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A library of graphene-based hybrid materials was synthesized as novel hybrid 

electrochemical electrodes for electrochemical energy conversion and storage devices 

and electrocatalytical sensing namely enzymeless glucose sensing. The materials used 

were supercapacitive graphene-family nanomaterials (multilayer graphene-MLG; 

graphene oxide-GO, chemically reduced GO-rGO and electrochemical reduced GO-

ErGO) and pseudocapacitive nanostructured transition metal oxides including cobalt 

oxide polymorphs (CoO and Co3O4) and cobalt nanoparticles (CoNP). These were 

combined through physisorption, electrodeposition, and hydrothermal syntheses 

approaches. This project was carried out to enhance electrochemical performance and to 

develop electrocatalytic platforms by tailoring structural properties and desired 

interfaces. Particularly, electrodeposition and hydrothermal synthesis facilitate 

chemically-bridged (covalently- and electrostatically- anchored) interfaces and 

molecular anchoring of the constituents with tunable properties, allowing faster ion 

transport and increased accessible surface area for ion adsorption. The surface 

morphology, structure, crystallinity, and lattice vibrations of the hybrid materials were 

assessed using electron microscopy (scanning and transmission) combined with energy 
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dispersive spectroscopy and selected-area electron diffraction, X-ray diffraction, and 

micro-Raman Spectroscopy. The electrochemical properties of these electrodes were 

evaluated in terms of supercapacitor cathodes and enzymeless glucose sensing platforms 

in various operating modes. They include cyclic voltammetry (CV), ac electrochemical 

impedance spectroscopy, charging-discharging, and scanning electrochemical 

microscopy (SECM). 

These hybrid samples showed heterogeneous transport behavior determining 

diffusion coefficient (4⨯10-8 – 6⨯10-6 m2/s) following an increasing order of CoO/MLG 

< Co3O4/MLG < Co3O4/rGOHT < CoO/ErGO < CoNP/MLG and delivering the 

maximum specific capacitance 450 F/g for CoO/ErGO and Co3O4/ rGOHT. In agreement 

with CV properties, these electrodes showed the highest values of low-frequency 

capacitance and lowest charge-discharge response (0.38 s – 4 s), which were determined 

from impedance spectroscopy. Additionally, through circuit simulation of experimental 

impedance data, RC circuit elements were derived. SECM served to investigate 

electrode/electrolyte interfaces occurring at the solid/liquid interface operating in 

feedback probe approach and imaging modes while monitoring and mapping the redox 

probe (re)activity behavior. As expected, the hybrids showed an improved 

electroactivity as compared to the cobalt oxides by themselves, highlighting the 

importance of the graphene support. These improvements are facilitated through 

molecular/chemical bridges obtained by electrodeposition as compared with the physical 

deposition. 
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This chapter provides the organization of the thesis, relevant background, 

motivation, material description and characterization techniques to lay the foundation 

for the studies of graphene-based (Gr) hybrids with cobalt oxides (CoxOy). The necessity 

for alternate sources of energy is addressed first to introduce carbon, its allotropes, and 

hybrids as potential candidate material systems for electrochemical energy conversion 

and storage. Furthermore, the chapter describes the principles of electrochemical energy 

storage and conversion relevant to this thesis research and the characterization 

techniques employed to gain insights concerning the behavior of CoxOy/Gr hybrids. 

1.1 Organization of Thesis 

Chapter 1 provides the necessary background and motivation behind this entire 

research project and lays down the foundation for the experiments performed in the 

following chapters. Chapter 2 describes various synthetic (physisorption, 

electrodeposition, and hydrothermal) approaches, structural and physical property 

characterization of hybrid electrodes prepared from novel nanomaterials on commercial 

substrates. The electrochemical properties and scanning electrochemical microscopy-

SECM of these hybrids as novel electrochemical electrodes for energy storage and 

conversion are thoroughly discussed in Chapter 3. These studies were performed to 

determine their charge storage capacity (specific capacitance), retention rate (charging-

discharging), double-layer capacitance (ac impedance), interfacial parameters (charge 

transfer resistance), physicochemical processes at electrode/electrolyte interfaces and 

imaging (SECM). Chapter 3 also includes an exploration for these hybrids as 

economically viable advanced electrocatalytic platforms for oxygen reduction reaction 

Chapter 1: Introduction
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and for enzymeless glucose sensing. Finally, Chapter 4 states the summary and the 

future prospects of this work. An additional appendix (Appendix A) introduces in-situ 

Raman spectro-electrochemistry investigations to study charge transfer dynamics where 

micro-Raman spectroscopy was integrated with electrochemistry as ‘device under test’ 

approach with corresponding preliminary results. Finally, the conclusions are 

summarized with subsequent implications of our findings as future prospects 

1.2 Motivation and Background 

 The energy sector has major segments including of nuclear sources, fossil fuels 

(petroleum, coal, and natural gas), and renewable sources (wind, solar, and geothermal 

energy).1 Even though wind and solar energy have shown the potential to generate clean 

and renewable energy, their intermittent nature poses a problem for consumption on 

demand. Because the current global need for energy sources is pressing, intense research 

activity on energy storage and conversion devices has become essential to meet this 

demand.2 Within these, electrochemical systems represent some of the most efficient 

and environmentally benign technologies.3 Therefore, the work presented here seeks to 

investigate potential energy-storage materials for alternative clean energy sources. The 

objective of this work is to design and synthesize a range of graphene-based ‘hybrid’ 

nanomaterials with tailored interfaces/interphases as high-performance electrochemical 

electrodes and investigate their structural, physical, and electrochemical properties. 

These materials, based on graphene and its derivatives in junction with transition metal 

oxides, are environmentally friendly and display supercapacitive performance including 

gravimetric and area capacitance, charging/discharging cyclability, and retention over 

hundreds to thousands of cycles. Furthermore, the experimental approaches employed in 
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this work are scalable such that they have the potential for usage in real-world 

applications. Therefore, this work sets a platform of evaluation of carbon-supported 

hybrids with cobalt oxides for the application of energy conversion and storage. 

1.3 Nanomaterials for Electrochemical Energy Conversion and Storage 

 Nanomaterials are materials on the order of 1 to 100 nm that have shown several 

advantages over bulk materials.4 The structural modifications that equip nanomaterials 

to outperform bulk materials in energy conversion and storage include higher specific 

surface area, enlarged band gap, enhanced mechanical strength, and improved charge 

transport dynamics.5,6 These properties are highly desirable for electrodes that have the 

capability to store and deliver energy efficiently.7 Some of the nanomaterials that have 

been successful in energy devices include metal nanoparticles and carbon-based 

materials.  

1.3.1 Carbon-Based Materials and Graphene 

 Carbon exists in a variety of allotropes including diamond (sp3 bonded carbon), 

graphite (sp2 bonded carbon), amorphous carbon, fullerenes, carbon nanotubes, and 

graphene. These forms of carbon can exist in one-, two- and three-dimensions, which 

allows them to have a wide-range of physical and chemical properties and to be suitable 

for diverse applications. Even though the most basic arrangements of carbon are 

diamond and graphite, their structure and, thus, their properties differ completely. While 

diamond is classified as the hardest material on earth and is an insulator, graphite is 

known as a soft material and is also classified as a semi-metal. In addition to graphite 

and diamond (Figs. 1a and 1b, respectively),2 other observed forms of carbon include 

amorphous carbon (a-C) (Fig. 1c),8 hydrogenated amorphous DLC (a-C:H), tetrahedral 
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amorphous carbon (ta-C), and hydrogenated tetrahedral amorphous carbon (ta-C:H).8 

Carbon atoms can also arrange into cage-like structures of higher complexity,9 classified 

under the category of fullerenes. This configuration includes the C60 

buckminsterfullerene, or “buckyballs,” C70, C84 and several other intricate structures,10 

which have been investigated as superconductors, medical treatment and diagnostics, 

and military armor (Fig. 1d).11 A type of fullerene structure is known as carbon 

nanotube, which comprise closed-ended graphene cylinders. A single graphene sheet 

coiled in a single tube or single wall nanotubes (SWCNT) forms the simplest nanotube 

structure. Multi-walled nanotubes (MWCNT) can also be obtained upon layering of 

concentric sheets onto the SWCNT. SWCNTs and MWCNTs are depicted graphically in 

Fig. 1e. Because their radial dimension is on the order of nanometers, nanotubes are 

classified as one-dimensional with a longitudinal length in the order of microns.  Due to 

their structural arrangement, nanotubes exhibit metallic and semiconducting properties, 

making them suitable for potential applications like field-effect transistors (FETs), 

display panels, energy cells, and sensor technologies. Since its discovery in 2004,12  

graphene has been widely researched because of its unique and comprehensive range of  

Figure 1. Depiction of the chemical structure of: (a) diamond, (b) graphite, (c) 

amorphous carbon, (d) fullerene (C
60

), and (e) SWCNT and MWCNT, (f) graphene; Gr, 

(g) graphene oxide; GO, and (h) reduced GO; rGO. 
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physical and chemical properties13 allowing graphene to be suitable in a variety of 

applications. Some of the functionalities observed in graphene that qualifies it as an 

outstanding candidate for energy storage devices (supercapacitors) and electrochemical 

sensors are slight overlapping of its conduction and valence bands,14 high mobility of 

charge carriers (~20,000 cm2 V-1 s-1),15 a high theoretical specific surface area (2630 m2 

g-1),16 and remarkable mechanical strength (Young’s modulus ~1 TPa).17 

Graphene is a 2-dimentional, atom-thick carbon layer obtained from graphite that 

has a honeycomb-crystal lattice due to the sp2
 hybridized bonding between the carbon 

atoms (Fig. 1f) and can exist as a single layer (monolayer graphene),16 bilayer graphene 

