, soil volumes and soil water. Instead, weathering, complexation of leached 48 

Cu, Cu application with fertilizers and sorption processes within the soil controlled its δ65Cu 49 

values. 50 

 51 

Keywords:  Copper isotopes; Lessivation; Redox conditions; Retisol; Soil volumes; drainage; soil 52 

water. 53 

 54 

1. Introduction  55 

In temporal or permanently water-saturated soils, episodic anoxic redox conditions couple 56 

back to many soil chemical properties and may cause mobilization and redistribution of redox-57 

sensitive elements like Cu. Copper is of interest because of its nutritional importance as well as 58 

pollution risk. Furthermore, the redox behavior of Cu is assumed to play an important role in 59 

colloidal mobilization of a number of toxic elements like Ag, Cd, Hg and Pb (Abgottspon et al., 60 

2015; Hofacker et al., 2013; Weber et al., 2009a). Thus, information about Cu behavior in 61 

temporarily water-saturated soils and the response of Cu to changes in the soil water regime might 62 

help to understand the release mechanisms of redox-sensitive trace elements.  63 

When soils get waterlogged, the redox potential drops and Fe and Mn (oxyhydr)oxides are 64 

dissolved releasing associated trace elements (e.g., As, Ba, Co, Cr, V; Abgottspon et al., 2015; Du 65 

Laing et al., 2009; Sipos et al., 2011). Changes to anoxic conditions may cause microbial formation 66 

of reduced metal (Cu+ and Cu[0]) colloids (Weber et al., 2009b). When the redox potential drops 67 

sufficiently, microbial sulfate reduction is initialized and the mobility of Cu can be limited by the 68 

formation of or co-precipitation with sulfides (Weber et al., 2009b; Borch et al., 2010). However, 69 
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sulfate reduction may also favor the release of Cu-sulfide colloids into soil solution, resulting in 70 

enhanced mobility during several days after flooding (Abgottspon et al., 2015; Hofacker et al., 71 

2013; Weber et al., 2009a). When the conditions in the soil change to oxic, Cu(0) is rapidly 72 

oxidized to Cu2+, while Cu+-Sorg or CuxS  is only slowly oxidized limiting Cu solubility in soil 73 

(Fulda et al., 2013b). Balint et al. (2014) confirmed that Cu leaching decreased over four redox 74 

cycles, which they attributed to the redistribution of Cu from labile to more recalcitrant chemical 75 

fractions in soil. 76 

 Several soil processes result in fractionation of Cu isotopes (Fig. 1, Bigalke et al., 2010a; 77 

c; 2011; 2013). Sorption of Cu to Al and Fe (oxyhydr)oxides caused an enrichment of heavy Cu 78 

on the surface of the Fe (oxyhydr)oxides (Balistrieri et al., 2008; Pokrovsky et al., 2008). Sorption 79 

to organic ligands shows different fractionation factors depending on the type of organic ligand 80 

and pH (Bigalke et al., 2010b; Ryan et al., 2014). Lighter Cu isotopes are preferentially adsorbed 81 

on clay mineral surfaces (Li et al., 2015). Redox reactions cause pronounced fractionation, leaving 82 

the reduced Cu species enriched in lighter Cu isotopes (Ehrlich et al., 2004; Zhu et al., 2002). 83 

Babcsányi et al. (2014) and Bigalke et al. (2010a; 2011; 2013) found temporally water-saturated 84 

soil horizons and wetlands to be enriched in heavy Cu isotopes, which they attributed to the loss 85 

of light Cu by leaching of reduced colloidal Cu forms. Liu et al. (2014a) studied weathering and 86 

soil formation under different climatic conditions and attributed variations in the isotopic 87 

composition to sorption of Cu to organic carbon in soils and leaching of heavy Cu, while also 88 

different redox conditions in the soils may have caused significant fractionation. In oxic weathered 89 

soils, leaching of heavy Cu because of complexation and downward transport with humic acids 90 

was also described by Bigalke et al. (2011). Fekiacova et al. (2015) recently compiled data from 91 

contaminated and uncontaminated soils and found that contaminated soils tended to show heavier 92 
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δ65Cu values. In addition, fractionations associated with plant uptake of Cu (Jouvin et al., 2012; 93 

Navarrete et al., 2011; Ryan et al., 2013; Weinstein et al., 2011) might affect Cu isotope 94 

distribution in the organic and surface horizons (Bigalke et al., 2011). The literature reveals that 95 

the determination of Cu stable isotope ratios may be a valuable additional tool to mass budgeting 96 

approaches for the identification of the processes by which Cu responds to pedogenesis (e. g., clay 97 

redistribution and redox changes). To study the interaction of the latter two processes, Retisols are 98 

a model soil type. 99 

Retisols are characterized by the eluviation of clay from the surface horizons (E horizon) 100 

and transport and accumulation of the clay in deeper horizons (Bt horizon). The subsoil clay 101 

accumulation impedes drainage and leads to temporary water saturation in winter. In such soils, 102 

the combination of eluviation and redox processes is responsible for the morphological 103 

degradation of the soil and the formation of the E&Bt-horizon, characterized by the juxtaposition 104 

of four soil volumes differing in texture and color. To improve agricultural suitability, many 105 

