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Key points 
 

• Beat-to-beat alternation (alternans) of the cardiac action potential duration is known 

to precipitate life-threatening arrhythmias. Alternans can be driven by the kinetics 

of voltage-gated membrane currents or by instabilities in intracellular calcium 

fluxes. 

 

• To prevent alternans and associated arrhythmias, suitable markers must be 

developed to quantify the susceptibility to alternans. Previous theoretical studies 

showed that the eigenvalue of the alternating eigenmode represents an ideal marker 

of alternans.  

 

• Using rabbit ventricular myocytes, we show that this eigenvalue can be estimated in 

practice by pacing these cells at intervals varying stochastically.  

 

• We also show that stochastic pacing permits the estimation of further markers 

distinguishing between voltage-driven and calcium-driven alternans. 

 

• Our study opens the perspective to use stochastic pacing during clinical 

investigations and in patients with implanted pacing devices to determine the 

susceptibility to, and the type of alternans, which are both important to guide 

preventive or therapeutic measures.  
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Abstract 
 

Alternans of the cardiac action potential (AP) duration (APD) is a well-known 

arrhythmogenic mechanism. APD depends on several preceding diastolic intervals (DIs) 

and APDs, which complicates the prediction of alternans. Previous theoretical studies 

pinpointed a marker called λalt that directly quantifies how an alternating perturbation 

persists over successive APs. When the propensity to alternans increases, λalt decreases 

from 0 to –1. Our aim was to quantify λalt experimentally using stochastic pacing and to 

examine whether stochastic pacing allows discriminating between voltage-driven and Ca2+-

driven alternans. APs were recorded in rabbit ventricular myocytes paced at cycle lengths 

(CLs) decreasing progressively and incorporating stochastic variations. Fitting APD with a 

function of two previous APDs and CLs permitted to estimate λalt along with additional 

markers characterizing whether the dependence of APD on previous DIs or CLs is strong 

(typical for voltage-driven alternans) or weak (Ca2+-driven alternans). During the 

recordings, λalt gradually decreased from around 0 towards –1. Intermittent alternans 

appeared when λalt reached –0.8 and was followed by sustained alternans. The additional 

markers detected that alternans was Ca2+-driven in control experiments and voltage-driven 

in the presence of ryanodine. This distinction could be made even before alternans was 

manifest (specificity/sensitivity >80% for –0.4>λalt>–0.5). These observations were 

confirmed in a mathematical model of a rabbit ventricular myocyte. In conclusion, 

stochastic pacing allows the practical estimation of λalt to reveal the onset of alternans and 

distinguishes between voltage-driven and Ca2+-driven mechanisms, which is important 

since these two mechanisms may precipitate arrhythmias in different manners. 

 

Abbreviations. AP, action potential; APD, action potential duration; AR model: 

autoregressive model; ARMA model: autoregressive-moving-average model; CL, cycle 

length; DI, diastolic interval; ORd, O’Hara-Virag-Varró-Rudy human ventricular cell 

model. λalt, alternans eigenvalue. 
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Introduction 
 

Alternation of the cardiac action potential duration (APD) from beat to beat is a well-

known arrhythmogenic mechanism. Alternans can lead to spatial dispersion of 

refractoriness potentiating conduction block, reentry and life-threatening arrhythmias such 

as atrial or ventricular fibrillation (Pastore et al. 1999; Weiss et al. 2006; Franz et al. 2012; 

Karagueuzian et al. 2013; Taggart et al. 2014; Verrier & Malik 2015; Wagner et al. 2015). 

Alternans can occur in a variety of forms and mechanisms (Qu et al. 2010; Edwards & 

Blatter 2014; Wagner et al. 2015). At the cellular level, alternans can result from the 

dependence of APD on the previous diastolic interval (DI), due to the amplitude and 

kinetics of voltage-gated ion currents (voltage-driven alternans) (Koller et al. 1998; Pastore 

et al. 1999). Alternans can also result from a dynamic instability in intracellular Ca2+ 

cycling, in particular due to the nonlinear behaviour of Ca2+-induced Ca2+ release and the 

bidirectional interaction between APD and the Ca2+ transient (Ca2+-driven alternans) (Qu et 

al. 2010; Edwards & Blatter 2014; Wagner et al. 2015). At the tissue and organ levels, 

alternans is modulated by intercellular interactions, conduction velocity restitution and 

pacing rate (Watanabe et al. 2001; Echebarria & Karma 2002). These multiscale 

mechanisms interact dynamically and give rise to complex spatiotemporal alternans 

patterns (Sato et al. 2006; Mironov et al. 2008; Gizzi et al. 2013). 

In the initial theory of alternans (Nolasco & Dahlen 1968; Guevara et al. 1981; Chialvo 

et al. 1990), APD is described as a nonlinear function of the previous DI (restitution 

function). Alternans occurs as a bifurcation when the slope of this function becomes ≥1. 

Hence, the propensity to alternans is classically evaluated by determining APD restitution 

slopes using downsweep or S1S2 pacing protocols (Kalb et al. 2004; Tolkacheva et al. 

2006). 

Several studies suggest that this approach is not always appropriate and some provide 

arguments against it. For example, none of the conventional restitution slopes predicted 

alternans in bullfrog myocardium (Kalb et al. 2004), and the authors suggested that the 

memory of previous pacing cycles must in fact be taken into account. In rabbit hearts, it 

was shown that these slopes were statistically different from 1 at the onset of alternans 
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(Cram et al. 2011). Another study showed that during hypokalaemia, the predictive power 

of APD restitution in promoting alternans fails (Osadchii et al. 2010). Using a system 

permitting the real time control of the DI, further investigators (Wu & Patwardhan 2006) 

showed that in canine ventricle, alternans can occur even if the DI is kept constant from 

beat to beat. This demonstrates that APD does not depend only on the previous DI and that 

memory of previous pacing cycles must be considered.  

Because APDs, DIs and cycle lengths (CLs) are intricately linked, a perturbation of one 

parameter will propagate from one beat to the next and influence the sequence of the others 

parameters over several cycles. To untangle these interactions, modern paradigms to 

evaluate alternans should therefore rely on multivariate analyses taking entire sequences of 

APDs, DIs and CLs into account. Intuitively, it would be a great advantage to have a 

marker that quantifies how a perturbation of one of these parameters is transmitted over 

subsequent cycles and how fast or how slow it decays. Theoretical studies (Li & Otani 

2003; Otani et al. 2005) have shown that the activity of a cardiac cell can be decomposed 

into distinct eigenmodes, i.e., patterns that recur every beat after being scaled by specific 

numbers called eigenvalues (λ), producing the series 1, λ, λ2, λ3, … over successive beats, as 

illustrated in Fig. 1A. For any |λ|<1, the series converges to 0, and negative eigenvalues 

reflect a change of sign every beat. Thus, the most negative eigenvalue (λalt) is precisely the 

factor by which the most prominent alternating perturbation is multiplied after every beat. 

