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1 Introduction

Osteoarthritis is a highly debilitating pathology that affects 
knees primarily of older people. With this inflammation, 
the cartilage degenerates, the distance between bones is 
reduced, and hypertrophy of the bones can occur, with the 
creation of osteophytes [36]. The Dutch Institute for Public 
Health estimates that worldwide almost 16 % of men and 
31 % of women aged over 55  years have radiographic knee 
osteoarthritis [25]. In 12 % of cases, the pathology reduces 
the motion of the knee and causes pain to the patient, often 
requiring the use of ambulatory aids [11]. The most used 
treatment for severe osteoarthritis is surgery. However, 
almost the 20 % of the patients who undergo total knee 
arthroplasty (TKA) are not satisfied with their operation [2].

A preoperative study of knee kinematic under weight-
bearing conditions can improve the outcome of the surgery 
[32]. The representation of the joint kinematics in 3D space 
allows for understanding pain zones and ligament tensions, 
determining the best implant positioning and thus correct-
ing nonalignments of the bone segments [5, 8, 9, 16, 31, 
32, 39]. The acquisition of preoperative computer tomog-
raphy (CT) or magnetic resonance imaging (MRI) images 
gives a deep insight into the morphology of the structures, 
but these procedures are currently limited to static position-
ing and have high costs and radiation doses given to the 
patient. Mono and multi-plane fluoroscopies are the most 
accurate and used procedures to measure in vivo nonin-
vasive kinematics of the knee [32, 39]. The current clini-
cal technique is mainly based on the operator’s ability to 
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correctly position the shape on the images [2]. This tech-
nique is time-expensive and error-prone, as it is based on 
human ability. Regardless of the number of fluoroscopic 
projections, two main automatic methods have been imple-
mented to recover the correct pose of the bones in 3D 
space: intensity-based and feature-based methods.

Intensity-based methods need a preoperative CT scan 
in order to acquire the density of the patient’s bone. The 
2D–3D matching is then achieved comparing the digitally 
reconstructed radiograph (DRR) to the acquired fluoroscopic 
image and adjusting the rotation and translation parameters 
in order to minimize the differences between the two images 
in terms of pixel intensities [3, 18, 32]. Although very accu-
rate, these methods require a previous CT to determine the 
bone density for the DRR creation and are computationally 
expensive for the number of pixel intensity comparisons that 
must be made to find the correct pose.

Feature-based methods are based on the contours of 
the bone shape that can be extracted from the fluoroscopic 
images using edge detector filters, such as Canny or Sobel 
[12, 22, 23]. These methods project the silhouette of the 
bone shapes and match it with the extracted edges. Usually, 
feature-based methods necessitate a previous morphological 
3D dataset of the bone shapes, such as MRI or CT [1, 2, 30]. 
Recently, some authors have addressed the problem of need-
ing the morphological scan and substituting it with a statisti-
cal shape model (SSM), a collection of shapes coming from 
atlas that can be deformed in order to represent accurately 
the target shape [5, 24, 34, 38]. In this way, costs are reduced 
and the patient is exposed to a lower radiation dose. How-
ever, computational time becomes an issue, as the whole 
sequence of poses takes some hours to be computed [7].

Our objective was to develop a new feature-based algo-
rithm based on Gaussian mixture models (GMMs) that is 
able to register a 3D point set on a single or biplane image 
of the same object. We tested the algorithm with a SSM of 
the femur using a set of fluoroscopic images of the knee. 

The goal was twofold: We addressed the problem of accu-
rately recovering the pose of the knee in 3D space in a 
completely automatic way and also of ensuring the correct 
parameters for the deformation of the shape. In [21, 37], 
the authors addressed the problem of the registration of 
two point sets with a GMM fitting. The solution is given 
through an expectation conditional maximization (ECM) 
procedure that simplifies the original expectation maxi-
mization (EM) algorithm by Dempster et al. [17]. Both of 
these frameworks, however, assume working with point 
sets lying in the same (2D or 3D) space.

The proposed algorithm extends the state of the art to 
registering a 3D shape of a femur on a set of fluoroscopic 
images acquired during flexion–extension of the knee. It 
faces also the possibility to remove one of the two fluor-
oscopes in order to reduce the radiation dose and allow 
greater mobility in the fluoroscopic cone.