Retisols have been drained (FAO, 2001; IUSS Working Group WRB, 2014). Artificial drainage 106 

was demonstrated to induce i) an increasing intensity of the eluviation process in the immediate 107 

vicinity of the drains and ii) the transport of dissolved Fe and Mn towards the drain lines where 108 

more oxidative conditions favored the precipitation of Fe and Mn oxides in various forms of black 109 

concretions and impregnations (Montagne et al., 2008).  110 

We focus on the Cu isotopic composition of soil samples collected from four soil profiles 111 

located at increasing distance from a drain and the evolution of the δ65Cu values of four soil 112 

volumes in the E&Bt horizon as response to the drainage. We aim to answer the following 113 

questions: 114 
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1) What is the effect of clay eluviation and accumulation in the Bt horizons on Cu 115 

concentrations and δ65Cu values?  116 

2) What is the effect of drainage and associated changes in soil chemistry on Cu 117 

concentrations and δ65Cu values? 118 

3) How do redox and eluviation processes effect Cu concentrations and δ65Cu values of 119 

soil solutions? 120 

 121 

2. Materials and methods 122 

2.1. Site description and soil sampling 123 

The study site is located on the crest of Yonne plateau in France where Retisols developed 124 

on quaternary loamy deposits overlying an Eocene clay layer. The deposit contains 70-90% of silt 125 

and 5-20% of clay. The soil was extensively cultivated for at least 200 years. Since 1988, an 126 

artificial subsurface drainage was installed at 1 m depth. The drain spacing was 15 m between 127 

parallel drainage pipes. The soil water regime fluctuates seasonally with saturation from December 128 

or January to February or March depending on the year. The temporary water table possibly 129 

reaches to the A horizon and is lowered close to the drain (Fig. 2; Montagne et al., 2008). 130 

Details of the soil sampling procedure are available in Montagne et al. (2008). Briefly, in 131 

2004, i.e. 16 yr after installation of the drainage, soil profiles were sampled from a trench 132 

perpendicular to one drain at four different positions with increasing distance to the drain (0.6, 1.1, 133 

2.1 and 4.0 m, respectively). At each position, bulk soil samples were collected from three soil 134 

horizons (Ap/E&Bt/Bt). The Ap horizon (0 to ~ 30-35 cm depth) has a silty texture and is enriched 135 

with organic matter (7.3±0.3 g kg-1 organic C; Montagne et al., 2008). The E&Bt horizon (~35 to 136 

60 cm depth), shows pronounced eluviation and redoximorphic features resulting in the 137 
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juxtaposition of four volumes differing in texture and color. The four soil volumes include white-138 

grey, pale-brown, ochre and black volumes (Montagne et al. 2008). The white-grey and the pale-139 

brown volumes are most abundant in the E&Bt-horizon, while in the underlying clay-enriched Bt 140 

horizon of yellowish brown color (~55 to ~105 cm depth), the ochre soil volume is by far most 141 

abundant. Soil pH increased with depth from 7.6±0.1 in the Ap horizon to 8.0±0.8 in the Bt 142 

horizon. In addition to the bulk soil samples, soil monoliths (approximately 27x15x12 cm) were 143 

extracted from the E&Bt horizons at all four distances to the drain. In these monoliths, the white-144 

grey, pale-brown and ochre soil volumes were manually separated from each other, while black 145 

concretions and impregnations were sorted by wet sieving and the help of a magnetic separation 146 

technique (Montagne et al., 2008).  147 

 Piezometers were installed at three positions (at 0.7, 1.5 and 4.0 m, respectively, from the 148 

drain) in the E&Bt horizons and porous cups (1 x 2 cm-large) were placed in both, the ochre and 149 

white-grey volumes. In addition, water was collected at the outlet of the main drain of the plot with 150 

an automatic collector. Water samples were collected once a week during the years 2005 and 2006, 151 

and once every two weeks during the two following years. The Eh, pH and temperature were 152 

measured in the field. In the lab, all soil water samples were filtered through a 0.2-µm cellulose 153 

filter, acidified with suprapur HNO3 and stored at 4°C for Fe analysis. Soil water samples were 154 

bulked to obtain a sufficient mass of Cu for isotope analysis. Bulking was done for the three 155 

different water types separately (piezometer, porous cup, and drain water samples) for two 156 

different time periods (2005/06 and 2007/08) resulting in seven different soil water samples. The 157 

water samples were classified according to their Fe concentrations as indicator of redox conditions 158 

in the soil. The Fe concentrations under oxic condition (Eh > 300 mV) were always lower than 40 159 
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µg L-1. Therefore, 40 µg L-1 Fe was used as a threshold to separate between oxic and anoxic soil 160 

solution samples. 161 

  162 

2.2.  Sample preparation and analysis 163 

Approximately, 0.25-0.40 g of soil samples were digested in a mixture of concentrated 164 

HNO3, HF and H2O2 (ratio 3:2:1) in PFA beakers (Savillex@ MN, USA) for 24-36 h on a hotplate 165 

at 120°C. The digests were evaporated until dryness on a hot plate at 70oC. To remove excess HF, 166 

the dried residues were redigested with a mixture of concentrated HCl and HNO3 for at least 3-4 167 

hours, refluxed several times and evaporated to dryness on a hot plate. Samples were finally 168 

dissolved in 7 mol   L-1 HCl and 0.001% H2O2. The water samples (approximately 300 mL) were 169 

evaporated yielding >300 ng of Cu for isotope analysis. The samples were refluxed in HNO3 and 170 

