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Abstract

With the explosive growth of location-based service on mobile devices, predict-

ing users’ future locations and trajectories is of increasing importance to support

proactive information services. In this paper, we model this problem as a super-

vised learning task and propose to use ensemble learning methods with hybrid

features to solve it. We characterize the properties of users’ visited locations

and movement patterns and then extract feature types (temporal, spatial, and

system) to quantify the correlation between locations and features. Finally, we

apply ensemble methods to predict users’ future locations with extracted fea-

tures. Moreover, we design an adaptive Markov Chain model to predict users’

trajectories between two locations. To evaluate the system performance, we use

a real-life dataset from the Nokia Mobile Data Challenge. Experiment results

unveil interesting findings: (1) For individual predictors, Bayes Networks out-

perform all others when data quality is good, while J48 delivers the best results

when data quality is bad; (2) Ensemble predictors outperform individual pre-

dictors in general under all conditions; and (3) Ensemble predictor performance

depends on the user movement patterns.

Keywords: Hybrid feature, Supervised learning, Ensemble learning, Location

and trajectory prediction.
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1. Introduction

Smart-phones are becoming part of people’s daily life. Increasing pervasive

usage of location-based services and smart-phones around the world contributed

to vast and rapid growth of mobility data volume. The large size of heteroge-

neous mobility data gives rise to new opportunities for discovering characteris-5

tics and movement patterns of human mobility behaviors. Mobile data normally

consists of historical information of users’ visiting sequence, which includes the

detailed context of the visited locations and corresponding time-stamps.

Future location prediction is a specific topic in mobile data analysis. The

knowledge of mobile user positions fosters applications that need to know this10

information to operate efficiently. Examples of such services are traffic control,

location-based advertising, mobile network management, etc. Many location-

based services depend on the current or future locations of users. In addition

to location prediction, predicting trajectories between two locations is also of

great importance, which helps to optimize travel paths between two locations.15

The type of dataset plays an important role in accurate location prediction

as the prediction models learn user movement patterns from collected data.

The Nokia Mobile Data Challenge (MDC) dataset [1] holds great potential for

providing fine-quality information for predicting users’ next places. It includes

the mobility profiles of nearly 180 users for almost 2 years. From the study20

of the MDC dataset and the ground truth, we could find out that the visits

of certain places follow some regular patterns. Moreover, people behaviors at

specific locations also provide useful information for certain predictions.

In this work, we formulate the location prediction problem as a standard

supervised machine learning task, where an user-place pair is represented by a25

set of features and the future places are considered as targets. Our goal is to ex-

tract and properly select as many useful features as possible, and build accurate

classifiers (both individual and ensemble ones) with those features. We prefer to

extract features that have discriminative information among different locations,

such that locations can be identified from the observed features. Machine learn-30
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ing techniques have been widely used to discover behaviors and patterns based

on large-scale empirical data. Machine learning algorithms can take advantages

of training data to capture characteristics of the unknown probability distri-

bution among different locations. They could automatically learn to recognize

complex patterns and make intelligent decisions based on the learned knowledge.35

In this work, we use WEKA [2], which is a comprehensive open source tool for

machine learning and data mining. WEKA provides implementations of multi-

ple machine learning algorithms, and we propose to apply ensemble methods to

combine multiple individual predictors to achieve the best performance.

Machine learning can only make accurate classification, if high discriminative40

features are constructed and useful patterns can be observed from the defined

features. However, traditional location prediction methods often separately con-

sider spatial or temporal context information [3] [4]. Although there have been

some efforts to integrate spatial and temporal features for location prediction,

most of them suffer from over-fitting problems due to the large number of spatial-45

temporal trajectory patterns. Some existing works model next place prediction

as a classification problem [5] [6]. However, issues such as the consideration of

other rich contextual data, such as accelerometer, Bluetooth/WiFi connectivity,

call/SMS logs, information about running applications have not been investi-

gated systematically. In order to accurately predict the future place of a user,50

it is fundamental to identify and extract a number of descriptive features for

each place visited by the user.

Therefore, this work focuses on extracting discriminative features among

different locations, such as temporal, spatial, and smart-phone system features.

With these features, we apply ensemble learning techniques to improve the55

location prediction accuracy. The main contributions of this work are as follows.

• First, we systematically characterize the properties of users’ visited places

and movement patterns from a real-life dataset and then extract various

types of features (temporal, spatial, and smartphone system features) to

quantify the correlations between places and features.60
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• Second, with the extracted features, we propose to apply ensemble learning

techniques to improve the crowd location prediction performance by inte-

grating multiple individual predictors. We conducted detailed experiments

for users with different movement types and trace qualities to show the

superiority of ensemble predictors over individual predictors. Moreover,65

we also measure the algorithm execution time to show that the superior-

performance of ensemble predictors comes at a price of higher computa-

tion overheads. This detailed analysis enables us to understand which

algorithms could achieve the best performance under what conditions.

• Third, we analyze the performance of different individual and ensemble70

learning predictors from a mathematical perspective and conduct the time

complexity analysis of each algorithm to theoretically understand why

there are significant performance differences.

• Fourth, we propose an adaptive Markov Chain-based trajectory predic-

tion approach, which adaptively selects the first-order or the second-order75

Markov Chain model to predict the future trajectory of mobile users based

on dataset conditions.

• Fifth, from the experimental and theoretical analysis, we analyze how the

prediction performance is affected by various factors such as mobility trace

qualities, extracted features, user movement patterns, predictor models,80

etc. This knowledge enables us to further design an adaptive prediction

system, which dynamically selects predictors based on dataset and smart-

phone conditions, to guarantee the required system performance.