(BLG), trilayer graphene (TLG), few-layer graphene (FLG),18 and multilayered 

graphene (MLG).19 The application of graphene can be extended by modifying its 

electrical properties through the alteration of its structure. Such modifications can be 

accomplished by doping and/or introducing surface and edge functional groups, forming 

graphene derivatives with tailored physical and chemical properties.20 Among the many 

graphene derivatives, graphene oxide (GO),21 chemically reduced GO (rGO),22 and 

electrochemically reduced GO (ErGO)23 suitable for opto-electronics,24 bio-sensors,25 

fuel cells,26 solar cells,27 and energy storage devices.28   

Due to the rupture of the conjugated system (sp3 hybridization) upon oxidation, 

which functionalizes carboxyl-COOH, hydroxyl-OH, and epoxide-COC groups along 

both edge and surface sites, the structure of GO becomes insulating. The facile 

(chemical, electrochemical, or hydrothermal)29 reduction of GO partially restores the 

conjugated system (sp2 hybridization), providing the structure with the ability to conduct 
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charge again (Figs. 1g and 1h). However, no method can fully reduce GO to pristine 

graphene, leaving some of the functional edge groups that can affect reactivity and 

electrical properties.30 For instance, the oxygen on the C=O double-bond from a 

carbonyl group inductively withdraws electrons from the carbon, making carbon an 

electrophile; while the oxygen on the C-O bond from a hydroxyl group inductively 

donates electrons, generating a nucleophilic site. In addition, the appearance of carboxyl 

and carbonyl groups in GO allows hydrogen bonding, increasing its affinity for water, 

while the reduction of GO reduces the sites for hydrogen bonging, decreasing its affinity 

for water. Furthermore, the electrochemical properties of GO and rGO can be altered by 

controlling the extent of oxidation and reduction of the graphene structure,31 enabling 

interactions and structure-dependent electrochemical and electrocatalytic activity.32 

Another functional modification of the structure of graphene is layering graphene onto 

3-dimensional networks to increase the electrode’s surface area and facilitate charge 

transfer and ion diffusion as is the case for multilayered graphene on nickel foam 

(NiFoamMLG).33  

1.3.2 Other Potential Materials 

Since the highest performance electrocatalysts (e.g. Pt, Rh) are costly, 

nonrenewable, and environmentally hazardous, materials like redox-active transition 

metal oxides that are inexpensive and have relatively low toxicity have shown promise 

for energy-related applications.34,35 Among the many types of electroactive transition 

metal oxides (e.g. RuO2, TiO2, SnO2, Mn3O4/MnO2, NiO, V2O5, Fe3O4/Fe2O3, MoO2 

etc.),36,37 cobalt oxides (CoO and Co3O4) can be used as a replacement to current 

electrocatalysts owing to their accessible synthesis and processing, high specific 
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capacitance, high conductivity, electrochemical stability, and availability of oxidation 

states (Co3+, Co2+).38,39 Cobalt nanoparticles (CoNP) or cobalt nanocrystals are also 

attractive due to their electrochemical and electrocatalytic activity in addition to their 

electronic and magnetic properties.40,41 Cobalt nanoparticles exists in crystalline 

structures including cubic-closed packed (ccp) and hexagonal closed packed (hcp), 

however, the face-centered cubic (fcc) phase is also reported.42 Cobalt monoxide, CoO, 

consists of Co2+ octahedral coordination where the oxygen sublattice is a fcc with ~5% 

higher oxygen ionic bond packing for rock-salt than for the spinel structure.43 Cobaltosic 

oxide or cobaltic-cobaltus oxide (Co3O4) consists of both Co2+ and Co3+ species 

occupying tetrahedral and octahedral coordination sites, conforming to a normal cubic 

spinel structure (Fig. 2).44 These structural configurations allow for cobalt oxide 

polymorphs to be potential candidates for electrocatalytic applications.45 

1.3.3 Hybrid Nanomaterials    

The inefficiency of alternate energy sources compared to conventional, non-

renewable energy sources serves as an incentive for developing novel multifunctional 

materials for advanced electrochemical electrodes and technologies for energy 

conversion and storage.46 Since the performance of carbon-based (e.g. GO, rGO , ErGO, 

MLG) supercapacitors is limited due to self-aggregation and local topological defects, 

Figure 2. The crystal structure for both CoO (fcc) and Co
3
O

4
 (cubic spinel). 
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their integration with pseudocapacitive transition metal oxides offers alternatives for 

enhanced supercapacitive performance. This results in formation of hybrid materials 

with tailored properties (surface morphology, composition, structure, etc.) and 

interfaces.31 Various studies have provided relevant insights on the improvement in 

electrochemical performance (e.g. specific capacitance, charge-discharge cycling, and 

charge transport) of such hybrid materials systems.29,47 Although the exact interaction 

between the nanostructure transition metal oxides and carbon-based supports have yet to 

be determined, the possible interactions (noncovalent, defect related, and covalent) are 

illustrated in Fig. 3. While Fig. 3a shows direct contact of the transition metal oxide 

(CoO or Co3O4), suggesting weak or absent non-covalent interactions between the 

surfaces, Fig. 3c illustrates the possible coordination of the respective defect sites for 

metal oxides and the carbon-based support, creating a non-covalent interaction. Bonding 

CoxOy 
CoxOy 

CoxOy 
CoxOy 

CoxOy; x = 1,3; y=0, 1,4 

(a) (b) 

(c) (d) 

Figure 3. Schematic illustration of transition metal oxides−carbon-based support 

interfaces: (a) pristine interface or direct contact; (b) bonding between atoms of 

transition metal oxide and the defect sites of carbon-based support; (c) noncovalent 

interactions of functional moieties of carbon-based support with transition metal 

oxides, and (d) covalent bonding of carbon-based support and transition metal 

oxide. 
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is another likely possibility in which either multiple dangling atoms of the transition 

metal oxide may bind to the defect sites of the carbon-based support (Fig. 3c) or the 

interaction is stablished by a single covalent bond between the two materials. The work 

in the thesis aims to design and develop novel hybrids based on graphene-based and 

cobalt oxides keeping in view of optimizing their electrochemical and electrocatalytic 

properties.  

1.4 Electrochemical Principles 

 Electrochemistry, the study of electrical energy in relation to chemical reactions, 

is a powerful tool to create and investigate novel materials for energy conversion and 

storage. The key to understand an electrochemical process is the electron/ion or charge 

transport occurring at the interfacial boundary between electrode and electrolyte. 

Experimentally, the electrode-electrolyte interface resembles the behavior of a capacitor. 

However, at the interface, charge is stored in the electrical double layer (figure 4). This 

double layer comprises multiple layers: the inner Helmholtz layer, inner layer where 

specifically absorbed species -ions or molecules- reside, the outer Helmholtz layer, the 

Figure 4. Depiction of the different layers (inner Helmholtz layer- IHP, outer 

Helmholtz layer-OHP, and diffuser layer) on a EDLC. 
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following layer where solvated ions or nonspecifically absorbed ions are present, and 

diffuse layer, layer which extends to the bulk of the electrolyte solution and includes 

some of the nonspecifically absorbed ions. Such capacitive behavior can be exploited for 

energy storage (supercapacitors, pseudocapacitors) and conversion (rechargeable 

secondary batteries) and electrocatalysis. Moreover, the double layer structure can affect 

the absorption of particular ionic species in solution (sensing).  

 To assess the electrochemical properties of the electrodes, a three-electrode 

electrochemical cell and a coin cell configurations are commonly used. In general, they 

consist of a working electrode of which the electrochemical properties are measured 

with respect to a reference electrode (constant composition and fixed potential), and a 

counter electrode (aids in partially removing the voltage drop originated from the 

resistance of the solution and the current placed between working and counter electrodes 

(iRs)) in the presence of an electrolyte (low ionic resistance).48  

1.4.1 Supercapacitors and Pseudocapacitors 

Supercapacitors (SCs) are subject to much research because they are battery-

complimentary devices due to their longer life cycles and higher power density.49 

Energy storage in a SC is of two types: electrochemical double-layered capacitors 

(EDLCs) in which accumulation of charge occurs in the electrode/electrolyte interface, 

and pseudo-capacitors in which the storing of energy is based upon the redox reactions 

generated at the surface of the electroactive material.50 

 The energy (E) stored in SCs follows the same equation of direct current 

capacitors, where E is proportional to half of the product between cell capacitance (C) 

and the square of applied voltage (V): 
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       𝐸 =
1

2
∗ 𝐶 ∗ 𝑉2          (1) 

Cell capacitance for SCs with identical electrodes can be obtained as a constant from the 

ratio of the change in charge and the change in voltage, where charge can also be 

defined with respect to current and change in time:  

     𝐶𝑐𝑒𝑙𝑙 =
Δ𝑞

Δ𝑉
=

𝑖∗Δ𝑡

Δ𝑉
           (2)  

To compare various SC devices, Ccell can be expressed in units per mass (specific cell 

capacitance, Cspec) which modifies Eq. 2 by dividing the total mass of both electrodes.49  

1.4.2 Rechargeable Secondary Batteries 

 A battery is a collection of electrochemical cells arranged to offer a particular 

voltage (series) and capacity (parallel) to ultimately provide electrical energy from the 

chemical reaction occurring at the electrodes. One of the most common types is Li-ion 

battery in which lithium ion is the charge carrier between the two electrodes due to its 

high mobility and energy density. Each electrochemical cell is composed of two 

intercalating Li-ion electrodes (negative and positive) separated by an electrolyte that 

conducts Li+ and a separator where the electrodes are linked externally by a power 

source.51 These batteries are widely marketed for their portability and high energy 

density as a primary power source while SCs serve as an alternate power source. 