H2O2 (ratio 1:1) and finally dissolved in 7 mol L-1  HCl and 0.001% H2O2 for Cu purification. 171 

All samples were purified using Poly-Prep Chromatography columns (Bio-Rad, CA, USA) 172 

filled with 2 mL of pre-cleaned 100-200 mesh AG MP-1 (Bio-Rad, CA, USA) anion exchange 173 

resin following an established method (Bigalke et al., 2010a). For soil samples, the column 174 

purification was repeated once to gain matrix-clean Cu fractions (Bigalke et al., 2011; Petit et al., 175 

2012). After complete separation, the purified fractions were evaporated to dryness and digested 176 

with concentrated HNO3 and H2O2. The samples were evaporated and then dissolved in 2% HNO3 177 

for Cu isotope analysis. All samples were analyzed by ICP-MS (7700x, Agilent, CA, USA) for 178 

matrix elements and Cu recovery. Column eluates, in which Cu was not completely recovered 179 

(100±6%) or in which matrix elements were present, were discarded and sample purification was 180 

repeated. 181 

All reagents used were of suprapur quality (Merck, Darmstadt, Germany). Hydrochloric 182 

and nitric acid were purified by sub-boiling distillation. Sample preparation and chemical 183 
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purification were performed in the clean chemistry laboratory at the Institute of Geology, 184 

University of Bern. Total procedural Cu blanks averaged 1.9±0.9 ng (n=3) and 3.4±1.5 ng (n=3) 185 

for the first and second runs of column purification, respectively. The quality of the method was 186 

evaluated by using USGS basalt BCR-2 (Basalt Columbia River 2, USGS, Reston, VA, USA) 187 

reference materials. The mean total Cu concentration we determined in BCR-2 was 18.6±0.3 µg 188 

g-1 (mean ± SD, n=11) in good agreement with the certified value of 19±2 µg g-1. 189 

 190 

2.3.  Isotope analysis 191 

Copper isotope ratios were analyzed by MC-ICP-MS (Thermo-Finnigan Neptune, Thermo 192 

Scientific, Waltham, MA, USA) at the Leibniz University Hannover, Germany. Instrument was 193 

operating in the low mass resolution mode. Samples and standards were diluted to 300 µg L-1 Cu 194 

with 2% HNO3 and introduced in to the MC-ICP-MS by a glass spray chamber (double pass Scott 195 

design).  Nickel (NIST 986, National Institute of Standards and Technology, Gaithersburg, MD, 196 

USA) at concentration of 1000 µg L-1 was used for the instrumental mass-bias correction in 197 

combination with standard-sample bracketing. Every sample was at least analyzed twice. The 198 

average Cu isotope ratio was reported in the δ65Cu notation in ‰ relative to NIST 976. The 199 

accuracy of the resin purification method was validated by using spiked Cu-free matrix samples. 200 

The Cu-free matrix samples were prepared from the matrix fraction derived from the purification 201 

of the original samples and spiked with the ERM@-AE633 Cu isotope standards (Institute for 202 

Reference Materials and Measurements, Geel, Belgium), which is isotopically identical with NIST 203 

976 (Moeller et al., 2012). The spiked matrices were treated and purified in the same manner as 204 

the original samples. The δ65Cu value of the matrix samples was -0.03±0.04‰ (mean±2SD, n=5) 205 

and undistinguishable from ERM@-AE633 (-0.01±0.05‰, Moeller et al., 2012). Reproducibility 206 
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and accuracy of δ65Cu measurements were monitored with the help of certified reference materials 207 

BCR-2 and NBS C 125-2 (SRM C1252, National Institute of Standards and Technology, 208 

Gaithersburg, MD, USA). The NBS C 125-2 was used as an in-house Cu standard to check the 209 

MC-ICP-MS stability yielding a δ65Cu value of 0.36±0.06‰ (mean±2SD, n=10). BCR-2 yielded 210 

a δ65CuNIST976 = 0.15±0.08‰ (mean±2SD, n=11) comparable to the previously published data 211 

ranging from 0.14±0.05‰ to 0.22±0.06‰ (e.g., Bigalke et al., 2010a; 2013; Liu et al., 2014b; 212 

Moeller et al., 2012).  213 

 214 

2.4.  Calculations and statistics 215 

The overall mass flux for any soil volume mj;flux in g cm−2 was then calculated for each element j 216 

using Eq. (1) proposed by Brimhall et al. (1991) and modified by Egli and Fitze (2000): 217 

𝑚𝑚𝑗𝑗;𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1
100

× 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟×𝐶𝐶𝑗𝑗;𝑟𝑟𝑟𝑟𝑟𝑟×𝑇𝑇ℎ ×𝜏𝜏𝑗𝑗.𝑤𝑤