The structure of this paper is as follows. Section 2 discusses existing efforts

on location and trajectory prediction from mobile data. Section 3 describes the85

dataset that has been used in this work. Section 4 details how we define the

features and which features are used in our prediction system. Section 5 explains

the individual and ensemble predictors that are used in this study. Section 6

discusses the performance evaluation, and the paper concludes in Section 7.
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2. Related Work90

With a large number of built-in sensors, smartphones are able to record rich

types of quality data without the need of any additional devices. Compared

to the check-in data collected from the location-based social networks such as

Foursquare [7], which only records the discrete checked-in data at different lo-

cations, smartphones have the unique advantage to record data in a continuous95

way. Therefore, human mobility analysis has become an active research topic

thanks to the fast development of continuous location tracking techniques. Song

et al. [8] presented a study on predictability of human mobility by analyzing

the entropy of location traces. To predict user’s mobility, in [9] authors used

movement history to map real positions into hexagonal grid. Several prediction100

methods have been proposed for human mobility in different contexts. Ash-

brook et al. [10] introduced to extract significant places and represent location

traces as strings and then use Markov models to predict the next place that

a user will visit. NextPlace [11] proposed a location prediction solution based

on nonlinear time series analysis of the arrival and staying duration of users in105

relevant places. However, the work is only focusing on GPS coordinates-based

prediction. Zhao et al. [12] designed a Dynamic Bayesian Network-based model

to predict the future cells of mobile users to optimize telecommunication net-

work operations. He et al. [13] described a time-based Markov predictor for the

location prediction of stationary and mobile users. However, their works are110

limited to specific methods, which can only produce a prediction accuracy of

nearly 60%. Moreover, the transition matrix-based approaches have clear draw-

backs, since they take only the visit logs as model inputs, but completely ignore

the rich context information. In the prediction model proposed in [14], multi-

expert combination method is used. However, to reach a satisfactory prediction115

accuracy the model needs long training time, which is not quite efficient.

In the next place prediction task of Nokia Mobile Data Challenge 2012, the

best methods relied only on spatial-temporal information to predict future lo-

cations [15], [16], [17], [18]. For instance, Lu et al. [18] focused on using the
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transitions between places for each individual user, as well as the time context,120

to make predictions. They also tried to explore other context information such

as call-logs and accelerometer data in the current place. However, they only

applied a support vector machine (SVM) for each user to predict their future

locations. Tran et al. [19] applied an user-specific decision tree, which was

learned from each user’s movement history, to predict their future locations.125

However, their works were limited to the decision tree-based predictor. [20]

proposed to learn the time distribution for each place as well as the transi-

tion patterns between places by using the kernel density estimation to capture

spatial-temporal context features. Zhu et al. [21] introduced a feature engineer-

ing mechanism to predict semantic meaning of places. However, their works130

were also limited to very few individual classifiers. As we can see, most of the

existing works focused on applying only individual machine learning algorithms

to improve prediction accuracy. However, ensemble learning has been proven to

obtain better performance than could be obtained from any of the constituent

algorithms alone [22] [23]. Therefore, we focus on applying different ensemble135

learning methods to optimize location prediction accuracy.

The wide adoption of GPS receivers in smartphones generates huge amounts

of personal GPS trajectories. By analyzing those GPS trajectories, we can un-

derstand each individual’s mobility patterns and obtain valuable insights about

his/her daily behavior. These patterns and behaviors can be further utilized to140

improve the quality of various trajectory-based services, such as route predic-

tion or trip planning [24], and location-based recommendation [25], [26]. In [27],

authors applied the optimal stopping theory (OST), which is a traditional math-

ematic approach, to classify user movement trajectory. OST-based approaches

normally require strong assumptions when building models to guarantee opti-145

mal solution, which makes it non-practical to solve real mobile crowd location

prediction problems. Anagnostopoulos et al. [28] attempted to use machine

learning techniques to predict future trajectory of users in road networks. They

considered only single predictors and the evaluations were based on a synthetic

dataset. Hung et al. [29] proposed a time-related metric to measure the similar-150
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ity between trajectories. With this similarity metric, they developed a graph-

based trajectory prediction algorithm. However, physical roads are different

from each other. Some direction changes are sharp, while others are smooth.

Thus it is difficult to accurately define similarity between trajectories. In [30],

authors proposed a solution considering users’ movement patterns among dif-155

ferent zones of interest. It is a pure statistical approach, which does not include

any future location predictions.

3. MDC Dataset

Our experiment data is from the Nokia Mobile Data Challenge (MDC) [1],

a dataset that was collected using Nokia N95 smartphones on a 24/7 basis in160

Switzerland from October 2009 to March 2011. About 180 volunteers partici-

pated in the campaign, where they were asked to carry the smartphones during

their daily life with recording software running in the background. Even though

volunteers agreed to carry the smartphones during the campaign, their different

behaviors lead to different trace qualities. Moreover, users also had different165

movement patterns, and some users traveled regularly while others did not.

Based on these observations, we divided the users into multiple categories, de-

pending on the number of available data points, so called instances, which have

been recorded and the movement patterns of the mobile users.

3.1. User Classification170

3.1.1. User Trace Quality

Different behaviors of users lead to different trace qualities. Some users carry

the smartphones all the time. Therefore, the recorded data is complete and use-

ful for making prediction. However, some others forgot to carry the devices

or to charge them in time, such that data recordings are non-continuous and175

useless for prediction. In the MDC dataset, whenever a user stayed in a place

for more than 10 minutes, an entry will be created in the table. The instance

includes: User ID, Place ID, Starting Time, Ending Time. Samp Dist Corr,

7



which means a user with User ID has arrived at a place (with Place ID) from

Starting Time and left the place at Ending Time. Therefore, we define 5 cat-180

egories of quality, depending on the number of instances recorded in a user’s

movement traces.

• Very good: ≥ 1500instances

• Good: 1200-1500 instances

• OK: 1000-1200 instances185

• Bad: 800-1000 instances

• Very bad: ≤ 800 instances

3.1.2. User Movement Patterns

In addition to the trace quality, user movement patterns also have signifi-

cant impact on location prediction. Users had different mobility patterns. Some190

users moved regularly, they traveled between home and office during working

days with a homogeneous movement pattern, and, thus, it is easy to find out

patterns. However, some other users traveled randomly and visited many differ-

ent places for very few times during the data collection period. Their movements

are heterogeneous and it is hard to predict their future locations even though195

the recorded number of data entries is high. Based on this, we defined two types

of user movements: homogeneous and heterogeneous. Homogeneous movement

means that the user’s mobility pattern is quite regular and repeatable, and the

user visits some places quite frequently. In contrast, heterogeneous movement

means that the movement traces are rather random and non-repeatable. In200

the experiments we retrieved the visited places of each user, and classify users’

movements types based on the number of places a user has visited and the num-

ber of the visit. Figure 1 shows an example of homogeneous and heterogeneous

movement types, where the user visits very few places frequently homogeneous

movement pattern and visited many different places occasionally for heteroge-205

neous movement types.

3.2. Place Category

The raw location data from the MDC dataset were recorded as sequences of

GPS coordinates. In our work, we defined places as circular areas that around
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Figure 1: Homogeneous and heterogeneous movements.