However, the properties of Li-ion and SC electrodes can be coupled for multifunctional 

energy storage devices.52   

1.4.3 Electrocatalysis and Sensing 

 Electrocatalysis is a process in which an electrode surface has the capability of 

improving or accelerating the kinetics of an electrochemical reaction. Oxygen reduction 
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and hydrogen evolution are two major electrochemical processes that can be catalyzed 

for renewable energy conversion in fuel cells.53 In particular, alkaline fuel cells create a 

constant current flow by reducing incoming oxygen (O2) with the reduction current 

flowing through the electrode. The resulting reduced ionic species (OH-) will travel to 

the cathode, due to the potential gradient, and consequently oxidize incoming hydrogen 

(H2), creating an oxidation current (Fig. 5).54 In addition, the electrochemical properties 

of an electrode, including conductivity, size, and high surface area can enable electron 

transfer dynamics with particular species or analytes in solution, allowing faster and 

sensitive detection in their presence or upon addition due to the change in electrode 

current and/or potential.55 For example, an electrochemically active material can sense 

the presence of glucose by oxidizing/reducing it without requiring an enzyme which 

may provide a more affordable device that can be disposable.38 

Figure 5. Scheme of an alkaline fuel cell. Adapted from Ref. 54 
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1.5 Characterization Techniques 

A variety of complementary structural and physical property analytical characterization 

tools were used including scanning electron microscopy (SEM) combined with energy 

dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), Raman 

spectroscopy (RS), X-ray diffractometry (XRD), and atomic force microscopy (AFM) to 

probe the quality of the synthesized hybrids prior to investigating their electrochemical 

properties. The electrochemical properties include cyclic voltammetry (CV) and 

impedance spectroscopy (EIS), besides scanning electrochemical microscopy (SECM) 

to gain insights into the electrodes surface kinetics and physical-chemical processes at 

the electrode/electrolyte interfaces.  

1.5.1 Electron Microscopy: Surface Morphology and Microscopic Structure 

Scanning Electron Microscopy: SEM (Model JEOL 5400LV; MA, USA) was 

used to obtain qualitative information of the surface morphology and to identify the 

topological features at a microscale.  SEM was operated at primary electron accelerating 

voltage (Vacc) of 10 kV, in a secondary electron imaging mode (SEI) at constant current 

of 45 mA. Energy dispersive X-ray spectrometry (EDS) was also performed using the 

SEM, confirmed the composition of the materials in hybrids.56  

Transmission electron microscopy and selected area electron diffraction 

(SAED): The measurement of TEM images provided nanoscale structure and 

morphology that help determining tomography and interplanar spacing for capturing 

interfaces.57 TEM images and SAED patterns were collected using a JEOL 1400Plus 

operating in cryo-EM, SAED, tomography and energy dispersive x-ray modes at 100 kV 

and 1 nA with a JEOLBe specimen holder, a IXRF Systems control software and 
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hardware, and a Gresham SiLi detector with Moxtek AP3.3 window. SAED used a 0.23-

μm aperture, with small spot size and spread beam which increases the electron 

coherence length of the samples allows the beam to transmit through the sample 

generating a diffraction pattern. Electron tomography used single axis tilt-series which 

were collected and processed using “SerialEM” IMOD and eTomo software (developed 

by the University of Colorado-Boulder, USA). An 8M pixel Advanced Microscopy 

Techniques bottom-mounted digital camera completed the tomography software. TEM 

samples were prepared by depositing particulates dispersed in ethanol on commercial 

carbon Cu grids (Ted Pella, CA, USA) and allowed to air-dry.  

1.5.2 X-Ray Diffraction and Raman Spectroscopy: Crystal and Lattice Structure 

X-ray diffraction: The XRD provided insight into the crystallinity of cobalt 

oxides and graphene derivatives while measuring the average crystal structure (bulk).58 

The XRD patterns were obtained using a Siemens Model D2000 instrument (now 

Thermo Scientific, MA, USA). The x-ray diffractograms were acquired in Bragg-

Brentano geometry ranging 2θ from 10° to 70° using Cu Kα (λ = 1.5405 Å) x-ray source 

operating at current of 40 mA and voltage of 45 kV. Samples were run at scan rate of 

0.02°/s with exposure time of 2 s.  

Raman Spectroscopy: Raman spectra were measured to determine the lattice 

vibration and structural features of the hybrid surfaces.59 To record the Raman spectra, a 

micro-Raman spectrometer (Model InVia; Renishaw, UK) equipped with an excitation 

laser of wavelength 633 nm (EL = 1.92 eV) and ~4-6 mW incident on the sample, with 

edge filters cutting at ~100 cm-1 was used. The Raman light from the sample was 

collected in a backscattering geometry, transmitted by a beam splitter, and detected by a 
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CCD camera. A 2-μm spot size was obtained using a 50x objective lens. An edge filter 

removed the laser excitation, filtering the reflected light then sent to a spectrometer. 

Raman shift was measured from 110 to 3400 cm-1 for Co containing hybrids, while for 

Co polymorphs, the shift was measured between 100 and 800 cm-1.  

1.5.3 Electrochemistry and Electrochemical Microscopy 

All the electrochemical tests were measured using an electrochemical 

workstation (Model 920D CH Instruments, Inc.) in a custom-designed three-electrode 

electrochemical cell with Ag/AgCl reference electrode and a platinum (Pt) counter 

electrode.  

Cyclic Voltammetry: CV is commonly the first technique to assess the 

electrochemical kinetics of electrodes and of electroactive species. CV measures the 

response (current, i) of the working electrode with applied bias (potential, V), forming a 

cyclic voltammograms (i-V curves) that provide information concerning ion transport 

and electron transfer kinetics. Moreover, by varying scan rate, one can observe the 

electrode surface kinetics as ions interact at the interface in direct proportionality to the 

scan rate, obtaining parameters such as diffusion constant, gravimetric capacitance, 

etc.60 

CV was measured for all the samples in 1 M KOH electrolyte with potential 

ranging from -0.2 V to +1.0 V at a varying scan rate of 10, 20, 50, 100, 200 mV/s. To 

prevent decomposition of the Co3O4/GO hydrothermally synthesized hybrid, CV was 

measured in 0.1M KOH with potential ranging from -0.1 V to +0.65 V at a varying scan 

rate 1, 5, 10, 20, 50 mV/s. Within the CV mode, the materials were cycled at a scan rate 
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of 50 mV/s for first, second, and fifth cycles to observe their electrocatalytic response to 

oxygen reduction reaction (ORR) from potential 0.0 to 0.8 V.  

Electrochemical Impedance Spectroscopy: The EIS mode provides the 

components of impedance (real, Z’, and complex, Z’’), the phase behavior (ϕ) with 

frequency (ω), giving rise to Nyquist plots (Z’’vs. Z’’). Impedance and phase behavior 

were measured over a frequency range from 0.01 Hz to 98000 Hz and at potentials of 

0.1 V, 0.2 V, 0.3 V, and 0.4 V, depending on the sample, with 5mV ac amplitude. To 

derive various physical parameters of the working electrodes, circuit simulations are 

carried out to obtain solution resistance (Rs), charge transfer resistance (Rct), double-

layer capacitance (Cdl), and Warburg impedance (Zw). Using the low-frequency limit of 

the Nyquist plot, low-frequency capacitance (Clf) and time response from the imaginary 

part of capacitance (C´´) were also be obtained.61  

Amperometry:  This technique records the electrode current at a constant 

potential, providing current vs. time (i-t) profiles which can be used for electrochemical 

synthesis (2.2.2) and sensing behavior among others.62 

Chronopotentiometry: Chronopotentiometry is a current-controlled technique 

that monitors the potential response with respect to time of the electrode at a constant 

current (i).  As the species neighboring the electrode are reduced due to the continuous 

flux of electrons, the potential is changed until the oxidized form of the species is 

consumed. Five sets of galvanostatic measurements were performed on each sample 

with initial current of 0.25 A g-1 for 25 cycles, followed by variations in current of 0.20 

A g-1, 0.10 A g-1, 0.05 A g-1, 25 cycles each, and 0.25 A g-1 for the last 10 cycles. 

Chronopotentiometry measurements allow the assessment of the stability while the 
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electrodes charge and discharge and provide a different method to calculate specific 

capacitance.63  

Scanning Electrochemical Microscopy (SECM): SECM is an advanced 

electrochemical imaging technique that probes and maps the electrochemical response 

(change in current) of electrodes locally (alternatively, micro-electrode configuration, 

Fig. 6a in contrast to traditional electrochemistry (macro-electrode configuration). The 

reaction occurs at the tip which is controlled by the piezo positioner (a platinum disk 

sealed in glass and polished) as potential is applied independently for substrate and tip 

by a bipotentiostat workstation. 