λalt represents an ideal marker of alternans, because it quantifies directly how an alternant 

perturbation decays over successive cycles. When the propensity to alternans increases, λalt 

decreases from 0 towards –1, which is the limit of dynamic stability. When λalt=–1, a 

perturbation no longer dissipates but keeps alternating. 

We previously presented a theoretical framework forming the basis for an experimental 

estimation of λalt (Lemay et al. 2012). Central to this approach are pacing protocols 

comprising stochastic beat-to-beat variations of pacing cycle length. These stochastic 

perturbations continuously excite all the eigenmodes, but those with eigenvalues close to 0 

dissipate rapidly while those with eigenvalues close to –1 tend to persist in an alternating 

manner, revealing the susceptibility to alternans. 
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Our aim in the present study was to demonstrate the practical usefulness of this approach 

in isolated cardiac myocytes. We show that the experimentally estimated value of λalt is an 

appropriate marker to quantify the propensity to alternans. In addition, we derived further 

markers to discriminate between voltage-driven and Ca2+-driven alternans, and tested them 

in experiments and computer simulations using models of rabbit and human ventricular 

myocytes. Our results show that it is possible to discriminate between voltage-driven and 

Ca2+-driven alternans with a sensitivity and specificity >80%, even when the propensity to 

alternans is moderate, thus permitting information to be gained regarding the ionic 

mechanism of alternans before alternans fully develops. This opens the perspective of 

implementing new strategies to evaluate the propensity to alternans, which, in a 

translational setting, would be of assistance for the prevention and the therapy of associated 

arrhythmias. 

 

 

Methods 
 

Ethical approval 

 

All experiments (see protocols below) were conducted at the University of California, 

Los Angeles (UCLA). Animals were handled in accordance with the ethical principles and 

guidelines of UCLA Institutional Animal Care and Use Committee (ARC# 2003-063-33) 

and conformed to the Guide for the Care and Use of Laboratory Animals published by the 

US National Institutes of Health. The authors understand the ethical principles under which 

the journal operates. The present work complies with the animal ethics checklist of the 

journal. 

 

Isolation of rabbit ventricular myocytes 

 

Rabbit cardiac myocytes were isolated as previously (Madhvani et al. 2011). Briefly, 

hearts were rapidly excised from New Zealand White (NZW) male rabbits (age: 3-4 
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months, weight: 1.9-2.1 kg, n=21 rabbits) under deep anaesthesia induced by an 

intravenous injection of sodium pentobarbital (100 mg/kg) and heparin sulphate (1000 U). 

The adequacy of anaesthesia was confirmed by the lack of pedal withdrawal reflex, corneal 

reflex, and motor response to pain stimuli by scalpel tip. The hearts were placed in Ca2+-

free Tyrode’s solution containing (in mmol/L) 140 NaCl, 5.4 KCl, 1 MgCl2, 0.33 NaH2PO4, 

10 glucose, and 10 HEPES adjusted to pH 7.4. The aorta was cannulated and the heart 

perfused retrogradely at 37°C on a Langendorff apparatus with Ca2+-free Tyrode’s buffer 

containing 1.65 mg/mL collagenase. All solutions were continuously bubbled with 95% 

O2–5% CO2. After enzymatic digestion, the hearts were swirled in a beaker to dissociate 

cells. The Ca2+ concentration was gradually increased to 1.8 mmol/L, and the cells were 

stored at room temperature. The animals were supplied by Charles River Laboratories 

(Wilmington, MA,USA) and maintained in cages with standard lab chow and water 

available ad libitum. 

 

Patch clamp experiments 

 

The myocytes were bathed in a solution containing (in mmol/L): 136 NaCl, 5.4 KCl, 1.8 

CaCl2, 1 MgCl2, 0.33 NaH2PO4, 10 glucose, and 10 HEPES, adjusted to pH 7.4. Membrane 

potential was recorded (sampling rate: 10 kHz) at 34-36 °C using the whole-cell patch 

clamp technique in the current clamp mode using AxoPatch200B (Axon Instruments). The 

pipettes (resistance 1-2 MΩ) were filled with (in mmol/L): 110 K-aspartate, 30 KCl, 5 

NaCl, 10 HEPES, 0.1 EGTA, 5 MgATP, 5 creatine phosphate, 0.05 cAMP adjusted to pH 

7.2. In some experiments, ryanodine was added to the bath solution at a concentration of 

100 µmol/L to completely suppress Ca2+ release from the sarcoplasmic reticulum. 

Additional experiments were performed using the perforated patch technique using 

amphotericin B (240 µg/mL) in the pipette solution. 

 

Pacing protocols 
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Ramp protocol without stochastic variations: The cells were first paced with 2 ms 

current pulses at approximately twice the threshold of the resting cell for 3 min at a starting 

basic cycle length (CL) of 250-400 ms to allow for accommodation. Subsequently, CL was 

progressively decreased on a beat-to-beat basis over 10-25 min. To minimize transient 

alternans due to abrupt CL changes, the descending CL ramps were designed such that 

instantaneous pacing rate (1/CL) increases linearly with time. 

Ramp protocol with stochastic variations: The series of pacing CLs were designed as 

described above and stochastic variations of CL (Gaussian distribution with zero mean and 

a standard deviation (SD) of 10 ms if not specified otherwise) were implemented to the 

entire CL series. 

 

Computer simulations of action potentials 

 

Computer simulations were conducted with the Mahajan et al. rabbit ventricular cell 

model (Mahajan et al. 2008), which corresponds directly to our experimental preparation, 

and the O’Hara-Virag-Varró-Rudy (ORd) human ventricular cell model (O'Hara et al. 

2011). The models were subjected to similar pacing protocols.  

The Mahajan et al. model was run using a constant time step of 0.005 ms. Gating 

variables were integrated using the method of Rush and Larsen, the state occupancies of the 

Markovian model of the L-type Ca2+ channel were computed as described by Milescu et al. 

(Milescu et al. 2005) and membrane potential and ion concentrations were integrated using 

the forward Euler algorithm. The ORd model (MATLAB source code downloaded from Dr. 

Rudy’s website www.rudylab.edu) was run using the “ode15s” MATLAB ordinary 

differential equation solver. 

 

Analysis of APD, DI and CL series and markers of alternans 

 

In experiments and simulations, activation was defined for every action potential (AP) at 

–35 mV during depolarization and APD was determined at a potential 10 mV above the 

minimal diastolic potential preceding the AP. Series of consecutive APDs, DIs and CLs 
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(APDn, DIn, CLn) were derived from these fiducial time points with the convention 

CLn=APDn+DIn (Lemay et al. 2012). In this convention, DIn–1 is the DI immediately before 

APDn (which occurs during CLn), and DIn is the DI immediately after APDn. 

