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For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely
unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and bio-
logical properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and char-
acterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western
Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged
to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study
area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expan-
sion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west.
The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-
distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there
was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of
genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology
characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate
that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have inter-
acted to generate genetic diversity within this species.
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Data Summary

This study uses whole-genome sequence data of F. tularensis
samples and connected metadata, which are available
through the information given in Table S1 (available in the
online Supplementary Material) including the GenBank
accession numbers. The single-nucleotide polymorphisms
and the canSNPer software used for the canSNP analysis are
available at https://github.com/adrlar/CanSNPer.

Introduction

Geographical dispersal of microbes causing disease can be
difficult to study by genetic approaches, mainly because dis-
persal of microbes may be rapid in relation to the rate of
mutation and genetic diversification is often characterized
by horizontal gene transfer events that can quickly obscure
phylogenetic signatures of dispersal. It remains uncertain if
barriers to geographical dispersal exist for microbes which
could influence the genetic diversity of populations and
would be analogous to those observed among plants and
animals (Finlay, 2002; Nemergut et al, 2013). With the
advent of large-scale genetic population approaches for
microbes more knowledge is accumulating; results from
basal studies in saline environments, experimental systems
and soils indicate that spatial distance may contribute to
microbial genetic diversity patterns (Low-Décarie et al.,
2015; Ramette & Tiedje, 2007; Wang et al, 2015). These
approaches may additionally provide novel insights into an
organism’s biology (Vellend et al., 2014).

Francisella tularensis, a facultative intracellular bacterium
causing the disease tularemia, is best known as a potential
agent of bioterrorism due to its high virulence, low infec-
tious dose and ease of spread by aerosol; it historically was
stockpiled as a biological weapon (Dennis et al., 2001). Nat-
ural disease outbreaks present an opportunity to investigate
microbial population diversity and geographical dispersal of
F. tularensis, which is a bacterium with little genetic varia-
tion (Johansson & Petersen, 2010). Dispersal can be studied
by investigating F. tularensis isolated from various geo-
graphic locations from diseased humans, other mammals,
or transmitting arthropod vectors. There are two subspecies
of F. tularensis important with respect to infection in mam-
mals of which only the less aggressive F. tularensis subspe-
cies holarctica exists in Europe (Dennis ef al., 2001).

Impact Statement

In this work, we used genome data to understand
biological properties and geographical spread of the
bacterium Francisella. tularensis, which causes the
disease tularemia. Humans may contract tularemia
from infected mammals, ticks or mosquitoes or
from environmental dust, but it is unclear where the
bacterium survives between infections. By mapping
the genomes of F. tularensis strains from many
infected individuals across Western Europe, we
found that tularemia has moved from east to west in
Europe. Unexpectedly, we observed a movement pat-
tern of big jumps across the continent. Our study
advances the research field by showing that F. tular-
ensis has a mechanism for long-distance transport.
We additionally found more evidence that F. tularen-
sis spends much of the time in a resting survival
phase between infection episodes. More generally,
this work demonstrates the value of analysing micro-
bial genome data at large scales for learning more
about an infectious organism’s biology and for inter-
preting epidemiological patterns of infectious dis-
eases that currently are poorly understood.

Tularemia has only recently been reported from Western
Europe and it appears that a single genetic subpopulation of
F. tularensis is specific to this region (Dempsey et al., 2007;
Gyuranecz et al., 2012; Pilo et al., 2009; Vogler et al., 2009).
Seasonal disease outbreaks of tularemia were first reported
in central Europe in the late 1930s around Marchfeld, north
of Vienna, and continued to appear intermittently in Aus-
tria, Czechoslovakia, Poland and Eastern Germany through-
out the next decade (Jusatz, 1952b). In the early 1950s
independent outbreaks were documented in Western
Germany and France (Correspondent, 1947; Gelman, 1961;
Jusatz, 1952b). Italy reported its first tularemia outbreak
only in 1964 and Spain as recently as 1997 (Gutiérrez et al,
2003; Instituto de Salud Carlos III, 1997; Rinaldi et al.,
1964).

