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Let Z be a Boolean model based on a stationary Poisson process
η of compact, convex particles in Euclidean space Rd. Let W denote
a compact, convex observation window. For a large class of function-
als ψ, formulas for mean values of ψ(Z ∩W ) are available in the
literature. The first aim of the present work is to study the asymp-
totic covariances of general geometric (additive, translation invariant
and locally bounded) functionals of Z ∩W for increasing observation
window W , including convergence rates. Our approach is based on
the Fock space representation associated with η. For the important
special case of intrinsic volumes, the asymptotic covariance matrix is
shown to be positive definite and can be explicitly expressed in terms
of suitable moments of (local) curvature measures in the isotropic
case. The second aim of the paper is to prove multivariate central
limit theorems including Berry–Esseen bounds. These are based on a
general normal approximation result obtained by the Malliavin–Stein
method.

1. Introduction. Let η be a stationary (locally finite) Poisson process
on the space Kd of convex bodies in Rd, that is, on the space of compact,
convex subsets of Rd. The Boolean model associated with η is the stationary
random closed set Z defined by

Z :=
⋃

K∈η
K,(1.1)
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where the Poisson process η is identified with its support. This is a funda-
mental model of stochastic geometry and continuum percolation with many
applications in materials science and physics [3, 7, 19, 22, 31]. The intersec-
tion of Z with a compact and convex setW ⊂Rd is a finite union of compact,
convex sets, that is, an element of the convex ring Rd. It is a common strat-
egy in stochastic geometry to extract and explore local information about Z
via functionals of the intersection Z ∩W . Perhaps the most prominent ex-
amples of such functionals on Rd are the intrinsic volumes V0, . . . , Vd, which
contain important geometric information about the sets to which they are
applied. For instance, for a set K ⊂ Rd from the convex ring, Vd(K) is the
volume, Vd−1(K) is half the surface area (if K is the closure of its interior),
and V0(K) is the Euler characteristic of K; see [31], Section 14.2, for more
details. The intrinsic volumes have several desirable properties. In particular,
they are additive, in the sense that Vi(K ∪L) = Vi(K) + Vi(L)− Vi(K ∩L)
for all K,L ∈Rd and i ∈ {0, . . . , d}. They are also translation invariant, and
continuous if restricted to the space of convex bodies.

For a stationary and isotropic Boolean model, Miles [20] and Davy [5]
obtained explicit formulas expressing the mean values EVi(Z ∩W ) in terms
of the intensity measure of η. We refer to [31], Section 9.1, for a discussion
and more recent developments related to this fundamental result.

In the following, we are especially interested in second-order properties
and central limit theorems of the random vector (V0(Z∩W ), . . . , Vd(Z∩W )),
for a compact and convex observation window W , but in fact we study more
general additive functionals of Z ∩W , namely so called geometric function-
als. A functional on the convex ring will be called geometric if it is additive,
translation invariant, locally bounded, and measurable (see Section 3 for
details).

While previous contributions focus on second-order properties and central
limit theorems for volume and surface area, to the best of our knowledge
we present here the first systematic mathematical investigation of second-
order properties and central limit theorems of all intrinsic volumes and more
general geometric functionals of a stationary Boolean model Z. The volume
functional was first studied in [1, 17], while in [9] Berry–Esseen bounds
and large deviation inequalities were established. The surface area was in-
vestigated in [21], and the results were extended in [10] to more general
functionals and point processes. Integrals over Boolean models are consid-
ered in [2, 26], where the volume is included as a special case and also the
surface area in the latter one. Volume and surface area of a more general
Boolean model based on a Poisson process of cylinders have been investi-
gated in [11, 12]. From a geometric point of view, volume and surface area
are rather special functionals of Z. They arise as the restriction of determin-
istic measures to Z or the boundary of Z and do not involve the curvature of
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the (possibly intersecting) grains. A different though mathematically non-
rigorous treatment of second moments of curvature measures of an isotropic
Boolean model with an interesting application to morphological thermody-
namics was presented in [18].

Our first main aim in this paper is to use the Fock space representation
of Poisson functionals [15] to explore the covariance structure of geometric
functionals of Z ∩W . Combined with some new integral geometric inequal-
ities, which are derived by methods and results from convex and integral
geometry, this approach appears to be perfectly tailored to our purposes.
Under the minimal assumption that the second moments of the intrinsic
volumes of the typical grain are finite, we show that for two geometric func-
tionals ψ1 and ψ2 the ratio Vd(W )−1Cov(ψ1(Z ∩W ), ψ2(Z ∩W )) tends to
some limit σψ1,ψ2 ∈ R as the observation window is increased in a proper
way. For the case that the third moments of the intrinsic volumes of the
typical grain are finite, we establish a rate of this convergence in terms of
the inradius of the observation window and show that it is optimal. Via
the Fock space representation the asymptotic covariances can be expressed
as series of second moments. In the important case of intrinsic volumes of
an isotropic Boolean model they can be represented in terms of curvature
based moment measures of the typical grain. In particular, the covariance
structure of the two-dimensional isotropic Boolean model becomes surpris-
ingly explicit. For a vector of geometric functionals of the Boolean model,
it is shown that the asymptotic covariance matrix is positive definite under
some additional conditions, which are for example satisfied for the intrinsic
volumes. The second-order analysis is illustrated by explicit formulas for
intrinsic volumes of a Boolean model with deterministic spherical grains,
for which our formulas reduce to three-dimensional integration of explicitly
known integrands.

Our second main aim is to prove univariate and multivariate central limit
theorems for geometric functionals of Z∩W . Under the same second moment
assumptions as for the existence of the asymptotic covariances, we prove con-
vergence in distribution. We also obtain rates of convergence under slightly
stronger moment assumptions. For the multivariate central limit theorem,
we argue that the rate is optimal. Following common belief, we guess that
our convergence rate Vd(W )−1/2 for the univariate case is optimal as well.
In the univariate case, we do not need to assume that the functional on the
convex ring is translation invariant. In the proofs, we use the Malliavin–Stein
method for Poisson functionals that was recently developed in [23, 25]. In a
sense, this method builds on the Fock space representation and the closely
related Wiener–Itô chaos expansion of Poisson functionals. The main obsta-
cle to the application of these results is the fact that, as a rule, geometric
functionals of Z admit an infinite chaos expansion. We can resolve this by
bounding the kernels of the chaos expansion by monotone functionals.
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In the case of bounded grains, it is likely that the central limit theo-
rem and the convergence of covariances can be derived with the theory of
m-dependent random fields, perhaps even with rates of convergence. From
there, one might proceed to the general case using a truncation argument as
in [8, 12]. But such an approach would neither yield much information on
the asymptotic covariance structure nor rates of convergence in the general
case. Stabilization is another common approach to central limit theorems in
stochastic geometry. We refer here to [2, 26, 27], where the first two refer-
ences deal in particular with volume and surface area of the Boolean model
without discussing rates of convergence. It is unclear whether the intrinsic
volumes (other than volume or surface area) stabilize for Boolean models
with unbounded grains. But even if they do, the quantitative bounds for the
normal approximation derived by stabilization in [27] suggest that the rates
would probably be suboptimal. Moreover, in our setting we would need to
control boundary effects.

This paper is organized as follows. In the second section, we briefly sum-
marize some notation and basic facts about the Boolean model and present
a central limit theorem for the intrinsic volumes of the Boolean model to
be generalized later. In the third section, we establish the existence of the
asymptotic covariances of a vector of geometric functionals of Z ∩W and
determine the rate of convergence; see Theorem 3.1. Section 4 is devoted
to the positive definiteness of the asymptotic covariance matrix; see Theo-
rem 4.1. In Section 5, we focus on intrinsic volumes and introduce a family
of curvature based moment measures of the typical grain to study infinite
series of second moments arising in the Fock space representation. The main
result of this section (Theorem 5.2) is of some independent interest and is
applied in Section 6 to derive formulas for the asymptotic covariances of
the intrinsic volumes of an isotropic Boolean model in terms of the mo-
ment measures mentioned above; see Theorem 6.1. Section 7 presents some
explicit results for a Boolean model with deterministic spherical grains. In
Section 8, we provide a general result on the normal approximation of Pois-
son functionals. We use this result in Section 9 to establish multivariate
and univariate central limit theorems for geometric functionals of Z; see
Theorems 9.1 and 9.3.

The extended arXiv-version [13] of this paper contains two additional
appendices with a description of the curvature based moment measures from
Section 5 in terms of mixed measures of translative integral geometry and
with integral formulas for the exact (nonasymptotic) covariances of intrinsic
volumes, which are rather explicit in the two-dimensional case.

2. Boolean models and intrinsic volumes. In this section, we collect a
few basic facts about the stationary Poisson process η and the associated
Boolean model Z in Euclidean space Rd before stating some of our main
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results for the special case of intrinsic volumes. For more details on Boolean
models, we refer the reader to [3], Chapter 3, [22] or [31], Chapter 4, whereas
background material on convex geometry can be found, for example, in [30]
or [31], Chapter 14. All random objects occurring in this paper are defined
on an abstract probability space (Ω,F ,P). A measure on Kd is locally finite
if it assigns a finite number to {K ∈Kd :K ∩C 6=∅} for all C in the space
Cd of compact subsets of Rd. We consider the Poisson process η as a random
element in the spaceN of all locally finite counting measures on Kd, equipped
with the smallest σ-field such that the mappings µ 7→ µ(A) are measurable
for all A in the Borel σ-field (with respect to the Hausdorff metric) of Kd. We
assume that the intensity measure Λ := Eη of η is invariant under the shifts
K 7→K + x := {y + x :y ∈K}, x ∈Rd. This is equivalent to the stationarity
of η, that is to the distributional invariance of η under all shifts. We also
assume that Λ is nontrivial and that Λ({∅}) = 0, which effectively excludes
empty grains. Theorem 4.1.1 in [31] implies that

Λ(·) = γ

∫ ∫
1{K + x∈ ·}dxQ(dK),(2.1)

where γ ∈ (0,∞) is the intensity of η, “dx” denotes integration with respect
to the d-dimensional Lebesgue measure λd, and Q is a probability measure
on Kd satisfying Q({∅}) = 0 as well as

∫
Vd(K +C)Q(dK)<∞, C ∈ Cd.(2.2)

Here, as usual, K +C := {x+ y :x ∈K,y ∈ C} is the Minkowski sum of K
and C. Let Z0 denote a typical grain, that is, a random convex set with
distribution Q. Then (2.2) can be written as

vi := EVi(Z0)<∞, i= 0, . . . , d.(2.3)

This is a direct consequence of the Steiner formula (see [31], equation (14.5))

Vd(K +Bd
r ) =

d∑

i=0

κd−ir
d−iVi(K), r≥ 0,K ∈Kd,(2.4)

where Bd is the closed unit ball centered at the origin, Bd
r := {rx :x ∈Bd},

and κn denotes the volume of the n-dimensional unit ball.
The Boolean model is given by Z ≡ Z(η), where

Z(µ) :=
⋃

K∈µ
K, µ ∈N,

and K ∈ µ means that µ({K})> 0. Recall that the mapping µ 7→ Z(µ) from
N to the space of all closed subsets of Rd (equipped with the Fell topology)
is Borel measurable (see [31], Theorem 3.6.2). Without loss of generality,
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we can assume that Q is concentrated on Kd
o , where Kd

o is the space of
nonempty convex bodies such that the center of the circumscribed ball is
at the origin. Since the center of the circumscribed ball of a convex body is
always contained in the convex body, we have 0 ∈K for all K ∈Kd

o .
Subsequently, we shall need integrability assumptions such as

EVi(Z0)
2 <∞, i= 0, . . . , d,(2.5)

or

EVi(Z0)
3 <∞, i= 0, . . . , d.(2.6)

We next introduce two basic characteristics of the Boolean model Z. The
volume fraction p := EVd(Z ∩ [0,1]d) of Z can be expressed in the form
p= 1− e−γvd . The mean covariogram of the typical grain is given by

Cd(x) := EVd(Z0 ∩ (Z0 + x)), x ∈Rd.(2.7)

It follows from (2.3) that Cd(x)≤ vd <∞ and that Cd(x)→ 0 as ‖x‖→∞,
where ‖x‖ denotes the Euclidean norm of x ∈Rd. It is well known (see, e.g.,
[3], equation (3.18)) that the covariance of Z satisfies

P(0 ∈ Z,x ∈ Z) = p2 + (1− p)2(eγCd(x) − 1).(2.8)

For W ∈ Kd, we define by CW (x) := Vd(W ∩ (W + x)), x ∈ Rd, the set co-
variance function of W . Combining (2.8) with Fubini’s theorem leads to the
well-known formula

VarVd(Z ∩W ) = (1− p)2
∫
CW (x)(eγCd(x) − 1)dx, W ∈Kd.(2.9)

Throughout this paper, we investigate the intersection Z ∩ W of the
Boolean model Z with an expanding compact convex observation window
W . More precisely, we consider sequences of convex bodies (Wm)m∈N sat-
isfying limm→∞ r(Wm) =∞, where r(W ) denotes the inradius of W ∈ Kd.
We describe this situation by writing r(W )→∞ for short. Combining our
Theorems 9.1 and 4.1 in the special case of intrinsic volumes of Z ∩W , we
obtain the following multivariate central limit theorem.

Theorem 2.1. Assume that (2.5) is satisfied and let V := (V0, . . . , Vd).
Then there exists a (d+1)-dimensional centered Gaussian random vector N
with a covariance matrix Σ such that

1√
Vd(W )

(V(Z ∩W )− EV(Z ∩W ))
d−→N as r(W )→∞.

If, additionally, the typical grain Z0 has nonempty interior with positive
probability, the covariance matrix Σ is positive definite.
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To the best of our knowledge, this is the first central limit theorem for the
intrinsic volumes of the Boolean model beyond volume and surface area. In
fact, our Theorem 9.1 generalizes this result in several ways. It concerns a
broader class of functionals and is also quantitative in the sense that it pro-
vides rates of convergence for a suitable distance under moment conditions
slightly stronger than (2.6). Theorem 9.3 yields presumably optimal rates
for the Wasserstein distance in the univariate case. As already mentioned
above, our proofs rely on the Malliavin–Stein method for Poisson function-
als. We are not aware of any other approach that might yield the same rates.
In Section 6, we will derive formulas for the asymptotic covariances between
the intrinsic volumes of an isotropic Boolean model.

3. Covariance structure of geometric functionals. In this paper, we study
random variables of the form ψ(Z ∩W ), where ψ is a real-valued measurable
function defined on the convex ring Rd whose elements are finite unions of
compact, convex sets. Measurability again refers to the Borel σ-field gen-
erated by the Fell topology (or, equivalently, by the Hausdorff metric). We
shall assume that ψ is additive, that is, ψ(∅) = 0 and ψ(K ∪ L) = ψ(K) +
ψ(L)− ψ(K ∩L) for all K,L ∈Rd. We shall also assume that ψ is transla-
tion invariant, that is, ψ(K+x) = ψ(K) for all (K,x) ∈Rd×Rd, and locally
bounded in the sense that its absolute value is (uniformly) bounded on com-
pact, convex sets contained in a translate of the unit cube Q1 := [−1/2,1/2]d

by a constant

M(ψ) := sup{|ψ(K)| :K ∈Kd,K ⊂Q1 + x,x ∈Rd}<∞.(3.1)

Note that this definition simplifies in the translation-invariant case since one
does not need the translations of Q1.

In the following, we call a functional ψ :Rd → R geometric if it is ad-
ditive, translation invariant, locally bounded and measurable. Examples of
geometric functionals are (1) mixed volumes (see Section 5.1 in [30]) of
the form ψ(K) := V (K[k],K1, . . . ,Kd−k), where k ∈ {0, . . . , d}, the notation
K[k] means that the body K is repeated k times, and K1, . . . ,Kd−k ∈ Rd

are fixed. Up to normalization, intrinsic volumes are obtained for Ki =Bd,
i = 1, . . . , d − k; (2) integrals of surface area measures (see Sections 4.1
and 4.2 in [30]) of the form ψk(K) :=

∫
Sd−1 h(u)Sk(K,du), where Sd−1 is

the unit sphere in Rd (the boundary of Bd), h :Sd−1 → R is measurable
and bounded, and k ∈ {0, . . . , d − 1}; (3) the centered support function
ψ(K) := h(K − s(K), u) in a fixed direction u, where u ∈ Rd and s(K) is
the Steiner point of K (see Section 1.7, Section 5.4, equation (5.100) in [30]
and Lemma 6.1 in [31]); (4) total measures of translative integral geometry
(see Section 6.4, especially page 234, and page 383 in [31]). These examples
of geometric functionals are substantially more general than the intrinsic
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volumes. For instance, whereas intrinsic volumes are always rotation invari-
ant, no such invariance is built into these four classes of examples in general.
Moreover, it should be observed that linear combinations of mixed volumes
are dense in the (normed) vector space of translation invariant, continuous
valuations on convex bodies in Rn (see Section 6.5, page 406, in [30]).

Our main result of this section deals with the asymptotic behavior of
the covariance between two geometric functionals of Z ∩W for expanding
convex observation window W . With a measurable functional ψ :Rd → R,
we associate another measurable function ψ∗ :Kd →R by

ψ∗(K) := Eψ(Z ∩K)−ψ(K), K ∈Kd,(3.2)

if E|ψ(Z ∩ K)| < ∞ for all K ∈ Kd. Under assumption (2.2), it follows
from (3.10) below that ψ∗ is well defined for a geometric functional ψ. For
C ∈ Cd let NC denote the number of all particles in η intersecting C.

Theorem 3.1. Let ψ1 and ψ2 be geometric functionals. If (2.5) is sat-
isfied, then the limit

σψ1,ψ2 = lim
r(W )→∞

Cov(ψ1(Z ∩W ), ψ2(Z ∩W ))

Vd(W )
(3.3)

exists, is finite, and is given by

σψ1,ψ2 = γ
∞∑

n=1

1

n!