Markers to characterize alternans were derived starting from the notion that APD 

depends on several previous DIs and APDs (“memory” (Kalb et al. 2004; Kalb et al. 2005; 

Mironov et al. 2008)). This dependence can be formalized as a generalized restitution 

function g (Kalb et al. 2005): 

 

,...),,,( 2211 −−−−= nnnnn APDDIAPDDIgAPD . 

 

Because CL was explicitly controlled in our study, we expressed the generalized 

restitution function in terms of APD and CL as 

 

,...),,,( 2211 −−−−= nnnnn CLAPDCLAPDfAPD . 

 

Assuming that beat-to-beat variations of APD and CL are small enough such that 

nonlinearities of f are not involved, one can linearize f around mean APD and CL values as 

(Kalb et al. 2005; Lemay et al. 2012): 

 

nnnnnn CLCLAPDAPDAPD εδβδβδαδαδ ++++++= −−−− ...... 22112211 , 

 

where δAPDn and δCLn are the respective deviations of APDn and CLn from their local 

mean values and εn is an noise term representing intrinsic fluctuations of APD arising, e.g., 

from stochastic channel gating (Zaniboni et al. 2000; Lemay et al. 2011), stochastic Ca2+-

induced Ca2+ release (Cannell et al. 2013) or noise in the measuring apparatus. The 

coefficients αi and βi quantify the response of APD to a perturbation of the ith previous APD 

or CL and correspond respectively to the partial derivatives ∂f/∂APDn-i and ∂f/∂CLn-i, 

respectively. 
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The above equation represents a discrete-time autoregressive-moving-average (ARMA) 

model (Ljung 1999) taking the series of (controlled) CLs as input and producing the series 

of (measured) APDs as output. The coefficients αi and βi characterize this input-output 

behaviour of the investigated cardiac cell. If CL variations are absent or negligible (e.g., CL 

is kept constant), the system reduces to an autoregressive (AR) model, in which the 

contributions of the coefficients βi are lost: 

 

nnnn APDAPDAPD εδαδαδ +++= −− ...2211 . 

 

To illustrate this with a few examples, we first consider the immediate response of APD 

to an isolated perturbation of CL applied during steady state pacing (e.g., S1S2 protocol). In 

this situation, for the APD immediately following the perturbation and neglecting the noise 

term, the equation becomes δAPDn=β1δCLn-1. Therefore, the first moving average 

coefficient β1 directly reflects the conventional instantaneous S1S2 restitution slope. 

Second, we consider a setting in which alternans is principally determined by the kinetics 

of membrane currents during the previous DI (voltage-driven alternans). In such a situation, 

APD variations are strongly influenced by β1, in agreement with classical restitution theory. 

In contrast, if alternans is caused predominantly by fluctuations of the Ca2+ transient (due, 

e.g., to variations of sarcoplasmic Ca2+ loading and release) which are indirectly 

transmitted to APD, the latter will be predominantly governed by the autoregressive 

coefficients αi while the βi’s will remain relatively small and exert only a weak effect. 

However, the αi’s and βi’s cannot be ascribed directly to either the voltage or the Ca2+ 

driving mechanism (a detailed analysis is presented below in the section “Insights from an 

iterated map model”). 

Given a series of CLs and APDs, the coefficients αi and βi can be estimated using 

dedicated algorithms (Ljung 1999). However, further analysis is required to extract 

information about alternans and stability. As we showed previously (Lemay et al. 2012), by 

applying a Z-transform to the equation of the ARMA model, so-called transfer functions 

can be derived to characterize the response of the cell in the frequency domain as well the 

stability of this response: 
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The roots of the denominator, called “poles” or “eigenvalues” (λ), determine the stability 

of the system. The system is stable only if |λ|<1 for all λ’s (Ljung 1999). For a cell prone to 

alternans, one of the eigenvalues will dominate and approach –1 when alternans is 

imminent. This eigenvalue (λalt) thus characterizes the propensity to alternans. It can be 

understood as the number by which a perturbation of APD is scaled before being 

transmitted to the next beat (Fig. 1A). 

The roots of the numerators, called “zeros” (ζ), determine the phase relationships 

between CL and APD variations. While the zeros do not provide information on stability, 

they nevertheless allow untangling the relative contributions of the coefficients αi and βi to 

the alternating behaviour of APD. Therefore, the major advantage of introducing controlled 

stochastic variations of pacing CL is to permit the estimation of the coefficients βi, which 

are necessary to provide a full picture of the dynamic response of APD, not only in terms of 

the susceptibility to alternans but also in terms of the underlying dynamics. 

We analysed the series of APDs, DIs and CLs using a sliding window (unless specified 

otherwise: 100 beats slid in steps of 25 beats). For each window, the series were first 

detrended using a 2nd degree polynomial. Then, a 2nd order AR model (protocols without 

stochastic CL variations) or ARMA model (protocols with stochastic CL variations) was 

used to fit the data (Ljung 1999). λalt was defined as the eigenvalue closest to –1. While 

λalt=–1 represents full persistent alternans, values close to but still >–1 already indicate the 

susceptibility to alternate (see Fig. 1A). We therefore defined thresholds of –0.5 and –0.8 

for a moderate and a high susceptibility to alternans, respectively. We showed in previous 

computational work (Lemay et al. 2012) that the dominant zero of HCL→DI (ζalt) is near 0 if 

alternans is voltage-driven, whereas it is close to λalt if alternans is Ca2+-driven. The zero ζalt 
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and the difference ζalt–λalt thus represent markers of the primary mechanism of alternans. 

Our analysis thus reports λalt (susceptibility to alternans), and, for protocols with stochastic 

CL variations, ζalt, ζalt–λalt and β1 (further markers characterizing the dynamics of 

alternans). In addition, mean APD was plotted vs. mean DI in each window to generate a 

dynamic restitution curve. The slope of the plot provides an estimate of the dynamic 

restitution slope (Kalb et al. 2004; Tolkacheva et al. 2006). 

The ARMA model is a good approximation of the generic APD restitution function 

under the assumption that APD and CL variations around their mean values remain small 

enough such that nonlinearities remain weak. Hence, for the linear analysis using the 

ARMA model to remain applicable, the stochastic variations of pacing CL must be kept 

small enough such that nonlinearities remain weak. If nonlinearities need to be accounted 

for, the analysis can be extended with nonlinear terms (Armoundas et al. 2002; Dai & 

Keener 2012). However, this approach would have the disadvantage that more data (longer 

series of APDs/CLs) would be required to obtain reliable nonlinear model identification. 