We applied whole-genome and canonical single-nucleotide
polymorphism (canSNP) analysis to a comprehensive set of
F. tularensis samples from Western Europe to characterize
microbial genetic diversity through the lens of the four clas-
sical processes of population genetics: selection, genetic
drift, mutation and dispersal. Our findings demonstrate
that tularemia has moved east to west in Europe in big
jumps.

Methods

Study location and data collection. A total of 205
F. tularensis subspecies holarctica strains were collected from
countries in continental Western Europe, including:
Belgium, Germany, France, Netherlands, Italy, Spain and
Switzerland. These strains were isolated over 65 years
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(1947-2012) from infected humans, infected mammals in
zoos, arthropod vectors, including ticks, and free-ranging
wild animals. Thus, they represent a very diverse set of hosts
and vectors over large spatial and temporal scales.

Genome sequencing. Whole-genome sequences were used
to identify SNPs in 67 F. tularensis samples from Western
Europe. A set of 62 whole-genome sequences were gener-
ated for this study using Illumina sequencing platforms
(Illumina) and five were retrieved from the public domain
(see Table S1). The sequencing instruments used were
HiSeq 2000 (SciLifeLabs, Uppsala, Sweden and Spietz labo-
ratory, Spietz, Switzerland), GA IIx [Translational Geno-
mics Research Institute (TGen), Flagstaff, Arizona], and
MiSeq [Swedish Defence Research Agency (FOI), Umed,
Sweden; Northern Arizona University and TGen, Flagstaff,
USA]. Steps of DNA preparation, library construction, and
genome sequencing were done according to the manufac-
turer’s instructions. Library preparations were performed
using TruSeq kits (Illumina), Nextera XT kits (Illumina), or
KAPA library preparation kits (KAPA Biosystems). The
KAPA kits were used with Illumina sequencing per a modi-
fied protocol including the incorporation of customized
8 bp tags for multiplexing (Kozarewa & Turner, 2011), with
the adapters and oligos purchased from IDT (Integrated
DNA Technologies).

CanSNP assays. Data from comparisons of the whole
genomes were used to construct 20 new canSNP assays for
the characterization of F. tularensis strain samples following
previously published guidelines (Birdsell et al, 2012). In
addition, assays described in previous studies were used
(Svensson et al, 2009; Vogler et al., 2009) to assign each
sample to a phylogenetic subpopulation defined by canSNPs
(see Tables S1, S2 and S3 for more information on samples
and canSNP assays including primer concentrations and
PCR conditions).

Genomic assembly and alignment. The F. tularensis
genome sequences from the study region were assembled
using ABySS 1.5.2 (Simpson et al, 2009) and compared
with a global database of more than 600 F. tularensis
genomes maintained at the Swedish Defense Research
Agency, Umed, Sweden. All F. tularensis genomes in our
database that were found to differ by less than 10 SNPs
from any genome in the study region, and nine additional
public genome sequences, were used to generate a global
diversity tree (see Fig. 1a). Genome alignments were gener-
ated using a stepwise procedure: (1) each sequence was
aligned with the F. tularensis strain FSC200 genome (NC
009749) to generate a nucleotide position reference. (2) All
genomes were merged into a single alignment that was visu-
ally reviewed for misalignments around gaps. (3) Five
nucleotides upstream and five downstream of an alignment
gap were excluded to remove uncertain SNPs because read
alignment in these regions is error-prone.
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Phylogeny and genetic diversity. The software MEGA
v. 5.13 (Tamura et al., 2011) was used for the calculation of
genomic distances and for phylogenetic analysis of genomic
data, employing the number of differences-model and the
neighbor-joining algorithm. The mean nucleotide diversity
(Pi) per country was calculated using MEGA for countries
with more than five genomes. Pi for a comparison of the
East and the West part of the study region was estimated
using DnaSP 5.10.01 (Librado & Rozas, 2009). Using the
genome-based phylogeny and the strategically selected
canSNP assays representing the branches of this phylogeny,
strains with canSNP data were assigned to a node of the
tree. The canSNP approach was highly accurate for node
assignments but did not expose potential new genetic diver-
sity as compared with the genomes used for reconstructing
the whole-genome tree (Alland et al., 2003; Pearson et al.,
2004).