𝜀𝜀𝑖𝑖;𝑤𝑤+1
                    (1) 218 

in which ρ is the bulk density, Cj is the concentration of j in weight percent, Th (cm) is the 219 

thickness of the considered soil horizon. The subscripts ref and w referto the soil taken as a 220 

reference and to the weathered product, respectively. We used positions 60 and 110 m as 221 

representing the weathered product (because drainage changes the soil composition at these 222 

distances) and positions 210 and 400 m as reference (because here the effect of drainage is very 223 

low, Montagne et al., 2008). This is different to the classical approach of comparing soil horizons 224 

with parent material. The εi;w and τj;w  values are the strain and the open-system mass-transport 225 

functions, respectively, calculated according to Eqs. 2 and 3 (Brimhall et al., 1991). The εi;w is a 226 

measure for the change of the soil volume over time using an immobile element i and τj;w; is the 227 

mass fraction of element j gained or lost from the weathered product with respect to the mass 228 
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originally present in the reference material (i.e. the soil at positions 210 and 400 m). We used 229 

quartz as an immobile compound.  230 

 𝜀𝜀𝑖𝑖;𝑤𝑤 = 𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑖𝑖;𝑟𝑟𝑟𝑟𝑟𝑟
𝜌𝜌𝑤𝑤𝐶𝐶𝑖𝑖;𝑤𝑤

− 1                     (2) 231 

 𝜏𝜏𝑖𝑖;𝑗𝑗 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑖𝑖;𝑗𝑗
𝜌𝜌𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑗𝑗;𝑟𝑟𝑟𝑟𝑟𝑟

�𝜀𝜀𝑖𝑖;𝑤𝑤 + 1� − 1     (3)   232 

After checking the data for homoscedasticity with the Levené test, an analysis of variance 233 

(ANOVA) followed by a Tukey’s Honestly Significant Difference (HSD) post hoc test was 234 

conducted to compare the mean Cu concentrations and isotopic compositions among soil volumes. 235 

Normal distribution of residuals was checked by visual inspection. Significance was set at p < 236 

0.05. 237 

 238 

3. Results  239 

Copper concentrations in the bulk horizons increased with depth at three of the four 240 

positions (1.1, 2.1 and 4.0 m). Copper concentrations were closely related with those of the clay 241 

fraction (Fig. 3a). The Cu concentrations in the surface (Ap) horizon and clay-rich Bt horizons 242 

varied only little along the trench. In contrast, in the E&Bt-horizon, there was a large lateral 243 

variation in the Cu concentrations, with the lowest value at position 0.6 m (Tab. 1, Fig. 4a). The 244 

δ65Cu values tended to decrease from the Ap horizon to the deeper horizons (Fig. 4b), but showed 245 

no relation to Cu concentrations or the clay fraction (Fig. 3b). However, the δ65Cu values at 246 

different depths in the E&Bt and Bt horizons and at the different positions along the trench were 247 

not different. We only detected a single much lower δ65Cu value compared to all other samples in 248 

the 35-45 cm depth layer (E&Bt horizon) at position 0.6 m (Tab. 1, Fig. 3b, 4b).  249 
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The Cu concentrations were significantly higher in the black and ochre volumes than in the 250 

pale-brown and white-grey volumes, respectively. Copper concentrations were not related with 251 

distance to the drain in pale-brown and white-grey volumes but were lower in the black and ochre 252 

volumes at position 0.6 m than at all other positions (Fig. 5a, Tukeys HSD test, p < 0.05). Overall 253 

the black volumes had the significantly highest and the ochre volumes the significantly lowest 254 

δ65Cu values, while the δ65Cu values of the pale-brown and white-grey volumes were not 255 

significantly different from those of the ochre and black volumes (Fig. 6). The bulk δ65Cu value 256 

calculated from the mass-balanced sum of the individual soil volumes (ranging from -0.36±0.04‰ 257 

to -0.41±0.04‰) showed good agreement with the δ65Cu value of the bulk soil in the E&Bt horizon 258 

at the different distances from the drain (ranging from -0.38±0.03‰ to -0.41±0.02). At position 259 

0.6 m, this is true for the lower bulk sample (45-55 cm depth), which overlaps with the depth where 260 

soil volumes were sampled (Fig. 2), while for the upper 35-45 cm depth layer of the E&Bt horizon 261 

with the low δ65Cu value (-0.91±0.15‰) we did not have samples of individual soil volumes for 262 

comparison. 263 

The dissolved Cu concentrations in the porous cup sample were highest of all analyzed soil 264 

solutions. The Cu concentrations of drain water were consistently lower than those of the 265 

piezometer sample in all three studied samples (Tab. 2). While in the hydrological year 2005/2006 266 

the δ65Cu values in the piezometer and drain waters seemed to be lower in the anoxic samples (Fe 267 

> 40 µg L-1); compared to the oxic samples, the δ65Cu values of the anoxic samples were similar 268 

to those in the oxic samples from the Piezometer in the following hydrological year 2007/08. 269 

Consequently, the variations in δ65Cu values among the various solution types and sampling dates 270 

could neither be clearly assigned to redox conditions nor to the way of sampling. There was no 271 

clear difference in Cu concentrations in waters taken under anoxic conditions (Fe > 40µg L-1) 272 
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compared with oxic conditions (Fe < 40µg L-1). There were no clear differences in δ65Cu values 273 

among the water samples from the piezometers and the drain in 2005/2006, but small variations in 274 

2007/08. The single porous cup sample showed the lowest δ65Cu value. Overall, the water samples 275 

showed higher δ65Cu values than the solid soil samples, with ∆65Cu(soil-solution)= -0.61±0.41. 276 