All analyses and simulations were conducted using MATLAB (The MathWorks, Natick, 

MA, USA). AR and ARMA models were identified using a least squares algorithm 

(function “armax” from the MATLAB System Identification Toolbox).  

 

Statistics 

 

The ability of ζalt, and β1 to discriminate between control experiments and experiments 

with ryanodine was evaluated in terms of specificity and sensitivity by computing receiver 

operating characteristic curves. 

 

Insights from an iterated map model 

 

It must be noted that the coefficients αi and βi and the markers λalt and ζalt are interrelated 

and cannot be ascribed either to voltage-driven or to Ca2+-driven alternans. Furthermore, in 

a physiological setting, alternans is never either fully voltage-driven or fully Ca2+-driven. 

While one mechanism typically predominates, both mechanisms contribute jointly to the 
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genesis of alternans (Edwards & Blatter 2014; Groenendaal et al. 2014). To gain deeper 

insights into the relationships between λalt, ζalt, and β1 during Ca2+-driven vs. voltage-driven 

alternans, we investigated the following iterated map model (Fig. 1B) implementing the 

interactions between the AP and the Ca2+ transient (δ denotes a small deviation from the 

mean): 

 

nCTnnnn

nAPDnnnn

CLAPDCTCT
CLCTAPDAPD

,111

,11

εδκδϕδγδ
εδnδρδµδ

+⋅+⋅+⋅=

+⋅+⋅+⋅=

−−−

−−   

 

where CTn is the peak of the Ca2+ transient during the nth action potential. In the first 

equation and as illustrated in Fig. 1B, μ and ν describe the dependence of APD on the 

previous APD and CL independently of the Ca2+ transient and ρ describes the specific 

contribution of the Ca2+ transient in determining APD, which reflects Ca2+ to APD 

coupling. For ρ>0 (positive Ca2+ to APD coupling), a larger Ca2+ transient leads to a longer 

APD, whereas for ρ<0 (negative Ca2+ to APD coupling), a larger Ca2+ transient leads to a 

shorter APD. In the second equation, γ represents the feedback of CT on itself, φ represents 

the influence of APD on the next Ca2+ transient (APD to Ca2+ coupling), and κ is a 

parameter describing the direct effect of a change of CL on the next Ca2+ transient (CT 

restitution). This latter parameter is expected to be positive, because shortening CL results 

in a smaller Ca2+ transient during the next AP since the sarcoplasmic reticulum has less 

time to refill and since the recovery of the L-type Ca2+ current from inactivation may still 

be incomplete. Most cardiac cell models reproduce this behavior. εAPD,n and εCT,n are 

corresponding error terms. 

Although this map model is a simplification of the detailed ionic mechanisms shaping 

APD and the Ca2+ transient, it offers the advantage to be tractable analytically. 

 

Case of principally Ca2+-driven alternans 

 

If alternans is essentially driven by unstable Ca2+ cycling rather than by the voltage-

dependent kinetics of membrane currents, μ and ν are small and APD variations reflect the 
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variations of the Ca2+ transient via the parameter ρ. If the contributions from μ and ν are 

neglected, the system reduces to 

 

nCTnnnn

nAPDnn

CLAPDCTCT
CTAPD

,111

,

εδκδϕδγδ
εδρδ

+⋅+⋅+⋅=

+⋅=

−−−

. 

 

Combining both equations (neglecting the error terms) and solving for δAPDn, we obtain: 

 

11)( −− ⋅⋅+⋅⋅+= nnn CLAPDAPD δκρδρϕγδ , 

 

which corresponds to an ARMA model with α1 = γ+φρ and β1 = ρκ. 

Using Z-transformation, the transfer functions HCL→APD(z) and HCL→DI(z) are obtained as 

 

1

1

)(1
)( −

−

→ +−
=

z
zzH APDCL ρϕγ

ρκ  and 1

1

)(1
)(1)(1)( −

−

→→ +−
++−

=−=
z

zzHzH APDCLDICL ρϕγ
ρκρϕγ . 

 

The pole λalt and the zero ζalt of HCL→DI(z) are 

 

ρϕγλ +=aλt  

ρκρϕγζ ++=alt , 

 

and the difference ζalt–λalt is 

 

ρκλζ =− aλtaλt . 

 

This result indicates that Ca2+-driven alternans is caused by λalt = γ+ρφ approaching –1, 

and because κ>0, the sign of ζalt–λalt permits to infer the sign of ρ, i.e., the sign of Ca2+ to 

APD coupling. 
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Case of principally voltage-driven alternans 

 

Conversely, if alternans is essentially voltage-driven, the parameter ρ becomes negligible 

and the iterative map model for alternans reduces to 

 

nAPDnnn CLAPDAPD ,11 εδnδµδ +⋅+⋅= −− , 

i.e., to an ARMA model with α1 = μ and β1 = ν, with corresponding transfer functions 

1

1

1
)( −

−

→ −
=

z
zzH APDCL µ
ν

 and 1

1

1
)(1)(1)( −

−

→→ −
+−

=−=
z

zzHzH APDCLDICL µ
νµ

. 

 

The pole λalt and the zero ζalt of HCL→DI(z) are 

 

µλ =aλt  and  νµζ +=alt . 

 

Thus, the difference ζalt–λalt is ν, which corresponds to β1. Thus, in the classical alternans 

model (Nolasco & Dahlen 1968), ν corresponds to the S1S2 restitution slope and is 

expected to be close to 1 at the onset of alternans. Since λalt is then expected to be –1, we 

expect that ζalt will be around 0 in the case of essentially voltage-driven alternans. 

 

Mixed case 

If both voltage and Ca2+ dynamics contribute to alternans to a similar extent, ζalt, λalt and β1 

become more complicated functions which are less straightforward to link to the parameters 

of the iterated map model. However, we expect a continuum of possible values for ζalt, λalt 

and β1. 

 

 

Results 
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λalt quantifies the susceptibility to alternans even without stochastic cycle length 

variations 

 

The APD series of a ventricular myocyte subject to a ramp pacing protocol without 

stochastic variations is shown in Fig. 2A. The progressive decrease of CL led to an overall 

APD decrease and eventually resulted in manifest alternans. The insets in Fig. 2A and the 

corresponding APs shown in Fig. 2B illustrate that alternans is difficult to identify by visual 

inspection before its full development. These insets also depict the intrinsic beat-to-beat 

variability of APD. In Fig. 2A, λalt is shown with different background colours based on the 

thresholds defined in the Methods section (green: λalt>–0.5, low susceptibility; orange: –

0.5>λalt>–0.8, moderate susceptibility; red: λalt<–0.8, high susceptibility). λalt decreased 

from around –0.2 to –1. Intermittent alternans appeared in the form of bursts of alternation 

when λalt reached –0.8 (inset), followed by full sustained alternans, hence motivating the 

selection of a threshold of –0.8 as a marker of the imminence of alternans. Fig. 2C shows 

the dynamic restitution curve for this experiment. Globally, the dynamic restitution slope 

remained <1. 