∫ ∫
ψ∗
1(K1 ∩K2 ∩ · · · ∩Kn)ψ

∗
2(K1 ∩K2 ∩ · · · ∩Kn)

(3.4)
×Λn−1(d(K2, . . . ,Kn))Q(dK1).

Assume that (2.6) holds and define

cΛ := 2d+2 · 42d · 252dd!(E2NQ1 + 1)2

× exp

(
22

d · 25d(d+1)!γ

d∑

i=0

EVi(Z0)

)
γE

(
d∑

i=0

Vi(Z0)

)3

.

Then, for W ∈Kd with r(W )≥ 1,
∣∣∣∣
Cov(ψ1(Z ∩W ), ψ2(Z ∩W ))

Vd(W )
− σψ1,ψ2

∣∣∣∣≤
cΛM(ψ1)M(ψ2)

r(W )
.(3.5)

We start with some preparations. Our main probabilistic tool is the fol-
lowing Fock space representation of Poisson functionals, derived in [15]. For
any measurable f :N→R and K ∈Kd, the function DKf :N→R is defined
by

DKf(µ) := f(µ+ δK)− f(µ), µ ∈N,(3.6)
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where δK is the Dirac measure located at K. The difference operator DK

and its iterations play a central role in the analysis of Poisson processes.
For n≥ 2 and (K1, . . . ,Kn) ∈ (Kd)n we define a function Dn

K1,...,Kn
f :N→R

inductively by

Dn
K1,...,Kn

f :=D1
K1
Dn−1
K2,...,Kn

f,

where D1 :=D. Note that

Dn
K1,...,Kn

f(µ) =
∑

J⊂{1,2,...,n}
(−1)n−|J |f

(
µ+

∑

j∈J
δKj

)
,

where |J | denotes the number of elements of J . This shows that the op-
erator Dn

K1,...,Kn
is symmetric in K1, . . . ,Kn, and that (µ,K1, . . . ,Kn) 7→

Dn
K1,...,Kn

f(µ) is measurable. From [15], Theorem 1.1, we obtain for any

measurable f, g :N→R satisfying Ef(η)2 <∞ and Eg(η)2 <∞ that

Cov(f(η), g(η))
(3.7)

=
∞∑

n=1

1

n!

∫
EDn

K1,...,Kn
f(η)EDn

K1,...,Kn
g(η)Λn(d(K1, . . . ,Kn)).

For given W ∈ Kd and a functional ψ :Rd → R we shall apply (3.7) to
functions fψ,W :N→R defined by fψ,W (µ) := ψ(Z(µ)∩W ). Induction yields
the following lemma.

Lemma 3.2. Let ψ :Rd→R be additive. Then, for n ∈N, K1, . . . ,Kn ∈
Kd, and µ ∈N,

Dn
K1,...,Kn

fψ,W (µ)

= (−1)n(ψ(Z(µ)∩K1 ∩ · · · ∩Kn ∩W )− ψ(K1 ∩ · · · ∩Kn ∩W )).

Lemma 3.3. Let ψ be an additive, locally bounded and measurable func-
tional and assume that (2.2) is satisfied. Then, for all n ∈N, K1, . . . ,Kn ∈
Kd, and W ∈Kd,

EDn
K1,...,Kn

fψ,W (η) = (−1)nψ∗(K1 ∩ · · · ∩Kn ∩W )(3.8)

and

|EDn
K1,...,Kn

fψ,W (η)| ≤ β(ψ)

d∑

i=0

Vi(K1 ∩ · · · ∩Kn ∩W )(3.9)

with β(ψ) = 22
d · 5dM(ψ)(E2NQ1 +1). Moreover, for any A ∈Kd,

Eψ(Z ∩A)2 <∞.(3.10)
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Proof. We start by proving that there is a constant c1 > 0 such that

E|ψ(Z ∩A)| ≤ c1M(ψ)
d∑

i=0

Vi(A)(3.11)

for A ∈ Kd. Since (3.11) is obviously true for A = ∅, we assume A 6= ∅

in the following. We define Q(A) := {Q1 + z : z ∈ Zd, (Q1 + z) ∩A 6=∅}. By
the inclusion–exclusion formula for additive functionals (see, e.g., [30], (6.2),
page 330), we have

|ψ(Z ∩A)|=
∣∣∣∣ψ
(
Z ∩A∩

⋃

Q∈Q(A)

Q

)∣∣∣∣≤
∑

∅ 6=I⊂Q(A)

∣∣∣∣ψ
(
Z ∩A∩

⋂

Q∈I
Q

)∣∣∣∣.

For each nonempty subset I ⊂Q(A), we fix some cubeQI ∈ I . Let Z1, . . . ,ZNQI

denote the particles hitting QI . Then, for ∅ 6= J ⊂ {1, . . . ,NQI
}, assumption

(3.1) yields that
∣∣∣∣ψ
(⋂

j∈J
Zj ∩A∩

⋂

Q∈I
Q

)∣∣∣∣≤M(ψ).

By the inclusion–exclusion formula and taking into account that ψ(∅) = 0,
we get

|ψ(Z ∩A)| ≤
∑

∅ 6=I⊂Q(A)

∣∣∣∣∣ψ
(NQI⋃

j=1

Zj ∩A∩
⋂

Q∈I
Q

)∣∣∣∣∣

≤
∑

∅ 6=I⊂Q(A)

∑

∅ 6=J⊂{1,...,NQI
}

∣∣∣∣ψ
(⋂

j∈J
Zj ∩A∩

⋂

Q∈I
Q

)∣∣∣∣

≤
∑

∅ 6=I⊂Q(A)

1

{⋂

Q∈I
Q 6=∅

}
2NQIM(ψ).(3.12)

The cubes in Q(A) form a grid, hence
∣∣∣∣
{
∅ 6= I ⊂Q(A) :

⋂

Q∈I
Q 6=∅

}∣∣∣∣≤ c2|Q(A)|

with c2 := 22
d
. By stationarity of η, we have E2NQI = E2NQ1 , and thus

E|ψ(Z ∩A)| ≤ c3M(ψ)|Q(A)|(3.13)

with c3 := c2E2
NQ1 . Here, we have used that EzNC = exp((z − 1)γEVd(Z0 +

C∗)) < ∞ holds for C ∈ Kd and z ≥ 0, where C∗ := {−x :x ∈ C} is the
reflection of C in the origin.
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Since |Q(A)| ≤ Vd(A+
√
dBd), Steiner’s formula (2.4) yields

|Q(A)| ≤
d∑

i=0

κd−id
(d−i)/2Vi(A)≤ c4

d∑

i=0

Vi(A)(3.14)

with c4 := 5d. In the last step, we used that κd−id(d−i)/2 ≤ 5d, i ∈ {0, . . . , d},
which can be deduced by elementary calculus from the representation of
κd−i in terms of the Gamma function and from Stirling’s formula. Now
(3.13) together with (3.14) yields (3.11) with c1 := c3c4. Combining (3.11)
with Lemma 3.2 and the definition of ψ∗ in (3.2) shows (3.8). For A ∈ Kd,
we can argue as in the derivation of (3.12), and then use (3.14), to get

|ψ(A)| ≤ c2|Q(A)|M(ψ)≤ c2c4M(ψ)
d∑

i=0

Vi(A).(3.15)

Combining (3.11) and (3.15) for A = K1 ∩ · · · ∩Kn ∩W with Lemma 3.2
yields (3.9).

In order to show that ψ(Z ∩ A) is square integrable, we first derive an
upper bound for

MA(ψ) := sup{|ψ(L)| :L ∈Kd,L⊂A}.(3.16)

Let L ∈ Kd with L ⊂ A. Then, using the inclusion–exclusion formula for
additive functionals and (3.1), we get

|ψ(L)|=
∣∣∣∣ψ
(
L ∩

⋃

Q∈Q(A)

Q

)∣∣∣∣≤ 2|Q(A)|M(ψ),

and hence MA(ψ)≤ 2|Q(A)|M(ψ). Again by the inclusion–exclusion formula,
we have

|ψ(Z ∩A)| ≤ (2NA − 1)MA(ψ)≤ 2NAMA(ψ),(3.17)

and, therefore,

Eψ(Z ∩A)2 ≤ E[4NA ]4|Q(A)|M(ψ)2 <∞,

which completes the proof. �

Lemma 3.4. Define β1 := 22
d · 25dd!. Then, for all k ∈ {0, . . . , d} and

W,K ∈Kd,

∫
Vk(W ∩ (K + x))dx≤ β1

d∑

i=0

Vi(W )

d∑

r=k

Vr(K).(3.18)
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Proof. Using the same notation as in the proof of Lemma 3.3 and the
fact that Vk is increasing and translation invariant, we obtain that
∫
Vk(W ∩ (K + x))dx≤

∑

∅ 6=I⊂Q(W )

∫
Vk

(
W ∩

⋂

Q∈I
Q∩ (K + x)

)
dx

≤
∑

∅ 6=I⊂Q(W )

1

{⋂

Q∈I
Q 6=∅

}∫
Vk(K ∩ (Q1 + x))dx.

Let B′ denote a ball of radius
√
d/2. Then the kinematic formula (see [31],

Theorem 5.1.3, and note that ck,d−k+jj,d ≤ 1) and the rotation invariance of

B′ yield that

∫
Vk(K ∩ (Q1 + x))dx≤

∫
Vk(K ∩ (B′ + x))dx≤ c5

d∑

r=k

Vr(K)

with c5 := 5dd!. On the other hand, it was shown in the proof of Lemma 3.3
that

∣∣∣∣
{
∅ 6= I ⊂Q(W ) :

⋂

Q∈I
Q 6=∅

}∣∣∣∣≤ c2c4

d∑

i=0

Vi(W ).

Combining the preceding inequalities, we obtain the assertion of the lemma.
�

Lemma 3.5. For A ∈Kd and n ∈N,

∫ d∑

k=0

Vk(A∩K1 ∩ · · · ∩Kn)Λ
n(d(K1, . . . ,Kn))≤ αn

d∑

k=0

Vk(A),

where α= γ(d+ 1)β1
∑d

i=0EVi(Z0) with β1 as in Lemma 3.4.

Proof. In the following calculation and also later, we use the convention∫
cdΛ0 := c. We apply (2.1) and (3.18) to get

∫ d∑

k=0

Vk(A ∩K1 ∩ · · · ∩Kn)Λ
n(d(K1, . . . ,Kn))

=

d∑

k=0

γ

∫ ∫ ∫
Vk(A∩K1 ∩ · · · ∩Kn−1 ∩ (Kn + y))dyQ(dKn)

×Λn−1(d(K1, . . . ,Kn−1))
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≤
d∑

k=0

γ

∫ ∫
β1

d∑

i=0

Vi(A∩K1 ∩ · · · ∩Kn−1)

×
d∑

r=k

Vr(Kn)Q(dKn)Λ
n−1(d(K1, . . . ,Kn−1))

≤ γ(d+ 1)β1

d∑

i=0

EVi(Z0)

∫ d∑

k=0

Vk(A∩K1 ∩ · · · ∩Kn−1)

×Λn−1(d(K1, . . . ,Kn−1)).

By iterating this step (n− 1) more times, we obtain the assertion. �

Lemma 3.6. Define β2 := 2 · 25d. Then, for K,W ∈Kd,

λd({x ∈Rd : (K + x)∩ ∂W 6=∅})≤ β2

d−1∑

i=0

Vi(W )

d∑

r=0

Vr(K).

Proof. Let W 6=∅ and let Q(∂W ) := {Q1+ z : z ∈ Zd, (Q1+ z)∩∂W 6=
∅}. Then we have

λd({x ∈Rd : (K + x)∩ ∂W 6=∅})

≤
∑

Q∈Q(∂W )

∫
1{(K + x)∩Q 6=∅}dx

=
∑

Q∈Q(∂W )

Vd(K +Q1)≤ |Q(∂W )|c4
d∑

r=0

Vr(K)

with the same constant c4 as in (3.14). Let dist(x,A) := inf{‖x− y‖ :y ∈A}
for x ∈Rd and a closed set A⊂Rd, and let ∂−r W := {x ∈W : dist(x,∂W )≤
r} for r ≥ 0. Then

Vd(∂
−
r W )≤ Vd(W +Bd

r )− Vd(W ).(3.19)

To see this, let pW :Rd→W denote the metric projection toW and consider
the map T : (W +Bd

r ) \W →Rd, x 7→ 2pW (x)−x. Let x ∈ ∂−r W and choose
a point y ∈ ∂W such that ‖x − y‖ = dist(x,∂W ) ≤ r. Using that y − x is
an outer normal of W at y, it is easy to see that T (2y − x) = x. Hence,
∂−r W ⊂ T ((W + Bd

r ) \W ). Since the metric projection is 1-Lipschitz, it is
not hard to prove that T has the same property. Therefore, (3.19) follows.
This yields that

|Q(∂W )| ≤ λd({x ∈Rd : dist(x,∂W )≤
√
d})≤ 2(Vd(W +Bd√

d
)− Vd(W ))
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≤ 2c4

d−1∑

i=0

Vi(W ),

where Steiner’s formula was used. �

Lemma 3.7. Let W ∈ Kd be such that r(W )> 0 and let k ∈ {0, . . . , d−
1}. Then

Vk(W )

Vd(W )
≤ 2d − 1

κd−kr(W )d−k
≤ 2dd!

r(W )d−k
.

Proof. Steiner’s formula and the fact that Vi(W )≥ 0, for i= 0, . . . , d−
1, imply that

(2d − 1)Vd(W ) = Vd(2W )− Vd(W )

≥ Vd(W + r(W )Bd)− Vd(W )

=

d−1∑

i=0

κd−ir(W )d−iVi(W )≥ κd−kr(W )d−kVk(W ).

Now the inequality κn ≥ 1/n!, n ∈N, concludes the proof. �

Proof of Theorem 3.1. Let W ∈Kd with r(W )≥ 1. In order to com-
pute the numerator in (3.3), we shall apply (3.7) with f = fψ1,W and g =
fψ2,W . From (3.10), we conclude that indeed Ef(η)2 <∞ and Eg(η)2 <∞.
Since Z is stationary, the translation invariance of a functional ψ :Rd → R

implies that ψ∗ :Kd → R defined by (3.2) is translation invariant as well.
From (3.8), we get

1

n!

∫
EDn

K1,...,Kn
fψ1,W (η)EDn

K1,...,Kn
fψ2,W (η)Λn(d(K1, . . . ,Kn))

=
γ

n!

∫ ∫ ∫
ψ∗
1((K + x)∩K2 ∩ · · · ∩Kn ∩W )

×ψ∗
2((K + x)∩K2 ∩ · · · ∩Kn ∩W )

×Λn−1(d(K2, . . . ,Kn))Q(dK)dx.

For n ∈N, we define fW,n :Kd →R by

fW,n(K) :=
1

Vd(W )

∫∫
ψ∗
1((K + x)∩K2 ∩ · · · ∩Kn ∩W )

× ψ∗
2((K + x)∩K2 ∩ · · · ∩Kn ∩W )

×Λn−1(d(K2, . . . ,Kn))dx,
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and fn :Kd →R by

fn(K) :=

∫
ψ∗
1(K∩K2∩· · ·∩Kn)ψ

∗
2(K∩K2∩· · ·∩Kn)Λ

n−1(d(K2, . . . ,Kn)).

Our aim is to prove that
∞∑

n=1

γ

n!

∫
fW,n(K)Q(dK)→

∞∑

n=1

γ

n!

∫
fn(K)Q(dK)

as r(W )→∞. Since we want to apply the dominated convergence theorem,
we provide an upper bound for

∑∞
n=1

γ
n! |fW,n|, which is independent of W .

It follows from (3.9) in Lemma 3.3, the translation invariance of Vi and Λ
and the monotonicity of the intrinsic volumes that

|fW,n(K)| ≤
d∑

i,j=0

β(ψ1)β(ψ2)

Vd(W )

∫∫
Vi((K + x)∩K2 ∩ · · · ∩Kn ∩W )

× Vj((K + x)∩K2 ∩ · · · ∩Kn ∩W )

×Λn−1(d(K2, . . . ,Kn))dx

≤
d∑

i,j=0

β(ψ1)β(ψ2)

Vd(W )

∫
Vi(K ∩K2 ∩ · · · ∩Kn)Λ

n−1(d(K2, . . . ,Kn))

×
∫
Vj((K + x)∩W )dx

for K ∈ Kd and n ∈ N. Combining this estimate with Lemmas 3.4 and 3.5,
we get

1

n!
|fW,n(K)| ≤ (d+ 1)β1β(ψ1)β(ψ2)

(
d∑

i=0

Vi(K)

)2 d∑

r=0

Vr(W )

Vd(W )

αn−1

n!
.(3.20)

By (2.5), the right-hand side of (3.20) is integrable. Moreover, Lemma 3.7
shows that it is uniformly bounded forW ∈Kd with r(W )≥ 1, and the same
holds if we sum over all n ∈N.