2  Materials and methods

The knee is imaged during a sequence of flexion–exten-
sion movements. A fluoroscopic tube returns a set of X-ray 
images. The source and the image plane are calibrated, and 
their pose in the world reference frame is known. The recon-
struction of the femur kinematics is done through a series 
of features projection and backprojection from the fluoro-
scopic image plane to the 3D space. A 3D shape of the bone 
is used as a model to reconstruct the correct pose (Fig. 1).

2.1  Datasets

2.1.1  3D shape

The 3D shape is defined as a set of points (Xs, s = 1, . . . , S ) 
and triangles that can be either derived from the segmentation 
of a volumetric image dataset (CT or MRI) [26] or a SSM 

Fig. 1  X-ray source jS projects 
rays on the image plane. The 
image is processed, and the 
contours jyn are extracted using 
a Canny edge detector (black 
points on the image). In the 
middle, the shape is formed by 
points Xs and triangles. The 
silhouette of the model, Xm in 
red, is made up of those points 
that share a contour edge, i.e., 
an edge shared by two triangles 
with normals (arrows) pointing 
in different directions from 
the source. The zoom on the 
right shows the normals of the 
triangles that point in different 
directions
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[14]. We define the patient-specific 3D shape as 3DSCT/MRI 
and the SSM as 3DSSSM (A). A Gaussian distribution (Xs,�s)  
is associated with each 3D point of the model. The isotropic 
covariance can be expressed as �s = σsI3.

The silhouette of the model is made up of those points 
that share a contour edge, i.e., an edge shared by two fac-
ets with normals pointing in different directions from the 
source. The silhouette points are then a subset of the shape 
points Xm,m = 1, . . . ,M < S. The model silhouette is pro-
jected on the image plane xm,m = 1, . . . ,M.

2.1.2  2D contours

The segmentation of the contour of the shape on the images 
is performed using a semiautomatic algorithm based on 
gradient enhancement of the image and a spline interpo-
lation between user-picked points [34]. The selected pix-
els, belonging to the segmentation, can be transformed in 
3D points using the known image calibration parameters 
(yn, n = 1, . . . ,N).

2.2  Registration

2.2.1  Initialization

A manual initialization is necessary to define the initial 
pose for the shape. Seven landmark points Li, i = 1, . . . , 7 
are identified on the 3D shape 3DS. The user is asked to 
select the same points on the images [33]. The backpro-
jected lines from the user-selected points to the correspond-
ing source identify seven landmarks in the 3D space. Using 
corresponding point registration [4], we find the homoge-
neous transformation matrix T that maps the shape in the 
calibrated image space. The accuracy in finding the exact 
points on the images and the resulting initialization matrix 
T is not crucial, as the whole algorithm has been proven to 
be robust against initialization: we checked the robustness 
of the method initializing the algorithm with different poses, 
starting from the correct pose and gradually adding up to 5 
cm and 5◦ of uniform random noise to the correct matrix.

2.2.2  Expectation conditional maximization

The expectation step (E-step) involves the computation of 
the posterior probability pmn that every point of the pro-
jected shape on the image plane (xm,m = 1, . . . ,M) is 
associated with a point of the contour (yn, n = 1, . . . ,N):

where Z is the association operator between a projected 
point xm of the shape’s silhouette Xm with a point of the 
contour yn extracted from the image (B). The set of 

(1)pmn = P(Z : yn → xm|yn; θ , σ)

unknown variables is composed by the registration parame-
ters θ [6× 1] = {q1, q2, q3, t1, t2, t3} where qi, i = 1, 2, 3 are 
the Euler angles and ti, i = 1, 2, 3 are the translation values, 
and the set of 3D points variances σ 2

1 , . . . , σ
2
M:

As the direct maximization of the likelihood is intractable, 
the minimization of the negative log-likelihood (E(ψ)) will 
instead be taken as the objective [17]:

The minimization function can thus be transformed in:

where ||L(φ)||2 is a regularization parameter over the 
transformation, and ρ weights its contribution to the 
minimization.

