Peripheral Chemosensitivity during Head Out Water Immersion

James R. Sackett, Zachary J. Schlader, Suman Sarker, Christopher L. Chapman, & Blair D. Johnson. University at Buffalo, Buffalo, NY

Carbon dioxide (CO_2) retention is a potentially dangerous issue in divers who use a self-contained underwater breathing apparatus. The peripheral chemoreceptors contribute to ventilatory control and the rise in ventilation (V_E) during hypercapnia. However, it is unknown if head out water immersion (HOWI) blunts peripheral chemosensitivity (PCS). PURPOSE: We tested the hypothesis that PCS is blunted during two hours of HOWI. METHODS: We assessed PCS to hypoxia (PCS₀₂) and hypercapnia (PCS_{C02}) in 3 participants (age: 25 ± 4 y, BMI: 28 ± 3 kg/m²) before, during, and after thermoneutral $(35 \pm 0^{\circ} \text{ C})$ HOWI. V_E, arterial oxygen saturation (%SaO₂), and the partial pressure of end tidal CO₂ (PETCO₂) were recorded continuously. We determined PCS₀₂ by having participants inhale 2-6 breaths of 100% N₂, followed by 3 min of room air breathing, 4 separate times. We determined PCS_{CO2} by having participants inhale 1 breath of 13% CO₂, 21% O₂, and 66% N₂, followed by 3 min of room air breathing, 4 separate times. The mean of the 3 highest consecutive V_E values, the lowest %SaO₂, and the peak PETCO₂ were determined within 2 min following each hypoxic or hypercapnic administration. The PCS₀₂ and PCS_{C02} data are reported as the slope of the linear regression line of V_E vs. %SaO₂ or PETCO₂, respectively. Measurements were taken at baseline, at 10, 60, and 120 min of HOWI, and post HOWI. **RESULTS:** V_E was not different during the trial (baseline: 12.9 ± 1.1 L/min; at 10 min: 12.6 ± 2.0 L/min, 60 min: 12.2 ± 2.0 L/min, and 120 min: 11.9 ± 1.5 L/min; post: 11.9 ± 0.8 L/min; p = 0.39). PETCO₂ was statistically indistinguishable during the trial (baseline: 45.9 ± 0.8 mmHg; at 10 min: 47.8 ± 0.9 mmHg, 60 min: 48.3 ± 0.9 mmHg, and 120 min: 48.0 ± 1.3 mmHg; post: 43.2 ± 2.4 mmHg; p = 0.10). PCS₀₂ was lower at 10 min of HOWI (0.25 ± 0.10 L/min/%SaO₂, p = 0.09) and post HOWI (0.32 \pm 0.16 L/min/%SaO₂, p = 0.04) vs. baseline (0.41 \pm 0.17 L/min/%SaO₂). The PCS_{CO2} tended to be lower (p = 0.09) at 10 min of HOWI (0.07 \pm 0.03 L/min/mmHg) vs. 120 min of HOWI (0.08 ± 0.03 L/min/mmHg). CONCLUSION: These preliminary data indicate that PCS₀₂ and PCS_{C02} are altered during HOWI while breathing room air. The transient decrease in PCS might contribute to CO₂ retention in divers using a selfcontained underwater breathing apparatus.