Phylogeographic analysis. Each sample was assigned to a
whole-genome phylogenetic clade or to a canSNP group,
mapped to geographical coordinates using Google Maps,
and geographical clustering was generated by Marker Clus-
terer (https://github.com/googlemaps/js-marker-clusterer).
The genetic network analysis was manually performed by
connecting locations with identical F. tularensis canSNP
genotypes. The ties connecting two locations were drawn to
reflect the number of shared unique genotypes. The net-
work was manually drawn as an arc diagram.

Analysis of genetic to geographic distance. Genetic
clades of the whole-genome phylogeny containing more
than five genomes were identified and used to analyze the
relationship between genetic and geographic distances. A
genetic distance matrix for all pairs within a clade was cre-
ated using the SNP distance between strains, and a corre-
sponding geographic distance matrix was created using the
fossil package in R 2.10 (Vavrek, 2011).

Historic and contemporary endemic regions. Data on
the spatial distribution of tularemia in Europe 1926-1955
were retrieved from publications by Jusatz (Jusatz, 1952a, b;
1955; 1961), and compared with the 19472012 data of this
study. Comparison with the historic disease distribution
was made by plotting instances of more than five strains
located nearby as a cluster on a map, and by showing all
strains located outside the historic disease distribution.

Mutation rate analysis. Mutation rate estimates were
made using the software BEAST 1.8.1 (Drummond et al,
2012) with 100 million iterations, out of which 10 million
were used as burn-in. The lognormal relaxed clock model
and the GTR without site heterogeneity substitution model
was selected. The full 67 genome dataset and the set of
genomes from two outbreaks in Spain (Ariza-Miguel et al,
2014) were utilized in separate analyses.

Nucleotide sequence accession numbers. Whole-
genome sequence data have been deposited at in GenBank.

http://mgen.microbiologyresearch.org
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Fig. 1. Whole genome neighbor-joining phylogenetic trees representing relationships among F. tularensis strains. (a) shows the relation-
ships of 67 strains from Western Europe (Branch B.11) relative to the known global diversity within F. tularensis subsp. holarctica. (b)
shows detailed relationships among strains from Western Europe. Country of origin and year of isolation are indicated at the branch tips,

with colors representing different phylogenetic clades.
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Accession numbers of sequence data and metadata for each
sample are available in Table S1.

Results

Phylogeny for F. tularensis in Western Europe

Using a whole-genome assembly approach and SNP discov-
ery, 67 F. tularensis strains from Western Europe were
found to form a tightly clustered population distinct from
all other worldwide F. tularensis subsp. holarctica genome
sequences selected to represent the currently known genetic
diversity of the subspecies (Fig. 1a). This tight cluster was
found at the end of branch B.11 of F. tularensis subsp.
holarctica and was divided further into two distinct genetic
clades, B.45 and B.46 — each represented by multiple strains,
and also a single strain (FDC310) separate from the other
strains (Fig. 1b). The B.45 and B.46 clades were separated
by just 12 SNPs. There were no conflicting SNP character
states in the phylogeny (i.e. no homoplasy). The absence of
homoplasy among 251 SNPs in the 1 531 265 nucleotide
alignment of the 67 genomes added credibility to the phylo-
genetic reconstruction, but despite the temporal and spatial
extent of our dataset, relationships among many F. tularen-
sis strains within the B.45 clade remained unresolved. The
clade was densely populated with 60 genomes and some of
them divided into several subclades originating indepen-
dently from a common internal node (Fig. 1). Such star-like
phylogenetic structures with relatively long terminal
branches indicate a population expansion compressed in
evolutionary time. There were eight additional subclades
within the B.45 clade (B.48 through B.55) that also exhib-
ited star phylogenies. Synapomorphic SNPs shared by all of
the strains within these different subclades signified their
common ancestry, with 6-8 synapomorphic SNPs for the
B.48 and B.52 subclades and 1-3 SNPs for the B.49-51 and
B.53-55 subclades. The B.46 clade contained just six
genomes and generally exhibited longer branch lengths
compared with B.45, as well as a more sparsely populated
hierarchical tree structure, indicating that this F. tularensis
population was less abundant in Western Europe and had a
longer evolutionary history.