 For probing, the tip is close to the substrate, avoiding contact while immersed in 

electrolyte containing an electroactive substance (O) of known concentration (CO
*) and 

diffusion coefficient (DO). When the tip is far from the substrate, the steady-state current 

(iT,∞) obeys: 

    𝑖𝑇,∞ = 4𝑛𝐹𝐷𝑂𝐶𝑂
∗𝑎         (3), 

where n is stoichiometric number of electrons consumed in the electrode reaction, F is 

Faraday’s constant, and a is the radius of the tip electrode (Fig. 6b). When the tip is 

placed closer to the substrate, the current can either decrease (O diffusion to the tip is 

blocked by the substrate, the concentration of reduced species, R, rises) or increase (O 

diffusion to the tip is facilitated by the substrate, e.g. substrate oxidizes R to O) (Figs. 6c 

and 6d, respectively). 

In SECM, probe approach provides an assessment of the conductivity of the 

electrode by measuring the current at the tip (iT) as a function of the distance between 
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the tip and the substrate (6c and 6d) while in the presence of a redox mediator 

(Ferrocene methanol, FcMeOH). The behavior of the curves can be modeled after 

 𝐼𝑇(𝐿)𝑖𝑛𝑠 = [0.292 +
1.5151

𝐿
+ 0.6553 exp (−

2.4035

L
)]  (4) 

 𝐼𝑇(𝐿)𝑐𝑜𝑛𝑑 = [0.68 +
0.78377

𝐿
+ 0.3315 exp (−

1.0672

L
)]  (5), 

having the normalized tip current (IT = iT/ iT,∞) as a function of normalized distance (L = 

d/a).48 These curve simulations using Eq. (4) and (5) provide a qualitative standard to 

compare the conducting character of the substrate (Eq. 4 for insulating substrate and Eq. 

5 for conducting substrate), In addition, curve fitting of probe approach provides values 

of one electron and multiple-electron heterogenous rate constants. 

 The parameters of polarity one for probe approach were potential at the tip (VT) 

of +0.4 V and potential at the substrate (VS) of – 0.5 V. For polarity two, the same 

magnitudes were used but with opposite signs i.e. VT = -0.4 V, VS = + 0.5 V. The 

microscopy feature of the SECM was also used by applying the same polarities for an 

area of 400 ⨯ 400 μm2 to map the electrochemical behavior of the samples using 

FcMeOH as a potential redox mediator. Since SECM relies on the uniformity of the 

Figure 6. (a) Scheme of the micro-electrode arrangement for SECM and 

illustration of SECM principles when (b) tip is far from the substrate, (c) and 

(d) tip is near the substrate adopted from Ref. 48 
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substrate and without holes, samples deposited on Ni foam were not measured as they 

were challenging.   
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Chapter 2: Synthesis and Structural Characterization of Graphene-based Hybrids 

In this chapter, the synthesis of graphene-based hybrids with cobalt oxide 

polymorphs (CoO and Co3O4) and cobalt nanoparticles (CoNP) is described. Physical 

deposition, electrochemical deposition, and hydrothermal synthesis were used to 

produce the corresponding hybrids which were characterized with various 

complimentary analytical techniques, including electron microscopy, x-ray diffraction, 

and micro-Raman spectroscopy. 

2.2 Experimental Synthetic Approaches 

2.2.1 Physical Deposition 

Graphene-based supports (GO and rGO) were decorated with cobalt oxide 

polymorphs (CoO and Co3O4) through physisorption. As previously discussed, the 

fundamental understanding of the interfacial interactions between the TMeONP and the 

graphene-based supports is yet to be established. The interaction through physical 

deposition was primarily attributted to direct contact and non-covalent interactions 

between the functional groups of the graphene derivative and the cobalt oxide 

polymorph. For synthesis of GO, rGO and their hybrids with nanoscale powder of cobalt 

oxide polymorphs, 10-mL dispersions of 0.085 mg/mL of GO (and rGO) and 0.1 mg/mL 

of CoO and Co3O4 were prepared in DI (Milli-Q) water. GO’s preparation followed the 

modified Hummer’s method. Thus, rGO was obtained by chemical reduction of GO 

using hydrazine monohydrate.64,65,66 Each solution was stirred for approximately 1 h at 

room temperature, followed by ultrasonication for around 40 min. The dispersions of 

graphene-based materials were mixed separately with each cobalt oxide dispersion in 

3:1 ratio by volume, creating hybrid solutions employed in this study to determine an 
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optimized configuration through ultrasonication for 30 min. The samples were obtained 

by drop-casting each of these mixed dispersions into thin layers on commercial silicon 

(Si (001)) substrates coated with 285 nm of SiO2 of approximately 1 cm2, allowing the 

samples to air dry. This method leads to strong physisorption, improving the 

electrochemical and electrocatalytical activity/reactivity. The samples prepared were as 

follows: GO (S1), rGO (S2), CoO (S3), Co3O4 (S4), S1+S3, S1+S4, S2+S3, and S2+S4. 

2.2.2 Electrochemical Deposition 

 Electrochemical deposition affords chemical adsorption by increasing the 

interaction (and potential binding) of the graphene-based support and the cobalt oxide 

polymorph enhancing the electrochemical/ electrocatalytic properties of the electrode 

while keeping a high surface area. To synthesize thin films of rGO and GO for further 

electrochemical reduction of GO (ErGO) and electrochemical deposition of the 

polymorphs of cobalt, 10-mL dispersions of 0.7 mg/mL of GO and 30 mg/mL of rGO 

were prepared in DI (Milli-Q) water. The preparation of GO followed Hummer’s 

method,67 and its chemical reduction with hydrazine monohydride yielded rGO. Both 

dispersions were stirred for around 1 h at room temperature and ultrasonicated for 15 

min. The thin films of each graphene-based material were made by drop-casting and 

were air-dried on indium tin oxide (ITO) coated glass substrates. ErGO was obtained by 

reducing a GO sample through amperometric technique at -0.9 V potential68 in a 

conventional three-electrode cell with a platinum counter electrode and a silver chloride 

reference electrode (Ag/AgCl) immersed in a 1 M NaCl buffer solution of 11.85 pH for 

20 minutes.  
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 CoO, Co3O4, and CoNP were deposited on the surface of each graphene-based 

material (GO, rGO, ErGO, and nickel foams industrially coated with multilayer 

graphene (NiFoamMLG)) using the amperometric technique. For electrodeposition of 

cobalt oxide polymorphs and CoNP the reference was Ag/AgCl, the counter electrode 

was glassy carbon rod for Co3O4 and CoNP and standard steel (SS321) for CoO, the 

potential was -1.4 V for CoNP, -1 V for CoO, and +1 V Co3O4, and the time was 5400 s 

for CoNP and 400 s for CoO and Co3O4, respectively Figs. 7 and 8).  

The solutions used in the depositions are given in Table 1. In addition, each 

(a) 
(b) 

(c) 

Figure 7. Amperometric plots (i-t curves) for electrochemical deposition of Co oxide 

polymorphs (a) Co
3
O

4
 and (b) CoO and (d) Co nanoparticles alone and on various graphene-

supports.  
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cobalt polymorph was deposited alone on ITO glass, SS321, following the same 

approach. 

Table 1. Summary of the solutions with their respective concentrations and amounts 

used for electrochemical deposition of CoNP, CoO, and Co3O4 

 

Polymorph Electrolyte 

CoNP 100-mL of 0.05 M and pH 7 phytic acid + 

100-mL of 0.8 Mm cobalt nitrate hexa- hydrate (Co(NO3)2 

6H2O) in DI water. 

CoO 100 mL of 0.05 M Co(NO3)2.6H2O in DI water. 

Co3O4 30 mL of 0.05 M Co(NO3)2.6H2O in DI water +  

30 mL of 0.05 M sodium acetate tri-hydrate (NaC2H3O2 3H2O). 

 

To ensure the crystallization of the polymorphs, the samples (except the ones on Ni 

foam) were subject to heat treatment at 200 °C for 20 min under vacuum. After 

annealing, the samples cooled in the vacuum furnace for 10 min. Then, the samples were 

removed from the furnace and cooled to room temperature. Figure 8. Schematic 

Figure 8. Schematic illustration of electrochemical deposition through amperometry 

mode of cobalt oxide polymorphs on GO, ErGO and MLG with corresponding 

parameters.68  
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illustration of electrochemical deposition through amperometry mode of cobalt oxide 

polymorphs on GO, ErGO and MLG with corresponding parameters.68  

2.2.3 Hydrothermal Synthesis 

 Through hydrothermal synthesis, a three-dimensional network is created where 

the cobalt oxide polymorphs can be completely embedded in the GO and rGO 

architectures, increasing the specific surface area, thus enhancing the interfacial 

interactions and improving the electrochemical coupling of the composite materials. 