 277 

4. Discussion 278 

4.1.  Depth distribution of Cu concentrations and δ65Cu values 279 

The vertical distribution of Cu in the study soil is influenced by (1) the amendment of limed sludge 280 

from 1998 to 2001 resulting in a Cu input of approx. 0.9 g m-2 (Montagne et al., 2007), (2) regular 281 

fertilization e.g., with mineral fertilizer (no manure application) and (3) pedogenetic processes 282 

including lessivation and hydromorphy (Montagne et al., 2008). The Cu input with sludge and 283 

fertilizer has increased Cu concentrations in the Ap horizons and also might have changed the 284 

δ65Cu value. In the deeper horizons, clay eluviated from the Ap horizons which accumulated in 285 

the Bt horizons likely explains the increase in Cu concentrations because the clay fraction usually 286 

contains higher Cu concentrations than the coarser particle sizes (Minkina et al., 2011). The latter 287 

is also confirmed by the close correlation between the clay and the Cu concentrations (r = 0.80; p 288 

< 0.001). This correlation even became closer, when Ap horizons (with anthropogenic Cu input) 289 

were removed (Fig. 3a). No δ65Cu values for agriculturally used sludge or mineral fertilizers have 290 

up to now been reported. However, in case that these additions carry a heavier δ65Cu value than 291 

the soilthey might be responsible for the higher δ65Cu values in the Ap horizons. The different soil 292 

depths in E&Bt and Bt horizons show no significant δ65Cu changes, despite the significant changes 293 

in Cu concentrations linked to the clay eluviation. We explain this finding by the fact that Cu 294 

bound to clay controls the concentration and the δ65Cu value of total soil Cu. Our findings suggests 295 
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that lessivation does not change δ65Cu values of the bulk soils, because the eluviated and illuviated 296 

horizons have the same Cu isotopic composition. The lacking influence of clay concentrations on 297 

δ65Cu values is reflected by the absence of a correlation between these two variables (r < 0.001, p 298 

= 0.95). Furthermore, soil volumes with different clay concentrations (Montagne et al, 2008) did 299 

not show a significant difference in δ65Cu values, again indicating that other soil processes than 300 

the clay concentration (e.g. sludge application, weathering; Fig. 7) controlled Cu isotope ratios. 301 

 302 

4.2.  Response of Cu concentrations and δ65Cu values to drainage 303 

The low Cu concentration in the E&Bt at position 0.6 m, suggests that the drainage induced Cu 304 

leaching (Table 1, Fig. 4a). Mass flux calculations indicated that Cu mass flux (mCu flux) at position 305 

0.6 m was, on average, three times higher than at positions 2.1 and 4.0 m (43.8 and 15.3 mg cm-2, 306 

respectively). This loss of Cu from the E&Bt horizon at position 0.6 m is linked with substantial 307 

loss of Fe and clay at positions 0.6 m and 1.1 m, (6.5 and 2.3 kg m-2 Fe and 75.8 and 25.6 kg m-2 308 

clay, respectively; Montagne and Cornu, 2010). The loss has been explained by strongly enhanced 309 

eluviation caused by drainage-induced higher water fluxes, and is most pronounced in the upper 310 

part of the E&Bt horizon at position 0.6 m (Montagne and Cornu, 2010). These findings agree 311 

with the close correlation between the clay and the Cu concentrations (Fig. 3a), which furthermore 312 

suggests that clay is the dominant Cu pool in this soil. In contrast, the observed eluviation had no 313 

significant effect on the δ65Cu value of the drained soil, as illustrated by the lack of a correlation 314 

between δ65Cu values and clay concentrations (Fig. 3b).  315 

At 0.6 m distance, the E&Bt horizon showed a strong negative δ65Cu value in its upper part 316 

(35-45cm), while its lower part (45-55cm) with similar properties (clay and Cu concentrations) 317 

did not show differences in δ65Cu values from the soil at other distances (Fig. 3b). This strongly 318 
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negative value was ascertained by three replicate analyses including separate digestion, 319 

purification and analysis of each replicate. We suggest that the light δ65Cu value in the upper part 320 

of the E&Bt horizon at position 0.6 m might be attributable to the change in redox conditions 321 

following drainage. Redox changes can cause a comparatively large fractionation of δ65Cu values 322 

with the reduced Cu(I) enriched in the light isotopes (Fig. 1; Zhu et al., 2002). Under anoxic 323 

conditions, the reduced Cu fraction may account for a major part of total soil Cu and may carry a 324 

heavy isotope signal to balance that of a Cu-isotopically light residual fraction (Kusonwiriyawong 325 

et al., 2015). This Cu-isotopically heavy reduced fraction might be lost by oxidation (Fulda et al., 326 

2013b) attributable to drainage, leaving the residual Cu isotopically lighter. The reason for the 327 

absence of this isotope effect in the deeper E&Bt Horizon (45-55cm), might be its closer proximity 328 

to the soil water table and thus less pronounced episodic oxidation. Fekiacova et al. (2015) reported 329 

a similar negative value (-0.89 ‰) for a Retisol at approximately the same depth, which they 330 

interpreted as light Cu enrichment linked to Fe oxide precipitation and sorption of light Cu leached 331 

from the surface horizons. However, Fekiacova et al. (2015) observed an increase in Cu 332 

concentrations in contrast to our study soil where the low δ65Cu value was related with a decrease 333 

in Cu concentrations. Consequently, the low δ65Cu values in the study of Fekiacova et al. (2015) 334 