Phylogeography

Phylogeographic analyses (Fig. 2a) revealed major differen-
ces between the two main clades. Despite high sampling
intensity, strains assigned to the B.46 clade (n=9) were iso-
lated only towards the Eastern boundary of the study area
with the majority of strains isolated in the Alps region of
Switzerland and Italy; no B.46 strains were recorded west of
the French Alps region. In contrast, strains assigned to clade
B.45 (n=195) were isolated throughout Western Europe,
occurring widely across the study area from east to west and
from north to south. The B.45 and B.46 strains examined in
this study were isolated from diverse infected hosts, with the
relatively few B.46 strains being isolated from hares, humans
and a lion tamarin at a zoo, indicating that under-sampling
of any particular specific B.46-reservoir in Western parts of
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Europe is an unlikely explanation for its absence there. Sev-
eral subclades within the B.45 clade were distributed
throughout the study area, including subclades B.49 and
B.50. However, other subclades within the B.45 clade were
restricted to specific geographical locations: strains from
subclades B.48 and B.52 were only isolated in Spain and
strains from subclade B.54 were only isolated in the South-
east portion of the study area.

Genetic diversity and nucleotide substitution
patterns

An analysis of SNP accumulation in the 67 whole-genome
sequences revealed higher genetic diversity among strains
isolated in the Eastern versus the Western part of the study
area. The per genome nucleotide diversity measures were
different using the Jukes and Cantor correction model mea-
suring Pi(2)JC 0.07 in the East, and Pi(2)JC 0.05 in the
West. Genetic diversity was greatest among genomes from
Switzerland and its neighboring countries (Fig. 2b). The
SNP patterns were further explored in F. tularensis strains
from Western Europe, aiming to infer underlying biological
processes. There were 207 SNPs in predicted coding regions
(145 non-synonymous and 62 synonymous) amongst the
total of 251 SNPs, and we identified a prominent AT muta-
tional bias in these genomes already containing 77.8 percent
AT nucleotides. (Table 1). The total number of G or C to A
or T changes was 147 and the number of A or T to G or C
changes was 54. Notably, the most common changes were
G—A, CoT transitions, accounting for 58 percent of the
mutations in the total data, a result indicating that weak
forces are acting to counteract an increase in AT-content.

Historical and current tularemia distribution

A comparison of the geographical distribution of the strains
analyzed in this study from 1947 to 2012 with historical
data on tularemia epidemics from 1926-1955 (Jusatz,
1952a, b) revealed that historic disease areas largely have
persisted (Fig. 3). The distribution of strains in our analysis
reflected that tularemia was first reported in 1964 in Italy
and 1997 in Spain indicating that these countries are new
endemic areas.

Estimate of mutation rate

Comparing the whole-genome phylogeny and the years of
isolation for the corresponding F. tularensis isolates
indicates that there was little temporal mutation signal in
the dataset as a whole. Within clade B.45, with the largest
number of strains whole-genome sequenced, the branch
lengths are not correlated with chronological time, as strains
isolated 60 years apart in Switzerland and France differed at
only six SNPs even with whole-genome comparisons
(Fig. 1). Using Bayesian temporal mutational analysis, our
67-genome dataset from Western Europe 1952-2012 did
not have sufficient temporal structure for rate estimation.
Thus, to maximize the power of the temporal mutation rate
analysis, we selected whole-genome sequences representing

http://mgen.microbiologyresearch.org
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graphical location (n=15). (b) shows the mean nucleotide diversity of 67 F. tularensis genomes among different countries ordered from
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Table 1. Number of substitutions of the six nucleotide pairs in
the coding regions of the 67 genomes