GPS coordinate points. As most works on MDC-based location prediction, we210

defined ten categories of places, which are shown in Table 1.

Table 1: Visited Place Categories

Label Place Label Place

1 Home 6 Outdoor sports

2 Friend home 7 Indoor sports

3 Office 8 Restaurant

4 Transportation 9 Shop

5 Friend office 10 Holiday

3.3. User Trajectory

A mobile user can take different paths to move from one place to another.

In Fig.2, the user has two possible trajectories to go from place id 1 to 5, via

different other places while being connected to different cells. Thanks to the215

availability of connected cell ID in the MDC dataset, we are able to extract corre-

lations between users’ trajectories with their movement behaviors. We formally

define a trajectory t between two places as a sequence t = {cell1, cell2, ..., celln},
which contains all the GSM cells that the user connected to while moving from
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Place 
ID 1 Trajectory 1

Trajectory 2

Cell 1 Cell 2Place 
ID 2

Place 
ID 3

Place 
ID 4

Place 
ID 5

Cell 3
Cell 4

Figure 2: Mobile user trajectories.

one place to another one. Furthermore, we define Ti,j = {t1, t2, ..., tn} as the220

set of all trajectories between places i and j.

4. Features

As stated before, a proper feature construction is fundamental to apply

supervised machine learning algorithms to make accurate prediction. Therefore,

we need to construct features from a tremendous amount of raw data and assign225

a set of features (feature vector) to each user-place pair. Feature selection is

a process of selecting a subset of relevant features (attributes) for their use in

prediction model construction. It is the process of choosing a subset of original

features such that the feature space is optimally adapted and the appropriate

features are selected for classification. The collected MDC raw data is of huge230

size. Therefore, it is important to select a subset of data by creating feature

sets, and identify redundant and irrelevant information. Table 3 shows the

association between all the features and places that are used in this work.

4.1. Feature Construction

Most of the MDC-based prediction works use only temporal or spatial fea-235

tures. We combine both and additionally consider the smartphone system-

related features, which include context like battery level, charging frequency,

detected WiFi network, etc. Below we describe the three categories of features

that are used in our system.
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4.1.1. Temporal Features240

Temporal features include context information relevant to the staying time

of a visit. Our visits to certain places tend to have some temporal characteristics

that are relevant to the places. For instance, we stay at offices normally between

8:00 to 12:00 and 14:00 to 18:00, and we are at restaurants for lunch between

12:00 to 14:00. Below we detail the extracted temporal features and the feature-245

place association. We used a time granularity of 1 hour to divide a day of 24

hours. An example of a day time decomposition is shown in Figure 3.

Figure 3: Day time decomposition.

• Weekday: to indicate which weekday is the visit.

• Leaving time: the ending time of the visit. We defined 6 time intervals,

and each time period could be mapped to a specific place. For instance,250

if the visit is between 07:00 and 08:00, then the place is a transportation

hub of a certain probability.

• Duration: time duration of the visit at a place.

4.1.2. Spatial Features

Spatial features include context relevant to the geographical information of255

the visits. We have selected the following feature.

• Visiting frequency: how often to re-visit a place.

4.1.3. System Features

Smartphone system features also have discriminative characteristics in differ-

ent places, and include context information relevant to the smartphone’s system260
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information. We suppose that this information is also helpful when predicting

users’ future locations. For instance, places like restaurants or homes tend to

have more WiFi networks visible than other places, and people tend to have

different types of applications running on their phones when they are working

in the office or enjoying holidays in a resort.265

• WiFi connection: the number of visible WiFi networks.

• Acceleration variation: movement speed variation, which can be de-

rived from the smartphones’ motion sensors. It can be used to detect

changes of movement types, for instance a change from slow speed to fast

speed probably means the user is at the transportation places.270

• Running application: the type of running application. This feature is

mainly used to detect that whether the users are in indoor or outdoor

environments. For instance, map applications are mostly used outdoors,

while a connected WiFi network indicates the user is more probably in an

indoor environment. These information could further help us to improve275

the location prediction accuracy.

• Smartphone profile statement: profile of the phone, for instance nor-

mal or silent mode. Silent mode is more used during office time or concerts,

which helps us to predict those places.

• Charging frequency: how often the smartphones are charged during280

the whole period of data collection. People tend to charge their phones in

offices and home, which helps us to detect home and office areas.

4.2. Feature Importance

Given the extracted features, the next step is to select those features that

influence the prediction output more than others. WEKA has many algorithms285

to do this automatically, and we choose the Logistic Regression algorithm [31].

The Logistic Regression algorithm is very efficient for the MDC data set, since

it has both nominal and numerical features. Table 2 represents the feature coef-

ficients, which are generated automatically by Logistic Regression from WEKA.
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Table 2: Feature coefficients

Feature Coefficient

Detected WLAN (1-4) 97.2

Charging frequency (90-100) 85.35

Acceleration variation 32.06

Staying duration (48-120) 30.19

Leaving time (12:30-14:00) 20.5

Frequency of visit (20-60) 29.89

Weekday (Thursday) 21.44

Is weekend 7.41

It shows that Detected WLAN has the best contribution for the prediction re-290

sult. The Charging frequency, Acceleration variation and Duration of staying

at a place are ranked on second level, third level features include the Visiting

frequency and Leaving Time and the Week day is the feature with lowest impact

on prediction output.

5. Predictors295

In this section, we describe the predictors we used to evaluate our prediction

system. We focus on the individual predictors as well as on ensemble predictors.

5.1. Individual Predictor

Three categories of individual predictors are mostly used in machine learn-

ing: Decision Tree predictors, Bayes predictors, and Neural Networks predic-300

tors/Multilayer perceptron.

5.1.1. Decision Tree

A decision tree is a hierarchical structure for classifying objects, composed

of nodes that correspond to primitive classification decisions. At the top of the

tree is the root node that specifies the first dividing criterion. The root, and305

every non-leaf node, has multiple child nodes, which can be classified further

by checking other criteria. The root node contains all the visits of the training

13



Table 3: Place-Feature Correlation

Place

Feature Leaving

Time

Duration

(Minutes)
Weekday

Visit

Freq.

# Visible

WiFi

Acce.

Var. (M/s2)

Running

APP

Phone

Profile

Charge

Freq.