The ramp protocol was conducted with 7 cells (from 3 animals). In 6 out of these 7 cells, 

λalt decreased progressively during the ramp protocol and alternans appeared when λalt 

reached –0.8, although the APD and CL at which alternans appeared was different between 

the individual cells. This indicates that λalt reflects the propensity to alternans, and is not 

linked to a given APD or CL. In one cell, alternans did not develop although CL was 

decreased to 150 ms at the end of the protocol, and λalt did not decrease below –0.5. 

 

Stochastic cycle length variations provide insight into the mechanisms governing 

alternans 

 

Fig. 3 illustrates an experiment in which a myocyte was subjected to a ramp protocol 

with stochastic variations. With this protocol, λalt progressively decreased as well. 

Sustained alternans developed around beat number 2600 when λalt reached –0.8. In contrast 

to cells paced without stochastic variations (e.g., Fig. 2), sustained alternans was then 
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characterized by occasional phase reversals, visible as transitions between periods in which 

even APDs were longer than odd APDs (marked in different colours) and periods in which 

odd APDs were longer than even APDs. These phase reversals occurred irregularly. During 

the descending CL ramp, APD exhibited a progressive trend to alternate (Fig 3A, insets), 

with bursts of alternans that lasted progressively longer in response to the continuous 

perturbations caused by stochastic pacing.  

Importantly, incorporating stochastic CL variations permitted the estimation of two 

additional markers, β1 and ζalt. β1 (corresponding to the conventional S1S2 restitution 

slope), slightly increased during the experiment and reached 0.2 at the onset of alternans, 

i.e., <<1. Interestingly, ζalt decreased gradually in parallel with λalt, but it always remained 

slightly more positive. Consequently, the difference ζalt–λalt was positive but remained close 

to 0. These relations between β1, ζalt and λalt are further illustrated in Fig. 3B (ζalt vs. λalt) 

and Fig. 3C (β1 vs. λalt). Fig. 3B shows that ζalt evolved along the diagonal defined by 

ζalt=λalt but remained above it, and Fig. 3C shows that β1 remained near 0. The dynamic 

restitution slope (Fig. 3D) was approx. 0.5 at the onset of alternans, i.e., <<1. 

Similar results were observed in 8 out of 10 cells (from 6 animals), in which λalt reached 

–0.8 when alternans developed. In these experiments, ζalt followed a course similar to λalt 

but always remained >λalt (ζalt–λalt always positive), and β1 followed a course near 0 

(β1<0.5). The observation that ζalt remained close to λalt suggests that alternans was Ca2+-

driven in these experiments (Lemay et al. 2012), and the positive sign of ζalt–λalt indicates 

that Ca2+ to APD coupling was positive. In one of the 10 cells, the seal was lost before the 

end of the pacing protocol; alternans had not developed and λalt remained >–0.8. 

Interestingly, in one other cell that exhibited alternans, ζalt also followed a course similar to 

λalt but ζalt–λalt was negative, suggesting according to theory (Lemay et al. 2012) that Ca2+ 

to APD coupling was negative in this particular cell. 

 

Ryanodine changes the dynamics governing alternans 

 

It is established that Ca2+-driven alternans results from unstable cycling of intracellular 

Ca2+, especially due to a steep relation linking Ca2+ influx and sarcoplasmic Ca2+ load to 
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Ca2+ release (Qu et al. 2010). Because the ryanodine receptor is a central element in Ca2+-

induced Ca2+ release, we evaluated the behaviour of APD and the different markers during 

similar stochastic ramp experiments in the presence of ryanodine (100 µmol/L).  

Ryanodine caused APD shortening and alternans occurred at shorter cycle lengths. 

Therefore, the standard deviation of the stochastic pacing interval variations was reduced to 

3-5 ms. Fig. 4 illustrates a representative experiment with ryanodine. In this example, λalt 

progressively decreased until sustained alternans developed (around beat 2350) when λalt 

reached –0.8. However, ζalt did not decrease conjointly with λalt but fluctuated around 0 

during the entire experiment, whereas β1 and λalt–ζalt increased towards +1. Fig. 4B shows 

that ζalt remained around 0 independently of λalt, and Fig. 4C shows that β1 evolved along 

the diagonal defined by β1=–λalt. As in experiments without ryanodine, alternans exhibited 

irregularly occurring phase reversals once it had fully developed. These phase reversals 

thus appeared as a consequence of the stochastic CL variations. The dynamic restitution 

slope at the onset of alternans (Fig. 4D) was approx. 0.8, i.e., close to 1. 

Out of 15 cells (from 9 animals) exposed to ryanodine, manifest alternans with λalt<–0.8 

was observed in 4 cells. In these experiments, ζalt always remained close to 0 and ζalt–λalt 

increased above 0.5. In 10 of the remaining 11 cells, λalt nevertheless decreased to values 

<–0.5, APD exhibited intermittent bursts of alternans, and the tendency of ζalt to remain 

near 0 and of β1 to increase was also observed. Thus, ryanodine changed the dynamics 

governing alternans and the relationship between the stochastic CL series and the resulting 

APD series in a manner compatible with a switch from essentially Ca2+-driven to 

essentially voltage-driven alternans.  

In a next step, we examined the capability of the markers ζalt and β1 to discriminate 

between experiments with and without ryanodine. Because APD at the onset of alternans 

was different for every cell, we conducted this analysis independently of APD and CL by 

considering only the relationships between ζalt, β1 and λalt. For this purpose, we pooled the 

results of all the estimations of these three markers in all experiments (including 

experiments in which sustained alternans was not observed), as shown in Fig. 5A. In the 

plot of ζalt vs. λalt, the distribution of the points and the regression lines for ryanodine vs. 

control experiments confirm that ζalt followed λalt in control experiments whereas it 
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remained near 0 in the presence of ryanodine. The plot of β1 vs. λalt confirms that β1 

changed only moderately in control experiments whereas it followed the diagonal β1=–λalt 

in the presence of ryanodine. To analyse the discriminating capability of ζalt and β1 in terms 

of specificity and sensitivity, the data were collected in bins of λalt with a width of 0.1, and 

a receiver operating characteristic curve was constructed for each bin, as illustrated in Fig. 

5B. This analysis shows that the specificity and sensitivity of ζalt and β1 (calculated from a 

single series of 100 consecutive CLs and APDs) to discriminate between the presence and 

the absence of ryanodine reaches >80% when λalt<–0.4 and increases with λalt approaching 

–1. Since the discrimination threshold cannot be determined a priori, we also determined in 

Fig. 5C the specificity and sensitivity of the criteria ζalt>0.5·λalt and β1>–0.6·λalt (illustrated 

by the green dotted lines in Fig. 5A). Overall, ζalt was more specific and β1 more sensitive, 

and the sensitivity/specificity was >80% even for λalt>–0.5, i.e. for a low susceptibility to 

alternans without any manifest alternation in APD time series. 