Substitution Number non- Number
synonymous synonymous
(percentage)* (percentage)
C—G, G=C 0 (0) 1(0.5)
A—C, T-G 7 (3) 1(0.5)
A>T, T>A 12 (6) 2 (1)
C—A, G>T 21 (10) 5(2)
A—>G, T-C 24 (12) 13 (6)
G—oA, C->T 81 (39) 40 (19)
Total 145 62

*Percentages were calculated as the number of the type of substitution
event divided by the total of 207 substitutions, e.g. (7+-207)x100=3.

active outbreak areas in Spain from 1998-99 (#=12) and
2007-08 (n=12) and identified a mean rate of 0.4 mutations
per genome per year (1.87x10”" mutations per site per
year; see Fig. S1 and Table S4). The majority of mutations
(n=45) among these 24 genomes were found at terminal
tips of the phylogenetic tree and only a minority (n=24)
were shared among multiple strains.

Dispersal patterns

Overall, genetic distance correlated poorly with geographic
distance among genomes within the star-like clade B.45
(Fig. 4). For example, there were small genetic distances
(4-9 SNPs) between pairs of strains assigned to subclades
B.49 and B.51 that were separated in geographic space by 0—
1750 km. In addition, pairs of strains within subclade B.50
that were separated by very small genetic distances (<6
SNPs) were separated in geographic space by distances rang-
ing from 150 to over 1500 km. This pattern indicates that
there are few barriers to dispersal within the study area, as
very similar genomes were sometimes separated by large
geographic distances. Only in the two subclades that are
geographically restricted to the recently emerging areas for
tularemia in Spain (subclades B.48 and B.52) was there a
strong correlation between genetic distance and geographic
distance.

The genetic network analysis, which was conducted east to
west across the study area using canSNP data for 205
strains, uncovered complex patterns of both local and long-
distance dispersal events (Fig. 5). There were numerous
examples of local dispersal events, with identical genotypes
located at nearby geographic locations; this was the most
abundant network pattern and was particularly common at
the Eastern and Western boundaries of the study area. But
there were also similar genotypes located across long geo-
graphic distances, which is consistent with past long-
distance movement of recent bacterial ancestors. The net-
work revealed many different long-distance connections
between east and west locations and some intermediate-
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distance connections. Importantly, recent ancestors of sev-
eral different genotypes appear to have been transported
between the same locations (shown as thicker arcs in
Fig. 5).

Discussion

Our study confirms that Western Europe was colonized by
a monophyletic population of F. tularensis and indicates
that this primarily occurred by clonal expansion of a specific
population. The founder population originated in the East-
ern boundary of Western Europe, and Western and South-
ern regions have been colonized by clonal descendants of
this founder population. Our study also demonstrates that
it is possible to translate large-scale genomic microbial pop-
ulation data into biological properties; we found that long-
range dispersal is an important feature of tularemia ecology
and that F. tularensis mutation rates are mostly slow.

There was higher genetic diversity among F. tularensis sam-
ples from around the Alps, indicating a longer evolutionary
history in this region as compared with other areas of West-
ern Europe. The presence of all the major clades — B.11,
B.45, B.46 and B.47 — in Switzerland but in no other area is
further evidence to indicate an evolutionarily older founder
population from the Eastern boundary of the study region.
In contrast, there was less genetic diversity in the Western
regions of the study area. We note that these findings may
be consistent with a recent colonization of Western Europe
starting from the East and that this would fit with epidemi-
ology records of the first tularemia outbreaks in Southwest-
ern areas of Spain as recently as the 1990s (Gutiérrez et al.,
2003; Instituto de Salud Carlos III, 1997). The star phylog-
eny of clade B.45 (i.e. a multi-furcation tree with many
short branches connected at an internal node) contains the
vast majority of all F. tularensis strains analyzed across West-
ern Europe and is indicative of an evolutionary history with
rapid expansion of a clone. We interpret this as a founder
effect, meaning that the vast majority of F. tularensis in
Western Europe was derived from a very small sample of an
ancestral genetic pool.