and ours must have different reasons. 335 

Additionally to analyzing the bulk soil samples, we partitioned the soil in the E&Bt horizon 336 

into four different soil volumes. The differentiation starts from the ochre volume, developing 337 

successive pale-brown and white-grey soil volumes by increasing eluviation and redox-induced 338 

bleaching (Montagne et al., 2008). Within the ochre volume, the black volume forms because of 339 

the precipitation of Mn oxides. With increasing proximity to the drain the ochre volumes decreased 340 

and the black, pale-brown and white-grey volumes increased (Montagne et al., 2008).  The black 341 
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volumes always had the highest Cu concentrations, probably because of precipitation with and 342 

sorption of Cu on Mn oxides (Negra et al., 2005). The ochre volume always showed higher Cu 343 

concentrations than the pale-brown and white grey volumes because of eluviation and reductive 344 

leaching of clay minerals and (oxyhydr)oxides in the latter two volumes (Fig. 5a, Montagne et al., 345 

2008). Because of the drainage, Cu concentrations in the black and ochre volumes decreased by 346 

approx. 50% in the direct vicinity (position 0.6 m) of the drain, which is consistent with the 347 

decrease in the bulk soil. The decrease in the Cu concentrations of the ochre and black volumes at 348 

position 0.6 m is driven by the strong clay loss by eluviation. In contrast, the more oxidizing 349 

conditions near the drain caused an increase in the abundance of the ochre and black volumes, 350 

attributable to the precipitation of Mn and Fe oxi(hydr)oxides. Because ochre and black volumes 351 

formed in a soil, which was already depleted in Cu, they showed lower Cu concentrations.. 352 

Independent of the distance to the drain, the contributions of the Cu stocks in the black, pale-brown 353 

and white-grey volumes to the total Cu stock of the bulk E&Bt horizon did not change, while the 354 

contribution of the Cu stock in the ochre volume to the total Cu stock of the bulk horizon decreased 355 

(Fig. 5b).  356 

There were no clear variations in the δ65Cu values of the individual volumes with distance 357 

to the drain (p < 0.05) indicating that the drainage-induced morphological changes at position 0.6 358 

m did not cause a Cu isotope fractionation among the soil volumes. At position 0.6 m, the soil 359 

volumes were taken from the lower depth layer (45-55 cm), which had a similar δ65Cu value as all 360 

other bulk soil samples (Fig. 2). The black volumes showed always significantly higher δ65Cu 361 

values than the ochre volumes they develop from. This might be attributable to variable redox at 362 

the small spatial scale at which the differentiation into the four soil volumes occurred and related 363 

Cu isotope fractionation or by the sorption on Fe and Mn oxy(hydr)oxides in the black volumes. 364 
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As redox variation usually causes a strong isotope fractionation (Fig. 1) we consider more likely 365 

that the limited changes observed in the δ65Cu values of the different soil volumes depended on 366 

the adsorption to Fe and Mn (oxyhydr)oxides (which preferentially adsorb heavy isotopes, Fig. 1b, 367 

Pokrovsky et al., 2008; Balistrieri et al., 2008). 368 

    The overall lack of a correlation between the clay concentration and δ65Cu values, the 369 

differences in δ65Cu values between the 35-45 and 45-55cm depth layers despite a similar degree 370 

of eluviation and the absence of significant variations between the ochre and the white-grey soil 371 

volumes (Fig. 5, the white grey volume is clay-depleted) imply limited importance of clay 372 

eluviation for the δ65Cu values of the soil, despite the marked effect of lessivation on Cu 373 

concentrations in bulk horizons (Fig. 3).  374 

 375 

4.3.  Cu in soil water 376 

The Cu concentrations in our soil water samples were similar to the previously published 377 

range of Cu concentrations in soil pore water during weathering of black shale of 1-16 µg L-1 378 

(Mathur et al., 2012), dissolved Cu in river of 0-3 µg L-1 (Vance et al., 2008) and dissolved Cu in 379 

wetlands 1-12 µg L-1 (Babcsányi et al., 2014). The low concentrations in the drain water may be 380 

caused by co-precipitation with or sorption to Mn and/or Fe (oxyhydr)oxides precipitating near 381 

the drain pipe where the reduced Mn and Fe comes into contact with oxygen. Samples with low 382 

(<40 µg L-1) and high (>40 µg L-1) Fe concentrations (indicative for oxic and reducing conditions, 383 

respectively) did not show systematically different Cu concentrations, indicating that the redox 384 

potential was not sufficiently low to reduce Cu. 385 

The δ65Cu values in our water samples are well within the range reported for soil, river, 386 

and wetland water ranging from 0.02-1.45‰ (Vance et al., 2008; Mathur et al., 2012; Babcsányi 387 
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et al., 2014). The δ65Cu values during anoxic conditions in 2005/06 overlapped with those during 388 

oxic conditions in 2007/08, showing no clear relationship with the redox potential in the 389 

piezometer. In the drain water, the δ65Cu values seemed to be lower under anoxic conditions, but 390 

were similar to the oxic sample from the piezometer in 2007/08. The uniform Cu concentrations 391 

and δ65Cu values indicate that there was no redox-induced change in Cu mobility, agreeing well 392 

with the findings from the bulk soils, where we also did not observe an indication for redox 393 

mobilization of Cu. The δ65Cu value of dissolved Cu was heavier than that of the bulk solid soil 394 