Hybrids of Co3O4 with GO and rGO were synthesized using this approach. To obtain the 

GO composite, a 10-mL dispersion of 40 mg of GO was prepared in 99.5% ethanol. The 

solution was mixed with 10 mg of Co(C2H3O2)2, followed by an addition of 6 mL of DI 

water. Similarly, the rGO composite was obtained by preparing a 20.4-mL dispersion of 

68 mg of rGO in 99.5% ethanol that was mixed with 17 mg of Co(C2H3O2)2, and 

followed by an addition of 11 mL of DI water. Both mixtures were ultrasonicated for 1 

h, then heated and stirred at 80°C for 8 h. Once stirred, each dispersion was transferred 

to individual autoclaves and hydrothermally treated at 150°C for 3 h and later cooled to 

room temperature. The resulting powders obtained (Co3O4-GO, 25 mg and Co3O4-rGO 

111 mg) were taken as 80% to create a mixture with 10% carbon black and 10% poly 

vinylidene fluoride (5 mg and 11 mg, respectively). Both mixtures were individually 

subjected to vigorous stirring with 1-methyl-2-pyrrolidinone for 2 h to obtain the 

Co3O4/GO and Co3O4/rGO composites. Co3O4/rGO composite was coated on ITO, Ni 

Foam, copper foil, aluminum foil, and SS321 and Co3O4/GO composite was coated on 

copper foil and aluminum foil. The samples were air dried for 24 h (Fig. 9). 
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2.3 Results and Discussion 

 Compared with the overall direct hybrid morphology, the effective 

characterization of cobalt oxide−graphene interfaces is challenging. The interfacial 

interactions are key in determining the properties and applications; therefore, the 

interface study becomes a primary need to stimulate the advancement of graphene-based 

hybrid material systems.69 The following results and discussion correspond to the 

physically deposited hybrid nanomaterials.  

 Figure 10 shows SEM micrographs at various length scales of constituents (GO, 

rGO, CoO and Co3O4) and of hybrids (CoO/GO, CoO/rGO, Co3O4/GO and Co3O4 

/rGO). The images display distinct surface morphology growth, particle size, and type 

variation (radiated spherulite versus spherical), rGO flakes size distribution and 

 

Figure 9. Illustration of hydrothermal synthesis of Co
3
O

4
 embedded on GO and 

rGO architectures.  
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homogeneity/uniformity of densely packed thin films. Numerous agglomerated 

nanoparticles with variating shapes are observed, ranging in diameter between 20 and 

100 nm. BEI images (not shown) and EDS of CoO/GO and Co3O4/GO were measured, 

Figure 10. SEM images of GO and rGO and their hybrids with CoO and Co
3
O

4
. 

(Scale bars are shown at the bottom of the images). 
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revealing elemental composition (grey, low Z C and O versus dark, high Z Co). The 

analysis of EDS confirmed the elemental composition of the crystal to be C, Co and O 

with a molecular formula of Co3O4, including 80% Co2O3 and 20% CoO. These results 

agree with a partially mixed system verified by XRD discussed below. The Co/C ratio 

was determined to be 0.78 atomic percent (at.%) and 0.02 at.% in CoO/GO and 

Co3O4/GO hybrids, respectively. This indicates that for every carbon there is 0.0078 Co 

and 0.004 Co in CoO/GO and Co3O4/GO hybrids, respectively.  

 TEM images were also taken to determine the nanoscale surface morphology at 

different magnification along with SAED ring / spots and intensity patterns (Fig. 11). 

(a) 

(b) (c) 

Figure 11. TEM images for (a) CoO, Co3O4, and GO, (b) representative hybrids 

Co
3
O

4
/GO and CoO/GO with corresponding SAED patterns, and (c) the electron 

tomography three-dimensional images for CoO/GO hybrid is included (Scale bars 

are shown at the bottom of the images). 
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The intensity pattern of the graphene ring is included as a reference, showing that most 

of the peaks of hybrids contain graphene and graphene oxide peaks at 1.06 Å, 1.23 Å, 

1.71 Å, 2.12 Å and 4.41 Å.70 In the TEM images, crystalline defects like stacking faults 

and dislocations are not seen, and from the surface morphology at nanoscale, the loading 

of cobalt oxide nanoparticles onto the nanosheets/nanoedge/nanofolds of GO and rGO is 

apparent. In agreement with the indexed XRD discussed below, the SAED pattern 

displays quasi-single crystalline nature of Co oxides with rock salt and spinel structure. 

Fig. 11a shows the overall morphology of CoOx nanoparticles which consist of 

intertwined aggregates that on occasion are nanoctahedrons shaped crystallites 

containing two inverted pyramids attached at their square base and are bounded by eight 

triangular facets in the case of Co3O4 nanoparticles or are either cubed-shaped or 

spherical in the case of CoO. In addition, the uniform anchoring of the nanoparticles on 

the graphene sheets/flakes/nanowalls is observed from these images. On one hand, the 

enlarged TEM image shows lattice fringes with interplanar spacing d of 0.392 nm and 

0.80 nm, corresponding to the (311) planes of Co3O4 crystals and 0.279 nm, which 

equals the lattice constant of the {400} plane of Co3O4. On the other hand, the well-

resolved lattice fringes / rings in SAED have an interplanar spacing of 0.45 nm, 0.246 

nm, and 0.213 nm in agreement with the distance of (111) (200) and (220) planes for 

CoO. Overall, the majority of these patterns share a dominant crystal phase with random 

orientation that appears to have fcc-type rings (space group, Fm3̅m).71,72 An attempt is 

made to image the graphene-cobalt oxide interface using electron tomography (see Fig. 

11b) exhibiting the physical adsorption in three-dimensional TEM image. 
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 XRD is employed to assess the crystallinity and structural phases in different 

forms as well as determining lattice spacing (dhkl) and crystallite or grain size (Lhkl). On 

one hand, the XRD pattern of GO is mainly represented by a single broad peak at 2 = 

16.6o (002), corresponding to an interlayer distance of 0.74 nm (Fig. 12a). Thus, GO 

shows larger interplanar spacing than that of graphene, which can be the consequence of 

the lattice expansion consistent with oxidation of the graphene sheets, intercalation of 

water molecules and other functional moieties held in the interlayer galleries of 

hydrophilic GO. On the other hand, the pattern of rGO includes a broad reflection at 

24.5o (002) which corresponds to interplanar spacing of 0.36 nm that can be attributed to 

disorderedly stacked or restacked graphene nanosheets and a peak at ~ 12o which 

corresponds to a c-axis spacing of 0.69 nm. Besides the peak at 16.6o similar to GO 

(a) 

(b) 

(c) 

Figure 12. XRD diffractograms for (a) GO and rGO, (b) CoO and Co
3
O

4
, and (c) their 

hybrids, peaks of interest for hybrids are marked with their (hkl) index. 
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ascribed to the residual carboxyls and hydroxyls groups in rGO, the 16.6° peak is likely 

induced by a bimodal or multimodal character of the interplanar spacing of rGO. Even 

though the mechanism of rGO reduction is not yet identified, the reduction may have 

begun from the edges of GO sheets (relatively more energetic) and continued into the 

basal planes. During the reduction, parts of the basal planes near the edges are reduced 

and later snap together due to -* interactions, thus narrowing the interlayer distance. 

Therefore, the reducing agent, monohydrate hydrazine, is not able to penetrate further 

into the interior of the rGO flakes, potentially decreasing the degree of reduction, which 

coincides with c-axis spacing of 6.91 Å. All of the XRD peaks (Figs. 12b and 12c) can 

be indexed with cubic spinel-type Co3O4 [JCPDS card No. 78-1970 and JCPDS card no. 

43-1003, a = 8.08 Å] phase and rock salt periclase CoO (JCPDS card No. 15-0806) 

phase, including (111), (200), (220), (222), (311), (400), (422), (440), and (511). Other 

characteristic peaks from possible impurities such as precursors were not detected. The 

procedure to investigate the crystalline structure of as-prepared nano-/micro- crystallites 

films of CoO and Co3O4 was the Rietveld refinement.73 Some of the peaks at 2 = 

31.29o, 36.81o, 59.37o, and 65.27o correspond to the indexed (220), (311), (440) and 

(511) reflections of the periclase CoO and of the spinel-type Co3O4.The sharper peaks 

indicate high crystallinity with lattice constant of a =b=c=8.02 Å and a =b=4.258 Å 

based on (220), (311) and (400) planes.74 The crystallite size is obtained from XRD 

analysis using the following Debye-Scherrer equation:75  

     Lhkl = Kλ / hkl coshkl        (6), 

where Lhkl is the crystallite size in nm, λ is the wavelength of Cu K, hkl is the full-

width at half-maximum, and K = 0.94 is the shape or structure constant. Even though the 
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diffraction peaks of the hybrids are broad and of low intensity, the peak maintain 

crystalline phases of the components, indicating true high-quality formation of the 

hybrid composites.  

 Variation of lattice spacing (dhkl, Å) from Bragg’s law and particle size (L200, 

nm) from Debye-Scherrer formula were determined through analysis of the peak at 2 = 

31.29o for all of the samples along with individual components. Compared to rGO and 

GO, an increase in lattice spacing (4.8 → 9.0 Å) and particle size (2.8 → 3.6 nm) of 

hybrids is observed. This increase in crystallite size is explained by considering the 

integration process due to the functional groups present on graphene derivatives and the 

dangling bonds associated with cobalt oxides, which are related to the cobalt and oxygen 

defects at the grain boundaries and surface of the nanoparticles. Therefore, these defects 

favor the linking process, resulting in larger grain or crystallite values. The XRD 

determines the variation in size of coherent diffracting domain (CDD) since they are 

smaller than the actual particle sizes, which is the case herein. 