Home 20:00∼07:00 [480, 2880) MON to SUN [300, 450] [1, 4) [10, 100) Indoor Normal [250, 300)

Work
08:00∼12:30

13:30∼18:30
[120, 480) MON to FRI [200, 300) [4, 6) [10, 100) Indoor Silent [90, 250)

Restau. 07:00∼09:00 [40, 120) MON to SAT [60, 250) [6, 12) − − Normal −

Transp.
07:00∼08:30

18:00∼19:30
[0, 40) MON to SUN [20, 100) [4, 6) [100, ) − Normal −

Outdoor

Sports
12:00∼14:00 [0, 60) SAT to SUN [15, 70) − [50, 100) Outdoor Normal −

Indoor

Sports
18:00∼20:00 [0, 60) SAT to SUN [15,80) [1, 3) [50, 100) − Normal −

Shopping

Center
− [40, 120) FRI to SAT [30, 130) [6, 12) [10, 100) Outdoor Normal −

Holiday

Resorts
− − − [5, 30) − − Outdoor Normal −

Friend

Home
19:00∼22:00 [60, 180) FRI to SUN [5, 10) [1, 4) [10, 100) − Normal [20, 90)

Friend

Office
− − − − [4, 6) [10, 100) − Normal −

data, while child nodes contain those visits that match the dividing criteria

along the path from root to that node. In our experiments, we used the J48

and the Random Forest algorithms. J48 is one of the mostly used statistical310

classifier, and Random Forest is a combination of tree predictors such that each

tree depends on the values of a random vector sampled independently. Figure

4 shows a J48 tree, in which the first dividing feature is the number of detected

WLAN networks, and the features along the path towards the leaf are: duration

of a visit in a place, acceleration variation, charging frequency, leaving time from315

a place, visit frequency of a place, whether the visit is on a weekday or not. The

feature ranking is consistent with the feature coefficient shown in Table 2.
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Figure 4: A J48 decision tree.

5.1.2. Bayesian Networks

Bayesian Networks are a class of statistical models to define conditional de-

pendencies between attributes and parent node, represented by a graph. To do320

so, the Bayesian Network uses a Directed Acyclic Graph (DAG), to create con-

nections between a set of attributes A={attribute1, attribute2, ..., attributen}
and the parent node. In our case the parent node is visited Place-IDs, be-

cause we believed that the current place has a strong connection with the user’s

next place. Figure 5 shows an example of the Directed Acyclic Graph with the325

extracted features and parent node.

Figure 5: A Directed Acyclic Graph (DAG) of Bayesian networks.
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5.1.3. Neural Networks

Artificial Neural Networks are a mathematical model to solve a variety of

problems in pattern recognition and classification. ANNs can be viewed as

weighted directed graphs in which defined attributes are input layer, classes330

(Place-IDs) are output layer and directed edges with weights are connections

between input and output. In this work, we used the WEKA implementation of

ANNs called Multilayer Perceptron (MLP). Figure 6 shows the MLP with ex-

tracted features in our case. In this model, connections are organized into layers

that have unidirectional connections between them. Weights are determined to335

allow the network to produce answers as close as possible to the known correct

answers. The network usually must learn the connection weight from available

training patterns. Performance is improved over time by iteratively updating

the weights in the network.

Figure 6: A typical two-layer Multilayer Perceptron Architecture.
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5.2. Ensemble Predictors340

Ensemble learning is an approach to combine individual predictors to achieve

better performance. As different users have different mobility patterns, there

is no single predictor that could outperform the others for all users. Therefore,

we focus on finding suitable models for different mobility pattern and combine

the models to deliver the optimized performance. The task of constructing an345

ensemble classifier can be broken into two sub-tasks: (1) selecting diverse set

of base classifiers with acceptable performance; and (2) appropriate combina-

tions of their predictions with appropriate weights. In this work, three types of

ensemble predictors are applied: Boosting, Bagging, and Stacking.

5.2.1. Boosting350

Boosting is an ensemble method that begins with a base classifier, which is

selected from a first experiment results performed on the training data. A second

classifier is then created behind it to focus on the instances in the training data

that the first classifier got wrong. The process continues to add classifiers, until

an accurate threshold is reached. The AdaBoost algorithm was the first practical355

boosting algorithm that is widely used and studied in numerous applications and

research fields [32]. We use it to integrate J48, Random Forest, Bayes Networks,

Naive Bayes and MLP.

5.2.2. Bagging

Bagging is an ensemble method that divides the training data set into sev-360

eral subsets with the same sizes. Then, it creates a classifier for each subset.

Afterwards, the final decisions are calculated by getting average values from the

results obtained using the individual data sets. In this work, we used Bagging

to integrate J48, Random Forest, Bayes Networks, Naive Bayes and MLP.

5.2.3. Stacking365

Stacking focuses on a function to combine the outputs of the base learners us-

ing a meta-learner, which called Simple Logistic. In this work, we integratedJ48,

Bayes Networks, and MLP with Stacking.
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6. Performance Evaluation

This section presents the experimentation parameters and detailed perfor-370

mance evaluation of the discussed prediction methods. The evaluation metrics

we used are prediction accuracy and prediction execution time, which indicate

how accurate the algorithm is and how long it takes to generate the prediction

results. From these evaluation results, we further analyze the potential influenc-

ing factors on the prediction accuracy performance. We highlight the impacts375

of temporal and hybrid features, as well as trace quality. Finally, the paper also

includes the theoretical analysis about the performance of different algorithms

under different conditions.

All experiments were run on a laptop running Windows 8.1 Enterprise with

Intel vPro (64-bit-X68 architecture) core i7 CPU 3.2 GHz and 16 GB memory.380

6.1. Machine Learning Approaches and Parameters

6.1.1. Location Prediction

In this work we use WEKA [2] to discover the behaviors and mobility pat-

terns of the mobile users by learning from their historical trajectories. WEKA

includes several types of machine learning algorithms, such as Tree-based, Bayesian385

Networks-based and Neural Network-based. Moreover, it also provides ensemble

learning methods, such as Bagging, Boosting and Stacking. We study the per-

formance of J48, Random Forest, Bayes Networks, Naive Bayes and Multilayer

Perceptron (MLP) algorithms. In order to improve the accuracy of individual

algorithms, we apply Boosting and Bagging to individual algorithms and apply390

Stacking to integrate multiple individual predictors. We carry out all experi-

ments using temporal+spatial features and hybrid (temporal+spatial+system)

features. The experiments are performed using traced data sets of fifteen users,

which are randomly selected from different quality categories, and results are

averaged over those users. For each user, we divide available trace data into ten395

subsets using 10-fold cross-validation, in which one of the 10 subsets is used as

the testing set and the other 9 subsets are put together to form a training set.