The ECM algorithm allows a simplification of the prob-
lem dividing the minimization in two steps (CM-step):

•	 minimization of Eq. (3) over the registration parameters
•	 update of the variances using the newly estimated regis-

tration parameters

In the case of a rigid transformation, the parameter 
||L(φ)||2 is equal to 0, and the solution of the problem is 
given by a least-squares fitting of two 3D point sets, as 
described in [4].

If the shape to be registered is a 3DSSSM, the param-
eters to be estimated are the shape coefficient vectors 
βk, and the regularization term assumes the form of the 
Mahalanobis distance, with �2k eigenvalues of the SSM:

All the shape coefficients are determined with a closed-
form solution as described in [37].

The algorithm converges to a minimum if the percent-
age difference between the likelihood of two consecutive 
frames is below a predefined threshold. Specifically:

where X  and Y are, respectively, the GMM and the obser-
vations. The likelihood of the current step is defined as:

(2)ψ = (θ , σ 2
1 , . . . , σ

2
M)

(3)E(ψ) = −
N
∑

n=1

log

M
∑

m=1

P(Xm)P(yn|Xm(θ; σ 2
m))

(4)
E(ψ) =

1

2

N
∑

n=1

M
∑

m=1

pnm

σm

[(

||yn − Xm(θ)||2
)

+ 3σ 2
m log(σ 2

m)

]

+
ρ

2
||L(φ)||2

(5)||L(φ)||2 =
K ′
∑

k=1

β2
k

�
2
k

(6)
L(t)(X |Y)− L(t−1)(X |Y)

L(t−1)(X |Y)
< ǫ
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In (7), αm is the component prior of the specific model [15].

2.3  Validation protocol

For this study, we used a single SSM dataset with 69 
shapes. All the patients were imaged using MRI scans and 
manually segmented in order to find the 3D shape. The 
datasets included both male and female bones, with either 

(7)L(X |Y) =
N
∏

n=1

M
∑

m=1

αm ·

(

σ−2
m e

−||yn−xm ||2

2σ2m

) right or left mirrored knee shapes. Those shapes were used 
to define the SSM as described in A [33].

The subject dataset is the following (Table 1):

•	 one healthy subject S0 who underwent a CT scan (Sen-
sation Cardiac 64, Siemens). The CT dataset is com-
posed of 59 slices of 512× 512 pixels each (0.7890625 
mm/pixel). The slice thickness is 2 mm, and the space 
between slices is 1.7 mm. The CT dataset was used to 
generate the DRR for evaluation purposes.

•	 Seven osteoarthritic patients (Si, i = 1, . . . , 7) eligible 
for TKA with different grades of osteoarthritis. The 

Table 1  For each subject, the 
age, gender, and osteoarthritic 
grade are indicated

 All the femurs analyzed were right femurs. The DRR0/10/90 values indicate the angles for which we gener-
ated the DRRs. We specify the starting and ending angle, with the step used. The Fluoroscopies0/10 values 
indicate the angles of the fluoroscopic images

Subject Age Gender Osteoarthritic grade CT DRR0/10/90 Fluoroscopies0/10

S0 47 F None x 0◦ : 3◦ : 72◦

S1 67 M Severe x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S2 75 M Mild x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S3 82 F Moderate x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S4 65 F Mild x 0◦ : 15◦ : 90◦

S5 75 M Severe x 0◦ : 15◦ : 90◦

S6 71 F Moderate x 0◦ : 15◦ : 90◦

S7 82 M Mild x 0◦ : 15◦ : 90◦

Algorithm 1 GMM-based registration
1: procedure Initialization
2: Extract contours from figure yn
3: Select landmarks on images L and find initialization matrix T
4: procedure Registration
5: procedure Rigid transformation
6: loop:
7: procedure E-step
8: Project silhouette points xm ← Xm

9: Calculate posterior probability pmn = P Z(yn = xm(θ, σ2
m)) | yn

10: procedure CM-step (3DSCT/MRI)
11: Find virtual observations om
12: Backproject virtual observations Om

13: Compute registration parameters θ
14: σ ← update variance
15: goto loop.
16: if Shape = SSM then
17: procedure SSM adaptation
18: loop:
19: procedure E-step
20: procedure CM-step (3DSSSM )
21: Find virtual observations om
22: Backproject virtual observations Om