 Raman spectra of free CoO and Co3O4: Raman spectroscopy (RS) is employed 

to observe the structural features including the precursor phases structure (Figs. 13a and 

13c) and the graphene sheets in the hybrid composites (Figs. 13b and 13d). RS of 

graphene-based systems is well-documented,76 and briefly documented for various 

cobalt oxides;77,78,79 however, not of graphene supported hybrids of cobalt oxides. The 

micro-Raman spectra of free Co3O4 and CoO micro-/nanoparticles consist of five 

characteristic Raman-active peaks at ~ 194.4 (F2g; LO), 482.4 (Eg; TO), 522 (F2g; 

LO),618.4 (F2g; TO) and 691.3 (A1g; TO) cm-1 which correspond to skeletal vibrations, 

in agreement with the bulk cubic CoO and Co3O4 phases reported in the literature.77,80 
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While both the CoO and Co3O4 bands are sharp (full-width at half maximum of 4.9, 6.0, 

9.5, 7.3, 6.9 cm-1), Co2O3 band is rather broad and shifted possibly due to the bonding 

character. Based on irreducible representations for Co3O4, which crystallizes in normal 

spinel structure Co2+ (Co3+)2O4
 (space group Oh

7) with Co2+and Co3+ occupying 

tetrahedral and octahedral sites, respectively, the reduction of the 42-dimensional 

representation of the vibrational modes at k = 0 (zone center phonons) into irreducible 

representations of the factor group Oh
7 gives: Γ = A1g +  Eg  + 3F2g  + 5F1u  + 2A2u + 2Eu 

+ 5F2u. The A1g, Eg, and three F2g modes are Raman active. From the five F1u modes four 

are infrared active and one is an acoustic mode. The remaining 2A2u, 2Eu, and 5F2u 

modes are inactive. The assignment of the phonon symmetries of optically active 

Figure 13. Micro-Raman spectra of (a) GO and rGO, (c) nano-/microscale cobalt oxides  

CoO, Co
2
O

3
, Co

3
O

4
, and (b, c) their corresponding hybrids. 
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vibrations (both longitudinal; LO and transverse; TO) builds on the results of factor-

group analysis of the lattice vibrations of the spinel structure mentioned above.81,82 

Simple calculations for back scattering from the (111) surface demonstrate that the 

scattering cross section should not be dependent on the crystal surface rotation around 

the propagation direction of the incident light.80 Moreover, the TO-LO splitting supplies 

a criterion for the ionic character. The high-frequency peak, A1g, at ~ 692 cm-1 has been 

assigned to a vibration that is largely determined by the octahedral cations in the normal 

spinel, whereas F2g ~522 cm-1 and Eg modes combine the vibrations of tetrahedral and 

octahedral sites. Furthermore, Co-O lattice vibrations in CoO correspond to distortion 

vibration of Co-O in an octahedral environment in Co3O4. Among the signals of the 

CoO Raman spectrum shown in Fig. 13b, the strongest bands lie at 190, 482, and 691 

cm-1, the latter may be assigned to Co formed during the spectrum acquisition because 

of the local heating of the samples. Nevertheless, the absence of additional bands in all 

of the samples suggest thermal stability. The band at 691 cm-1 has a much larger 

intensity for CoO than for Co3O4 film. The 427 cm-1 band in the case of CoO appears as 

a consequence of the formation of a new compound which was identified as metastable 

Co2O3 with a distorted periclase structure, an intermediate formed during the 

decomposition of CoO to Co3O4 or vice versa. Therefore, the peaks at 427 and 180 cm-1 

can be attributed to the characteristic features of CoO. Interestingly, no similarity exists 

between the Co spectrum and that of Ref. 79, except some differences between the 

relative peak heights, however, Co is observed to have the same feature as CoO, which 

may be a result of having a CoO oxygen-deficient species. For symmetry considerations, 

although all Raman modes scattered rather strongly, particularly for the 690 cm-1 mode, 
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which is assigned as A1g mode, the stretching mode of Co–O bond is attributed in CoO6 

octahedral, because the structural frameworks of cobalt oxides consist of CoO6 

octahedral units shared by corners and/or edges similar to manganese oxides.83,84 In 

CoO, Raman scattering originates from a collective vibration mode of the CoO6 

octahedron. At lower wavenumbers, the peaks correspond to the deformation modes of 

the metal–oxygen chain of Co–O–Co in the CoO cubic lattice. Since a cobalt atom is 

roughly five times heavier than an oxygen atom, the Co-O vibrations are expected to 

engage primarily the oxygen atoms. The peak at 482.4 cm-1 is broad due to smaller 

crystallite size, while the peak at 690 cm-1 is marginally asymmetric likely due to the 

secondary crystalline phase CoO and/or Co2O3 observed in Fig. 13c. The vibrational 

band located at 482 cm-1 corresponds to the vibration of cobalt species (Co3+-O2-) in the 

octahedral site of Co3O4. The relative intensity for each vibrational mode is lower 

potentially owed to the confinement of phonons by some crystal defects induced by Co4+ 

vacancies and oxygen related defect sites, resulting in the decay of phonons and 

destruction of conservation of phonon momentum. The Raman peak intensity at 620 cm-

1 tends to fade with smaller particle diameter because the number of surface atoms 

increases rapidly when the nanoparticle size decreases, having a large number of 

dangling bonds.  

 Raman spectra of graphene-supported CoO and Co3O4: The optical appearance 

of the hybrids is highly homogeneous particularly with an irregular amberish dust or 

blackish surface spotted with dark green islands. From one point to another, the 

difference in surface composition going is apparent, albeit minimal. The CoxOy layer 

was sufficiently thin that GO and rGO supports were successfully recognized in the 
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measurement. The first- and second-order Raman spectra of rGO and GO films show 

two characteristic intense peaks, G band at ∼1580 cm-1 and 2D band at ∼2670 cm-1, 

which are assigned to the in-plane vibrational mode (E2g phonon of the Csp2 atoms at the 

Brillouin zone center, k ~ 0) and the intervalley double resonance scattering of two TO 

phonons around the K-point of the Brillouin zone, respectively. We ascribe the 2D band 

to signify the second-order or first overtone of the D band. Other relevant features at ~ 

1340 cm-1 are a defect induced peak assigned to the D band activated by intervalley 

double-resonance Raman process and the D and G combination mode (D+G band) at 

2920 cm-1.76,85 Commonly, the frequency-integrated intensity ratio of D to G band 

(ID/IG) can provide a semi-quantitative measure of defect concentration in graphitic 

materials and the size of the sp2 C domains which is found to increase on the reduction 

of GO.76 For comparative analysis, all of the Raman spectra are normalized with respect 

to the G band intensity. The sensitivity of Raman analysis of these samples is one of the 

reasons for the difference between Raman and XRD phase identifications. While the 

XRD diffractograms revealed the existence of only bulk phases, the Raman spectra 

allow the identification of local surface cobalt oxides species. The analysis of the Raman 

spectra is done in terms of D, G and 2D band position (D, G and 2D), the ratio of D 

to G (ID/IG), G to 2D (IG/I2D), Co to G (ICo/IG), as well as 2D versus G band position (2D 

versus G), where the latter is used to determine the nature or type of defects-the results 

are summarized in Fig. 14. Whereas for GO-based hybrids, the D band varies between 

1345-1325 cm-1 and G band is between 15931581 cm-1, the D band for rGO-based 

systems is between 1330-1332 cm-1 and the G band varies approximately between 1605-

1592 cm-1, which is within the spectral resolution. On the other hand, the 2D band 
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changes rather strongly with cobalt oxides on GO (26302617 cm-1) and rGO 

(26502625 cm-1) supports.  

 The frequency-integrated intensity ratios (ID/IG and I2D/IG) of D and 2D bands 

with respect to G band display strong dependence with cobalt oxides on GO (0.51.5 

and 0.10.4) and rGO (1.11.4 and 0.10.3) supports. The ID/IG is inversely proportional 

to the fourth power of the laser energy i.e. EL
-4 (or, L

4) relation which was previously 

reported in a Raman study of nanographite.85,86 Alternatively, based on Raman 

scattering theory, calculated matrix elements associated with the double resonance 

processes of D band indicate a dependence of EL
-4 of the intensity for nanographite.85 
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For 2D band, an excitation energy dependence of EL
-3 is predicted.87 For ICo/IG, the ratio 

is 10-15 for most of the GO-based samples, this large value is possibly due to thicker Co 

area, while for rGO based samples, the ratio has lower values of 0.5-3. We also 

attempted to determine the nature of defects by plotting the 2D band position with G 

band position (see Fig. 13g) The defects are of residual or p-type for GO-based hybrids, 

while rGO-based hybrids exhibited n-type defects (i.e. G band increases and 2D band 

decreases).88  

 The Raman mapping of hybrid samples is shown as representative examples 

indicative of the surface or spatial homogeneity, allowing indirect measure of elemental 

composition (sp2 C or C rich versus Co-rich) similar to EDS (see Fig. 15). The Raman 

map is created by taking a collection of spectra point-by-point across the desired region 

(in Fig. 15, these regions are shown as yellow squares on the optical microscope image). 