Table 4 shows some of the experiment parameters.
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Table 4: Experiments parameters.

Parameter Definition Value

Confidence factor Reduce the size of the decision tree by removing in-

significant nodes

0.25

Number of objects Minimum number of instances per leaf in the decision

tree

2

Hidden layers Hidden layers of the neural network 45-55

Validation Number of iterations to run after observing lower pre-

diction accuracy in Boosting

2

Maximum depth Maximum depth of a tree in J48 and Random Forest 1000

level

Training time Duration of training for individual algorithms per it-

eration in Boosting

300 sec

h Number of neurons at each hidden layer Stacking 3

o Number of outputs in MLP Stacking 100-160

i Number of iterations in MLP Stacking 5

T Number of trees to generate in Random Forest 20

L Number of possible iterations for individual algo-

rithms in Boosting

5

N Number of new generated training sets in Bagging 10

J Number of new generated training sets in Stacking 10

6.1.2. Trajectory Prediction

For trajectory prediction, we have developed a novel adaptive Markov Chain-

based model. As defined in Section 3.3, Ti,j is a set of trajectories Ti,j =

{t1, t2, t3, ..., tn}, where each trajectory tn is a set of m connected cells such

that tn ∈ Ti,j : {cell1, cell2, cell3, ..., cellm}. For each subset tn the first cell is

located in Place-ID = i and the last cell is located in Place-ID = j. In addition,

connected cells on trajectories between two places i and j do not appear on other

trajectories starting from place i towards other places. As shown in Fig. 7, the

model compares the detected periodicity (P ) with a predefined threshold value

(Pth) to decide either the first order or the second order Markov Chain model

should be applied. The First Order Markov Chain is applied if the user’s mobil-

ity pattern between two places is regular (homogeneous movements). For place

pairs where the user’s mobility pattern is irregular (heterogeneous movements),

the Second Order Markov Chain is used. We use the periodicity detection ap-

proach proposed in [33] to identify the user movement types and detect the
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changes of user movement patterns such that the corresponding Markov Chain

model is applied. With this model, the probability of the next cell in a trajectory

is given by:

Pr(celli+1) =





Pr(celli+1 | celli) if P ≤ Pth
Pr(celli+1 | celli, celli−1) if P > Pth

In the experiments, for a given Ti,j = {t1, t2, ..., tn} we use the threshold400

value Pth =
∑n
i=1

|ti|
n , which denotes the mean length of a trajectory in Ti,j .

Place 
ID i

Place 
ID  j

A sequence of connected cells as input

Cell 1
Cell 2 …

Cell n

Periodicity
Detection

First Order MC

Second Order MC

Cell
i

Cell 
i+1

Cell
i

Cell 
i+1

Cell
i-1

P > P_th

P <P_th

Cell 4
Cell 5 …

Cell m

Trajectory t1

Trajectory t2

Figure 7: Adaptive Markov Chain-based Trajectory Prediction.

6.2. Evaluation Results

In this subsection, we present the evaluation results of different predictors.

We focus on two metrics: prediction accuracy and prediction time. Location

prediction accuracy refers to the percentages of correct location prediction, and405

prediction time refers to the execution time of performing the prediction task.

For trajectory prediction accuracy, we use the metrics of precision and recall,

as defined in the work of [30].

6.2.1. Location Prediction Accuracy of Individual Algorithms

This subsection details the prediction accuracy results of individual algo-410

rithms. We first present the average prediction accuracy of all the users with

different trace qualities. Then, we discuss more details about the prediction

accuracy of users with homogeneous and heterogeneous movement patterns.
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Fig. 8 and Fig. 9 show the average prediction accuracy of all the users for

different individual algorithms using temporal, spatial, and hybrid features. The415

results clearly show that the Decision Trees family (specially J48 ) outperform

others, when using the trace data with lower quality, and Bayes Networks pro-

vides better performance (> 84% accuracy) when the data is with higher quality.

Moreover, it can be observed that the estimated accuracy is improved signif-

icantly if the hybrid features are used instead of using only temporal+spatial420

features. For instance, Bayes Networks delivers an accuracy of 84.76% with hy-

brid features, while only 55.47% can be reached with temporal+spatial features.

Figure 8: Prediction accuracy of individual algorithms using Temporal+Spatial features.

Figure 9: Prediction accuracy of individual algorithms using Hybrid features.
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Fig. 10 shows two confusion matrices that help to explain the nature of the

errors made by the classifier with different features[34]. A confusion matrix is

a table that is often used to describe the performance of a classifier on a set of425

test data for which the true values are known. For instance, row 1 of the table

shows that 78 places with real class type = 1 were wrongly predicted as class 2,

and 171 places with real class type = 1 were correctly predicted. These matrices

are generated by the J48 algorithm over the 10 most visited places (indicated

by IDs). For instance, Fig. 10a shows that when the predictor uses only the430

temporal+spatial features, prediction accuracy is lower and several incorrect

predictions are observed. Fig. 10b shows that the number of correct predictions

are significantly improved when the hybrid features are used.

(a) Temporal. (b) Hybrid.

Figure 10: Confusion matrices using different features.

Next, we present the prediction accuracies of individual predictors for users

with homogeneous and heterogeneous movement patterns. As shown in Fig. 11,435

the Bayes Networks scheme delivers the best performance for both movement

patterns, which is consistent with its superior performance presented in Fig. 9.

6.2.2. Location Prediction Accuracy of Ensemble Methods

In this subsection, we present the prediction accuracy of different ensemble

learning algorithms. Same as for the individual algorithms, we first present the440

average prediction accuracy of ensemble learning algorithms for all users. Then,
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Figure 11: Prediction accuracy of individual predictors with hybrid features for homogeneous

and heterogeneous movements

we discuss more details about the prediction accuracy of users with homogeneous

and heterogeneous movement patterns.

Fig. 12 and Fig. 13 present the prediction results of Boosting and Bagging

using hybrid features. The graphs show that using Boosting, prediction accu-445

racy is improved by around 10% compared to when individual algorithms are

applied. It can also be observed that Boosting outperforms Bagging. Different

algorithms provide different prediction performance values. For instance, J48

using Boosting performs better when the traced data is of low quality. However,

using traced data with higher quality, the integration of the Bayes Networks and450

Boosting outperforms the others.

Figure 12: Prediction accuracy of Boosting.
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Figure 13: Prediction accuracy of Bagging.