Next, we bound |fW,n(K)− fn(K)| for K ∈ Kd and n ∈ N. By using the
translation invariance of ψ∗

1, ψ
∗
2 and Λ, we have

fW,n(K)− fn(K)

=
1

Vd(W )

∫ ∫
(ψ∗

1((K + x)∩K2 ∩ · · · ∩Kn ∩W )

×ψ∗
2((K + x)∩K2 ∩ · · · ∩Kn ∩W )

− 1{x ∈W}ψ∗
1((K + x)∩K2 ∩ · · · ∩Kn)

×ψ∗
2((K + x)∩K2 ∩ · · · ∩Kn))dxΛ

n−1(d(K2, . . . ,Kn)).
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Note that the integrand is zero if x ∈W and K+x⊂W . The same holds for

the case that x /∈W and (K + x) ∩W =∅. This means that the integrand

can be only nonzero if (K+x)∩∂W 6=∅. On the other hand, the integrand

is always bounded by

|ψ∗
1((K + x)∩K2 ∩ · · · ∩Kn ∩W )ψ∗

2((K + x)∩K2 ∩ · · · ∩Kn ∩W )|
+ |ψ∗

1((K + x)∩K2 ∩ · · · ∩Kn)ψ
∗
2((K + x)∩K2 ∩ · · · ∩Kn)|

≤ 2β(ψ1)β(ψ2)

(
d∑

i=0

Vi((K + x)∩K2 ∩ · · · ∩Kn)

)2

,

where we have used Lemma 3.3 and the monotonicity of the intrinsic vol-

umes. Hence, we obtain that

|fW,n(K)− fn(K)|

≤ 2β(ψ1)β(ψ2)

Vd(W )

∫∫
1{(K + x)∩ ∂W 6=∅}

×
(

d∑

i=0

Vi((K + x)∩K2 ∩ · · · ∩Kn)

)2

dx

×Λn−1(d(K2, . . . ,Kn))

≤ 2β(ψ1)β(ψ2)

Vd(W )

d∑

i=0

Vi(K)

∫
1{(K + x)∩ ∂W 6=∅}dx

×
∫ d∑

r=0

Vr(K ∩K2 ∩ · · · ∩Kn)Λ
n−1(d(K2, . . . ,Kn)),

where we have used the fact that Vi is increasing and the translation invari-

ance of Vi and Λ in the last step. Now Lemmas 3.5 and 3.6 yield that

|fW,n(K)− fn(K)| ≤ 2β2β(ψ1)β(ψ2)α
n−1

Vd(W )

(
d∑

i=0

Vi(K)

)3 d−1∑

r=0

Vr(W ).

Together with Lemma 3.7 and r(W )≥ 1, this shows that, for K ∈ Kd and

n ∈N,

|fW,n(K)− fn(K)| ≤ β(ψ1, ψ2)α
n−1

(
d∑

i=0

Vi(K)

)3
1

r(W )
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with β(ψ1, ψ2) := 2d+2 · 42d · 252dd!M(ψ1)M(ψ2)(E2
NQ1 +1)2. Therefore, for

K ∈Kd,
∣∣∣∣∣

∞∑

n=1

γ

n!
fW,n(K)−

∞∑

n=1

γ

n!
fn(K)

∣∣∣∣∣≤ γβ(ψ1, ψ2)e
α

(
d∑

i=0

Vi(K)

)3
1

r(W )
.(3.21)

Now an application of the dominated convergence theorem yields the con-
vergence result for r(W )→∞ stated in the theorem.

Under the stronger moment assumption (2.6), (3.5) follows from (3.21)
by carrying out the integration with respect to K and collecting all the
constants. �

If the geometric functional is the volume, the asymptotic variance has a
significantly easier representation than in (3.4), namely

σd,d := lim
r(W )→∞

VarVd(Z ∩W )

Vd(W )
= (1− p)2

∫
(eγCd(x) − 1)dx.(3.22)

This follows from an application of the dominated convergence theorem to
the exact variance formula (2.9). The inequalities et − 1 ≤ tet, t ≥ 0 and
Cd(x)≤ vd imply that
∫

(eγCd(x) − 1)dx≤ γeγvd
∫

EVd(Z0 ∩ (Z0 + x))dx= γeγvdEVd(Z0)
2 <∞.

Together with CW (x)/Vd(W )≤ 1, this means that eγCd(x) − 1 is integrable
and is an upper bound for (CW (x)/Vd(W ))(eγCd(x) − 1). Now the observa-
tion that CW (x)/Vd(W )→ 1 as r(W )→∞ for any x ∈Rd [this follows from
Vd(W ) − CW (x) ≤ Vd(∂

−
‖x‖W ), (3.19), Steiner’s formula, and Lemma 3.7]

yields (3.22). In Section 6, formulas as (3.22) are derived for the other in-
trinsic volumes.

The following proposition shows that the rate of convergence stated in
Theorem 3.1 is optimal.

Proposition 3.8. Assume that (2.5) is satisfied and that the typical
grain is full-dimensional with positive probability. Then there is a constant
cd,d > 0 depending on Λ such that

∣∣∣∣σd,d −
VarVd(Z ∩W )

Vd(W )

∣∣∣∣≥
cd,d
r(W )

for W ∈Kd with r(W )≥ 1.

Proof. Recall from the proof of Lemma 3.6 that ∂−r W = {z ∈ W :
dist(z, ∂W ) ≤ r} for r ≥ 0. For s ≥ 0, we define DW (s) := {z ∈ W :
dist(z, ∂W ) = s}. Then

W−s := {z ∈W : dist(z, ∂W )≥ s}= {z ∈Rd : z+Bd
s ⊂W}
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is convex, the boundary ofW−s is DW (s), and s 7→W−s is strictly decreasing
with respect to set inclusion, for s ∈ [0, r(W )].

It follows from (2.9) and (3.22) that

σd,d −
Var(Vd(Z ∩W ))

Vd(W )

= (1− p)2
∫
Vd(W )− Vd(W ∩ (W + x))

Vd(W )
(eγCd(x) − 1)dx.

Since the typical grain is full-dimensional with positive probability, there are
constants τ > 0 and r0 ∈ (0,1/2) such that eγCd(x) − 1 ≥ τ for all x ∈ Bd

r0 .
This means that

σd,d −
Var(Vd(Z ∩W ))

Vd(W )
(3.23)

≥ (1− p)2
τ

Vd(W )

∫

Bd
r0

(Vd(W )− Vd(W ∩ (W + x)))dx.

Denoting by Bd(x, r) the closed ball with center x and radius r, we have
∫

Bd
r0

(Vd(W )− Vd(W ∩ (W + x)))dx

=

∫

Bd
r0

∫

W
(1{y ∈W} − 1{y ∈W,y ∈W + x})dy dx

=

∫

W
(Vd(B

d(y, r0))− Vd(W ∩Bd(y, r0)))dy

≥
∫

∂−
r0/2

W
(Vd(B

d(y, r0))− Vd(W ∩Bd(y, r0)))dy.

Using that Vd(B
d(y, r0))−Vd(W ∩Bd(y, r0))≥ c̃rd0 for y ∈ ∂−r0/2W with c̃ > 0,

we obtain
∫

Bd
r0

(Vd(W )− Vd(W ∩ (W + x)))dx≥ c̃rd0Vd(∂
−
r0/2

W ).(3.24)

It follows from Lemma 3.2.34 in [6] that

Vd(∂
−
r W ) =

∫ r

0
Hd−1(DW (s))ds

for r ∈ [0, r(W )]. The discussion at the beginning of this proof implies that
Hd−1(DW (·)) is strictly decreasing on [0, r(W )]. Together with Vd(∂

−
r(W )W ) =
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Vd(W ) we get for r(W )≥ r0/2 that

Vd(W ) =

∫ r(W )

0
Hd−1(DW (s))ds≤

∫ r(W )

0
Hd−1

(
DW

(
r0

2r(W )
s

))
ds

=

∫ r0/2

0
Hd−1(DW (t))

2r(W )

r0
dt=

2r(W )

r0
Vd(∂

−
r0/2

W ).

Combining this with (3.23) and (3.24) completes the proof. �

4. Positive definiteness. In this section, we consider the positive definite-
ness of the asymptotic covariance matrix for geometric functionals ψ0, . . . , ψd
on Rd. We assume that ψk, for k ∈ {0, . . . , d}, is positively homogeneous of
degree k and

|ψk(K)| ≥ β̃(ψk)r(K)k,(4.1)

for K ∈ Kd, with a constant β̃(ψk) > 0, which only depends on ψk. These
conditions are motivated by the intrinsic volumes V0, . . . , Vd, where they
are obviously true. The additional assumptions on ψ0, . . . , ψd required in
this section are used in an essential way in the proof of Theorem 4.1 [see
(4.3) and (4.7) below], but are presumably not necessary conditions for the
positive definiteness of the asymptotic covariance matrix. In particular, (4.1)
is always satisfied if the absolute value of ψk on Kd is bounded from below by
a functional ψ̃k :Kd →R which is positive and monotone [i.e., ψ̃k(K)≥ ψ̃k(L)
for K,L ∈Kd with K ⊃L]. This applies to the second example given at the
beginning of Section 3. If we assume that there is a constant h0 > 0 with
h≥ h0, then

|ψ(K)|=
∫

Sd−1

h(u)Sk(K,du)≥ h0 dV (Bd[d− k],K[k])≥ dh0κdr(K)k

for K ∈Kd, which ensures that (4.1) is satisfied.
By Theorem 3.1, for k, l ∈ {0, . . . , d}, the asymptotic covariances σψk ,ψl

ex-
ist under the assumption (2.5). The following theorem shows that the asymp-
totic covariance matrix is positive definite. In particular, the result applies
to the intrinsic volumes V0, . . . , Vd, which also means that their asymptotic
variances are strictly positive.

Theorem 4.1. Let the preceding assumptions and (2.5) be satisfied.
Moreover, assume that the typical grain Z0 has nonempty interior with posi-
tive probability. Then the covariance matrix Σ := (σψk ,ψl

)k,l=0,...,d is positive
definite.
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Proof. For a vector a= (a0, . . . , ad)
⊤ ∈Rd+1, we have

a⊤Σa= γ

∞∑

n=1

1

n!

∫ ∫ ( d∑

k=0

akψ
∗
k(K1 ∩K2 ∩ · · · ∩Kn)

)2

×Λn−1(d(K2, . . . ,Kn))Q(dK1).

Since each summand is nonnegative, the matrix Σ is positive definite if we
can prove that one summand is greater than zero for a given a ∈Rd+1 \{0}.
Specifically, under the given assumptions we shall show that the summand
obtained for n= d+1 is positive. In order to show this, we shall prove that
for K1, . . . ,Kd+1 in the support of Q and having nonempty interiors, there
is a set of translation vectors x2, . . . , xd+1 ∈Rd of positive λdd measure (recall
that λd denotes d-dimensional Lebesgue measure) for which

d∑

k=0

akψ
∗
k(K1 ∩ (K2 + x2)∩ · · · ∩ (Kd+1 + xd+1)) 6= 0.

For the rest of the proof, we argue with a nonempty convex body L ∈ Kd.
Properties which will be required of L will be provided by an application of
Lemma 4.2 and L of the form L=K1∩ (K2+x2)∩· · ·∩ (Kd+1+xd+1) ∈Kd,
for a set of translation vectors x2, . . . , xd+1 ∈Rd of positive λdd measure. This
will finally prove the preceding assertion, and thus the theorem.

Let N1(L) be the number of grains of η that intersect L, but do not
contain it, and let N2(L) be the number of grains of η that contain L. Then
N1(L) and N2(L) are independent, Poisson distributed random variables
with parameters

s1(L) = Λ({K ∈Kd :K ∩L 6=∅ and L 6⊂K}) and

s2(L) = Λ({K ∈Kd :L⊂K}).
If N2(L) 6= 0, then L ⊂ Z and, therefore, ψk(Z ∩ L) − ψk(L) = ψk(L) −
ψk(L) = 0. If N1(L) =N2(L) = 0, then Z ∩ L= ∅, and hence ψk(Z ∩ L)−
ψk(L) = 0− ψk(L) =−ψk(L). This leads to

ψ∗
k(L) = E[ψk(Z ∩L)− ψk(L)]

(4.2)
=− exp(−s1(L)− s2(L))ψk(L) +Rk(L),

where

Rk(L) = E1{N1(L)≥ 1,N2(L) = 0}(ψk(Z ∩L)− ψk(L)).

Next, we bound Rk(L) from above. So assume that N1(L) 6= 0. Let K1, . . . ,
KN1(L) denote the grains of η which hit L, but do not contain L. With the
definition of ML(ψk) from (3.16), we obtain from (3.17) that

|ψk(Z ∩L)− ψk(L)| ≤ |ψk(Z ∩L)|+ |ψk(L)| ≤ 2N1(L)ML(ψk).
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In the following, let R(K) stand for the radius of the circumscribed ball of
K ∈Kd. For A ∈Kd with A⊂L, let â ∈Rd be the center of the circumball of
A, hence A− â⊂ 2R(A)Q1. Since ψk is translation-invariant, homogeneous
of degree k, and locally bounded, we get

|ψk(A)|= (2R(A))k|ψk((2R(A))−1(A− â))| ≤ (2R(A))kM(ψk),

and hence

ML(ψk)≤ (2R(L))kM(ψk).(4.3)

Thus, in the present case, we have

|ψk(Z ∩L)− ψk(L)| ≤ 2N1(L)(2R(L))kM(ψk).

Hence, the remainder term can be bounded from above by

|Rk(L)| ≤ E[1{N1(L)≥ 1,N2(L) = 0}2N1(L)(2R(L))kM(ψk)]

= exp(−s2(L))(2R(L))kM(ψk) exp(s1(L))(1− exp(−2s1(L)))

≤ exp(−s2(L))(2R(L))kM(ψk) exp(s1(L))2s1(L).

Next, we derive an upper bound for s1(L). By definition and the reflection
invariance of Lebesgue measure, we have

s1(L) = γ

∫ ∫
1{(L+ x)∩K 6=∅,L+ x 6⊂K}dxQ(dK).

To bound the inner integral from above, we can assume that L ∈Kd
o , by the

translation invariance of Lebesgue measure. If the integrand is nonzero, then
x ∈ (K +R(L)Bd) \K or x ∈ ∂K−

R(L). Then inequality (3.19) implies that

the inner integral is bounded from above by 2Vd((K+R(L)Bd)\K). Hence,
if R(L)≤ 1, Steiner’s formula and our moment assumption yield that

s1(L)≤ c6R(L),

where c6 denotes a constant depending on Λ. Hence, if R(L) is sufficiently
small, then s1(L)≤ 1, and thus

|Rk(L)| ≤ 6 · (2R(L))kM(ψk)s1(L) exp(−s2(L))
(4.4)

≤ 6 · 2k · c6M(ψk)R(L)
k+1 exp(−s2(L)).

We also have from (4.3) that

|exp(−s1(L)− s2(L))ψk(L)|
(4.5)

≤ML(ψk) exp(−s2(L))≤ (2R(L))kM(ψk) exp(−s2(L)).
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Hence, if R(L) is sufficiently small, we deduce from (4.2), (4.4) and (4.5)
that

|ψ∗
k(L)| ≤ β̄(ψk)R(L)

k exp(−s2(L)),(4.6)

where β̄(ψk) is a constant depending on Λ and ψk. In addition,

|exp(−s1(L)− s2(L))ψk(L)| ≥ exp(−s2(L))(β̃(ψk)/3)r(L)k,(4.7)

if s1(L)≤ 1, with β̃(ψk) as in (4.1).
Let k0 be the smallest k ∈ {0, . . . , d} such that ak 6= 0. Then, if R(L) is

sufficiently small, we get
∣∣∣∣∣

d∑

k=0

akψ
∗
k(L)

∣∣∣∣∣

=

∣∣∣∣∣

d∑

k=k0

akψ
∗
k(L)

∣∣∣∣∣

=

∣∣∣∣∣−ak0 exp(−s1(L)− s2(L))ψk0(L) + ak0Rk0(L) +

d∑

k=k0+1

akψ
∗
k(L)

∣∣∣∣∣

≥ |ak0 ||exp(−s1(L)− s2(L))ψk0(L)| − |ak0Rk0(L)| −
d∑

k=k0+1

|ak||ψ∗
k(L)|

≥ exp(−s2(L))(|ak0 |(β̃(ψk0)/3)r(L)k0 − β∗R(L)k0+1),

where we used (4.4) and (4.7), for k = k0, and (4.6) for k ≥ k0 + 1. Here,
we denote by β∗ a constant which depends on ak0 , . . . , ad, ψk0 , . . . , ψd,Λ.
The lower bound thus obtained is positive if R(L) is sufficiently small and
R(L)/r(L)≤ c0, for some constant c0. The proof is completed by an appli-
cation of Lemma 4.2 below. �

The following lemma on the ratio of circumradius and inradius of trans-
lates of convex bodies is a key argument in the proof of Theorem 4.1.