To ascertain whether excessive cell dialysis could affect the results, additional 

experiments (2 under control conditions, 2 with 100 µmol/L ryanodine) were conducted 

using the perforated patch technique. Similar behaviours of the different markers were 

observed, suggesting that using the ruptured patch technique did not alter the main 

outcomes of the analyses. 

 

Computer simulations confirm experimental observations 

 

To gain deeper insights into the progression to alternans during the ramp protocols and 

to support the notion of a switch from principally Ca2+-driven to principally voltage-driven 

alternans when the ryanodine receptor is blocked, we ran computer simulations using the 

Mahajan et al. rabbit ventricular myocyte model (Mahajan et al. 2008), which corresponds 

to our experimental preparation and which was especially developed to replicate the APD 

restitution curves observed experimentally as well as the alternans of APD and the Ca2+ 

transient at rapid pacing rates.  

Fig. 6 illustrates a simulation of a ramp protocol with stochastic variations. Alternans of 

APD appeared in bursts before becoming persistent at the end of the simulation. However, 
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the peak of the Ca2+ transient exhibited bursts of alternans already early in the simulation, 

before APD alternans became manifest (insets in Fig. 6A), indicating that alternans 

originated initially from unstable Ca2+ cycling and resulted later in visible APD alternans. 

The progression of λalt and ζalt during acceleration of pacing was similar to that in the 

experiments without ryanodine, with ζalt following λalt but being always less negative. The 

difference ζalt–λalt always remained in the interval between 0 and 0.2. The marker β1 

remained low as well. At the onset of APD alternans, when λalt reached –0.8, ζalt–λalt was 

0.06 and β1 amounted to 0.07. The slope of the dynamic restitution curve (Fig. 6D) 

remained in the range 0.4-0.6 during the entire protocol. 

To test whether Ca2+ cycling could be stabilized and the regime of alternans switched 

from essentially Ca2+-driven to essentially voltage-driven, we simulated the application of 

ryanodine by decreasing the strength of the Ca2+ release current through ryanodine 

receptors (gRyR) by 90%, as illustrated in Fig. 7. As in the experiments, APD was decreased 

by this intervention and a ramp protocol descending to CLs < 100 ms was used, with 

stochastic variations having a SD of 2 ms. Similar to the control model, λalt gradually 

decreased towards –1 until full alternans developed. However, the peaks of the Ca2+ 

transients exhibited manifest alternans only in conjunction with APD alternans (insets). 

Furthermore, as in the experiments with ryanodine, ζalt clearly remained close to 0 and, 

consequently, ζalt–λalt increased to 1. β1 increased to 1 as well. The dynamic restitution 

slope was steeper than in the control model (maximal slope: 1.1; slope at the onset of 

alternans: 0.7; Fig. 7D). This behaviour of β1, ζalt and the dynamic restitution slope (close to 

1, 0 and 1, respectively) is in agreement with voltage-driven alternans, i.e., with a steep 

dependence of APD on the previous DI as proposed in classical restitution theories.  

Thus, in terms of λalt, ζalt, β1 and dynamic restitution slope, the behaviour of the Mahajan 

et al. model was very consistent with that observed in the experiments, and decreasing gRyR 

by 90% clearly changed the dynamics of alternans and switched its mechanism from 

principally Ca2+-driven to principally voltage-driven. In the experiments, we used a high 

ryanodine concentration that blocks Ca2+ release and leads to Ca2+ accumulation in the 

sarcoplasmic reticulum (SR). This accumulation was confirmed in the Mahajan et al. 

model. This resulted in relatively smaller variations of [Ca2+] in the SR during the AP 
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cycle, which, in turn, decreased Ca2+ release fluctuations. The feedback mechanism that 

causes Ca2+-driven alternans was therefore depressed. 

To evaluate the robustness of our approach, we ran the simulations shown in Figs. 6 and 

7 ten times with the same descending ramps but with different realizations of the stochastic 

variations of CL and analysed λalt, ζalt, β1 and ζalt–λalt in terms of mean and SD over the 10 

different runs. There were subtle differences from run to run, but the mean behaviour of the 

alternans markers was similar and consistent with the individual simulations shown in Figs. 

6 and 7. The SD of the markers was typically in the range of 0.1 far from the alternans 

regime and the SD of λalt strongly decreased when λalt approached –1. We also examined 

the effect of changing the SD of the stochastic CL variations. When these variations were 

decreased by half, the average behaviour of the markers was similar, and their SD was 

lower. However, when the SD of CL variations was doubled, some stimuli applied after 

particularly short stochastic CLs failed to be captured because they fell within the 

refractory period. These observations suggest that in an experimental setting, the SD of CL 

variations should be optimized to provide a sufficient signal-to-noise ratio in the measured 

APD series without causing stimulation failure. 

 

Ca2+-driven alternans is also identified in a human ventricular cell model 

 

To examine whether the stochastic pacing approach could also be applicable in the 

context of the human heart, we conducted simulations using the O’Hara et al. (ORd) human 

ventricular model (O'Hara et al. 2011). Fig. 8A illustrates the behaviour of APD, Ca2+ 

transient amplitude and alternans markers in the original control model (ramp descending 

from 1000 ms; SD of stochastic variations: 3 ms). To demonstrate the influence of Ca2+ 

dynamics on alternans generation, Fig. 8B shows the behaviour of the ORd model when the 

Ca2+ concentrations in all subcellular compartments were clamped to their initial values. 

In the control model, alternant fluctuations of Ca2+ transient amplitude appeared before 

those of APD, and they were also more prominent. The decrease of λalt, towards –1 was 

accompanied by a parallel decrease of ζalt whereas β1 and λalt–ζalt, remained <0.3, similar to 

the behaviour of the rabbit myocytes. This is in line with the notion that alternans is Ca2+-
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driven in the control model, as reported (O'Hara et al. 2011). Under conditions of Ca2+ 

clamp, APD was prolonged due to the missing Ca2+-based inactivation of the L-type Ca2+ 

current. But importantly, the behaviour of ζalt (close to 0), of β1 (close to 1) and λalt–ζalt 

(close to 1) during the decrease of λalt reflected the disappearance of Ca2+-driven alternans 

and the appearance of voltage-driven alternans. The dynamic restitution slope (Fig. 8C) was 

larger in the Ca2+ clamped model than in the control model. The trajectories in the plots of 

ζalt vs. λalt and β1 vs. λalt (Fig. 8C) were characteristic of Ca2+-driven alternans in the control 

model and of voltage-driven alternans in the Ca2+-clamped model. These results therefore 

suggest that Ca2+-driven alternans can also be correctly identified in human ventricular 

myocytes using stochastic pacing protocols. 