Fig. 14 shows the evaluation results of the Stacking learning method built

by Simple logistics as a meta-learner for the hybrid features. Due to generating

higher accuracy results by J48, Bayes Networks, and MLP, we decided to inte-

grate them using Stacking. Random Forest and Naive Bayes are ignored as they455

do not improve prediction accuracy. The graph shows that by integrating J48

and MLP, prediction performance is improved by 10% to 14% compared to the

individual algorithms even for trace data with low quality. Another significant

improvement can be observed when J48 is integrated with Bayes Networks and

MLP mechanisms, particularly when the trace data is of high quality.460

Figure 14: Prediction accuracy of Stacking
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Next, we discuss the prediction accuracies of ensemble predictors for users

with different movement patterns. We take user 5927 as an example, and as

shown in Fig. 15, Boosting delivers better results than Bagging for both move-

ment patterns, which is also consistent with the results presented in Fig. 12

- 13. Therefore, from Fig. 11 and Fig. 15 we see that Boosting significantly465

outperforms individual predictors for homogeneous movements, while for het-

erogeneous movements, their performance are similar to each others. Therefore,

an adaptive model selection mechanism should be developed based on the de-

tected movement patterns such that the appropriate predictors can be applied

to guarantee optimal prediction performance.470

Figure 15: Prediction accuracy of Boosting and Bagging with hybrid features for homogeneous

and heterogeneous movements

6.2.3. Location Prediction Execution Time of Individual Algorithms

In addition to prediction accuracy, we also measure the prediction execution

time of each individual algorithm using temporal+spatial features and hybrid

features. The obtained results, as shown in Fig. 16 and Fig.17, indicate that

the Decision Tree and Bayes families could generate the prediction faster. MLP475

is the one requiring more execution time compared to the others.
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Figure 16: Average execution time of individual algorithms using Temporal+Spatial features.

Figure 17: Average execution time of individual algorithms using Hybrid features.

6.2.4. Location Prediction Execution Time of Ensemble Methods

Fig. 18 - 23 present the average execution time of Boosting, Bagging and

Stacking learning methods, using temporal+spatial and hybrid features. The

results show that Boosting outperforms Bagging for different algorithms. When480

J48 and MLP are combined using Stacking, the execution time is 12’012 seconds

for very good quality traces and 109 seconds for very bad quality traces. When

J48, Bayes Networks and MLP are combined with Stacking, the execution time

is 15’078 seconds for very good quality traces and 187 seconds for very bad

quality traces.485
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Figure 18: Average execution time of Boosting with Temporal+Spatial features.

Figure 19: Average execution time of Boosting with Hybrid features.

Figure 20: Average execution time of Bagging with Temporal+Spatial features.
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Figure 21: Average execution time of Bagging with Hybrid features.

Figure 22: Average execution time of Stacking with Temporal+Spatial features.

Figure 23: Average execution time of Stacking with Hybrid features.
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6.2.5. Trajectory Prediction Accuracy

This subsection discusses the results of our trajectory prediction algorithm.

We take user 5927 as an example, whose mobility trace includes both homoge-

neous and heterogeneous movement patterns. Fig. 24 - 25 show the predicted

trajectories for one transition with connected cells between location ID 2 to 3490

and 4 to 5 for user 5927, in which black dots are GPS coordinates, red circles

indicate the frequently visited places, and the yellow circles are the sequence

of cells that the user will be connected between the places. Since the exact

coverage areas of the GSM cells are not known, we estimated their position by

calculating the mean position of the user within a time window of one minute495

when a GSM entry was registered. As shown in Fig. 26, our proposed adaptive

Markov Chain model could achieve a trajectory prediction accuracy of nearly

80% for homogeneous movements and 70% for heterogeneous movements for

user 5927.

Figure 24: Trajectory prediction of user 5927 between location ID 2 and 3.
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Figure 25: Trajectory prediction of user 5927 between location ID 4 and 5.

Figure 26: Trajectory prediction accuracy of user 5927 between place IDs
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6.3. Location and Trajectory Prediction Accuracy Comparison with Past Studies500

In this section, we present the location and trajectory prediction performance

comparison with past correlated studies to show the superiority of our solutions.

For location prediction, we take relevant location prediction accuracy results

from [18] [6], which are the winners of the mobility prediction task in the Nokia

Mobile Data Challenge. The results are shown in Table 5.505

Table 5: Accuracy comparison of location prediction approaches.

Work Algorithms Features Best Accuracy (%)

Our work Stacking Hybrid features 83.37

HKUST [18] Gradient Boosting Trees Limited hybrid features 76.32

EPFL [6] Blending Temporal features 56.22

As we can see from Table 5, our solutions significantly outperform the others.

This is because in [6], authors applied the Blending technique, which is an en-

semble learning approach similar to Stacking, to deliver the best accuracy using

only temporal features. They considered information such as starting/ending

time of a visit, the visit is on weekday or weekend. In [18], authors explored510

temporal and smartphone system features with the Gradient Boosting Trees ap-

proach. However, they did not consider a wide range of features as we did. For

instance, they only used the mean and variance of visit duration at a place for

the temporal features. Therefore, by applying ensemble learning using a wide

range of hybrid features, our solutions provide the best performance.515

For trajectory prediction, we compare our work to the trajectory estimation

using the adaptive, mean and F-score optimization threshold [30]. All methods

were implemented using the GSM cell representation of the trajectories as input

data. We use the performance metrics of precision and recall, as defined in the

work of [30]. The results are shown in Table 6.520
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Table 6: Precision and recall comparison of trajectory prediction approaches.