(∆65Cu(soil-solution)= -0.61±0.41), but fractionation was less pronounced than reported for redox-395 

induced fractionations in field and laboratory experiments (Fig. 1). The pattern of Cu isotopically 396 

light solid soils and heavy dissolved Cu fits well into the findings of a weathering experiments 397 

with basalts at pH 5 (Li et al. 2016) and results of the analysis of soil solutions from oxic 398 

weathering of black shales, which both always showed an enrichment of the isotopoically heavy 399 

Cu in the dissolved phase (Mathur et al., 2012).  400 

 Independent of the redox conditions, the δ65Cu values of the dissolved fraction in rivers, 401 

wetlands and soils always showed a heavy δ65Cu value, while the particulate and colloidal fraction 402 

showed light δ65Cu values and a strong response to redox changes (Babcsányi et al, 2014; Vance 403 

et al., 2008). The lack of a relationship of the δ65Cu values of dissolved Cu with the redox potential 404 

might be explained by the fact that the Cu isotope ratio of dissolved Cu in soils and rivers is more 405 

strongly controlled by complexation with strong dissolved ligands (Vance et al., 2008, Vance et 406 

al., 2016) than by redox changes. The responsible ligands were identified by cathode-stripping 407 

voltametry and are subdivided in the ligand classes L1 and L2 (Muller et al., 2001). Both ligand 408 

classes have high stability constants up to 1016 and often occur in excess compared to Cu 409 
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concentrations in solution (Vance et al., 2008). Therefore, it can be assumed that almost all 410 

dissolved Cu occurs in complexed form in environmental solutions (Muller et al., 2001). 411 

 412 

5. Conclusions 413 

1) The slightly decreasing δ65Cu values with increasing depth in the bulk soils might be 414 

caused by addition of heavy Cu (e.g., fertilizer and sewage sludge) to the surface soil.  415 

2) Drainage did not change δ65Cu values in bulk soil and soil volumes, despite Cu 416 

redistribution by enhanced clay eluviation, with the exception of one point. A low 417 

δ65Cu value and Cu concentration in the upper E&Bt horizon near to the drain may 418 

indicate oxidative weathering and leaching of heavy Cu isotopes formerly stored in the 419 

reduced Cu pool and is the only δ65Cu value which we could link to redox changes. 420 

The drainage caused changes in the Cu distribution among the soil volumes indicative 421 

of locally changed pedogenetic processes. The δ65Cu values showed significant 422 

differences among the soil volumes but did not change with distance to the drain, 423 

indicating that the Cu isotope signals are dominated by sorption processes but little by 424 

redox changes.  425 

3) The Cu concentrations and δ65Cu values in the solution samples did not respond to 426 

changes in soil redox conditions, indicating that short-term changes in redox conditions 427 

in the soil have a small or no effect on the isotope signals of dissolved Cu. The overall 428 

δ65Cu value of dissolved Cu was heavier than that of bulk solid soil (∆65Cu(soil-solution)= 429 

-0.61±0.41), which we attribute to weathering and sorption of dissolved Cu to strong 430 

ligands in solution in line with several reports of soils solutions and river waters in the 431 

literature. 432 
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 433 

A conceptual model of the effect of the different processes on Cu distribution and δ65Cu 434 

values in the soil is displayed in Fig. 7. In summary, the two dominant pedogenetic processes in 435 

the study soils (lessivation and hydromorphy) seem to have limited influence on the Cu stable 436 

isotope ratios although lessivation strongly controls Cu concentrations. The effect of drainage on 437 

δ65Cu is visible only at one position close to the drain, which probably showed the strongest change 438 

in redox conditions. Our results illustrate that redox induced Cu leaching is only visible where the 439 

soil is most oxidized. Instead, in the Retisol clay eluviation and leaching of organically complexed 440 

Cu, drive Cu mobility. In general the δ65Cu approach on bulk soils is helpful to investigate the 441 

influence of redox and sorption processes on Cu mobility in the soil system, but does not help for 442 

clay eluviation were two pools (e.g. clay and soil) are isotopically not discernible. The application 443 

of δ65Cu values to investigate into redox controlled Cu mobility might be of high importance as 444 

reductive Cu mobilisation is driving the mobilisation of a number highly relevant pollutant 445 

elements (Ag, Cd, Hg, Pb; Abgottspon et al., 2015; Hofacker et al., 2013b; Weber et al., 2009b).   446 
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Table 1 601 

Copper concentrations and δ65Cu values of the different soil horizons as a function of distance to 602 

the drain.  603 

 604 

Horizon Depth Cu  SD δ65Cu 2SD na 

(cm) (µg g-1)  (‰)   
 position 0.6 m 

Ap 10-20 7.3 0.1 -0.25 0.01 1 
E&Bt 35-45 5.7 0.1 -0.91 0.15 3 
 45-55 5.6 0.1 -0.40 0.02 1 
Bt 55-65 9.1 0.2 -0.39 0.06 2 
 65-75 10.8 0.4 -0.40 0.09 2 

 position 1.1 m 

Ap 10-20 8.1 0.6 -0.28 0.01 1 
E&Bt 40-55 8.2 0.7 -0.39 0.03 1 
Bt 55-65 10.7 0.2 -0.40 0.06 2 
 65-80 10.5 0.3 -0.31 0.03 1 

 position 2.1 m 

Ap 10-20 6.5 0.1 -0.27 0.01 1 
E&Bt 40-50 10.6 0.9 -0.41 0.02 2 
 50-60 10.8 0.7 -0.39 0.01 2 
Bt 70-83 11.4 0.3 -0.37 0.04 2 

 position 4.0 m 

Ap 10-20 8.5 0.2 -0.20 0.01 2 
E&Bt 35-45 8.4 0.2 -0.38 0.03 1 
 45-55 10.2 0.6 -0.39 0.03 1 
Bt 55-65 11.7 0.8 -0.33 0.02 3 
 65-75 12.0 1.1 -0.35 0.01 3 

a n is the number of independent digestions and purifications for isotope analysis 605 