Lemma 4.2. For all K1, . . . ,Kd+1 ∈Kd with nonempty interior there is
a constant c0 > 0 such that

λdd

({
(x2, . . . , xd+1) ∈ (Rd)d :R(L)< c0r(L) and R(L)≤ r

for L=K1 ∩
d+1⋂

i=2

(Ki + xi)

})
> 0

for all r > 0.
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Proof. Let u1, . . . , ud+1 ∈ Rd be unit vectors whose endpoints are the
vertices of a regular simplex. For i = 1, . . . , d + 1 let xi be a point in the
boundary of Ki which has ui as an exterior normal vector. The support
cone S(Ki, xi) of Ki at xi (cf. [30], page 81) then satisfies

Ki − xi ⊂ S(Ki, xi) := cl

(⋃

t>0

t(Ki − xi)

)
⊂H−(Ki, ui)− xi,

where H−(Ki, ui) is the supporting half-space of Ki with exterior unit nor-
mal ui and cl denotes the closure. By [31], Theorem 12.2.2, it follows that
t(Ki − xi) → S(Ki, xi) in the topology of closed convergence as t → ∞.
Moreover, since K1, . . . ,Kd+1 have nonempty interiors, there are vectors
z1, . . . , zd+1 ∈Rd such that the origin is an interior point of

S0 :=
d+1⋂

i=1

(S(Ki, xi) + zi)⊂
d+1⋂

i=1

(H−(Ki, ui)− xi + zi)

and the circumradius of the intersection on the right-hand side is less than
1 (say). Then [30], Theorem 1.8.10 and [31], Theorem 12.3.3, imply that

S0 = lim
t→∞

(
t
d+1⋂

i=1

(Ki + xi(t))

)
,

where xi(t) :=−xi+ t−1zi and the convergence is with respect to the Haus-
dorff distance. Since the inradius and the circumradius of the intersection of
translates of convex bodies are continuous with respect to the translations
as long as the intersection has nonempty interior, there is some t0 > 1 such
that the ratio between inradius and circumradius of

t
d+1⋂

i=1

(Ki + xi(t))

is close to the corresponding ratio of S0, for t≥ t0 and, therefore, also

1≤ R(
⋂d+1
i=1 (Ki + xi(t)))

r(
⋂d+1
i=1 (Ki + xi(t)))

< c̃0,

with a constant c̃0 > 1 which depends only on K1, . . . ,Kd+1. Moreover, for
t≥ t0 > 1 we have

R

(
t

d+1⋂

i=1

(Ki + xi(t))

)
≤R

(
d+1⋂

i=1

(H−(Ki, ui)− xi+ zi)

)
< 1

and thus

R

(
d+1⋂

i=1

(Ki + xi(t))

)
<

1

t
.
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Therefore, if r < 1/(2t0) the proof of the lemma is completed by remarking
that the intersections are continuous with respect to translations as long
as the intersection has nonempty interior and by using the translation in-
variance of Lebesgue measure. Clearly, this proves the lemma for all r > 0.
�

5. Some integral formulas for intrinsic volumes. We shall see in the next
section that in the particularly important case of intrinsic volumes and under
the assumption of isotropy the asymptotic covariances of Theorem 3.1 can
be expressed in terms of the numbers

ρi,j := γ
∞∑

n=1

1

n!

∫ ∫
Vi(K1 ∩ · · · ∩Kn)Vj(K1 ∩ · · · ∩Kn)

(5.1)
×Λn−1(d(K2, . . . ,Kn))Q(dK1).

In this section, we study these numbers without isotropy assumption on Z.
The results are of independent interest.

For W ∈Kd and i, j ∈ {0, . . . , d}, we define

ρi,j(W ) :=

∞∑

n=1

1

n!

∫
Vi(K1 ∩ · · · ∩Kn ∩W )Vj(K1 ∩ · · · ∩Kn ∩W )

(5.2)
×Λn(d(K1, . . . ,Kn)),

which is a finite window version of ρi,j . The numbers ρi,j(W ) are further
studied in [13], Appendix B. The relationship between (5.1) and (5.2) is
given in the next corollary.

Corollary 5.1. Let i, j ∈ {0, . . . , d}. If (2.5) is satisfied, then ρi,j <∞
and

lim
r(W )→∞

ρi,j(W )

Vd(W )
= ρi,j.(5.3)

If (2.6) is satisfied, then there is a constant ci,j such that
∣∣∣∣ρi,j −

ρi,j(W )

Vd(W )

∣∣∣∣≤
ci,j
r(W )

for W ∈Kd with r(W )≥ 1.

Proof. This can be proved in a similar way as Theorem 3.1. �

The previous corollary describes ρi,j as the limit of Vd(W )−1ρi,j(W ) for
observation windows with r(W ) → ∞. It is, however, more convenient to
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work with the series representation (5.1). We shall see that this series can
be expressed in terms of a finite family of (curvature) measures Hi,j to be
introduced below.

For j ∈ {0, . . . , d} and K ∈ Kd, we let Φj(K; ·) denote the jth curvature
measure of K (see [31], Section 14.2). In particular, Φd(K; ·) is the restriction
of Lebesgue measure to K while Φd−1(K; ·) is half the (d− 1)-dimensional
Hausdorff measure restricted to the boundary of K (if the affine hull of K
has full dimension). Furthermore, Φj(K;Rd) = Vj(K) for all j ∈ {0, . . . , d}.
For j ∈ {0, . . . , d− 1}, n ∈N, and K1, . . . ,Kn ∈Kd we define

Φj(K1, . . . ,Kn; ·) := Φj(K1 ∩ · · · ∩Kn;∂K1 ∩ · · · ∩ ∂Kn ∩ ·).(5.4)

Since Φj(K1; ·), j ∈ {0, . . . , d− 1}, is concentrated on the boundary ∂K1 of
K1, this definition is consistent with the case n = 1. For i ∈ {1, . . . , d− 1}
and k ∈ {1, . . . , d− i}, we define a measure Hk

i,d on Rd by

Hk
i,d := γ

∫ ∫ ∫∫
1{y − z ∈ ·}1{z ∈K1 ∩ · · · ∩Kk}Φi(K1, . . . ,Kk;dy)dz

(5.5)
×Λk−1(d(K1, . . . ,Kk−1))Q(dKk),

with the appropriate interpretation of the case k = 1.
For i, j ∈ {1, . . . , d − 1}, k ∈ {1, . . . , d − i}, l ∈ {1, . . . , d − j}, and m ∈

{0, . . . , k ∧ l} we define a measure Hk,l,m
i,j on Rd by

Hk,l,m
i,j : = γ

∫ ∫∫ ∫
1{y − z ∈ ·}

× 1{y ∈K◦
k+1 ∩ · · · ∩K◦

k+l−m, z ∈K◦
1 ∩ · · · ∩K◦

k−m}
(5.6)

×Φi(K1, . . . ,Kk;dy)Φj(Kk+1−m, . . . ,Kk+l−m;dz)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))Q(dKk+l−m),

where K◦ denotes the interior of K ∈Kd and with the appropriate interpre-
tation of the cases m= k or m= l. Let

Hi,d :=

d−i∑

k=1

1

k!
Hk
i,d, i ∈ {1, . . . , d− 1},

Hi,j :=
d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

1

m!(k−m)!(l−m)!
Hk,l,m
i,j , i, j ∈ {1, . . . , d− 1},

and, for j ∈ {0, . . . , d− 1},

h0,j :=

d−j∑

l=1

γ

l!

∫∫
Φj(K1, . . . ,Kl;R

d)Λl−1(d(K1, . . . ,Kl−1))Q(dKl).(5.7)
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Moreover, we define Hd,d(dx) := (1− e−γCd(x))dx, H0,j :=Hj,0 := h0,jδ0 for
j ∈ {0, . . . , d− 1}, and H0,d :=Hd,0 := (1− e−γvd)δ0, where δ0 is the Dirac
measure concentrated at the origin and Cd(x) is the mean covariogram of
the typcial grain as defined in (2.7).

Subsequently, we assume that

Q({K ∈Kd :Vd(K)> 0}) = 1,(5.8)

that is, the typical grain almost surely has nonempty interior.

Theorem 5.2. Assume that (2.5) and (5.8) are satisfied. Then the mea-
sures Hi,j are all finite. Moreover, the limits (5.3) are given by

ρi,j =

∫
eγCd(x)Hi,j(dx), i, j ∈ {0, . . . , d}.(5.9)

For i= d or j = d, the result remains true without assumption (5.8).

In particular, we thus have

ρd,d =

∫
(eγCd(x) − 1)dx,(5.10)

ρ0,d = eγvd − 1, and ρ0,j = eγvdh0,j for j ∈ {0, . . . , d− 1}.
The proof of Theorem 5.2 is based on the following geometric result. Here,

we use the abbreviation [n] = {1, . . . , n}.

Lemma 5.3. Let K1,K
′
2, . . . ,K

′
n ∈Kd, n ∈N, have nonempty interiors,

and let i ∈ {0, . . . , d− 1}. Then

Φi(K1 ∩ · · · ∩Kn; ·) =
∑

∅ 6=I⊂[n]

|I|≤d−i

Φi

(⋂

r∈I
Kr; · ∩

⋂

r∈I
∂Kr ∩

⋂

s/∈I
K◦
s

)
,

for almost all translates Ki of K
′
i for i= 2, . . . , n.

Hence, if (5.8) is satisfied and K1 ∈Kd has nonempty interior, then this
lemma can be applied for Λn−1-a.e. (K2, . . . ,Kn) ∈ (Kd)n−1.

Before we prove Lemma 5.3, we provide two auxiliary results.

Lemma 5.4. Let K1, . . . ,Km ∈ Kd, m ≥ 2, have nonempty interiors.
Then, for Hd(m−1)-almost all (t2, . . . , tm) ∈Rd(m−1), if K1∩ (K2+ t2)∩ · · ·∩
(Km + tm) 6=∅, then (K1)

◦ ∩ (K2 + t2)
◦ ∩ · · · ∩ (Km + tm)

◦ 6=∅.

Proof. The assertion is proved by induction over m ≥ 2. For m = 2,
the assertion holds, since any t2 ∈ Rd such that K1 ∩ (K2 + t2) 6= ∅ and
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K◦
1 ∩ (K◦

2 + t2) =∅ is contained in the boundary of K1 + (−K2), which has
d-dimensional Hausdorff measure zero. The induction step follows from the
case m= 2 and Fubini’s theorem. For further details, see [13]. �

For the following lemma, we use basic notions from geometric measure
theory (see, e.g., [6]).

Lemma 5.5. Let K1, . . . ,Km ∈Kd, m ∈N. If m≤ d, then for Hd(m−1)-
almost all translates (t2, . . . , tm) ∈ Rd(m−1), the intersection ∂K1 ∩ (∂K2 +
t2)∩· · ·∩ (∂Km+ tm) has finite (d−m)-dimensional Hausdorff measure. For
m> d, the intersection is the empty set for almost all translation vectors.

Proof. Since for m= 1 there is nothing to show, we assume that m ∈
{2, . . . , d}. Let W := ∂K1 × · · · × ∂Km ⊂Rdm, let Z ⊂Rd(m−1) be the com-
pact image set of the Lipschitz map T :W → Z ⊂ Rd(m−1), (x1, . . . , xm) 7→
(x1−x2, . . . , x1−xm). Then the assumptions of the coarea theorem ([6], The-
orem 3.2.22 (2)) are satisfied. Thus, for Hd(m−1)-almost all (t2, . . . , tm) ∈
Z, the set T−1{(t2, . . . , tm)} has finite Hd−m measure. Identify Rdm with
(Rd)m and denote by π1 : (R

d)m → Rd the projection to the first compo-
nent, which is a Lipschitz map. Then ∂K1 ∩ (∂K2+ t2)∩ · · · ∩ (∂Km+ tm) =
π1(T

−1{(t2, . . . , tm)}) has finite (d−m)-dimensional Hausdorff measure for
Hd(m−1)-almost all (t2, . . . , tm) ∈ Z. [If (t2, . . . , tm) /∈ Z, the intersection is
the empty set.]

The assertion for m>d easily follows from the one for m= d. �

Proof of Lemma 5.3. There is nothing to show for n= 1 so that we
assume that n≥ 2. By Lemmas 5.4 and 5.5, we can assume that K1, . . . ,Kn

have a common interior point and for ∅ 6= I ⊂ [n] each intersection
⋂
r∈I ∂Kr

has finite (d− |I|)-dimensional Hausdorff measure if |I| ≤ d, and otherwise
is the empty set.

Since Φi(K1∩· · ·∩Kn, ·) is concentrated on the boundary of K1∩· · ·∩Kn,
the measure property yields that

Φi(K1 ∩ · · · ∩Kn; ·) =
∑

∅ 6=I⊂[n]

Φi

(
K1 ∩ · · · ∩Kn; · ∩

⋂

r∈I
∂Kr ∩

⋂

s/∈I
K◦
s

)
.

The intersection U :=
⋂
s/∈IK

◦
s is open, U ′ :=

⋂
r∈I ∂Kr ∩

⋂
s/∈IK

◦
s ⊂U , and

K1 ∩ · · · ∩ Kn ∩ U =
⋂
r∈IKr ∩ U . Hence, since Φi is locally determined

(see [30], page 215), it follows that

Φi(K1 ∩ · · · ∩Kn; ·) =
∑

∅ 6=I⊂[n]

Φi

(⋂

r∈I
Kr; · ∩

⋂

r∈I
∂Kr ∩

⋂

s/∈I
K◦
s

)
.
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Since
⋂
r∈I ∂Kr has finite (d− |I|)-dimensional Hausdorff measure for |I| ∈

{1, . . . , d}, and is the empty set for |I|> d, we conclude that if d≥ |I|> d− i,
then

⋂
r∈I ∂Kr has i-dimensional Hausdorff measure zero. A special case of

[4], Theorem 5.5, then yields that

Φi

(⋂

r∈I
Kr; · ∩

⋂

r∈I
∂Kr ∩

⋂

s/∈I
K◦
s

)
= 0,

which completes the proof. �

Proof of Theorem 5.2. We start with showing that the measures
Hi,j are finite. Let i, j ∈ {1, . . . , d− 1}, k ∈ {1, . . . , d− i}, l ∈ {1, . . . , d− j},
and m ∈ {0, . . . , k ∧ l}. Then

Hk,l,m
i,j (Rd)≤ γ

∫ ∫∫ ∫
1{K1 ∩ · · · ∩Kk+l−m 6=∅}Φi(K1, . . . ,Kk;dy)

×Φj(Kk+1−m, . . . ,Kk+l−m;dz)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))Q(dKk+l−m)

≤ γ

∫ ∫
V0(K1 ∩ · · · ∩Kk+l−m)Vi(K1)Vj(Kk+l−m)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))Q(dKk+l−m).

For k + l−m= 1 the right-hand side is finite because of assumption (2.5).
Otherwise, we obtain by Lemmas 3.5 and 3.4 that

Hk,l,m
i,j (Rd)

≤ γ2αk+l−m−2

∫ ∫ d∑

r=0

Vr((K1 + x)∩Kk+l−m)Vi(K1)

× Vj(Kk+l−m)dxQ
2(d(K1,Kk+l−m))

≤ (d+1)γ2αk+l−m−2β1

∫ d∑

r=0

Vr(K1)
d∑

r=0

Vr(Kk+l−m)Vi(K1)Vj(Kk+l−m)

×Q2(d(K1,Kk+l−m)).

Now it follows from (2.5) that the right-hand side is finite. Similar (but
easier) arguments show that the other measures are also finite.

Note that ρi,j = ρj,i for i, j ∈ {0, . . . , d}. To prove that the series (5.1) is
given by (5.9), we distinguish different cases and start with i= j = d. Then
we have

ρd,d = γ
∞∑

n=1

1

n!

∫∫
Vd(K1 ∩ · · · ∩Kn)

2Λn−1(d(K2, . . . ,Kn))Q(dK1)
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=

∞∑

n=1

γn

n!

∫
· · ·
∫

1{y ∈K1 ∩ (K2 + x2)∩ · · · ∩ (Kn + xn)}

× 1{z ∈K1 ∩ (K2 + x2)∩ · · ·
∩ (Kn + xn)}dy dz dx2 · · · dxn

×Qn(d(K1, . . . ,Kn))

=
∞∑

n=1

γn

n!

∫ ∫∫
Vd((K2 − y)∩ (K2 − z)) · · ·Vd((Kn − y)∩ (Kn − z))

× 1{y ∈K1}1{z ∈K1}dy dzQn(d(K1, . . . ,Kn))

=
∞∑

n=1

γn

n!

∫ ∫∫
(EVd(Z0 ∩ (Z0 + y − z)))n−1

1{y, z ∈K1}dy dzQ(dK1)

=

∞∑

n=1

γn

n!

∫ ∫∫
(EVd(Z0 ∩ (Z0 + y)))n−1

1{y + z ∈K1}

× 1{z ∈K1}dy dzQ(dK1)

=
∞∑

n=1

γn

n!

∫
Cd(y)

n dy =

∫
(eγCd(y) − 1)dy.

For i= 0 and j = d, we get by an even simpler calculation

ρ0,d =

∞∑

n=1

γn

n!
(EVd(Z0))

n = eγvd − 1.

This and the preceding calculation do not depend on assumption (5.8).
Next, we turn to i= 0 and j ∈ {0, . . . , d−1}. Then, using Vj(L) = Φj(L;R

d),
for L ∈Kd and Lemma 5.3, we get

ρ0,j = γ
∞∑

n=1

1

n!

d−j∑

l=1

∑

J⊂[n]

|J |=l

∫ ∫∫
1

{
z ∈

⋂

s/∈J
K◦
s

}
Φj(KJ ;dz)Λ

n−1(d(K2, . . . ,Kn))

×Q(dK1),

where Φj(KJ ; ·) = Φj(Kj1 , . . . ,Kjl; ·) for J = {j1, . . . , jl} [see (5.4)]. At this
stage and also later, we use the covariance property

∫
h(y)Φi(K1, . . . ,Kl;dy)

(5.11)

=

∫
h(y + x)Φi(K1 − x, . . . ,Kl − x;dy), x ∈Rd,



30 D. HUG, G. LAST AND M. SCHULTE

which holds for all measurable h :Rd → [0,∞]. This follows from the defini-
tion (5.4) and [31], Theorem 14.2.2. Using (5.11) and then the invariance of
Λ under translations, it is easy to check that, for instance,
∫ ∫∫

1{z ∈K◦
l+1 ∩ · · · ∩K◦

n}Φj(K{1,...,l};dz)Λ
n−1(d(K1, . . . ,Kn−1))Q(dKn)

=

∫∫ ∫
1{z ∈K◦

l+1 ∩ · · · ∩K◦
n}Φj(K{1,...,l};dz)

×Λn−1(d(K2, . . . ,Kn))Q(dK1).

From such symmetry relations, we deduce that

ρ0,j = γ

d−j∑

l=1

∞∑

n=l

1

n!

(
n
l

)∫∫∫
1{z ∈K◦

l+1 ∩ · · · ∩K◦
n}

×Φj(K1, . . . ,Kl;dz)

×Λn−1(d(K2, . . . ,Kn))Q(dK1)

= γ

d−j∑

l=1

∞∑

n=l

1

n!