23: Compute shape deformation parameters β
24: σ ← update variance
25: goto loop.
26: for all images do
27: procedure Rigid transformation
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patients underwent a preoperative CT scan from which 
the 3DSCT of the femur was segmented [20]. The CT 
datasets were composed of DICOM images acquired 
with a SIEMENS Sensation 64 CT machine. Each slice 
is 512 × 512 pixel (0.3516 mm/pixel) with a slice thick-
ness of 0.6 mm and a spacing between slices of 0.4 mm. 
All the patients were also imaged at seven fixed flexion 
angles using two sequential fluoroscopic projections 
with an AXIOM Luminos dRF flatbed (Siemens; Ber-
lin, Germany) [2]. The first image was taken with the 
projector placed horizontally (lateral image), while the 
second was taken with the source at 10◦ below hori-
zontal. Both projections were calibrated using custom-
made calibration software [29]. The fixed flexion angles 
(0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) were obtained using 
steps of different customized heights on which the sub-
ject could step up. Three subjects (S1, S2, S3) with differ-
ent grades of osteoarthritis were selected to generate the 
DRRs of diseased knees.

All the patients signed an informed consent, and the 
institutional review board approved the study.

In order to assess the model reconstruction perfor-
mances, all the CT datasets were segmented using Amira® 
(VSG—FEI, France), and the anatomical reference frame 
was defined as in [28].

The DRR is built integrating the density of each voxel 
of the CT along the direction of each ray as in [27]. Three 
different sources and image planes were simulated for each 
patient, resulting in three sets for each patient: the first 
image shows a lateral view of the femur (L0), the second 
and third images show a view rotated on the sagittal plane 
of 10 (L10) and 90 ° (L90) (see Fig. 2) [35]. For subject S0, 
we rotated the femur from 0° to 72° with a step of 3◦ gener-
ating the ground truth pose (Ti

GT0
, i = 0◦, 3◦, . . . , 72◦). The 

three pathological DRRs were instead created rotating the 

femur from 0◦ to 80◦ with a step of 8◦ generating the ground 
truth pose (Ti

GT1,2,3
, i = 0◦, 8◦, . . . , 80◦) [34].

2.3.1  Tests

The initialization is done as described in paragraph 2.2.1. 
The tracking consists in finding the correct pose of the 3DS 
for all the images provided for a given flexion sequence. 
The tests were performed with six different conditions 
C1,...,7: 

C1 :  3DS pose initialization with D0(0
◦) and D90(0

◦) 
and tracking with D0 and D90 for all angles with 
S0, . . . , S3

C2 :  3DS pose initialization with D0(0
◦) and D90(0

◦) and 
tracking with D0 for all angles with S0, . . . , S3

C3 :  3DS pose initialization with D0(0
◦) and D10(0

◦) 
and tracking with D0 and D10 for all angles with 
S0, . . . , S3

C4 :  3DS pose initialization with D0(0
◦) and D10(0

◦) and 
tracking with D0 for all angles with S0, . . . , S3

C5 :  3DS pose initialization with F0(0
◦) and F10(0

◦) 
and tracking with F0 and F10 for all angles with 
S1, . . . , S7

C6 :  3DS pose initialization with F0(0
◦) and F10(0

◦) and 
tracking with F0 for all angles with S1, . . . , S7

For each trial, both the SSM (3DSSSM) and the CT seg-
mented shape (3DSCT) were used. In this way, both the pose 
and the shape estimation can be evaluated with respect to the 
ground truth. The trials C1–C4, performed using artificially 
constructed DRR, highlight the pose errors between the reg-
istered model and the source CT, from which the images 
were created. When the (3DSSSM) is used, the shape recon-
struction is compared to the known patient-specific shape, in 
order to check the similarity between the two poses.

(a) DRR creation (b) Fluoroscopy acquisition

Fig. 2  Description of the virtual environment setup for the DRR 
creation and fluoroscopic acquisitions. The source S0 was established 
on the medio-lateral axis, as well as the center of D0 and F0. For the 
DRR, D10 is obtained rotating the source-plane axis of 10° on the 

horizontal plane. D90 is obtained rotating the source-plane axis of 
90°, having it correspondent to the anteroposterior axis. For the fluor-
oscopies, F10 is obtained rotating the source-plane axis of 10° on the 
medio-lateral axis a DRR creation. b Fluoroscopy acquisition
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2.3.2  Results evaluation

The homogeneous matrix Ti
θ was constructed from 

the optimal parameters θ returned by the ECM algo-
rithm. In case of conditions C1, . . . ,C4, we computed 
Ti
residual = Ti

GT

−1 · Ti
θ . The errors were presented as rota-

tions (in terms of Euler angles) and translations of Ti
residual.