Work Method Precision (%) Recall (%)

Our work Markov Chain 81.92 68.00

Chapuis et al. [30] Mean threshold 60.30 92.81

F1 optimization threshold 70.42 89.51

Adaptive threshold 70.42 89.51

As shown in the Table 6, our methods outperform all trajectory estimation

methods proposed in work of Chapuis et al. [30] significantly in terms of pre-

cision but it is outperformed in terms of recall. The lower recall number can

be explained by looking at how the proposed adaptive Markov Chain predicts

full trajectories. When dealing with predicting the full trajectory starting from525

one place, the adaptive Markov Chain sequentially adds the next most probable

cell to the predicted trajectory. Considering the case that starting from some

cells the transition probabilities to two different cells is high, one of them will

be left out from the prediction, since only the cell with the highest transition

probability is added. Therefore, for evaluating the performance of the adaptive530

Markov Chain-based trajectory prediction mechanism, it is better to use pre-

diction accuracy as a metric. This is because as opposed to other methods [30],

the cells in the trajectory are predicted in order. Using the Markov Chain as a

predictor also has the advantage that after the mis-prediction of a cell, a new

trajectory starting from the actual cell can be generated.535

6.4. Algorithm Complexity Analysis

In this subsection, we present computational complexity of individual and

ensemble algorithms. In machine learning, model complexity often depends on

the number of extracted features and samples in the training set. Decision

trees are the fastest known algorithms, the run time cost to construct a decision540

tree is O(nsamplesmfeatureslog(nsamples)). In general, the Bayes Networks are

powerful algorithms and efficient in terms of execution time. Their run time is

O(2mfeatures−2(msamplesnfeatures))[35]. nsamples, mfeatures represent number

of records in training set and number of features, respectively. MLP has a high
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Table 7: Time complexity comparison

Learning algorithm Complexity

Decision tree (DT) O(28,800)

Bayes network (BN) O(614,400)

MLP O(500× 107)

Boosting + DT O(144× 103)

Bagging + DT O(288× 103)

Stacking + (DT + MLP + BN) O(501× 108)

time complexity. Suppose that there are nsamples training samples, mfeatures545

features, k hidden layers, each containing h neurons and o output neurons. The

time complexity of MLP is O(n × m × kh × o × i), where i is the number

of iterations. Since MLP has a high execution time, it is advisable to start

with a smaller number of hidden layers for training [36]. In ensemble learning,

execution time of meta-learners is negligible and they have not much impact on550

running time of base classifiers. Running time of Boosting is O(L×f), where f is

the runtime of the base classifier and T is number of iterations. Time complexity

for Bagging is O(N ×f), where N is number of new generated training sets and

f is run time of individual algorithm [37]. Stacking applies several individual

learner to training data and then combines output of them using a meta-learner.555

The overall complexity of stacking is O(f1 + f2 + f3, ..., fn) n=1,...,N, where

fn denotes time complexity of each individual learner. Table 7 presents time

complexity comparison for individual and ensemble learning algorithms. For

this experiment we choose user 5925 with 1200 records in the training set and

8 extracted features. As we can observe, the time complexity follows the same560

ordering of execution time as shown in Fig.17, 19, 21, and 23.

6.5. Theoretical Analysis

In this section, we analyze the performance of different predictors from a

mathematical perspective. We aim to find out the impacting factors of difference

predictors, and understand theoretically why they have different performance565

under different conditions.
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Figure 27: Prediction accuracy of J48 and Bayes Networks

6.5.1. Analysis of Individual Algorithms Performance

Section 6.2.1 presents the prediction accuracies of individual predictors. As

we can see from the results, Decision Tree-based approaches (especially the J48

algorithm) outperform others when the trace data is of lower quality, while the570

Bayes Networks scheme provides better performance (> 84% accuracy) for trace

data with higher quality. To better understand these behaviors, we highlight

the performance comparison of J48 and Bayes Networks by decomposing the

mathematical components of each model to explain why different predictors

have different performance. Fig. 27 shows the average prediction accuracy of575

the J48 and Bayes Networks algorithms using temporal or hybrid features as a

function of trace qualities, which are summarized in Fig. 8. It is interesting to

observe that for both cases, J48 outperforms Bayes Networks when the quality

of traced data is low (e.g., with 100-500 instances). This is due to the fact that

the algorithms relying on the decision tree use the surrogate splits approach,580

which is a method to estimate missing data, to overcome the deficit of missing

data on the trace files [38]. However, Bayes Networks do not have a future

action in presence of a trace file with a lot of missing data, and its prediction is

based only on available data.

When making a prediction, J48 estimates the missing instances based on585

the present ones, resulting in higher accuracy of the prediction outcomes. The

missing instances can be either numerical attributes (e.g., leaving time, duration
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of staying in each place, place id, etc), or nominal attributes (e.g., application

type, etc), whose values could be missing randomly. The missing attribute

parameters with nominal value can be estimated based on available instances590

with the same attribute. Assuming that the day of visiting a particular place

(e.g., Place-ID = 1) for a user is missing, the surrogate split approach [39]

can estimate the missing value (e.g., day of a visit), knowing that (using users

previous trajectories) on which day the user often visits the location with the

same Place-ID. Our problem can be modelled by Eq. 1.595

V̂i,j u argmaxvi,j∈(ai)|σai = vi,j and y = yip D| (1)

V̂i,j defines the estimated parameter, vi,j represents the missing parameter of

attribute ai with index j, σai includes the subset of missing parameters for

attribute ai, y
i
p shows the value of the target attribute (e.g., duration time,

application type) and D is the provided data set. If the missing parameter of

attribute ai has a numerical value, the estimation is performed by calculating

the mean (average) of the existing data instances with the same attribute. The

outcome of the estimation of the decision tree-based algorithms is more simi-

lar to the original data if there is no continuously missing data on the trace

files. As shown in Fig. 27, the J48 and Bayes Networks algorithms generate

similar results if the trace data is of low quality (e.g., with 100-200 instances).

J48 performs better for improved quality of trace data (e.g., with 200-500 in-

stances). However, it is interesting to observe that Bayes Networks overtake

J48, if the quality is better (e.g., with 700-1500 instances). This is due to the

fact that Bayes Networks follows a graphical model, making possible relations

between the parameters with particular probabilities [40]. When the number of

existing instances raises, the generated graph used in the model requires more

computation overhead, but resulting in more accurate prediction. The graph is

integrated with a set of local probability distributions to define the joint prob-

ability distribution [41]. The joint probability distribution is defined in Eq. 2.
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Pr(X|m, θ) = Πn
i=1Pr(X

i|Π(Xi), θ) (2)

Xi, denotes attributes in DAG, Π(Xi) shows the set of parents (e.g., Place-ID

= 1, Place-ID = 2,...), θ is a vector of conditional probabilities, m represents

the DAG model and local probability distributions are the distributions corre-

sponding to the terms in the product of Eq. 2.

Figure 28: Directed Acyclic Graph (DAG) of Bayes Networks.