(
n
l

)
γn−l

∫ ∫ ∫
Vd(Kl+1) · · ·Vd(Kn)Φj(K1, . . . ,Kl;R

d)

×Qn−l(d(Kl+1, . . . ,Kn))

×Λl−1(d(K2, . . . ,Kl))Q(dK1)

= γ

d−j∑

l=1

1

l!

∞∑

n=l

(γvd)
n−l

(n− l)!

∫∫
Φj(K1, . . . ,Kl;R

d)

×Λl−1(d(K2, . . . ,Kl))Q(dK1) = eγvdh0,j .

Next, we address the case i ∈ {1, . . . , d−1} and j = d. Using again Lemma 5.3
and a symmetry argument (as above), we obtain

ρi,d = γ
∞∑

n=1

1

n!

d−i∑

k=1

(
n
k

)∫∫∫∫
1{y ∈K◦

k+1 ∩ · · · ∩K◦
n}

× 1{z ∈K1 ∩ · · · ∩Kn}dz
×Φi(K1, . . . ,Kk;dy)

×Λn−1(d(K2, . . . ,Kn))Q(dK1).

Then we interchange the order of summation to get

ρi,d = γ

d−i∑

k=1

∞∑

n=k

γn−k

k!(n− k)!

∫
· · ·
∫

1{xk+1 ∈ (K◦
k+1 − y)∩ (Kk+1 − z)} · · ·
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× 1{xn ∈ (K◦
n − y)∩ (Kn − z)}

×Q(dKk+1) · · ·Q(dKn)dxk+1 · · ·dxn
× 1{z ∈K1 ∩ · · · ∩Kk}Φi(K1, . . . ,Kk;dy)dz

×Λk−1(d(K2, . . . ,Kk))Q(dK1)

= γ

d−i∑

k=1

∞∑

n=k

γn−k

k!(n− k)!

∫ ∫ ∫∫
(EVd(Z0 ∩ (Z0 + y − z)))n−k

× 1{z ∈K1 ∩ · · · ∩Kk}
×Φi(K1, . . . ,Kk;dy)dz

×Λk−1(d(K2, . . . ,Kk))Q(dK1)

= γ

d−i∑

k=1

1

k!

∫∫ ∫ ∫
eγCd(y−z)1{z ∈K1 ∩ · · · ∩Kk}

×Φi(K1, . . . ,Kk;dy)dzΛ
k−1(d(K2, . . . ,Kk))Q(dK1),

which yields that

ρi,d =
d−i∑

k=1

1

k!

∫
eγCd(x)Hk

i,d(dx) =

∫
eγCd(x)Hi,d(dx).

Finally, we consider the case where i, j ∈ {1, . . . , d−1}. Again by Lemma 5.3,
we get

ρi,j = γ
∞∑

n=1

1

n!

d−i∑

k=1

d−j∑

l=1

∑

I⊂[n]

|I|=k

∑

J⊂[n]

|J |=l

∫ ∫ ∫∫
1

{
y ∈

⋂

r /∈I
K◦
r , z ∈

⋂

s/∈J
K◦
s

}

×Φi(KI ;dy)Φj(KJ ;dz)

×Λn−1(d(K2, . . . ,Kn))Q(dK1)

= γ

∞∑

n=1

1

n!

d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

∑

I,J⊂[n]

|I|=k,|J |=l,|I∩J |=m

∫ ∫∫ ∫
1

{
y ∈

⋂

r /∈I
K◦
r , z ∈

⋂

s/∈J
K◦
s

}

×Φi(KI ;dy)Φj(KJ ;dz)

×Λn−1(d(K2, . . . ,Kn))

×Q(dK1).

A symmetry argument shows (as before) that for each choice of I, J such
that |I| = k, |J | = l and |I ∩ J | =m, the preceding integral has the same
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value. There are
(n
k

)( k
m

)(n−k
l−m
)
possible choices of I, J with these properties.

Thus, we obtain

ρi,j = γ

∞∑

n=1

1

n!

d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

(
n
k

)(
k
m

)(
n− k
l−m

)

×
∫

· · ·
∫

1{y ∈K◦
k+1 ∩ · · · ∩K◦

n}

× 1{z ∈K◦
1 ∩ · · · ∩K◦

k−m ∩K◦
k+l−m+1 ∩ · · · ∩K◦

n}
×Φi(K1, . . . ,Kk;dy)

×Φj(Kk+1−m, . . . ,Kk+l−m;dz)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))

×Q(dKk+l−m)Λ
n−(k+l−m)(dKk+l−m+1, . . . ,Kn)

= γ
∞∑

n=1

d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

1{n≥ k+ l−m}γn−(k+l−m)

m!(k−m)!(l−m)!(n− (k+ l−m))!

×
∫

· · ·
∫ n∏

r=k+l−m+1

1{xr ∈ (K◦
r − y)∩ (K◦

r − z)}dxk+l−m+1 · · ·dxn

×Q(dKk+l−m+1) · · ·Q(dKn)

× 1{y ∈K◦
k+1 ∩ · · · ∩K◦

k+l−m}
× 1{z ∈K◦

1 ∩ · · · ∩K◦
k−m}Φi(K1, . . . ,Kk;dy)

×Φj(Kk+1−m, . . . ,Kk+l−m;dz)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))Q(dKk+l−m),

and hence

ρi,j = γ
d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

1

m!(k−m)!(l−m)!

×
∫ ∫∫ ∫ ∞∑

n=k+l−m

(γCd(y − z))n−(k+l−m)

(n− (k + l−m))!

× 1{y ∈K◦
k+1 ∩ · · · ∩K◦

k+l−m}1{z ∈K◦
1 ∩ · · · ∩K◦

k−m}
×Φi(K1, . . . ,Kk;dy)Φj(Kk+1−m, . . . ,Kk+l−m;dz)

×Λk+l−m−1(d(K1, . . . ,Kk+l−m−1))Q(dKk+l−m)



SECOND-ORDER PROPERTIES OF BOOLEAN MODELS 33

=
d−i∑

k=1

d−j∑

l=1

k∧l∑

m=0

1

m!(k−m)!(l−m)!

∫
eγCd(x)Hk,l,m

i,j (dx).

This completes the proof of the theorem. �

Some of the measures in (5.5) and (5.6) can be expressed in terms of the
mixed moment measures

Mi,j := E

∫∫
1{(y, z) ∈ ·}Φi(Z0;dy)Φj(Z0;dz), i, j ∈ {1, . . . , d},

and the functions Cj :R
d→ [0,∞), j ∈ {1, . . . , d− 1}, defined by

Cj(x) := EΦj(Z0;Z
◦
0 + x), x ∈Rd.

Lemma 5.6. Assume that (2.5) is satisfied. Then, for any i, j ∈ {1, . . . , d−
1},

H1
i,d = γ

∫
1{y − z ∈ ·}Mi,d(d(y, z)),(5.12)

H1,1,0
i,j = γ2

∫
1{y − z ∈ ·}Ci(y − z)Mj,d(d(z, y)),(5.13)

H1,1,1
i,j = γ

∫
1{y − z ∈ ·}Mi,j(d(y, z)).(5.14)

Proof. Equations (5.12) and (5.14) follow directly from the definitions,
while (5.13) follows from an easy calculation using the covariance property
(5.11). �

In the next section, we will use the following consequences of Lemma 5.6:

Hd−1,d = γ

∫
1{y − z ∈ ·}Md−1,d(d(z, y)),(5.15)

Hd−1,d−1 = γ2
∫

1{y − z ∈ ·}Cd−1(y − z)Md−1,d(d(z, y))

(5.16)

+ γ

∫
1{y − z ∈ ·}Md−1,d−1(d(y, z)).

6. Covariance structure in the isotropic case. In this section, we assume
that the typical grain is isotropic, that is, its distribution Q is invariant
under rotations and that the moment assumption (2.5) is satisfied. Our aim
is to derive more explicit formulas for the asymptotic covariances

σi,j := lim
r(W )→∞

Cov(Vi(Z ∩W ), Vj(Z ∩W ))

Vd(W )
, i, j ∈ {0, . . . , d};(6.1)
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confer the statement of Theorem 3.1.
Using the iterated version of the local kinematic formula ([31], Theo-

rem 5.3.2), which is obtained by combining [31], Theorem 6.4.1, (b) and
(6.15) and [31], Theorem 6.4.2, (6.20), we get for j ∈ {0, . . . , d − 1} and
l ∈ {1, . . . , d− j} that

γ

∫∫
Φj(K1, . . . ,Kl,R

d)Λl−1(d(K1, . . . ,Kl−1))Q(dKl)

=

d−1∑

m1,...,ml=j

m1+···+ml=(l−1)d+j

cdj

l∏

i=1

cmi
d γvmi ,

where, as in [31], (5.4),

cmj :=
m!κm
j!κj

, m, j ∈ {0, . . . , d}.

Combining this with (5.7) and Theorem 5.2, and under assumption (5.8),
we deduce

ρ0,j = eγvdPj(γvj , . . . , γvd−1), j ∈ {0, . . . , d− 1},(6.2)

where Pj (a multivariate polynomial on Rd−j of degree d) is defined by

Pj(tj , . . . , td−1) := cdj

d−j∑

l=1

1

l!

d−1∑

m1,...,ml=j

m1+···+ml=(l−1)d+j

l∏

i=1

cmi
d tmi .

The following main result of this section shows that the asymptotic co-
variances (6.1) are linear combinations of the numbers ρi,j given by (5.1). To
describe the coefficients, we define for any j ∈ {0, . . . , d−1} and l ∈ {j, . . . , d}
a polynomial Pj,l on Rd−j of degree l− j by

Pj,l(tj , . . . , td−1) := 1{l= j}+ clj
l−j∑

s=1

(−1)s

s!

d−1∑

m1,...,ms=j

m1+···+ms=sd+j−l

s∏

i=1

cmi
d tmi(6.3)

and complement this definition by Pd,d := 1.

Theorem 6.1. Assume that the typical grain is isotropic and suppose
that (2.5) holds. Then

σi,j = (1− p)2
d∑

k=i

d∑

l=j

Pi,k(γvi, . . . , γvd−1)Pj,l(γvj , . . . , γvd−1)ρk,l,

for all i, j ∈ {0, . . . , d}.
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Proof. The formula preceding Theorem 9.1.4 in [31] is the finite volume
version of the fundamental result of [20] and [5] on the densities of intrinsic
volumes. Using this result, we obtain for all i ∈ {0, . . . , d− 1} and A ∈ Kd

that

EVi(Z ∩A)− Vi(A) =−(1− p)

d∑

k=i

Vk(A)Pi,k(γvi, . . . , γvd−1).(6.4)

For i = d, equation (6.4) is a direct consequence of stationarity and the
definition Pd,d = 1. Using this formula in (3.4), we obtain the assertion from
(5.1). �

Corollary 6.2. Assume that (2.5) is satisfied. Then, for i, j ∈ {d −
1, d}, the assertions of Theorem 6.1 remain true in the general stationary
case (without isotropy assumption). Moreover,

σd,d = (1− p)2
∫

(eγCd(x) − 1)dx,

σd−1,d =−(1− p)2γvd−1

∫
(eγCd(x) − 1)dx

+ (1− p)2γ

∫
eγCd(x−y)Md−1,d(d(x, y)).

If, in addition, (5.8) holds, then

σd−1,d−1 = (1− p)2γ2v2d−1

∫
(eγCd(x) − 1)dx

+ (1− p)2γ2
∫
eγCd(x−y)(Cd−1(x− y)− 2vd−1)Md−1,d(d(y,x))

+ (1− p)2γ

∫
eγCd(x−y)Md−1,d−1(d(x, y)).

Proof. The formula preceding Theorem 9.1.4 in [31] does not require
isotropy for j = d−1. Therefore, for i, j ∈ {d−1, d}, the proof of Theorem 6.1
applies without this assumption.

By definition (6.3), Pd−1,d−1 = Pd,d = 1 and Pd−1,d(γvd−1) =−γvd−1. There-
fore, we obtain from Theorem 6.1 that σd,d = (1 − p)2ρd,d, σd−1,d = (1 −
p)2(ρd−1,d − γvd−1ρd,d), and

σd−1,d−1 = (1− p)2(ρd−1,d−1 − γvd−1ρd−1,d − γvd−1ρd,d−1 + γ2v2d−1ρd,d).

Inserting first (5.10), (5.9) and then (5.15) and (5.16), we obtain the result.
�

Together with Corollary 6.2 the next corollary provides rather explicit
formulas for the asymptotic covariance in the two-dimensional isotropic case.
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Corollary 6.3. Let d = 2, assume that the typical grain is isotropic,
and suppose that (2.5) and (5.8) are satisfied. Then

σ0,0 = (1− 2p)(1− p)γ + (1− p)(2p− 3)
γ2v21
π

+ (1− p)2
(
γ − γ2v21

π

)2 ∫
(eγC2(x) − 1)dx

+ (1− p)2
∫
χ(x− y)M1,2(d(y,x))

+
4

π2
(1− p)2γ3v21

∫
eγC2(x−y)M1,1(d(x, y)),

σ0,1 = (1− p)2γv1 + (1− p)2
(
γ2v1 −

γ3v31
π

)∫
(eγC2(x) − 1)dx

+ (1− p)2
∫
χ̃(x− y)M1,2(d(y,x))

− (1− p)2
2γ2v1
π

∫
eγC2(x−y)M1,1(d(x, y)),

σ0,2 = p(1− p)− (1− p)2
(
γ − γ2v21

π

)∫
(eγC2(x) − 1)dx

− (1− p)2
2γ2v1
π

∫
eγC2(x−y)M1,2(d(x, y)),

where

χ(z) := eγC2(z)

(
4γ4v21
π2

(C1(z)− v1) +
4γ3v1
π

)
,

χ̃(z) := eγC2(z)

(
3γ3v21
π

− 2γ3v1
π

C1(z)− γ2
)
.

The formula for σ0,2 remains true without assumption (5.8).

Proof. We have P0,0(t0, t1) = 1, P0,1(t0, t1) =− 2
π t1, P0,2(t0, t1) =−t0+

1
π t

2
1, P1,1(t1) = 1, P1,2(t1) = −t1, and P2,2(t1) = 1. Moreover, we have

P0(t0, t1) = t0+
1
π t

2
1 and P1(t1) = t1. Using (6.2), Theorem 5.2 and Lemma 5.6,

we obtain

ρ0,0 = eγv2
(
γ +

γ2v21
π

)
, ρ0,1 = eγv2γv1, ρ0,2 = eγv2 − 1,

ρ1,1 = γ2
∫
eγC2(y−z)C1(y − z)M1,2(d(z, y)) + γ

∫
eγC2(y−z)M1,1(d(y, z)),
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ρ1,2 = γ

∫
eγC2(y−z)M1,2(d(y, z)), ρ2,2 =

∫
(eγC2(x) − 1)dx.

The result follows by substituting these expressions into Theorem 6.1. �

The proof of Theorem 6.1 also yields the following nonasymptotic result
for which definition (5.2) should be recalled. The case d= 2 is further dis-
cussed in Appendix B of [13].

Theorem 6.4. Assume that the typical grain is isotropic and that (2.5)
holds. Let W ∈Kd and i, j ∈ {0, . . . , d}. Then

Cov(Vi(Z ∩W ), Vj(Z ∩W ))

= (1− p)2
d∑

k=i

d∑

l=j

Pi,k(γvi, . . . , γvd−1)Pj,l(γvj , . . . , γvd−1)ρk,l(W ).

7. The spherical Boolean model. In this section, we show how some of
the formulas of Section 6 can be used to determine explicitly the covariances
of a stationary and isotropic Boolean model whose typical grain is the unit
ball Bd. In this particular case, we get from Corollary 6.2 that

σd−1,d = (1− p)2γ

[
−vd−1

∫
(eγCd(x) − 1)dx

+
1

2

∫

Sd−1

∫

Bd

eγCd(x−y) dyHd−1(dx)

]
,

where Cd(x) = Vd(B
d ∩ (Bd + x)) and Hj denotes the j-dimensional Haus-

dorff measure. Clearly, C̄d(t) := Vd(B
d ∩ (Bd + tv)), for t≥ 0 and v ∈ Sd−1,

is independent of the choice of the unit vector v and

C̄d(t) = 2κd−1

∫ 1

t/2

√
1− u2

d−1
du

= 2
π(d−1)/2

Γ((d+1)/2)

∫ 1

t/2

√
1− u2

d−1
du, t ∈ [0,2].

Introducing polar coordinates, we get

Fd(γ) := vd−1

∫
(eγCd(x) − 1)dx= vd−1 dκd

∫ 2

0
(eγC̄d(t) − 1)td−1 dt

=: vd−1fd(γ),

where vd−1 = dκd/2. On the other hand, for an arbitrary unit vector v ∈
Sd−1, by the rotation invariance of Bd we get

Gd(γ) :=
1

2

∫

Sd−1

∫

Bd

eγCd(x−y) dyHd−1(dx) = vd−1

∫

Bd

eγCd(v−y) dy.
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We parameterize y in the form

y = (1− t)v +
√

1− (1− t)2sw, t ∈ [0,2], s ∈ [0,1],w ∈ v⊥ ∩ Sd−1,

and hence we obtain

Gd(γ) = vd−1(d− 1)κd−1

∫ 2

0

∫ 1

0
exp(γC̄d(

√
(2− t)2 + t(2− t)s2))

× sd−2
√
t(2− t)

d−1
dsdt

=: vd−1gd(γ).

Therefore, we have

σd−1,d = (1− p)2γvd−1(−fd(γ) + gd(γ)),

which shows that the sign of the covariance σd−1,d is completely determined
by the sign of the function gd − fd.

It is preferable to plot the covariances as functions of the intensity. Here,
we get

σd−1,d(γ) = γe−2κdγvd−1(gd(γ)− fd(γ)).

Figure 1 shows the result for various dimensions.