For the conditions C3, . . . ,C6, edge-to-surface (E2S) 
distance was computed [7]. E2S is defined as the Euclid-
ean distance between a point on the 3D shape and the clos-
est point on the associated contour pixel backprojection. 
In this way, E2S does not require the ground truth pose to 
evaluate the accuracy of the algorithm. Kruskal–Wallis test 
with p < 0.05 was used to asses if the results for C3, . . . ,C6 
using 3DSCT and 3DSSSM were statistically different.

3  Results

Concerning the initialization validation, the method proved 
to be robust under different conditions, with a maximum 
allowed error of 2 cm. The results showed that with an error 
higher than 2 cm and 2◦, the system is not assured to con-
verge, while with a lower error the system converges with 
final errors lower than 1 mm. The initialization can thus be 
considered independent from the operators’ skills.

Figure 3 represents the results of an optimization of a 
3DSCT in C1 condition. As shown in the figure, the points 
of the projected silhouette tend to overlay the points of the 
contour, in order to minimize the distance between the two 
datasets.

In order to better understand the results, the errors have 
been expressed in the anatomical axes of the subject.

Figure 4 shows the values of rotation and translation 
of Tresidual in the case of the healthy subject S0. As can be 
seen, in case of single-plane tracking or dual-plane track-
ing with D0 and D10, the error in the medio-lateral axis is 
increasing up to 3 cm with the flexion angle. The transla-
tion errors on the other axis, as well as the rotation errors 
on every axis, are bounded between some mm and 1 cm in 
the case of 3DSSSM. The results are more accurate using the 
3DSCT. In this case, the errors are below 1 cm also in the 
out-of-plane axis (medio-lateral).

Figure 5 shows the errors in terms of rotation and trans-
lation for conditions C1, . . . ,C4 and using 3DSCT and 
3DSSSM. In these figures, it can be seen that the error is 
generally lower in the case of 3DSCT, apart from the medio-
lateral axis of S2 when the error raises up to 6 cm. In S3, 
an angle-dependent trend is clearly visible, similar to those 
shown in Fig. 4.

The edge-to-surface index is represented in Fig. 6 for the 
only tests with L0 and L10 images and for subject S1, S2, S3 . 
Results are presented as a population of E2S root mean 

square (RMS) for each pose of the trials. Results were 
grouped for the type of images analyzed (DRR or fluor-
oscopies). The parentheses above the boxplot indicate that 
Kruskal–Wallis test returned differences in the distribution 
median.

In Fig. 7 are shown the E2S results for the fluoroscopic 
acquired images. Patients S1, . . . , S7 proved to be statisti-
cally different only in a few cases, with S2 that has the high-
est differences. The lack of difference between different 
methods using the same subject indicates that no statistical 
difference is evidenced among the different options for the 
algorithm (CT or SSM shape and single or double image). 
The difference shown with S2 can be ascribed to a very dis-
tal cut of the diaphysis, which compromises the ability of 
the system to recover the correct pose of the shape.

4  Discussion

This paper describes an innovative method to obtain the 
pose of the femur from single or biplane fluoroscopies to 
be used in knee tracking for accurate planning of orthope-
dic surgery, starting from a patient-specific model (obtained 
from volumetric dataset) or from a generic SSM. In the lat-
ter case, the radiation dose for the patient can be reduced. 
Knowing knee kinematics allows understanding pain zones 
associated with tensions of the ligaments and contact of the 
bones on each other, improving the outcome of the surgery.

Our registration method is based on GMMs and solves 
the maximum likelihood (ML) problem using an ECM 
approach, which allows significantly reducing the compu-
tational costs. Only a few seconds per image are enough to 

Fig. 3  Representation of the contour points and the silhouette points 
projected after the optimization of the algorithm
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ensure the convergence of the system to the correct result, 
while for the previous methods [6, 34], several hours were 
needed to reach convergence. Compared to previous works 
that used GMMs to register two different shapes on each 
other [13, 21, 37], our approach implements a 2D/3D reg-
istration, addressing the problem of a registration between 
two datasets with different dimensions. The method works 

in a semiautomatic way: it requires a rough initialization 
from the user and a threshold parameter to extract the con-
tours with a Canny edge detector, saving time and aug-
menting the accuracy.