6.5.2. Analysis of Ensemble Learning Algorithm Performance600

As presented in Fig. 13 and 14, the experiment results show that the inte-

gration of the individual algorithms (e.g., J48, Bayes Networks and MLP) using

ensemble learning methods can efficiently improve prediction accuracy. This is

because for machine learning algorithms, the bias error and variance error, as

explained in Eq. 3, are the main components of the prediction errors. However,

all ensemble learning methods are able to mitigate these errors such that the

prediction performance could be enhanced. The bias error defines the difference

between values of the expected prediction (average of estimated predictions)

and the real one. The variance error determines the variability of the prediction

accuracy due to small modifications in the training set.

Err(X) = bias error2 + variance error + noise error

= (E[g(x)]− f(x))2 + E[(g(x)− E[g(x)])2] + ε2e

(3)

f(x), g(x), E[g(x)] and ε2e denote the correct value to predict (Place ID), es-

timated prediction calculated by the algorithm, expected prediction, and noise
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error, respectively. Ensemble predictors can be applied to enhance the predic-

tion performance of individual algorithms by mitigating the variance error.

Even though ensemble learning could deliver better prediction accuracy than

individual algorithms, they also perform differently according to how they ad-

dress the variance error. Bagging does this by creating N new subsets of training

data with the same size, as shown in Table 4. The new data sets are generated

from the original data, randomly sampled and replaced [42]. Therefore, the

total variance (Z) will be decreased as it is divided among the newly generated

training data sets. Variance of each new subset can be calculated using Eq. 4.

V ariancej =
1

N
V ar(Z) j = 1, ..., N (4)

For Bagging, the training phase is performed independently over all the new

data sets. Later, as shown in Eq. 5, the final prediction accuracy (PrBagging)

is obtained by getting a simple-averaging over the outcomes computed in each

new data set (ej). This implies that there is no mechanism in Bagging to specify

whether the parameters are classified correctly or not. This means that all the

parameters appear with the same probability in newly generated data sets [43].

PrBagging =
1

N
ΣNj=1ej j = 1, ..., N (5)

Boosting applies a sequential model in the learning phases [44]. After each

iteration, the weights of parameters are determined based on the current pre-

diction error, as shown in Eq. 6. Next, the weights are assigned to uncorrected

classified parameters. Therefore, the wrongly-classified parameters will appear

in the new training set with bigger weights than the correctly classified ones.

This repetition decreases the diversity of the parameters in the training sets,

which results in a reduction of the variance and consequently a better prediction

performance. The parameters used in this equation 6 are listed in Table 8.

wh+1
t =

wht β
(1−lth)
h

ΣNi=1w
h
i β

(1−lth)

h

, w1
t ∈ [0, 1], ΣNt=1w

1
t = 1 (6)
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Table 8: The notations and definition of parameters

Parameter Name Parameter Definition

w1
t = [1, ..., wN ] Set of possible weights for the first step of

iterations, usually w1
t =

1

N
h = 1, ..., L Number of iterations in Boosting

lht = 0, 1 Prediction in iteration h is incorrect (=0) /

correct (=1)

β
(1−lth)

h Current prediction error of algorithm in iter-

ation h

wh
t Current weight at iteration h

wh+1
t Calculated weight for iteration h+1

For Stacking, different kinds of individual algorithms can be integrated to

improve performance. Stacking achieves this through two steps. Firstly, the

given data set of D = {(yn, xn), n = 1, ..., N} is randomly split into J smaller

data sets (parameters defined in Table 4). The generated sets have almost equal

sizes, denoted by the d1, ..., dJ . Thereafter, the individual algorithms (level-0

algorithms) carry out prediction on the generated data sets independently [45].

The outcomes of each prediction algorithm (e.g., visited place in our scenario)

can be defined using Eq. 7:

zkn = {(P (d1)
k (xn), ..., P

(dj)
k (xn)), k = 1, ...,K, n = 1, ..., N} (7)

P
(dj)
k (xn) denotes the prediction of individual algorithms for each instance x in

the newly generated data sets (dj). Later, a new data set is created using the

IDs of the visited places (yn) and the output of the K individual algorithms

(zkn). Formally, the new data set is represented as:

LLevel−1 = {(yn, z1,n, ..., zk,n), n = 1, ..., N} (8)

LLevel−1 defines the input data for the second step, including the predicted val-605

ues for each visited place. This input is different from the one for the first step.

The input of the first step includes the Place-ID and extracted features from

the trace data. Next, the meta-learner (Level-1 algorithm) uses the Weighted

Majority method [46][47] to further improve prediction accuracy. Weighted

Majority is an approach to decide weights of each algorithm based on their610

individual prediction performances.
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Based on the aforementioned description, we could imagine that a particular

algorithm could only provide a low prediction accuracy, due to the high variance

of the data set used in the learning phase. Afterwards, the Weighted Majority

method can be applied to enhance the accuracy of the final prediction by getting615

benefits of other algorithms, which provides more accurate results.

7. Conclusions

In this paper, we model the future place prediction problem as a standard

supervised learning task and ensemble learning methods with hybrid types of

features. Our approach characterizes the properties of users’ movement pat-620

terns and visited places, then extracts rich types of features (temporal, spatial,

and system features) to quantify the correlation between places and features.

Finally, we propose to use ensemble learning approaches to predict users’ future

locations. Additionally, we also propose an adaptive Markov Chain-based model

for trajectory prediction. Our system is extensively evaluated using real-world625

datasets, and experiment results unveil interesting findings: (1) For individual

predictors, Bayes Networks outperform all others when data quality is good,

while J48 delivers the best results when data quality is bad; (2) Ensemble pre-

dictors outperform individual predictors in general under all conditions; and (3)

Ensemble predictor performance depends on user movement patterns.630
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• An	ensemble	learning	approach	has	been	proposed	to	solve	the	crowd	mobile	users’	
location	prediction	problem.	

• An	adaptive	Markov	Chain-based	trajectory	prediction	approach	has	been	proposed	
to	predict	the	future	trajectory	of	mobile	users.	

• Hybrid	types	of	features	(temporal,	spatial,	and	smartphone	system	features)	of	
mobile	users’	mobility	traces	have	been	extracted	and	their	correlations	have	been	
analyzed	in	the	ensemble	learning	approach.	

• Detailed	performance	evaluations	of	different	machine	learning	approaches	have	
been	conducted	over	homogeneous	and	heterogeneous	user	movement	patterns.	

• Ensemble	learning	using	hybrid	features	delivers	the	best	performance	when	
predicting	future	locations	of	mobile	users.	

• Complexity	analysis	of	different	machine	learning	approaches	have	been	conducted	
to	understand	the	drawbacks	of	each	algorithm.	