 

 

Discussion 
 

We investigated the susceptibility to alternans of isolated rabbit ventricular myocytes by 

using a pacing protocol combining a progressive decrease of CL with stochastic CL 

variations. The analysis of the resulting sequences of APDs using an autoregressive-

moving-average model permitted the experimental estimation of the eigenvalue λalt, which 

was shown in theoretical studies to be the ultimate marker of alternans (Li & Otani 2003; 

Groenendaal et al. 2014). Another innovative aspect of our analysis and the principal 

advantage of stochastic pacing is that it allows the extraction of further markers to 

characterize alternans (ζalt, ζalt–λalt, β1). 

In a previous computational study (Lemay et al. 2012), we showed that these markers 

exhibit distinctive signatures in a mathematical model which can be parameterized to 

exhibit voltage-driven or Ca2+-driven alternans (Sato et al. 2006). To ascertain these 

distinct signatures experimentally, we used ryanodine to depress Ca2+-induced Ca2+ release, 

a key player in Ca2+-driven alternans (Qu et al. 2010; Edwards & Blatter 2014; Wagner et 

al. 2015). Our experiments demonstrated the theoretically anticipated change of ζalt and β1 

suggestive of a shift from Ca2+-driven to voltage-driven alternans. Our findings are 

consistent with the notion that rabbit ventricular myocytes are prone to Ca2+-driven 
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alternans, as shown recently using dual voltage and Ca2+ recordings (Kanaporis & Blatter 

2015). 

We also found that ζalt and β1 discriminated between the presence and absence of 

ryanodine with a specificity and sensibility reaching already ~80% when the propensity to 

alternans was low (λalt>–0.5). Therefore, our approach can not only serve to detect the 

imminence of alternans by using λalt, but also to identify whether it is prone to occur via a 

Ca2+-driven or voltage-driven mechanism.  

Further support to our approach was provided by simulations with the Mahajan et al. 

model of the rabbit ventricular myocyte (Mahajan et al. 2008), which was specifically 

developed to replicate APD dynamics and the Ca2+ cycling behaviour during rapid pacing. 

The behaviour of λalt, ζalt and β1 in the model was consistent with our experimental 

observations. We then conducted simulations using a recent model of the human ventricular 

myocyte. The simulations suggest that it should also be possible to identify Ca2+-driven 

alternans in human ventricular myocytes using stochastic pacing protocols. 

Our work finally shows that conventional restitution slopes are poor markers to identify 

the occurrence of alternans (except in the case of a purely voltage-driven mechanism 

without memory of previous pacing cycles as in classical restitution theory (Nolasco & 

Dahlen 1968; Guevara et al. 1981; Chialvo et al. 1990)). This further stresses the 

importance of revisiting the classical restitution concept in the genesis of alternans. 

It must be underlined that both voltage and Ca2+ driving mechanisms contribute jointly 

to varying degrees to the generation of alternans rather than only one or the other (Edwards 

& Blatter 2014; Groenendaal et al. 2014). In the experiments, the mechanisms of unstable 

voltage dynamics that were revealed by the application of ryanodine were presumably 

present before, and they were certainly present in the simulations since the formulation of 

membrane currents was not changed. It is possible that both our experiments and 

simulations represented situations in which one mechanism clearly outweighed the other, 

and, in future studies, it would therefore be adequate to also investigate situations in which 

both mechanisms contribute to alternans to a similar extent and how our alternans markers 

evolve during a gradual transition from one to the other mechanism. 

 



Prudat et al. Investigating alternans by stochastic pacing Page 24 

Extension of the analytical framework from cell to organ 
 

In this study, we conducted experiments with single cells. In intact tissue, electrotonic 

interactions and conduction velocity restitution may further influence the mechanisms of 

alternans and give rise, e.g., to spatially discordant patterns (Qu et al. 2010). While this 

adds a level of complexity to the mechanisms underlying alternans, it does not preclude the 

validity of our analytical method. Indeed, dominant eigenvalue analysis based on principal 

components analysis or maximum likelihood estimation has recently been proposed (Petrie 

& Zhao 2012) and successfully applied (Kakade et al. 2013) on optical recordings of 

membrane potential in whole hearts during a perturbed downsweep protocol. Moreover, in 

clinical studies, QT interval stability analysis based on the magnitude of eigenvalues 

obtained via autoregressive modelling of the QT interval was shown to correlate with the 

propensity to ventricular tachyarrhythmias (Chen et al. 2011). These studies therefore 

suggest that our method is also applicable at the multicellular tissue and organ levels. We 

postulate that stochastic pacing may actually render it more reliable by continuously 

exciting the dominant eigenmodes that need to be identified. A recent study (Dvir & 

Zlochiver 2013) suggests that stochastic pacing in itself reduces the propensity to alternans 

and even prevents the transition to spatially discordant alternans by shifting the APD 

restitution slope, an effect explained on the basis of nonlinear switched system theory. In a 

translational context, stochastic pacing could therefore be used both as a diagnostic and 

preventive measure. 

Nevertheless, these different aspects will require to be carefully evaluated in further 

studies. Such investigations are needed to clarify whether our approach can be used 

gainfully in the setting of the human heart. In this situation, it should be underlined that the 

recorded signal (electrogram or ECG) should be of sufficient duration and sampled at a 

sufficiently high rate to capture small APD or QT interval variations in the millisecond 

range. To deploy the maximal efficiency of ARMA model identification, cardiac CL series 

should also be fully uncorrelated (which is not the case during sinus rhythm or 

conventional pacing protocols). When full alternans appears during stochastic pacing, 

nonlinear model identification can then be applied to provide further insights into the 
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characteristics of the period-doubling bifurcation (Armoundas et al. 2002; Dai & Keener 

2012). 
 

Limitations 
 

It was recently suggested that at the subcellular level, Ca2+-driven alternans results from 

the interplay of the randomness of Ca2+ spark activation, the refractoriness of Ca2+ release 

units and spark recruitment (Qu et al. 2010). Mechanistically, Ca2+-driven alternans can 

also involve early afterdepolarizations (Qu et al. 2010). We have not tested whether our 

approach can discriminate between these different factors. 

Our study also has the limitation that we recorded APs but not Ca2+ transients. For this 

reason, we could not quantify the exact relative contribution of Ca2+-driven and voltage-

driven alternans. A recent study (Groenendaal et al. 2014) conducted using simultaneous 

voltage and Ca2+ recordings showed that both unstable Ca2+ cycling and unstable ion 

channel dynamics contribute together to alternans; however, at the limit determined by 

λalt=–1, one mechanism typically predominates. Simultaneous recording of voltage and 

Ca2+ thus offers an important tool for future studies. Nevertheless, our approach has the 

advantage that it can discriminate between Ca2+ and voltage-driven alternans without the 

need to measure Ca2+ transients, which would hardly be feasible in a clinical setting. 
 