Our findings support a model of F. tularensis biology involv-
ing outbreaks of disease being restricted to specific station-
ary ecosystems and landscapes, indicating that the pathogen
is dependent on some specific local ecological conditions
(Goethert & Telford, 2009; Svensson et al, 2009a). We
found that locations of known historical tularemia out-
breaks up to 1955 coincided with the distribution of strains
investigated in this study, which is indicative of long-term
persistence in these regions. Thus, it seems that F. tularensis
has an ability to persist at certain locations and that this
ability results in repeated outbreaks in those locations, as
historically proposed by the Russian author Pavlovsky (Pav-
lovsky, 1966).

There was a puzzling mix of, on one hand, local genetic
structure indicating micro-evolution with limited dispersal
signified by identical or genetically very closely related
strains from small geographic areas, and, on the other hand,

http://mgen.microbiologyresearch.org
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sents the historical focal points between 1926 and 1955 in the corresponding regions as reported by Jusatz et al. in the 1950s. The dotted
red line was marked as the boundary beyond which no tularemia cases were reported between 1926 and 1950 as per Jusatz et al. The
gray arrows show the direction of migration of F. tularensis in recent years.

clear deviations from these patterns. We found in several
instances identical canSNP genotypes at distant locations,
indicating that very long-distance and rapid movements of
F. tularensis must have occurred that influenced the current
genetic diversity of this bacterial population. There was also
surprisingly weak correlation between genetic distance and
geographic distance. We conclude that long-distance dis-
persal events have significantly influenced the current
genetic diversity of F. tularensis, which would explain the
observed patterns with canSNP identities at large distances
(e.g. between Germany and Spain) and also the establish-
ment of new regions of endemicity in Spain and Italy
(Instituto de Salud Carlos III, 1997; Rinaldi et al., 1964).
Our findings support the idea that the degree of dispersal
limitation may be as important for microbes as it is for

plants and mammals in determining the genetic diversity of
populations (Pigot & Tobias, 2015).

The mechanisms of long-range dispersal of F. tularensis are
unknown; possibly bacteria may move rapidly by infected
domestic or wild animals, or via wind (Burrows et al.,
2009). Infected hares may, for example, be imported from
tularemia-endemic areas to previously tularemia-free areas,
this has been suggested as a potential explanation for the
emergence of the disease in Spain in the 1990s (Petersen &
Schriefer, 2005); association with migratory birds is another
possibility (Lopes de Carvalho et al., 2012). The European
brown hare, Lepus europaeus, is recognized as an important
game species throughout its distribution (Smith & John-
ston, 2008). The local geographical migration of this hare is
described to be restricted, but conservation actions and
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Fig. 4. A Clade-wise comparison of genetic distance to geo-
graphic distance is plotted. The x-axis represents geographic dis-
tance between the strains in Kms and the y-axis represents
genetic distance based upon SNP differences identified from
whole-genome analyses. The colors of the circles are consistent
with those of the clades in Fig. 1.

translocations of animals may have extended the geographi-
cal range of some hare populations including in Switzer-
land, France, Italy and Spain (Ferretti et al., 2010; Fischer &
Tagand, 2012; Smith & Johnston, 2008). Wind-borne dis-
persal is another possible mechanism as F. tularensis is a
prototype agent for infections acquired by inhalation of
infectious aerosols (Dennis et al, 2001). Large outbreaks
of natural infection have repeatedly occurred via inhalation
of contaminated hay or straw dust generated in farming
activities (Allue et al., 2008; Dahlstrand et al., 1971; Johans-
son et al., 2014; Syrjild et al., 1985). Given the well-known
propensity of F. tularensis to be part of aerosols, and its
environmental survival properties, long-distance microbial
dispersal may take place over vast distances like in other
microbial populations (Nguyen et al, 2006; Smith et al,
2013). Notably, the occurrence of long-distance transport is
not equal to the successful establishment of a new F. tular-
ensis outbreak area; there may be high-frequency seeding of
bacteria into new geographical areas but a low chance of
bacterial survival and establishment due to unsuitable eco-
logical conditions in these new areas.