The sharpness and almost uniform intensity maps of D, G and Co related bands 

(corrected for baseline while generating the maps) contoured at the boundary of 

graphene sheet nanodomains, nanowalls and layers provide insight regarding the higher 

degree of crystalline order thus intrinsic nature of the GO, rGO and anchored cobalt 

oxide nanoparticulates. It should be mentioned that the intensity ratio map of Co peak to 

G peak (referred to as sp2 C) offers an avenue to local charge transfer features which are 

a primary consequence of strong electronic / structural coupling of CoO and Co3O4 with 

functional moieties associated with graphene derivatives. Knowing that Co3O4 has the 

normal-spinel structure Co2+(Co3+)2O4, experimental and theoretical measurements have 

demonstrated that the three low Miller index planes ({100}, {110} and {111}) of such 

metallic oxide particles with fcc structure differ not only in the surface atomic density 
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but also in the electronic structure, geometric bonding and chemical and electrochemical 

reactivity. As a result, those planes have different surface energies, following the order 

{111} < {100} < {110}, which closely parallels the catalytic activities for CO and 

CH4 oxidation.89,90,91,92 The catalysis of CO oxidation results as the CO molecule 

__10m 

__10m 

Figure 15. Raman mapping of (a) CoO/rGO and (b) Co
3
O

4
/rGO in terms of 

intensity distribution of D, G, 2D and Co bands and their ratio with G band, 

corresponding optical micrographs, possible surface charge transfer via plot of 2D 

band to G band position for (a) CoO/rGO hybrid. The black regions represent either 

the substrate (SiO
2
) or lower bound as shown with scale bar adjacent.  

(a) 

(b) 
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interacts preferably with the surface Co3+ cations, which is the only favorable site for 

CO adsorption, as confirmed theoretically93,94 and revealed experimentally for Co3O4.
95 

The oxidation of the adsorbed CO then occurs by abstracting the surface oxygen that had 

been coordinated with the Co3+ cations. The partially reduced cobalt site, i.e. Co2+ cation 

with a neighboring oxygen vacancy, is re-oxidized by a gas-phase oxygen molecule or 

the oxygen from the water molecules in aqueous electrolyte back to the active Co3+ 

form. Consequently, the surface Co3+ cations are considered as the active sites for CO 

oxidation, while the surface Co2+ cations are practically inactive. In the Co3O4 crystal 

structure, the {001} and {111} planes contain only Co2+ cations, while the {110} plane 

is mostly comprised of Co3+ cations. This scenario has demonstrated proved by surface 

differential diffraction studies, concluding that the Co3+ cations are present solely on the 

{110} plane. Similarly, in our own experiment with the Co3O4/rGO composite electrode, 

while the electrochemical activity of the Co3O4/rGO (and Co3O4/GO) composites for 

CO (carbon monoxide) oxidation are by no means optimized, we are inclined to deduce 

from our findings that the Co3O4 with the predominantly {110} exposed surfaces may 

have higher electrochemical activity for CO oxidation than the sole six {100} exposed 

surfaces. In sharp contrast, the Co3O4 enclosed by the eight {111} facets on the rGO and 

GO sheets is expected to exhibit the highest electrochemical activity among the four 

Co3O4/graphene hybrid electrodes. The theoretical prediction is the prevailing electron 

contribution of Co3d states and other contributions come from O2p oxygen states. The 

contributions of occupied C2p states at the Fermi level turn out to be smaller by 2 orders 

of magnitude than the oxygen contributions, being smaller value of 0.008, albeit 

nonzero. The latter result is consistent with the conductivity of graphene never being 
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smaller than the minimum value of quantum conductivity unit. Therefore, it is within 

reason to presume graphene islands can preserve their unique properties in the CoOx 

(001)/graphene system. The other implications of this study stem from the direction of 

nano-electronic and spintronic devices i.e. hetero-interfaces of the graphene / 

(ferromagnetic metal or oxide) instead of nanomagnetic p-type semiconductor or 

traditional metal. It is ideal for spintronics due to a small spin-orbital interaction as well 

as a vanishing nuclear magnetic moment of carbon atom.96,97     

 In addition to spectroscopic studies, I-V measurements were performed to 

determine two-terminal device resistance R2t and the corresponding dc. Qualitatively, 

graphene derivatives followed quasi-semiconducting behavior and all of the hybrid films 

followed almost ohmic or linear behavior, showing the higher resistance for Co3O4/GO 

and the lower for Co3O4/rGO as anticipated. The dc of rGO was higher by around one 

order of magnitude (7 ⨯ 105 S) than GO (0.1 ⨯ 105 S) and dc of both rGO and GO 

supported hybrids decreased by similar magnitude, as expected.  

The following results and discussion correspond to the electrodeposited samples. 

 Figure 16 shows SEM micrographs at various magnifications of constituents 

(MLG, CoO and Co3O4) and of hybrids (CoO/ErGO, CoO/MLG, Co3O4/ErGO, Co3O4 

/MLG, and CoNP/MLG). As in the case of physically deposited hybrids, 

electrochemical synthesis yields distinctive cobalt oxide micro/nanoparticles with 

apparent crystalline facets and similar particle size, agglomerated as observed for CoO 

(see Fig. 16a). Both ErGO wrinkled sheets and MLG 3-dimentional foam are coated by 

a homogenous layer of cobalt oxide and cobalt nanoparticles, respectively. Ni foam, 

allowing for increased surface area for cobalt anchoring and thus for ion adsorption. 
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 For assessing the nanoscale surface morphology, TEM images of the 

electrodeposited samples were collected (Fig. 17). As physically deposited samples, the 

cobalt oxide crystallites are apparent for both constituents and hybrids as agglomerated 

structures. The particle size for cobalt oxides and cobalt nanoparticles alone ranges from 

Figure 16. SEM images of (a) CoO and (b) Co
3
O

4
, ErGO with (c) CoO and (d) 

Co
3
O

4
 hybrids, and (e) multilayered graphene (MLG) on Ni foam and hybrids 

with (f) CoO, (g) Co
3
O

4
, and (h) CoNP. (Scale bars are shown at the bottom of the 

images). 
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15 nm (CoNP, Fig. 17c) and under. The lattice spacing for CoO is 0.45 nm, 

corresponding to (111) plane, while for Co3O4 crystals is 0.82 nm, attributed to the (311) 

planes (see Figs. 17a and 17b). In the case of CoNP, the interplanar spacing observed is 

1.25 nm. The CoO hybrids in Figs. 17e and 17f and Co3O4/ErGO hybrid in Fig. 17g 

show successful uniform loading of the crystals onto the nanosheets of GO and ErGO. 

For Co3O4/ErGO, the stacking of layers of ErGO is observed at an edge site.  

 The XRD patterns of Co3O4, Co3O4/ErGO, Co3O4/rGO, and Co3O4/MLG are 

shown in Fig. 18a. Both ErGO and rGO hybrid patterns contain a broad peak at 2θ = 

24.5° (002) due to disordered stacking of graphene nanosheets, a shorter peak at ~12° 

attributed to c-axis spacing of 0.69 nm, and a peak at 50.66° (004) a feature likely due to 

a precursor used in the synthesis. The sharper peak at ~12° is potentially due to a 

crystalline form of precursor material remaining in the hybrid. The peak at 26.98° (002) 

corresponds to multi-layer graphene and the peaks at 44.82° (111) which overlaps the 

(400) phase of Co3O4 and 52.22° (200) corresponds to Ni foam.33,98 For the XRD 

patterns of CoO and CoNP on MLG, the peaks of Ni foam and MLG are observed as in 

Figure 17. TEM images for CoO, Co
3
O

4
, and CoNP (a-d), (e) ErGO and (f) GO with 

CoO, and (g) ErGO with Co
3
O

4
. (Scale bars are shown at the bottom of the images). 



43 

the diffractogram of Co3O4/MLG (Fig. 18b). All of the XRD peaks can be indexed with 

cubic spinel-type Co3O4 [JCPDS card No. 78-1970 and JCPDS card no. 43-1003, a = 

8.08 Å] phase and rock salt periclase CoO (JCPDS card No. 15-0806) phase, and face-

centered cubic CoNP (JCPDS card No. 15-806) phase, including (220), (222), (311), 

(400), (422), (440), and (511). The sharpness of the peaks is indicative of high 

crystallinity that combined with the features of graphene-based support with cobalt 

oxide polymorphs and/or cobalt nanoparticles qualitatively confirms the formation of 

hybrids.  