Fig. 1. σd−1,d(γ) for d= 2, . . . , d= 6.
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Next, we determine the correlation coefficient Cord−1,d(γ), as a function
of the intensity γ. For this, we also have to determine explicitly σd,d and
σd−1,d−1, which requires some further calculations. First, we have

σd,d = (1− p)2
∫

(eγCd(x) − 1)dx= (1− p)2fd(γ),

hence
√
σd,d = (1− p)

√
fd(γ); second,

σd−1,d−1 = (1− p)2γ2
[
(vd−1)

2fd(γ)

+

∫
eγCd(x−y)Cd−1(x− y)Md−1,d(d(y,x))

− 2vd−1

∫
eγCd(x−y)Md−1,d(d(y,x))

+
1

γ

∫
eγCd(x−y)Md−1,d−1(d(x, y))

]
.

Since Cd−1(x) depends only on ‖x‖, we denote it by C̄d−1(‖x‖). For 0 <
‖x‖ ≤ 2, we then get

C̄d−1(‖x‖) =
1

2
Hd−1(Sd−1 ∩ (Bd + x)) =

1

2
(d− 1)κd−1

∫ 1

‖x‖/2

√
1− s2

d−3
ds.

Let v ∈ Sd−1 be fixed. Then, arguing as in the derivation of (7.1), we obtain
∫
eγCd(x−y)Cd−1(x− y)Md−1,d(d(y,x))

= vd−1

∫

Bd

eγCd(x−v)Cd−1(x− v)dx

= vd−1(d− 1)κd−1

∫ 2

0

∫ 1

0
sd−2

√
t(2− t)

d−1

× exp(γC̄d(
√

(2− t)2 + t(2− t)s2))

× C̄d−1(
√

(2− t)2 + t(2− t)s2)dsdt

=: vd−1(d− 1)κd−1hd(γ).

Furthermore, we have

2vd−1

∫
eγCd(x−y)Md−1,d(d(x, y)) = 2(vd−1)

2gd(γ) =
(dκd)

2

2
gd(γ).

Finally, since

Md−1,d−1 =
1

4

∫

Sd−1

∫

Sd−1

1{(y, z) ∈ ·}Hd−1(dy)Hd−1(dz),
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we get (with an arbitrary unit vector v0)∫
eγCd(x−y)Md−1,d−1(d(x, y))

=
dκd
4

∫

Sd−2

∫ π

0
exp(γCd(v0 − [cos θv0 + sinθv])) sind−2 θ dθHd−2(dv)

=
dκd(d− 1)κd−1

4

∫ π

0
sind−2 θ exp(γC̄d(

√
2(1− cos θ)))dθ

=
dκd(d− 1)κd−1

4

∫ 2

0

√
s(2− s)

d−3
exp(γC̄d(

√
2(2− s)))ds

=:
dκd(d− 1)κd−1

4
kd(γ).

Hence, we have

σd−1,d−1

(1− p)2γ2
=

(
dκd
2

)2

fd(γ)−
(dκd)

2

2
gd(γ) +

dκd(d− 1)κd−1

2
hd(γ)

+
dκd(d− 1)κd−1

4γ
kd(γ).

This finally implies that

Cord−1,d(γ)

=

(
dκd
2

(gd(γ)− fd(γ))

)

/(√
f(γ)

((
dκd
2

)2

fd(γ)−
(dκd)

2

2
gd(γ)

+
dκd(d− 1)κd−1

2
hd(γ) +

dκd(d− 1)κd−1

4γ
kd(γ)

)1/2)
.

From these considerations, we also deduce the plausible fact that

lim
γ↓0

Cord−1,d(γ) = lim
γ↓0

(1/2)dκdκd√
γ
∫
Cd(x)dx

√
(1/γ)(dκd/2)2

= 1,

which is confirmed by our numerical calculations. Plots of Cord−1,d(·) for
d= 2, . . . ,6 are shown in Figure 2.

In a similar way, the formulas from Corollary 6.3 can be specified in the
case of a planar Boolean model with the unit circle as deterministic typical
grain. Then we have

χ(r, γ) = 4γ3eγC̄2(r)(γC̄1(r)− πγ +1) and

χ̃(r, γ) = γ2eγC̄2(r)(3πγ − 2C̄1(r)γ − 1),
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Fig. 2. Cord−1,d(γ) for d= 2, . . . ,6.

and, for instance,

σ0,0(γ) = (1− 2p)(1− p)γ + (1− p)(2p− 3)γ2π

+ (1− p)2γ2(1− πγ)2f2(γ)

+ (1− p)22π

∫ 2

0

∫ 1

0
χ(
√
(2− t)2 + t(2− t)s2, γ)

√
t(2− t)dsdt

+ (1− p)2γ34π

∫ π

0
exp(γC̄2(

√
2(1− cos(t))))dt,

where p= p(γ) = 1− e−πγ . Moreover,

σ0,1(γ) = (1− p)2γπ+ (1− p)2γ2π(1− πγ)f2(γ)

+ (1− p)22π

∫ 2

0

∫ 1

0
χ̃(
√
(2− t)2 + t(2− t)s2, γ)

√
t(2− t)dsdt

− (1− p)2γ22π

∫ π

0
exp(γC̄2(

√
2(1− cos(t))))dt,

σ0,2(γ) = p(1− p)− (1− p)2γ(1− πγ)f2(γ)− (1− p)22γ2πg2(γ),

σ2,2(γ) = (1− p)2f2(γ).

The variances and covariances as well as the correlation functions for the
planar case are plotted in Figures 3 and 4.
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Fig. 3. Variances/covariances for d= 2.

Fig. 4. Correlation functions for d= 2.
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8. Normal approximation via the Malliavin–Stein method. In this sec-
tion, we prepare the central limit theorems for geometric functionals of a
Boolean model by proving a general result on the normal approximation of
Poisson functionals. Our approach is based on recent findings in [23, 25] and
uses similar arguments as in [28].

Throughout this section, let η be a Poisson process on a measurable space
(X,X ) with a σ-finite intensity measure λ; see [14], Chapter 12. Consider a
[−∞,∞]-valued random variable F such that P(|F |<∞) = 1 and F = f(η)
P-a.s. for some measurable f :N→R. Any such f is called a representative
of the Poisson functional F . If f is a (fixed) representative of F , we define

Dn
x1,...,xnF :=Dn

x1,...,xnf(η), n ∈N, x1, . . . , xn ∈X,

where Dn is the nth iterated difference operator used in Section 3. If f̃ is
another representative of F , then the multivariate Mecke equation (see, e.g.,
[15], (2.10)) implies that Dn

x1,...,xnf(η) =Dn
x1,...,xn f̃(η) P-a.s. and for λn-a.e.

(x1, . . . , xn) ∈X
n. Let L2

η denote the space of all Poisson functionals F such

that EF 2 <∞. For F ∈ L2
η we define fn :X

n →R by

fn(x1, . . . , xn) =
1

n!
EDn

x1,...,xnF.

It was shown in [15], Theorem 1.1, that fn belongs to the space L2
s(λ

n) of
λn-almost everywhere symmetric functions on X

n that are square-integrable
with respect to λn. Now the Fock space representation (see [15], Theo-
rem 1.1) tells us that

VarF =

∞∑

n=1

n!‖fn‖2n,(8.1)

where ‖ · ‖n denotes the norm in L2(λn). Moreover, it is known from [15],
Theorem 1.3, that F has the representation

F = EF +

∞∑

n=1

In(fn),(8.2)

where In(·) stands for the nth multiple Wiener–Itô integral, and the right-
hand side converges in L2(P). The identity (8.2) is called Wiener–Itô chaos
expansion of F . The multiple Wiener–Itô integrals are defined for square
integrable symmetric functions and are orthogonal in the sense that

EIn(f)Im(g) =

{
n!〈f, g〉n, n=m,

0, n 6=m,

for f ∈ L2
s(λ

n), g ∈ L2
s(λ

m), and n,m ∈ N, where 〈·, ·〉n denotes the scalar
product in L2(λn).
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If the condition
∞∑

n=1

nn!‖fn‖2n <∞(8.3)

is satisfied, the difference operator (3.6) has the representation

DxF =

∞∑

n=1

nIn−1(fn(x, ·))(8.4)

P-a.s. for λ-a.e. x ∈X (see, e.g., [15], Theorem 3.3). From now on, we write
F ∈ domD if F ∈ L2

η satisfies (8.3). The Ornstein–Uhlenbeck generator as-

sociates with any Poisson functional F ∈L2
η such that

∑∞
n=1n

2n!‖fn‖2n <∞
the random variable

LF =−
∞∑

n=1

nIn(fn),

and its pseudo-inverse is given by

L−1F =−
∞∑

n=1

1

n
In(fn)(8.5)

for F ∈ L2
η. These operators together with the difference operator and the

Skorohod integral, which is not used in this paper, are called Malliavin
operators. Combining (8.4) and (8.5), we see that

DxL
−1F =−

∞∑

n=1

In−1(fn(x, ·))(8.6)

P-a.s. for λ-a.e. x ∈ X. More details on the Wiener–Itô chaos expansion
and the Malliavin operators can be found in [15] and the references therein.
In [23, 25], the Malliavin operators and Stein’s method are combined to
derive bounds for the normal approximation of Poisson functionals. In the
following, we evaluate bounds obtained by this technique, which is called
the Malliavin–Stein method.

To measure the distance between two real-valued random variables Y1, Y2,
we use the Wasserstein distance that is given by

dW (Y1, Y2) = sup
h∈Lip(1)

|Eh(Y1)− Eh(Y2)|.

Here, Lip(1) stands for the set of all functions h :R→ R with a Lipschitz
constant less than or equal to one. For two m-dimensional random vectors
Y1, Y2, we define

d3(Y1, Y2) = sup
h∈H

|Eh(Y1)− Eh(Y2)|,
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where H is the set of all three times continuously differentiable functions
h :Rm→R such that

max
i,j=1,...,m

sup
x∈Rm

∣∣∣∣
∂2h

∂xi ∂xj
(x)

∣∣∣∣≤ 1 and max
i,j,k=1,...,m

sup
x∈Rm

∣∣∣∣
∂3h

∂xi ∂xj ∂xk
(x)

∣∣∣∣≤ 1.

Convergence in the Wasserstein distance or in the d3-distance implies con-
vergence in distribution.

In the following, we establish an upper bound for the d3-distance be-
tween a Gaussian random vector and a random vector F = (F (1), . . . , F (m))
of Poisson functionals F (1), . . . , F (m) ∈ L2

η . Each of these components has a
Wiener–Itô chaos expansion

F (k) = EF (k) +

∞∑

n=1

In(f
(k)
n )

with f
(k)
n ∈ L2

s(λ
n), n ∈ N. We also state a bound for the Wasserstein dis-

tance between the normalization of a Poisson functional F and a standard
Gaussian random variable.

We need to introduce some notation. Consider functions g1 :X
n1 →R and

g2 :X
n2 → R, where n1, n2 ∈ N. The tensor product g1 ⊗ g2 is the function

on X
n1+n2 which maps each (x1, . . . , xn1+n2) to g1(x1, . . . , xn1)g2(xn1+1, . . . ,

xn1+n2). This definition can be iterated in the obvious way. Fix two integers
i, j ≥ 1 and consider functions f :Xi →R and g :Xj →R. Let σ be a partition
of Iij := {1, . . . ,2i+2j} and let |σ| be the number of blocks (i.e., the disjoint

sets constituting the partition) of σ. The function (f ⊗f ⊗g⊗g)σ :X|σ| →R

is defined by replacing all variables whose indices belong to the same block
of σ by a new common variable. Let π = {J1, . . . , J4} be the partition of Iij
into the sets J1 := {1, . . . , i}, J2 := {i+ 1, . . . ,2i}, J3 := {2i+ 1, . . . ,2i+ j},
and J4 := {2i+ j + 1, . . . ,2i+ 2j}. Let Πij be the set of all partitions σ of

Iij such that |J ∩ J ′| ≤ 1 for all J ∈ π and all J ′ ∈ σ. By Π̃ij we denote the
set of all partitions σ ∈Πij such that:

(i) {1,2i+1},{i+1,2i+ j + 1} ∈ σ or {1, i+1,2i+1,2i+ j +1} ∈ σ;
(ii) each block of σ has at least two elements;
(iii) for every partition of {1,2,3,4} in two disjoint nonempty setsM1,M2

there are u ∈M1, v ∈M2 such that Ju and Jv are both intersected by one
block of σ.

Let Π̃
(1)
ij (resp., Π̃

(2)
ij ) be the set of all partitions σ ∈ Π̃ij such that {1,2i+

1},{i+ 1,2i+ j + 1} ∈ σ (resp. {1, i+ 1,2i+ 1,2i+ j + 1} ∈ σ). In the ter-
minology of diagram formulae as it is used in [24], Chapter 4, condition (iii)
means that π and σ generate a “connected diagram.”

Now we are able to state the main result of this section.
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Theorem 8.1. Assume that F (k) ∈ L2
η and

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dλ|σ| <∞(8.7)

for all σ ∈Πij , i, j ∈N, and k, l ∈ {1, . . . ,m}. Further, assume that there are
a > 0 and b≥ 1 such that

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dλ|σ| ≤

abi+j

(i!)2(j!)2
(8.8)

for all σ ∈ Π̃ij , i, j ∈N, and k, l ∈ {1, . . . ,m}. Let F := (F (1), . . . , F (m)) and
let N be a centered Gaussian random vector with a given positive semidefinite
covariance matrix (σk,l)k,l=1,...,m. Then

d3(F − EF,N)≤ m

2

m∑

k,l=1

|σk,l−Cov(F (k), F (l))|

+

(
m

2
+
m

4

m∑

n=1

√
VarF (n)

)
213/2m2

∞∑

i=1

i17/2
bi

⌊i/14⌋!
√
a.

In the univariate case, we have the following result for the Wasserstein
distance.

Corollary 8.2. Let F ∈ L2
η be such that VarF > 0 and the assump-

tions (8.7) and (8.8) are satisfied and let N be a standard Gaussian random
variable. Then

dW

(
F −EF√
VarF

,N

)
≤ 215/2

∞∑

i=1

i17/2
bi

⌊i/14⌋!

√
a

VarF
.

We prepare the proof of Theorem 8.1 by two lemmas and a proposition.

Lemma 8.3. Let i, j ∈N, f ∈ L2
s(λ

i), g ∈L2
s(λ

j), and assume that
∫

|(f ⊗ f ⊗ g ⊗ g)σ |dλ|σ| <∞, σ ∈Πij .

Then

Var

(∫
Ii−1(f(z, ·))Ij−1(g(z, ·))λ(dz)

)

(8.9)

=
∑

σ∈Π̃(1)
ij

∫
(f ⊗ f ⊗ g⊗ g)σ dλ

|σ|,
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E

∫
Ii−1(f(z, ·))2Ij−1(g(z, ·))2λ(dz)

(8.10)

=
∑

σ∈Π̃(2)
ij

∫
(f ⊗ f ⊗ g⊗ g)σ dλ

|σ|.

Proof. Combining the formulas

E

(∫
Ii−1(f(z, ·))Ij−1(g(z, ·))λ(dz)

)2

=

∫ ∫
EIi−1(f(y, ·))Ii−1(f(z, ·))Ij−1(g(y, ·))Ij−1(g(z, ·))λ(dy)λ(dz)

and

E

∫
Ii−1(f(z, ·))Ij−1(g(z, ·))λ(dz) =

{
(i− 1)!〈f, g〉i, i= j,

0, i 6= j,
(8.11)

with Theorem 3.1 in [16] (see also [24], Corollary 7.2 and [32], Proposi-
tion 3.1) proves the first equation. The second identity is a consequence
of

E

∫
Ii−1(f(z, ·))2Ij−1(g(z, ·))2λ(dz) =

∫
EIi−1(f(z, ·))2Ij−1(g(z, ·))2λ(dz)

and, again, Theorem 3.1 in [16]. �

Proposition 8.4. Let F (1), . . . , F (m) ∈ L2
η be such that (8.7) holds. Let

F := (F (1), . . . , F (m)) and let N be a centered Gaussian random vector with
a given positive semidefinite covariance matrix (σk,l)k,l=1,...,m. Then

d3(F − EF,N)

≤ m

2

m∑

k,l=1

|σk,l −Cov(F (k), F (l))|

(8.12)

+

(
m

2
+
m

4

m∑

n=1

√
VarF (n)

)

×
m∑

k,l=1

∞∑

i,j=1

ij

√√√√
∑

σ∈Π̃i,j

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dλ|σ|.

Proof. To avoid convergence issues, we start by proving (8.12) for

Fs := (F
(1)
s , . . . , F

(m)
s ) with the truncated Poisson functionals F

(l)
s := EF (l)+
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∑s
n=1 In(f

(l)
n ), l ∈ {1, . . . ,m}, for a fixed s ∈ N. By construction, we have

F
(1)
s , . . . , F

(m)
s ∈ domD. From [25], Theorem 4.2, it is known that

d3(Fs − EFs,N)≤ m

2

√√√√
m∑

k,l=1

E

(
σk,l −

∫
DzF

(k)
s (−DzL−1F

(l)
s )λ(dz)

)2

(8.13)

+
1

4

∫
E

(
m∑

k=1

|DzF
(k)
s |
)2 m∑

l=1

|DzL
−1F (l)

s |λ(dz).

We bound the two summands on the above right-hand side separately. For
the first one, we have
√√√√

m∑

k,l=1

E

(
σk,l −

∫
DzF

(k)
s (−DzL−1F

(l)
s )λ(dz)

)2

≤
m∑

k,l=1

(
E

(
σk,l −Cov(F (k)

s , F (l)
s ) +Cov(F (k)

s , F (l)
s )

−
∫
DzF

(k)
s (−DzL

−1F (l)
s )λ(dz)

)2)1/2

≤
m∑

k,l=1

(
|σk,l−Cov(F (k)

s , F (l)
s )|

+

√

E

(
Cov(F

(k)
s , F

(l)
s )−

∫
DzF

(k)
s (−DzL−1F

(l)
s )λ(dz)

)2)
.