  606 
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Table 2 607 

Copper concentration and δ65Cu values of piezometer, drain water and porous cup samples in the 608 

hydrological years 2005/06 and 2007/08.  609 

 610 

 611 

 612 

 613 

 614 

  615 

Sample 
name 

2005/06 2007/08 
Fe < 40 µg L-1 Fe > 40 µg L-1 Fe < 40 µg L-1 

Cu δ65Cu 2SD Cu δ65Cu 2SD Cu δ65Cu 2SD 
µg L-1 (‰)  µg L-1 (‰)  µg L-1 (‰)  

Piezometer 5.5 0.40 0.08 5.3 0.10 0.09 6.5 0.11 0.03 
Drain water 2.5 0.42 0.18 2.9 0.17 0.01 2.1 0.36 0.02 
Porous cup 14.1 0.04 0.05       
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Figure captions 616 

Fig. 1 Compilation of a) δ65Cu values found in soils, soil and river waters and b) ∆65Cu values 617 

reported for different processes, which might be of relevance in the Retisol. 1Bigalke et al. 618 

(2011),  2Bigalke et al. (2010a), 3Bigalke et al. (2010c), 4 Vance et al. (2016), 5Bigalke et al. 619 

(2013),  6Fekiacova et al. (2015), 7 Mathur et al. (2012),  8 Ilina et al. (2013), 9Petit et al. 2013), 620 

10Vance et al. (2008), 11Balistrieri et al. (2008), 12Clayton et al. (2005), 13Pokrovsky et al. (2008), 621 

14Li et al. (2015), 15Bigalke et al. 2010b), 16Ryan et al. 2014), 17Ehrlich et al. (2004), 18Zhu et al. 622 

(2002), 19Asael (2006), 20Mathur et al. (2005), 21Mathur and Fantle (2015), 22Mathur et al. 623 

(2012). 624 

Fig. 2 Schematic diagram of the study design showing the drain, the disturbed zoned caused by 625 

subsurface drainage installation, the soil sampling depth at positions 0.6, 1.1, 2.1 and 4.0 m, 626 

respectively, the sampling area of individual soil volumes and the sampling position of water 627 

samples extracted from positions 0.7, 1.5 and 4.0 m, respectively and the variation of the soil water 628 

table as registered in a piezometer.  629 

Fig. 3. Relationship between a) the ,clay  and Cu concentrations among all soil samples (solid line, 630 

upper equation). If the Ap horizons (which received anthropogenic Cu) were removed, the 631 

relationship would become stronger (dotted line, lower equation). In b), the relationship between 632 

clay and Cu concentrations (black diamonds) and clay concentrations and δ65Cu values (open 633 

triangles) of the E&Bt horizons are displayed separately because these horizons should initially have 634 

a homogeneous Cu isotope signal, which is then affected by the drainage. While clay and Cu 635 

concentrations show a strong linear correlation (solid line, equation), there was correlation between 636 

the clay concentrations and the δ65Cu values. The red arrow illustrates the shift between the δ65Cu 637 



32 

values of the uppermost sample at position 60 and the other Bt horizon samples which show identical 638 

δ65Cu values.  639 

Fig. 4. Vertical distribution of a) Cu concentrations, b) δ65Cu values of the different bulk soil 640 

horizons as a function of the distance to the drain. Horizontal bars indicate sampling depth. Vertical 641 

bars indicate a) SD of concentrations and b) 2SD of Cu isotope ratios. Vertical error bars indicate 642 

the depth interval the sample was taken from. The letters at the right site of the figure are pedogenetic 643 

horizon designations. 644 

Fig. 5. Copper concentrations in the soil volumes at different distances from the drain (a) and Cu 645 

stock of a given soil volume (b). Horizontal error bars indicate a) SD of concentration analysis and 646 

b) error propagation based on the standard deviation of concentrations, volumes and bulk densities.  647 

Fig. 6. Mean δ65Cu values of the four soil volumes indicative of the dominating pedogenetic 648 

processes combined from all four distances from the drain. Error bars indicate 2SD between the 649 

four positions. Different superscript letters indicate significant differences in δ65Cu values among 650 

soil volumes according to ANOVA with Tukey’s HSD taking the four distances from the drain 651 

as replicates. 652 

Fig. 7. Mechanistic model of the fate of Cu in the drained Retisol. The size of the arrows indicate 653 

the dimension of Cu mass fluxes and the ‰ values refer to ∆65Cuprocess-bulk soil values caused by 654 

the various processes. 655 
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Figure 2 663 
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Figure 3 665 
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Figure 5 681 
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Figure 6 685 
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Figure 7 690 
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