The results presented in our analysis show that the dif-
ference between the SSM and the CT-extracted shape is 
significant only in a few cases, especially with diseased 
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shapes. This can be due to limited morphing capability 
of the statistical model given by the low number (69) of 
healthy knees used as datasets [33]. The small number of 
subjects used to build the SSM causes the low ability of the 
model to resemble the subject-specific shape even in the 
case of the healthy subject which shows bigger deforma-
tions and pose errors than expected.

Overall, the implemented registration method proved to 
have results comparable to the literature. In [7], the authors 
found a translation error of a few mm (0.48–0.81 for the 
median accuracy, and approximately 2 mm for the preci-
sion) that are comparable with the results we found in our 
experiments in the case of DRR tracking with S0 and C1 . 
The results presented in [24] show a similar trend, with a 
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few mm of error (up to 4.3 mm) and some degrees of inac-
curacy (up to 4°).

The fluoroscopic image projection angle influences the 
tracking accuracy of the depth dimension. The ML axis has 
bigger errors compared to the others axis, because reduc-
ing the angle between the two projections from 90◦ to 10◦ 
decreases the pose determination accuracy [19]. The same 

behavior regarding out-of-plane errors can be observed 
when the tracking is performed with single-plane fluoros-
copy. The error in depth increases from frame to frame, as 
there are no constraints on this axis. In the case of diseased 
patients, the error in depth can reach up to 6 cm (Fig. 5). 
In fact, the indetermination given by the single projection 
must be added to the nonperfect correspondence between 

Fig. 6  Comparison of the 
edge-to-surface index for 
subjects S1, S2, S3 with DRR 
or fluoroscopic images. The 
brackets above the box indicate 
statistical differences between 
the medians, according to 
Kruskal–Wallis test
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the extracted contours and the statistical shape. The same 
considerations could be asserted relative to the rotation 
errors. Apart from subject S2, which has a very distal cut of 
the diaphysis (due to a tight joint intraoperatively) that com-
promises the reconstruction of the correct pose, the results 
are in line with those presented in [1, 31], who found errors 
below 1 cm with a higher distance in the out-of-plane axis.

The evaluation of the accuracy with fluoroscopic 
images was performed using the E2S index to allow an 
evaluation of the accuracy without knowing the correct 
pose of the ground truth. The results show a statistical dif-
ference in the case of tracking with the 3DSCT (Fig. 6). 
This is probably due to a different Canny threshold, which 
influenced the correct positioning of the shape. The same 
error is not visible in the case of 3DSSSM thanks to the 
lower deformation of the shape. These results are com-
parable with the one stated by [7] who found an error of 
approximately 2 mm. However, their dataset had a proxi-
mal cut of the diaphysis, augmenting the accuracy of the 
algorithm. Dealing with pathological subjects is more 
challenging, especially with a reduced set of shapes that 
created the SSM. Results are in the order of some mm 
(depending on the condition) and could be still accept-
able to evaluate the kinematics of the knee. The method 
proved to be robust and efficient, especially when used 
with patient-specific shapes. Regarding the single-plane 
registration, Figs. 6 and 7 show that there is no statisti-
cal difference due to the difference in the number of 
image planes adopted. A single-plane registration allows 
the reduction in radiation dose given to the patient and 
enlarges the possible movements inside the field of view 
of the fluoroscope. Future work will increase the num-
ber of shapes to construct the SSM and include also the 
tibia in the study, in order to have the joint angle value 
for a proper kinematic analysis. For single-image track-
ing, higher constraints on the depth axis must be imple-
mented (e.g., a constrained motion of max 1 mm between 
frames).
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Appendix A: statistical shape model

A SSM is a set of shapes on which the location of the land-
marks is correspondent. From this set of shapes, we can 
extract the mean model M̄ and the covariance matrix, from 

which we can compute the eigenvectors (modes of varia-
tion) and the eigenvalues.

where K is the number of shapes, �2k are the descending-
order eigenvalues of the covariance matrix D, and 

−→
Mk are 

the corresponding eigenvectors. To deform a SSM, we can 
multiply specific weights to the modes and add them to the 
mean model.