Put g
(l)
n (z) := In−1(f

(l)
n (z, ·)). From (8.4), (8.6), the covariance version of

(8.1) [see (3.7)] and (8.11), we obtain that

ak,ls := E

(∫
DzF

(k)
s (−DzL

−1F (l)
s )λ(dz)−Cov(F (k)

s , F (l)
s )

)2

= E

(∫ s∑

i=1

ig
(k)
i (z)

s∑

j=1

g
(l)
j (z)λ(dz)−

s∑

n=1

n!〈f (k)n , f (l)n 〉n

)2

= Var

(
s∑

i,j=1

i

∫
g
(k)
i (z)g

(l)
j (z)λ(dz)

)
.

Note that the right-hand side is well defined since (8.7) and Lemma 8.3
ensure that each of the summands is square integrable.
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Since
√

Var(Y1 + Y2) ≤
√
VarY1 +

√
VarY2 for random variables Y1, Y2,

we obtain

√
ak,ls ≤

s∑

i,j=1

i

√
Var

(∫
g
(k)
i (z)g

(l)
j (z)λ(dz)

)

≤
s∑

i,j=1

i

√√√√
∑

σ∈Π̃ij

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dλ|σ|,

where we have applied (8.9) in Lemma 8.3 to get the final inequality.
By Jensen’s inequality and the definitions of the Malliavin operators, we

obtain for the second summand in (8.13) that

∫
E

(
m∑

k=1

|DzF
(k)
s |
)2 m∑

l=1

|DzL
−1F (l)

s |λ(dz)

≤m

m∑

k,l=1

∫
E(DzF

(k)
s )2|DzL

−1F (l)
s |λ(dz)

≤m

m∑

k,l=1

s∑

i,j=1

ij

∫
E|g(k)i (z)||g(k)j (z)||DzL

−1F (l)
s |λ(dz)

≤m
m∑

k,l=1

s∑

i,j=1

ij

√∫
Eg

(k)
i (z)2g

(k)
j (z)2λ(dz)

√∫
E(DzL−1F

(l)
s )2λ(dz).

Combining (8.6) and (8.11) with (8.1), we get

∫
E(DzL

−1F (l)
s )2λ(dz) =

s∑

n=1

(n− 1)!‖f (l)n ‖2n ≤VarF (l)
s .

Now (8.10) in Lemma 8.3 completes the proof of (8.12) for Fs. By the triangle
inequality for the d3-distance and [16], Lemma 5.5, we have that

d3(F −EF,N)≤ d3(F −EF,Fs −EFs) +d3(Fs − EFs,N)

≤m
√

E‖F −EF‖2 +E‖Fs −EFs‖2
√

E‖F −Fs‖2

+d3(Fs − EFs,N),

where ‖ · ‖ stands for the Euclidean norm in Rm. Since F
(l)
s → F (l) in L2

η as
s→∞, the first summand vanishes as s→∞. Applying (8.12) to the second
summand and letting s→∞ completes the proof. �
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Lemma 8.5. For any integers i, j ≥ 1,

|Π̃i,j| ≤
(i!)2(j!)2max{i+ 1, j + 1}11

⌈max{i, j}/7⌉! .

Proof. For a fixed partition σ ∈ Π̃ij , let kuv with u, v ∈ {1,2,3,4} and
u < v be the number of blocks A ∈ σ such that |A ∩ Ju|= |A ∩ Jv|= 1 and
A ∩ (Ju ∪ Jv) = A. We define kuvw for u, v,w ∈ {1,2,3,4} with u < v < w
and k1234 in the same way. For a possible combination of fixed numbers
k12, . . . , k1234 the number of partitions σ ∈ Π̃ij having this form is less than

(i!)2(j!)2

k12!k13!k14!k23!k24!k34!k123!k124!k134!k234!k1234!
≤ (i!)2(j!)2

⌈max{i, j}/7⌉! .

To get this inequality, we have used the fact that

k12 + k13 + k14 + k123 + k124 + k134 + k1234 = i,

whence one of the factors in the denominator is at least ⌈i/7⌉. For a similar
reason, there must be a factor in the denominator that is at least ⌈j/7⌉.

Moreover, there are less than max{i + 1, j + 1}11 possible choices for
k12, . . . , k1234, which completes the proof. �

Note that we have not used the first and the third condition of the defini-
tion of Π̃ij in the proof of Lemma 8.5, whence the inequality even holds for a
larger class of partitions. Now we are prepared for the proofs of Theorem 8.1
and Corollary 8.2.

Proof of Theorem 8.1. We aim at applying Proposition 8.4. Com-
bining Lemma 8.5 and assumption (8.8), we get

∞∑

i,j=1

ij

√√√√
∑

σ∈Π̃ij

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dλ|σ|

≤
∞∑

i,j=1

ij

√
max{i+1, j +1}11bi+ja

⌈max{i, j}/7⌉! .

A straightforward computation and the inequality
√
m!≥ ⌊m/2⌋! for m ∈N

show that

∞∑

i,j=1

ij

√
max{i+1, j +1}11bi+j

⌈max{i, j}/7⌉! ≤ 213/2
∑

1≤j≤i
i2

√
max{i, j}11bi+j
⌈max{i, j}/7⌉!

≤ 213/2
∞∑

i=1

i17/2
bi

⌊i/14⌋! ,
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where the right-hand side converges. Thus, Theorem 8.1 is a consequence of
Proposition 8.4. �

Proof of Corollary 8.2. We define the truncated Poisson functional
Fs := EF +

∑s
n=1 In(fn) for s ∈N. By the triangle inequality for the Wasser-

stein distance and combining the definition of the Wasserstein distance with
the Cauchy–Schwarz inequality, we obtain that

dW

(
F − EF√
VarF

,N

)
≤ dW

(
F −EF√
VarF

,
Fs −EFs√

VarF

)
+dW

(
Fs − EFs√

VarF
,N

)

≤
√

E(F − Fs)2√
VarF

+ dW

(
Fs − EFs√

VarF
,N

)
.

Here, the first summand vanishes as s→∞ since Fs → F in L2
η as s→∞.

For the second term, we know from [23], Theorem 3.1, that

dW

(
Fs − EFs√

VarF
,N

)

≤ VarF −VarFs
VarF

+
1

VarF

√

E

(
VarFs −

∫
DzFs(−DzL−1Fs)λ(dz)

)2

+
1

(VarF )3/2

∫
E(DzFs)

2|DzL
−1Fs|λ(dz).

Now we can use the same arguments as in the proofs of Proposition 8.4 and
Theorem 8.1. �

9. Central limit theorems for geometric functionals. In the following,
we use the general normal approximation results of the previous section
to derive central limit theorems for geometric functionals of the Boolean
model (1.1). We establish central limit theorems under the minimal moment
assumption (2.5), but we need a stronger moment assumption in order to
derive rates of convergence. For the Berry–Esseen bounds, we assume that
the typical grain Z0 of the Boolean model satisfies the moment assumption

EVi(Z0)
3+ε <∞, i ∈ {0, . . . , d},(9.1)

for a fixed ε ∈ (0,1]. This allows us to state central limit theorems with rates
of convergence depending on ε.

Theorem 9.1. Let ψ1, . . . , ψm be geometric functionals on Rd and let
Ψ := (ψ1, . . . , ψm). Assume that (2.5) is satisfied and let N be an m-dimensional
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centered Gaussian random vector with covariance matrix (σψk ,ψl
)k,l=1,...,m

given by (3.3). Then

1√
Vd(W )

(Ψ(Z ∩W )− EΨ(Z ∩W ))
d−→N as r(W )→∞.

If (9.1) is satisfied, there is a constant cψ1,...,ψm depending on ψ1, . . . , ψm,Λ,
and ε such that

d3

(
1√

Vd(W )
(Ψ(Z ∩W )− EΨ(Z ∩W )),N

)
≤ cψ1,...,ψm

r(W )min{εd/2,1}(9.2)

for W ∈Kd with r(W )≥ 1.

Remark 9.2. We will see in the proof of Theorem 9.1 that the trans-
lation invariance of ψ1, . . . , ψm is only used to ensure the existence of an
asymptotic covariance matrix. Hence, such a multivariate central limit the-
orem still holds for functionals ψ1, . . . , ψm which are not translation invariant
if we can establish the existence of an asymptotic covariance matrix. In this
case, the rate of convergence depends on the rate of convergence for the
covariances.

In the univariate case, we can rescale by the square root of the variance,
whence the existence of the asymptotic variance is not necessary. Thus,
translation invariance of the functional is not required. We only need to
assume that the variance does not degenerate as r(W ) → ∞, which, for
instance, holds under the conditions of Section 4.

Theorem 9.3. Assume that (2.5) is satisfied and let ψ be an additive,
locally bounded and measurable functional on Rd with constants r0 ≥ 1 and
σ0 > 0 such that

Varψ(Z ∩W )

Vd(W )
≥ σ0(9.3)

for W ∈ Kd with r(W ) ≥ r0. Denote by N a standard Gaussian random
variable. Then

ψ(Z ∩W )−Eψ(Z ∩W )√
Varψ(Z ∩W )

d−→N as r(W )→∞.

If (9.1) is satisfied, there is a constant cψ depending on ψ,Λ, σ0, r0, and ε
such that

dW

(
ψ(Z ∩W )−Eψ(Z ∩W )√

Varψ(Z ∩W )
,N

)
≤ cψ

Vd(W )min{ε/2,1/2}(9.4)

for W ∈Kd with r(W )≥ r0.
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Remark 9.4. Together with the well-known fact that the Kolmogorov
distance to a standard Gaussian random variable is always bounded by the
square root of the Wasserstein distance to a standard Gaussian random
variable (see Proposition 1.2 in [29], e.g.), it follows from (9.4) that

sup
x∈R

∣∣∣∣P
(
ψ(Z ∩W )−Eψ(Z ∩W )√

Varψ(Z ∩W )
≤ x

)
− P(N ≤ x)

∣∣∣∣≤
√
cψ

Vd(W )min{ε/4,1/4}

for W ∈Kd with r(W )≥ r0. However, this approach leads to a weaker rate
of convergence than for the Wasserstein distance, which might be subopti-
mal since for many central limit theorems one has the same rate for both
distances.

Remark 9.5. By replacing in (9.4) the volume of W by the volume
of its inball, we obtain a rate of order r(W )−min{εd/2,d/2}. Comparing (9.2)
and (9.4), we see that for ε = 1 and d ≥ 3 the rate of convergence in the
multivariate case is weaker than in the univariate case. This is caused by
the slow rate of convergence in Theorem 3.1 since we need to bound

m∑

k,l=1

∣∣∣∣σψk,ψl
− Cov(ψk(Z ∩W ), ψl(Z ∩W ))

Vd(W )

∣∣∣∣

in order to apply Theorem 8.1. In the univariate analogue, which is Corol-
lary 8.2, we normalize with the exact variance and do not have such a term.
If we replace the Gaussian random vector N by a centered Gaussian ran-
dom vector N(W ), having the covariance matrix of Vd(W )−1/2Ψ(Z ∩W ),
the sum above vanishes and we obtain

d3

(
1√

Vd(W )
(Ψ(Z ∩W )−EΨ(Z ∩W )),N(W )

)
≤ cψ1,...,ψm

Vd(W )min{ε/2,1/2} ,

which is the same rate as in the univariate case.
For k, l ∈ {1, . . . ,m}, we obtain by choosing g(x) = xkxl/2 as a test func-

tion in the definition of the d3-distance that

d3

(
1√

Vd(W )
(Ψ(Z ∩W )− EΨ(Z ∩W )),N

)

≥ 1

2

∣∣∣∣σψk,ψl
− Cov(ψk(Z ∩W ), ψl(Z ∩W ))

Vd(W )

∣∣∣∣.

Hence, Proposition 3.8 shows that the rate in (9.2) is optimal for ε= 1 and
d≥ 2.

We organize the proofs of Theorems 9.1 and 9.3 such that we first impose
the moment assumption (9.1) and establish (9.2) and (9.4). In a second
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step, we prove that convergence in distribution is still obtained (without
convergence rates) under the weaker moment assumption (2.5).

Proof of (9.2) in Theorem 9.1 under assumption (9.1). From
now on, we write

f
(k)
i (K1, . . . ,Ki) :=

(−1)i

i!
ψ∗
k(K1 ∩ · · · ∩Ki ∩W )

for K1, . . . ,Ki ∈Kd, 1≤ k ≤m, and i≥ 1. It is a direct consequence of (3.8)

that f
(k)
i is the ith kernel of the Wiener–Itô chaos expansion of the Poisson

functional ψk(Z ∩W ).
The integrability condition (8.7) is satisfied since the kernels are bounded

by (3.9) for every W ∈ Kd and the measure of the grains hitting W is also
finite.

In the sequel, we check assumption (8.8) for the cases σ ∈ Π̃
(1)
ij and σ ∈ Π̃

(2)
ij

separately. We start with the first case. Let k, l ∈ {1, . . . ,m} and σ ∈ Π̃
(1)
ij .

From (3.9) in Lemma 3.3, it follows that
∫

|(f (k)i ⊗ f
(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dΛ|σ|

≤ (β(ψk)β(ψl))
2

(i!)2(j!)2

∫ 4∏

p=1

d∑

r=0

Vr

( ⋂

n∈Np(σ)

Kn ∩W
)
Λ|σ|(d(K1, . . . ,K|σ|))

with nonempty sets Np(σ)⊂ {1, . . . , |σ|}, p= 1, . . . ,4, depending on σ. Every
n ∈ {1, . . . , |σ|} is contained in at least two of these sets. By removing the
index n from the sets until it occurs only in one set, we increase the integral
and can use Lemma 3.5 to integrate over Kn. Due to the special structure

of σ ∈ Π̃
(1)
ij , we obtain by iterating this step and using the abbreviation

hW (A) =
d∑

r=0

Vr(A∩W )

that∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dΛ|σ|

≤ (β(ψk)β(ψl))
2

(i!)2(j!)2
α|σ|−3

×
∫
hW (K1)hW (K1 ∩K2)hW (K2 ∩K3)hW (K3)Λ

3(d(K1,K2,K3))

=
(β(ψk)β(ψl))

2

(i!)2(j!)2
α|σ|−3

∫ (∫
hW (K1)hW (K1 ∩K2)Λ(dK1)

)2

Λ(dK2).
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For a fixed K2 ∈Kd, Lemma 3.4 implies the second inequality in
∫
hW (K1)hW (K1 ∩K2)Λ(dK1)

≤ γE

[
d∑

r=0

Vr(Z0)

∫ d∑

s=0

Vs((Z0 + x)∩K2 ∩W )dx

]

≤ (d+1)γβ1E

[(
d∑

r=0

Vr(Z0)

)2] d∑

s=0

Vs(K2 ∩W ).

Putting c7 := (d+ 1)γβ1E[(
∑d

r=0 Vr(Z0))
2] and applying Lemma 3.4 again,

we get
∫ (∫

hW (K1)hW (K1 ∩K2)Λ(dK1)

)2

Λ(dK2)

≤ c27

∫ ( d∑

r=0

Vr(K2 ∩W )

)2

Λ(dK2)

≤ γc27E

[
d∑

r=0

Vr(Z0)

∫ d∑

s=0

Vs((Z0 + x)∩W )dx

]

≤ (d+1)γβ1c
2
7E

[(
d∑

r=0

Vr(Z0)

)2] d∑

s=0

Vs(W ) = c8

d∑

r=0

Vr(W )

with c8 := c37. Finally, since |σ| ≤ i+ j for σ ∈ Π̃ij we have

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dΛ|σ| ≤ c8(β(ψk)β(ψl))

2

(i!)2(j!)2
α|σ|−3

d∑

r=0

Vr(W )

(9.5)

≤ a1b
i+j
1

(i!)2(j!)2

with a1 :=max1≤k,l≤mα−3c8(β(ψk)β(ψl))
2
∑d

r=0 Vr(W ) and b1 := max{α,1}.
It follows from Lemma 3.7 that there is a constant c9 depending on ψ1, . . . , ψm
and Λ such that

a1
Vd(W )2

≤ c9
Vd(W )

(9.6)

for W ∈Kd with r(W )≥ 1.

For σ ∈ Π̃
(2)
i,j , we obtain from (3.9) in Lemmas 3.3 and 3.5 as above that

∫
|(f (k)i ⊗ f

(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dΛ|σ|
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≤ (β(ψk)β(ψl))
2

(i!)2(j!)2
α|σ|−1

∫ ( d∑

r=0

Vr(K1 ∩W )

)4

Λ(dK1).

A further application of Lemma 3.4 yields the second inequality in

∫ ( d∑

r=0

Vr(K1 ∩W )

)4

Λ(dK1)

≤ γE

[(
d∑

r=0

min{Vr(Z0), Vr(W )}
)3 ∫ d∑

s=0

Vs((Z0 + x)∩W )dx

]

≤ (d+1)γβ1E

[(
d∑

r=0

min{Vr(Z0), Vr(W )}
)3 d∑

s=0

Vs(Z0)

]
d∑

u=0

Vu(W ).