The very small genetic diversity observed among the
genomes collected over a 65-year time scale and,
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especially, the lack of correlation between mutation accu-
mulation and time, is remarkable. It appears that the evo-
lutionary rate for the F. tularensis genetic lineages
investigated here compares with, or is lower, than the
lowest rates found in recent analyses of a large set of
genome collections representing a range of bacterial spe-
cies (Duchéne et al, 2016). These results indicate that
F. tularensis exhibits low but variable mutation rates over
chronological time. We identified a mutation rate lower
than one nucleotide substitution every second year per
genome among a subset of strains recovered from an area
in Spain; this region has emerging and recent outbreaks
that should represent an area characterized by a high rep-
lication activity within the bacterial population. The over-
all very low or null rate of mutation in the total data set
indicates a biology wherein the pathogen replicates during
outbreaks and has a mechanism to survive long periods
of inactivity with little replication between epidemics
(Johansson et al., 2014), i.e. a resting phase for long-term
survival (Romanova et al, 2000). Variable mutation rates
related to higher replication rates during outbreaks have
previously been suggested for Yersinia pestis (Cui et al,
2013). We acknowledge that it is problematic to assess
recombination within this population due to an extensive
genetic homogeneity but have found no evidence to ques-
tion previous conclusions of a clonal population structure
(Johansson et al., 2004, 2014; Larsson et al., 2009). In all
populations with extremely little genetic diversity it is
hard to know if a SNP resulted from a de novo mutation
or was an import by allelic exchange of a continuous
DNA stretch containing this SNP. Given the lack of
homoplastic SNPs in our genomic data, however, possible
events of homologous recombination are unlikely to have
distorted our phylogenetic tree reconstruction (Hedge &
Wilson, 2014). In future studies of possible recombination
in F. tularensis, other types of mutations like indels, tan-
dem repeats and inversions may provide additional
information.

Our observations of nucleotide substitution patterns with
an extreme AT-mutation bias amongst the F. tularensis
genomes are in agreement with the idea that ecology and
lifestyle influence genetic variation (Moran et al., 2008). It is
likely that a recent host-adaptation of this pathogen confers
strong genetic drift effects, because of repeated population
bottlenecks in infected hosts, and a relaxed selection for
many bacterial functions in an intracellular environment
(Larsson et al, 2009). The large numbers of G—A or C—T
transitions and C—A or G—T transversions in the F. tular-
ensis population of Western Europe signify that selective
forces acting to oppose the increase in AT content indeed
are weak. An alternative explanation, AT-bias because of
inefficient DNA-repair systems in F. tularensis, seems
unlikely because DNA-repair genes were found to be intact
in a strain from France (Sample ID FTNF002-00 in
Table S1) (Larsson et al., 2009). Additional indirect evidence
indicates we have captured strong genetic drift effects; the
star phylogeny of the B.45 clade is probably a transient
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proportional to the number of shared genotypes at these two locations.

snapshot of evolution with its many subclades existing side
by side in a polytomy. We have not seen such patterns in
previous comparative whole-genome studies of F. tularensis
(Afset et al, 2015; Johansson et al, 2014; Larsson et al.,
2009) and it is expected that several of these subclades will
become extinct after longer evolutionary time periods, by
stochastic events or because of selection forces (Kryazhim-
skiy & Plotkin, 2008; Rocha et al., 2006; Wolf et al., 2009).

In conclusion, this study demonstrates how mutation-
driven microbial evolution, and particularly, a biology with
a resting survival phase, genetic drift effects and long-dis-
tance geographical dispersal, have interacted to form popu-
lation variation in this species. The local diversity of the
tularemia pathogen is influenced by two distinct compo-
nents: first, a local component containing dispersal limita-
tion wherein bacteria are accumulating genetic diversity and
expanding locally; and, second, a component of long-dis-
tance movement with a very low degree of dispersal limita-
tion resulting in genetic diversity imports and highly similar
genotypes at large distances.
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