Appendix B: expectation conditional maximization 
algorithm for GMMs

A femur model is represented by a set of 3D points 
Xs, s = 1, . . . , S. A set of fluoroscopic images 
Ij, j = 1, . . . , J are simultaneously acquired with different 
sources jS and image planes. On each fluoroscopic image 
Ij, the contour of the femur jyn is semiautomatically seg-
mented. The femur silhouette is defined by points Xm,  
and their projection leads to jxm where j indicates the 
image on which the points are projected. We also define 
a set of virtual observations jom that have a correspond-
ent point in the 3D space Om. The registration problem 
is the estimation of the homogeneous matrix (expressed 
by the transformation parameters θ) which minimizes the 
distance between the virtual observation Om and the sil-
houette point Xm.

The variables used in this description are:

•	 jY is the contour extracted from each image, whose pix-
els are jyn, n = 1, . . . ,N (also called observations)

•	 Xs, s = 1, . . . , S are the points of the 3D shape
•	 jX  is the set of points of the silhouette 

jXm,m = 1, . . . ,M < S

•	 jxm,m = 1, . . . ,M are the pixel of the shape’s silhouette 
projected on image j

•	 jom,m = 1, . . . ,M are the virtual observations on the 
image j

•	 Om,m = 1, . . . ,M are the virtual points backprojected 
in the 3D space (Fig. 8).

Gaussian model and likelihood

Each Xs point of the model is defined as the centroid of a 
3D Gaussian distribution with mean Xs and covariance 

(8)

D =
1

K − 1

K
∑

k=1

(Mk − M̄)(Mk − M̄)T

D · −→Mk = �
2
k ·

−→
Mk

σ 2
1 ≥ �

2
2 ≥ · · · ≥ �

2
K−1

(9)MSSM = M̄+
K ′
∑

k=1

βk
−→
Mk
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matrix �s, identifying in this way a Gaussian mixture 
model (GMM). Considering isotropic covariances, each 
�s, s = 1, . . . , S is defined as

where I3 is the 3× 3 identity matrix, and σs is the scalar 
value of the covariance that varies for each Xs point. The 
operator µ : R3 → R

3 transforms a point Xs in another 
point µ(Xs, θ) where θ is the parametrization of the 
transformation.

The likelihood (L) that expresses the probability that 
the contour is coincident with the silhouette projection is 
a function of both the registration parameters θ and the 
covariances.

where P() is the probability that the set of observations Y 
is extracted from the GMM with parameters (θ , σ) and the 
likelihood indicates the probability that the set of observa-
tions Y is coincident with the projection of the shape’s sil-
houette X .

This maximization cannot be performed due to the pres-
ence of missing data, as the assignment of each observation 
to one of the Gaussian of the GMM is unknown. The oper-
ator {Z : yn → xm}, n = 1, . . . ,N assigns an observation yn 
either to a silhouette model point xm or to an outlier class. 
If (Z : yn → xm), then the observation yn is associated with 
the point xm, otherwise, if (Z : yn → xM+1), then the obser-
vation yn is an outlier.

(10)�s = σsI3

(11)L(θ , σ1, . . . , σS|Y) = logP(Y; θ , σ1, . . . , σS)

The likelihood is replaced by the expected complete-
data log-likelihood E conditioned by the observed data, as 
suggested by Dempster [17].

To evaluate Eq. (12), the probabilities of the observations 
must be expressed as a set of probability density functions 
(PDFs). pm = P(Z : yn → xm) is the prior probability that 
the observation yn belongs to the cluster m with center 
µ(xm; θ) while pM+1 = P(Z : yn → xM+1) expresses the 
prior probability of yn to be an outlier.