Consequently, we have
∫

|(f (k)i ⊗ f
(k)
i ⊗ f

(l)
j ⊗ f

(l)
j )σ|dΛ|σ| ≤ a2b

i+j
2

(i!)2(j!)2
(9.7)

with

a2 = (d+1)γβ1 max
1≤k,l≤m

(β(ψk)β(ψl))
2

α

× E

[(
d∑

r=0

min{Vr(Z0), Vr(W )}
)3 d∑

s=0

Vs(Z0)

]
d∑

u=0

Vu(W )

and b2 =max{α,1}. Since

1

Vd(W )2
E

[(
d∑

r=0

min{Vr(Z0), Vr(W )}
)3 d∑

s=0

Vs(Z0)

]
d∑

u=0

Vu(W )

≤ E

[(
d∑

r=0

Vr(Z0)

)3 d∑

s=0

Vs(Z0)
εVs(W )1−ε}
Vd(W )

]
d∑

u=0

Vu(W )

Vd(W )
,

Lemma 3.7 and the moment assumption (9.1) imply that there is a constant
c10 depending on ψ1, . . . , ψm, Λ, and ε such that, forW ∈Kd with r(W )≥ 1,

a2
Vd(W )2

≤ c10
Vd(W )ε

.(9.8)

If we rescale the Poisson functionals by Vd(W )−1/2, (9.5) and (9.7) imply
that (8.8) holds with a=max{a1, a2}Vd(W )−2 and b=max{b1, b2}. By (9.6)
and (9.8), a is of the order Vd(W )−min{1,ε}. Now (9.2) is a consequence of
Theorems 3.1 and 8.1. �
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Proof of (9.4) in Theorem 9.3 under assumption (9.1). By the
same arguments as in the previous proof and analogous choices for a1, a2,
the conditions of Corollary 8.2 are satisfied with a=max{a1, a2}. It follows
from assumption (9.3) that

a

(Varψ(Z ∩W ))2
=

max{a1, a2}
(Varψ(Z ∩W ))2

≤ 1

σ20

max{a1, a2}
Vd(W )2

for W ∈Kd with r(W )≥ r0. Combining this with (9.6) and (9.8) completes
the proof. �

For W ∈Kd with r(W )> 0, we define the set

MW = {K ∈Kd :Vj(K)≤
√
Vd(W ), j ∈ {0, . . . , d}}.

The restriction of η to MW is a stationary Poisson process, which generates
the stationary Boolean model

ZW =
⋃

K∈η∩MW

K.

The idea of the proofs of Theorems 9.1 and 9.3 under the weaker moment
assumption (2.5) is to approximate the Boolean model Z by the Boolean
model ZW . A similar truncation has been used in [12] to prove the central
limit theorem for the volume of a more general Boolean model based on a
Poisson process of cylinders.

The restriction of η to MW has the intensity γW := γP(Z0 ∈MW ) [note
that γW > 0 for r(W ) sufficiently large] and its typical grain Z0,W has the
distribution P(Z0,W ∈ ·) := P(Z0 ∈ · ∩MW )/P(Z0 ∈MW ). For the Boolean
model ZW , obviously all previous results hold if we replace Z0 and γ by Z0,W

and γW . But Lemmas 3.3 and 3.5 as well as the upper bounds in the proof
of Theorem 9.1 under the stronger assumption (9.1) remain true for ZW if
we take the same constants as for Z, which we do in the sequel. The reason
for this is that the constants do only depend on the product of intensity and
grain distribution and that the intrinsic volumes are monotone.

The Boolean models ZW and Z satisfy the following relation.

Lemma 9.6. Let ψ be an additive, locally bounded and measurable func-
tional on Rd and assume that (2.5) is satisfied. Then

lim
r(W )→∞

E((ψ(Z ∩W )−Eψ(Z ∩W ))− (ψ(ZW ∩W )−Eψ(ZW ∩W )))2

Vd(W )
= 0

and

lim sup
r(W )→∞

E(ψ(Z ∩W )−Eψ(Z ∩W ))2 +E(ψ(ZW ∩W )−Eψ(ZW ∩W ))2

Vd(W )

<∞.
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Proof. Define, for K1, . . . ,Kn ∈Kd,

gn,W (K1, . . . ,Kn)

:=
(−1)n

n!
√
Vd(W )

(Eψ(Z ∩K1 ∩ · · · ∩Kn ∩W )− ψ(K1 ∩ · · · ∩Kn ∩W )).

Further, we define

hn,W (K1, . . . ,Kn)

:=
(−1)n

n!
√
Vd(W )

(Eψ(ZW ∩K1 ∩ · · · ∩Kn ∩W )−ψ(K1 ∩ · · · ∩Kn ∩W ))

for K1, . . . ,Kn ∈MW and hn,W (K1, . . . ,Kn) := 0 if there is a j ∈ {1, . . . , n}
with Kj /∈MW .

In view of Lemma 3.2 and the Fock space representation (3.7), the asser-
tions of this lemma are equivalent to

lim
r(W )→∞

∞∑

n=1

n!‖gn,W − hn,W ‖2n = 0 and

(9.9)

lim sup
r(W )→∞

∞∑

n=1

n!(‖gn,W ‖2n + ‖hn,W‖2n)<∞,

which we shall prove in the following. For n ∈N, we have

‖gn,W − hn,W‖2n

= γ

∫ ∫ ∫
(gn,W (K1 + x,K2, . . . ,Kn)

− hn,W (K1 + x,K2, . . . ,Kn))
2dxΛn−1(d(K2, . . . ,Kn))Q(dK1).

Our aim is to apply the dominated convergence theorem to the outer inte-
gral. For any K1 ∈Kd

o , it follows from Lemmas 3.3, 3.4 and 3.5 similarly as
in (3.20) that
∫∫

(gn,W (K1 + x,K2, . . . ,Kn)

− hn,W (K1 + x,K2, . . . ,Kn))
2 dxΛn−1(d(K2, . . . ,Kn))

≤ 2

∫ ∫
(gn,W (K1 + x,K2, . . . ,Kn)

2 + hn,W (K1 + x,K2, . . . ,Kn)
2)dx

×Λn−1(d(K2, . . . ,Kn))

≤ 2(d+1)β1β(ψ)
2

(
d∑

i=0

Vi(K1)

)2 d∑

i=0

Vi(W )

Vd(W )

αn−1

(n!)2
.
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The right-hand side of the previous inequality is uniformly bounded for
r(W ) ≥ 1 because of Lemma 3.7. Moreover, the sum over n is integrable
with respect to K1 due to (2.5). Thus, limit and summation in the first sum
in (9.9) can be interchanged. By the same arguments, the second inequality
above yields the second formula in (9.9).

Next, we show that, for any K1 ∈Kd
o ,

lim
r(W )→∞

∫∫
(gn,W (K1 + x,K2, . . . ,Kn)− hn,W (K1 + x,K2, . . . ,Kn))

2 dx

(9.10)
×Λn−1(d(K2, . . . ,Kn)) = 0.

For K1, . . . ,Kn ∈MW , we have

gn,W (K1, . . . ,Kn)− hn,W (K1, . . . ,Kn)

=
1

n!

(−1)n√
Vd(W )

E[ψ(Z ∩K1 ∩ · · · ∩Kn ∩W )

− ψ(ZW ∩K1 ∩ · · · ∩Kn ∩W )].

Let us denote by Z1, . . . ,ZNK1∩W
the grains of η that intersect K1 ∩W

and are not in MW . Then NK1∩W follows a Poisson distribution with mean
Λ({K /∈ MW :K ∩ K1 ∩W 6= ∅}). Since Z ∩ K1 ∩W = (ZW ∪ Z1 ∪ · · · ∪
ZNK1∩W

)∩K1 ∩W , it follows from the inclusion–exclusion formula that

|ψ(Z ∩K1 ∩ · · · ∩Kn ∩W )−ψ(ZW ∩K1 ∩ · · · ∩Kn ∩W )|

≤
∑

∅ 6=J⊂{1,...,NK1∩W }

∣∣∣∣ψ
(
ZW ∩

⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)∣∣∣∣

+
∑

∅ 6=J⊂{1,...,NK1∩W }

∣∣∣∣ψ
(⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)∣∣∣∣.

Recall the definitions of the constants c1, c2 and c4 from Section 3. Denoting
by PW the distribution of the restriction of η to MW , we obtain by (3.11)
and the monotonicity of the intrinsic volumes that

∫ ∣∣∣∣ψ
(
Z(µ)∩

⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)∣∣∣∣PW (dµ)

≤ c1M(ψ)

d∑

i=0

Vi

(⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)

≤ c1M(ψ)
d∑

i=0

Vi(K1 ∩ · · · ∩Kn ∩W ).
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Applying (3.15) and the monotonicity of the intrinsic volumes yields
∣∣∣∣ψ
(⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)∣∣∣∣

≤ c2c4M(ψ)
d∑

i=0

Vi

(⋂

j∈J
Zj ∩K1 ∩ · · · ∩Kn ∩W

)

≤ c2c4M(ψ)
d∑

i=0

Vi(K1 ∩ · · · ∩Kn ∩W ).

Since the restrictions of η to MW and to its complement are stochastically
independent, altogether we have that, for K1, . . . ,Kn ∈MW ,

|gn,W (K1, . . . ,Kn)− hn,W (K1, . . . ,Kn)|

≤ (c1 + c2c4)M(ψ)

n!
√
Vd(W )

E[2NK1∩W − 1]
d∑

i=0

Vi(K1 ∩ · · · ∩Kn ∩W )

≤ β̂(ψ)

n!
√
Vd(W )

(exp(pW (K1))− 1)

d∑

i=0

Vi(K1 ∩ · · · ∩Kn ∩W )

with pW (K1) = Λ({K /∈MW :K ∩K1 6=∅} and β̂(ψ) = (c1 + c2c4)M(ψ).
If there is a j ∈ {1, . . . , n} such that Kj /∈MW , we have gn,W − hn,W =

gn,W , and it follows from Lemma 3.3 that

|gn,W (K1, . . . ,Kn)| ≤
β(ψ)

n!
√
Vd(W )

d∑

k=0

Vk(K1 ∩ · · · ∩Kn ∩W ).

For a fixed K1 ∈ Kd
o and r(W ) sufficiently large such that K1 ∈MW , we

have that∫ ∫
(gn,W (K1 + x,K2, . . . ,Kn)− hn,W (K1 + x,K2, . . . ,Kn))

2 dx

×Λn−1(d(K2, . . . ,Kn))

≤
∫ ∫ (

β̂(ψ)2

(n!)2Vd(W )

(
d∑

k=0

Vk((K1 + x)∩K2 ∩ · · · ∩Kn ∩W )

)2

× (exp(pW (K1))− 1)2

+
β(ψ)2

(n!)2Vd(W )

(
d∑

k=0

Vk((K1 + x)∩K2 ∩ · · · ∩Kn ∩W )

)2

×
n∑

i=2

1{Ki /∈MW }
)
dx
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×Λn−1(d(K2, . . . ,Kn))

≤ β̂(ψ)2(d+1)β1α
n−1

(n!)2
1

Vd(W )

×
d∑

i=0

Vi(W )

(
d∑

r=0

Vr(K1)

)2

(exp(pW (K1))− 1)2

+
β(ψ)2(d+1)β1α

n−2

(n!)2
1

Vd(W )

×
d∑

i=0

Vi(W )

(
d∑

r=0

Vr(K1)

)2

(n− 1)pW (K1),

where we have used Lemmas 3.4 and 3.5.
Then Lemma 3.7 and pW (K1) → 0 as r(W ) → ∞ show that the right-

hand side vanishes for r(W )→∞. This proves (9.10) so that the dominated
convergence theorem yields the first formula in (9.9), which completes the
proof. �

Proof of Theorem 9.1 under assumption (2.5). The triangle in-
equality for the d3-distance yields

d3

(
1√

Vd(W )
(Ψ(Z ∩W )−EΨ(Z ∩W )),N

)

≤ d3

(
1√

Vd(W )
(Ψ(Z ∩W )− EΨ(Z ∩W )),

(9.11)
1√

Vd(W )
(Ψ(ZW ∩W )− EΨ(ZW ∩W ))

)

+d3

(
1√

Vd(W )
(Ψ(ZW ∩W )−EΨ(ZW ∩W )),N

)
.

In the sequel, we show that both terms on the right-hand side of (9.11)
vanish as r(W )→∞. By [16], Lemma 5.5, the first expression is bounded
by

m(E‖Ψ(Z ∩W )−EΨ(Z ∩W )‖2/Vd(W )

+ ‖Ψ(ZW ∩W )−EΨ(ZW ∩W )‖2/Vd(W ))1/2

× (E‖Ψ(Z ∩W )−EΨ(Z ∩W )

−Ψ(ZW ∩W ) +EΨ(ZW ∩W )‖2/Vd(W ))1/2,
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where ‖ · ‖ stands for the Euclidean norm in Rm. Since, by Lemma 9.6, the
first factor is bounded and the second factor vanishes as r(W ) → ∞, the
first expression on the right-hand side of (9.11) vanishes as r(W )→∞.

By applying Theorem 8.1 to the vector Ψ(ZW ∩W ) of Poisson functionals
depending on the restriction of η to MW , we shall prove that

lim
r(W )→∞

d3

(
1√

Vd(W )
(Ψ(ZW ∩W )− EΨ(ZW ∩W )),N

)
= 0.(9.12)

Theorem 8.1 yields this without a rate of convergence if

lim
r(W )→∞

Cov(ψk(ZW ∩W ), ψl(ZW ∩W ))

Vd(W )
= σψk,ψl

(9.13)

for k, l ∈ {1, . . . ,m} and if (8.8) holds with a fixed b≥ 1 and a≥ 0 depending
on W such that a tends to zero as r(W )→∞.

Condition (9.13) is satisfied because of Lemma 9.6 and Theorem 3.1.
Inequalities (9.5) and (9.7) also hold for the Boolean model ZW with the
same a1, b1, b2 as in the proof of (9.2) under assumption (9.1) and

a2 = c11 max
1≤k,l≤m

(β(ψk)β(ψl))
2γW

α

× E

[(
d∑

r=0

min{Vr(Z0,W ), Vr(W )}
)3 d∑

s=0

Vs(Z0,W )

]
d∑

u=0

Vu(W )

with c11 := (d + 1)β1. This is the case since the derivations of (9.5) and
(9.7) require only finite second moments and we can use the constants
related to Z as discussed before Lemma 9.6. Consequently, (8.8) is sat-
isfied with a = max{a1, a2}/Vd(W )2 and b = max{b1, b2}. Since (9.6) only
requires that the second moments, which are contained in c8, are finite, we
obtain that a1/Vd(W )2 tends to zero as r(W ) → ∞. On the other hand,
limr(W )→∞ a2/Vd(W )2 = 0 is equivalent to

lim
r(W )→∞

γWE

[
1

Vd(W )

(
d∑

r=0

min{Vr(Z0,W ), Vr(W )}
)3 d∑

s=0

Vs(Z0,W )

]
= 0.(9.14)

The expression in the limit can be rewritten as

γ

∫
1

Vd(W )

(
d∑

r=0

min{Vr(K), Vr(W )}
)3 d∑

s=0

Vs(K)1{K ∈MW }Q(dK).

For K ∈Kd
o ∩MW , we have Vr(K)≤

√
Vd(W ) for r ∈ {0, . . . , d} and, there-

fore,

1

Vd(W )

(
d∑

r=0

min{Vr(K), Vr(W )}
)3 d∑

s=0

Vs(K)1{K ∈MW }
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≤ (d+1)2

(
d∑

r=0

Vr(K)

)2

,

which is independent of W and integrable with respect to Q. For any fixed
K ∈Kd

o the left-hand side vanishes as r(W )→∞ so that the dominated con-
vergence theorem implies (9.14), and hence a tends to zero as r(W )→∞. Fi-
nally, Theorem 8.1 yields (9.12), which completes the proof of Theorem 9.1.
�

Remark 9.7. As discussed in Remark 9.5, (9.2) still holds if we replace
the centered Gaussian random vector N with the asymptotic covariance ma-
trix by a centered Gaussian random vector N(W ) with the exact covariance
matrix. This can be done even if the functionals are not translation invariant
since in this case we do not need Theorem 3.1. The second part of the proof
of Theorem 9.1 still holds because (9.13) is not required in this situation.
This means that under condition (2.5) for additive, locally bounded and
measurable functionals ψ1, . . . , ψm,

lim
r(W )→∞

d3

(
1√

Vd(W )
(Ψ(Z ∩W )− EΨ(Z ∩W )),N(W )

)
= 0.

Proof of Theorem 9.3 under assumption (2.5). For m= 1 and a
centered Gaussian random variableN(W ) with variance Varψ(Z∩W )/Vd(W ),
the previous remark implies that

lim
r(W )→∞

d3

(
ψ(Z ∩W )−Eψ(Z ∩W )√

Vd(W )
,N(W )

)
= 0.(9.15)

It follows from the definition of the d3-distance that for random vectors
Y1, Y2 and any c > 0,

d3(cY1, cY2)≤max{1, c}3d3(Y1, Y2).

With cW :=
√
Vd(W )/

√
Varψ(Z ∩W ) and a standard Gaussian random

variable N , this yields

d3

(
ψ(Z ∩W )−Eψ(Z ∩W )√

Varψ(Z ∩W )
,N

)

≤max{1, cW }3d3

(
ψ(Z ∩W )− Eψ(Z ∩W )√

Vd(W )
,N(W )

)
.

Since cW is bounded by assumption (9.3), (9.15) completes the proof. �

Remark 9.8. In Theorem 9.3, it is possible to weaken the assumption
that the Poisson process is stationary. In the proof, we only need to find
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upper bounds for the kernels and some integrals. This is, for instance, still
possible if the intensity measure is of the form

Λ(·) =
∫ ∫

1{K + x ∈ ·}f(x)dxQ(dK)

with a nonnegative bounded function f :Rd→R. Now we always get upper
bounds if we replace this intensity measure by the measure in (2.1) with
γ = supx∈Rd |f(x)|<∞.

For the multivariate central limit, this argument does not work in general
since its proof makes use of Theorem 3.1, which depends on the translation
invariance of the intensity measure. But if one can prove by other methods
the existence of an asymptotic covariance matrix, it is still possible to weaken
the stationarity assumption as described above.
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