Conclusion 
 

Eigenmode analysis is emerging as a highly valuable tool to probe the dynamics of 

cardiac electrophysiological systems. The potential of this approach deserves to be explored 

further and opens prospects for future basic and translational research. 
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Translational perspective 
 

The alternation (alternans) of cardiac action potential duration is an intricate dynamical 

phenomenon leading to life-threatening heart rhythm disorders. Alternans can result from 

instabilities in ion current dynamics (voltage-driven alternans) or in intracellular calcium 

cycling (calcium-driven alternans). We examined the susceptibility to alternans of rabbit 

ventricular myocytes using pacing protocols comprising stochastic (random) beat-to-beat 

variations of pacing cycle length and tested the hypothesis that such an approach can 

provide more information about the dynamics of alternans compared to a pacing protocol 

without variations. From the series of resulting action potential durations, we derived novel 

markers that not only signal the imminence of alternans, but also discriminate between 

voltage-driven and calcium-driven alternans. We demonstrated that our approach can 

identify the change from calcium-driven to voltage-driven alternans dynamics induced by 

blocking the calcium-induced calcium release from the sarcoplasmic reticulum. Our 

findings lead to the prospect of implementing stochastic pacing protocols for diagnostic 

purposes, e.g. in patients undergoing cardiac catheterization investigations or having an 

implanted pacemaker or defibrillator. This approach may assist to determine the patients’ 

susceptibility to alternans and associated arrhythmias and to identify to what type of 

alternans the patients are predisposed. Making this distinction is relevant for 

pharmacotherapy, because the propensity to calcium-driven vs. voltage-driven alternans 

may require different preventive or therapeutic measures (e.g., drugs acting on potassium 

currents vs. calcium fluxes) and be associated with different contraindications for certain 

drugs. Thus, the potential of stochastic pacing deserves further investigations and opens 

prospects for future basic and translational research. 

 

[Paragraph length: 249 words] 
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Figures and legends 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Signification of λalt and bidirectional interactions between the AP and the 

Ca2+ transient 

A, the eigenvalue λalt represents the factor by which an alternating perturbation decays with 

every beat. For λalt close to 0, the alternating eigenmode dissipates rapidly and will not be 

manifest in a real system subject to continuous perturbations. With λalt getting closer to –1, 

alternating sequences are more likely to appear and to endure because the alternans 

eigenmode dissipates slower. The susceptibility to alternate becomes apparent for λalt 

around –0.5 and is quite manifest for λalt < –0.8. If λalt < –1, the system is unstable and the 

smallest perturbation is amplified. B, theoretical model of the interactions between CL, 

APD and the Ca2+ transient (CT). The interactions (details in the text) are marked with 

dotted arrows labelled with Greek letters.
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Figure 2. Ramp protocol without stochastic variations in a ventricular myocyte 

A, pacing CL, APD and λalt (sliding window of 100 beats) vs. beat number. Odd and even 

APDs are shown in red and cyan, respectively. λalt is shown with distinct background 

colours (green: 0>λalt>–0.5; orange: –0.5≥λalt>–0.8; red: λalt<–0.8). Data points in magenta 

indicate that λalt was complex (the real part is shown). B, APs corresponding to the first 11-

13 beats of the insets labelled a-d in A. C, plot of mean APD vs. mean DI in the sliding 

window, using the colour defined above for λalt. The onset of sustained alternans is denoted 

by the arrow. 
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Figure 3. Ramp protocol with stochastic variations in a ventricular myocyte 

A, pacing CL, APD, λalt, ζalt (cyan), β1 (S1S2 restitution slope, grey) and difference ζalt–λalt 

(purple) vs. beat number, computed in the sliding window. Odd and even APDs are shown 

in red and cyan, respectively. λalt is shown with distinct background colours, as in Fig. 2. 

Data points in magenta indicate that λalt was complex (the real part is shown). B, plot of ζalt 

vs. λalt during the experiment. C, plot of β1 vs. λalt during the experiment. D, plot of mean 

APD vs. mean DI in the sliding window, using the colour defined in A for λalt. The onset of 

full alternans is denoted by the arrow. 
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Figure 4. Ramp protocol with stochastic variations in a ventricular myocyte exposed 

to 100 µmol/L ryanodine 

Same layout as in Figure 3. 
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Figure 5. Discriminative capability of ζalt and β1 

A, plot of ζalt (top) and β1 (bottom) vs. λalt for all experiments pooled together (blue: control 

without ryanodine (10 cells from 6 animals); magenta: 100 µmol/L ryanodine (15 cells 

from 9 animals)). Blue and red lines are corresponding regression lines. B, receiver 

operating characteristic curves for ζalt (top) and β1 (bottom) for data in different bins of λalt. 

C, specificity and sensitivity of the criteria ζalt>0.5·λalt (top) and β1>–0.6·λalt (bottom) to 

detect the use of ryanodine (these criteria are shown as green dotted lines in A). 
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Figure 6. Ramp protocol with stochastic variations in the Mahajan et al. model 

A, pacing CL, APD, λalt, ζalt (cyan), β1 (S1S2 restitution slope, grey), difference ζalt – λalt 

(purple) computed in a sliding window (100 beats), and peaks of the Ca2+ transients. Odd 

and even APDs and corresponding Ca2+ transient peaks are shown in red and cyan, 

respectively. λalt is shown in distinct bands using different colours (green: 0 > λalt > –0.5; 

orange: –0.5 ≥ λalt > –0.8; red: λalt < –0.8). B, plot of ζalt vs. λalt during the simulation. C, 

Plot of β1 vs. λalt during the simulation. D, plot of mean APD vs. mean DI in the sliding 

window, using the colour defined above for λalt. 
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Figure 7. Ramp protocol with stochastic variations in the Mahajan et al. model with 

Ca2+ release strength reduced by 90% 

Same layout as in Figure 6. 
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Figure 8. Ramp protocol with stochastic variations in the ORd human ventricular cell 

model under control conditions and under conditions of Ca2+ clamp 

A, control ORd model. Pacing CL, APD, markers λalt, ζalt, β1 and ζalt–λalt (sliding window of 

16 beats) as well as Ca2+ transient amplitude are shown vs. beat number. Layout similar to 

Figures 6A and 7A. B, ORd model with all Ca2+ concentrations clamped to their initial 

values. Same layout as in A. C, superimposed plots of mean APD vs. mean DI (left) in the 

sliding window, ζalt vs. λalt (middle), and β1 vs. λalt. (right) for the two situations 

investigated in A and B. 