In Eq. (13), the variable a indicates a small circular area 
(

a = πr2
)

 around the center of the projected GMM 
µ(xm, θ), whereas A indicates the whole volume of 
work, so that a ≪ A. The likelihood of an observation yn 
given its assignment to cluster m is drawn from a normal 
distribution:

and the same likelihood of the observation given its assign-
ment to the outlier class is a uniform distribution over the 
area A

The marginal distribution of an observation is:

Equation (11) then becomes

and Eq. (12) becomes

Expectation Maximization

The expectation conditional maximization method is an 
iterative way to solve the maximum likelihood problem of 

(12)E(θ , σ1, . . . , σS |Y , Z) = EZ [logP(Y , Z; θ , σ1, . . . , σS)|Y]

(13)pm =

{

P(Z : yn → xm) = a
A

if 1 ≤ m ≤ M

P(Z : yn → xM+1) = A−Ma
A

if m = M + 1

(14)

P(yn|Z : yn → xm) = N (yn|µ(xm; θ), σm) =
1

σm
√
2π

e
− ||yn−xm ||2

2σ2m

(15)P(yn|Z : yn → xM+1) = U(yn|A, 0) =
1

A

(16)P(yn) =
M+1
∑

m=1

pmP(yn|Z : yn → xm)

(17)

logP(Y) =
M
∑

m=1

log

(

N
∑

n=1

pnN (ym|µ(xn; θ), σn)+
pn+1

A

)

,

(18)

E(θ , σ1, . . . , σS|Y ,Z)

=
∑

Z

P(Z|Y , θ , σ1, . . . , σS) logP(Y ,Z; θ , σ1, . . . , σS)

Fig. 8  In the figure are represented the shape with the points Xs, the 
extracted silhouette on the shape Xm and their projection xm on the 
image plane. It also represented the source of the x-ray beam (S) and 
the points extracted from the contour of the image yn, from which we 
can calculate the virtual observation om and its backprojection Om. 
The white arrow between the backprojected virtual observation Om 
and its associated silhouette point Xm is the minimized distance at 
each iteration
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Eq. (12). Starting from an initial estimate of the parameters, 
the method computes the posterior probabilities given the 
current parameters and covariances and then maximizes the 
expectation in (12) with respect to the registration param-
eters (given the current covariances) and the covariances 
(given the newly estimated parameters).

Expectation step

The expectation step is defined as the computation of the 
posterior probabilities given the current estimate of the reg-
istration parameters and the covariance matrix. In this case, 
the posterior probability is computed between the contour 
points ( jyn) and the projection of the silhouette on the 2D 
images ( jxm). Recovering the Eqs. (13), (14), (15), and (16) 
and using the Bayes’ rule, the expression for the posterior 
probability becomes:

with c that is the outlier component:

Conditional maximization step

The conditional maximization step aims at maximizing 
the likelihood described in Eqs. (11) and (12). It uses the 
definition of virtual observation, that is, a normalized sum 
over all the observations weighted by their posterior prob-
ability [21]. The virtual observation O and its weight � are 
obtained for each model point xn using the posterior prob-
abilities pqmn and the observations ym:

Equation (12) can be rewritten replacing the conditional 
probabilities with the normal and uniform distribution as 
expressed in Eq. (22) (for the complete steps, the reader 
can refer to [21])

(19)

pqmn = P(Z : yn → xm|yn; θq, σ q)

=
P(yn|Z : yn → xm)P(Z : yn → xm)

P(yn)

=
σ−2
m e

−||yn−xm ||2

2σ2m

∑M
i=1 σ

−2
i e

−||yn−xi ||2

2σ2
i + c

(20)c = 2r−2

(21)

νn =
M
∑

m=1

pmn

on =
1

νn

M
∑

m=1

pmnym

(22)E = −
1

2

M
∑

m=1

N
∑

n=1

pmn

σ 2
n

(||ym − µ(Xn, θ)||2 + log(σ 2
n ))

The minimization of Eq. (22) over θ keeping constant the 
covariances σ leads to:

where ||L(µ)||2 is a regularization term over the param-
eters. Equation (23) can be simplified using the definitions 
of Eq. (21):

where On is the 3D point nearest to Xn on the ray backpro-
jected from on. A 2D/3D registration problem is now cast 
into a 3D/3D registration that can be solved using already 
addressed solutions [4, 10, 21, 37].

The second step of the conditional maximization is the 
update of the covariances, using the registration parameters 
newly computed:

In Eq. (25), the value µ(xn, θ) is the projection of the 3D 
point Xn updated with the parameters θ.
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