(b) 

(a) 

Figure 18. XRD diffractograms with their respective amplifications for (a) Co
3
O

4
 and 

corresponding hybrids with graphene based supports on ITO substrate, (b) CoO, CoNP 

and corresponding hybrids with MLG on Ni foam substrate. The peaks of interest for 

hybrids are marked with their (hkl) index. 
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Raman spectra of free Co3O4, CoNP, and CoO: The micro-Raman spectra of free 

CoNP and CoO observed in Fig. 19a contains the five characteristic Raman-active peaks 

at ~ 193.9 (F2g; LO), 475.8 (Eg; TO), 516.9 (F2g; LO), 615 (F2g; TO), and 678.8 (A1g; 

TO) cm-1 corresponding to skeletal vibrations. The Co3O4 spectrum consists of the 

similar peaks; however, the Eg, F2g, and A1g peaks are shifted to 458.8 cm-1, 563.0 cm-1, 

and ~737.0 cm-1 and are broader likely due to crystalline defects.  As in the case of CoO 

and Co3O4 physically deposited electrodes, the high-frequency peak, A1g, (678.8 cm-1 

for CoO and ~737.0 cm-1 for Co3O4) is attributed to a vibration of the octahedral cations 

in the normal spinel while F2g (~516.9 cm-1 and 563.0 cm-1, respectively) and Eg modes 

(a) (b) 

(c) (d) 

Figure 19. Micro-Raman spectra showing characteristic peaks for (a) cobalt oxides 

and CoNP, ErGO, rGO, and GO hybrids with nano-/microscale (b) CoO and (c) Co
3
O

4
, 

and (d) MLG on Ni foam decorated with Co
3
O

4
, CoNP, and CoO. 
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originate from the vibrations of tetrahedral and octahedral sites. Even though CoNP is 

intended to be solely cobalt integrated, CoNP is an oxygen deficient species in which 

defective sites may resemble the structure of CoO. The similarity of spectra in CoNP 

and CoO suggests our cobalt nanoparticulates are organized in fcc, originating similar 

vibrations for Eg, F2g, and A1g. For C o3O4, the vibration band located at 458.8 cm-1 

corresponds to the vibration of cobalt species (Co3+-O2-) in the octahedral site of Co3O4. 

As noted previously, each vibrational mode has a lower relative intensity than those of 

the graphene variants caused by the confinement of phonons by some crystal defects 

induced by Co4+ vacancies and oxygen related defect sites, causing phonons to decay 

and destroying conservation of phonon momentum.  

 Raman spectra of graphene-supported Co3O4, CoNP, and CoO: The Raman 

spectra of the graphene-supported hybrids is observed in Figs. 19b, 19c, and 19d. For 

Co3O4 and CoO hybrids (Figs. 19b and 19c), the ErGO, rGO, and GO films show the 

two characteristic intense peaks, G band at ∼1580 cm-1 and 2D band at ∼2670 cm-1. The 

additional features include D band at ~1340 cm-1, D’ band at ~1750 cm-1, and D+G cm-1 

band at ~2910 cm-1. D’ corresponds to defect scattering similar to D.99 The multi-layered 

graphene on Ni foam supported hybrids spectra also contain the characteristic G band at 

1535.4 cm-1 and the 2D band at ~2642.4 cm-1, where the splitting of 2D is identified as a 

result of the layered character of graphene. The additional unlabeled peaks can be 

attributed to nickel and/or nickel oxides from the substrate. Even though the cobalt 

related peaks are only prominent in the CoO/GO and CoNP/MLG spectra, they are 

present for all hybrids at a lower relative intensity as a consequence of crystalline 

defects. Since cobalt polymorphs and cobalt nanoparticles are more stable than 
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graphene-based supports at higher temperatures, the annealing process of the hybrids 

which exposes the features of cobalt was limited and thus yielded weaker bands. As for 

physically absorbed samples, all of the Raman spectra are normalized with respect to the 

highest peak. 

The subsequent results and discussion belong to the hydrothermally synthesized samples 

 SEM and TEM images were taken to observe the micro and nanoscale surface 

morphology of hydrothermally synthesized Co
3
O

4
-graphene hybrids (Fig. 20). The 

structural similarity of Co
3
O

4
/GO and Co

3
O

4
/rGO caused by the hydrothermal reduction 

of GO is observed in the SEM images; however, as shown in Fig. 20a, some of the sheet 

character of GO is conserved after the treatment. Aggregation of Co
3
O

4
 crystals on the 

surface of rGO and GO is evident in the SEM micrographs while the TEM images reveal 

well dispersed crystals (Fig. 20b). The Co
3
O

4
 crystals are not visible in the TEM image 

for the rGO hybrid owing to the folding/crumpling of the sheets covering the crystallites 

 
Figure 20. SEM (a) and TEM (b) images of hydrothermally synthesized GO and rGO 

with Co
3
O

4
. (Scale bars are shown at the bottom of the images). 
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as expected from the synthesis. Even though visually the particles are not perceived, 

XRD and Raman spectra reveal characteristic behavior of this hybrid, corroborating 

successful synthesis.  

 Fig. 21a shows the XRD patterns of Co3O4/GO and Co3O4/rGO hydrothermally 

synthesized and deposited on standard steel substrate. As observed in the physical and 

electrochemical deposited hybrids, the broad reflection at 2θ = 24.5° is present for both 

GO and rGO hybrids. The close resemblance in the data of GO and rGO can be 

attributed to the reduction of GO during hydrothermal treatment. The peaks (220), (222), 

(400), and (440) relate to cubic spinel-type Co3O4 as previously observed. The sharp 

peak around ~12° is not evident as in the case of electrodeposited hybrids which may be 

the result of the heat exposure cleaning the hybrid of precursors. 

 As observed in the XRD, the micro-Raman spectra for both rGO and GO 

supported Co3O4 have analogous features (Fig. 21b). Similar to the physical and 

electrochemical deposited samples, the characteristic G band at 1589 cm-1 and 2D ~2640 

cm-1 are present for both hybrids as well as the additional bands (D band 1333.2 cm-1 and 

D+G at ~2920 cm-1). Even though the related peaks of Co3O4 are more distinctive for 

(a) (b) 

Figure 21. (a) XRD diffractograms and (b) micro-Raman spectra of GO and rGO 

hydrothermally synthesized hybrids with Co
3
O

4
.  
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the hydrothermally synthesized samples, their low relative intensity can be the result of 

the 3-dimentional character of the hybrid embedding the Co-nano/micro particulates 

within the architecture where the Raman laser cannot access them. The main vibration 

modes for Co3O4 [CoO and Co2O3] are distinctive to F2g at 194 cm-1, E2g at 473 cm-1, 

and A1g at 676 cm-1. Other peaks due to potential impurities are not present in either 

spectrum. 

2.4 Conclusion 

 All of these results confirm successful loading of cobalt oxide polymorphs and 

cobalt nanoparticles on graphene derivatives by various synthetic approaches. SEM 

provided a macroscale surface morphology of GO and rGO that revealed the nanosheets 

and the nano-/micro- particles of CoO, Co3O4, and CoNP well-dispersed within the 

sheets/vertical walls of GO and rGO. TEM allowed the nanoscale observation of the 

surface morphology of the hybrids and facilitated the calculation of GO sheet thickness 

and particle size distribution along with SAED patterns depicting GO (rGO) rings and 

diffraction spots of polycrystalline CoO and Co3O4. XRD provided the average structure 

of the hybrids by showing the characteristic peaks of cobalt oxide polymorphs, CoNP, 

and GO (and rGO). RS contained characteristic GO (and rGO) and CoO (Co3O4 and 

CoNP) Raman bands in hybrids confirming the formation of tailored interfaces crucial 

for applied electrochemistry and provided local charge transfer due to physical (or 

chemical) adsorption of cobalt oxide onto graphene derivative support. Raman maps 

also verified the hybrid formation by determining the distribution of C and Co.  
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Chapter 3: Electrochemical Properties of Graphene-based Hybrid Nanomaterials. 

 In Chapter 3, the electrochemical properties were obtained, such as gravimetric 

capacitance and diffusion coefficient, from the previously synthesized hybrids (Chapter 

2) using cyclic voltammetry. In addition, relevant circuit elements were deduced from 

fitting Nyquist plots obtained through electrochemical impedance spectroscopy. Finally, 

durability was assessed by chronopotentiometry.68 To further gain insights into the 

physical/chemical processes at the electrode/electrolyte interfaces, we performed an 

advanced electrochemistry namely, scanning electrochemical microscopy (SECM) in 

two separate modes: probe approach and imaging mode in addition to cyclic 

voltammetry with microelectrode configuration. 

3.1 Results and Discussion 

Cyclic Voltammetry 

 Figure 22 shows cyclic voltammetry (CV) curves with current as a function of 

potential in 1M KOH. The potential window ranged between -0.2 V and 1V or 0.8 V 

with respect to the electrochemical behavior of the hybrid. While no redox peaks for 

were observed in the case of CoO and Co3O4, clear redox pairs occurred around -0.15 

V/0.2 V (Co3+ ↔ Co2+) and 0.3V/0.4 V (Co4+ ↔ Co3+) for all hybrids, following the 

respective faradaic reactions  

    CoO + OH- + H2O ↔ CoOOH + e-         (7) 

    CoOOH + OH- ↔ CoO2 + H2O + e-         (8) 

and  

   Co3O4 + OH- + H2O ↔ 3CoOOH + e-        (9) 

   CoOOH + OH- ↔ CoO2 + H2O + e-.100,101       (10) 
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The curves corresponding to the representative ErGO hybrids are dominated by the 

pseudocapacitive behavior of the metal oxides while preserving quasi-rectangular 

features characteristic of the double-layer capacitance of ErGO (Figs. 22c-22e). Overall, 

the physically deposited hybrids had less distinctive redox peaks, and most of them were 

easily degraded from the ITO substrate while all electrodeposited and hydrothermally 

synthesized hybrids withstood the electrolyte under applied potential. For 

electrodeposited and hydrothermally prepared electrodes, the coating of relatively thin 

films followed with low-temperature annealing could explain the strong attachment 

between the substrate and the material.  

 From the CV curves, the values for current (anodic and cathodic) were collected 

where the electrochemical behavior of the hybrid resembled an ideal supercapacitor. The 

resulting current average for each composite was plotted as a function of the square root 

(a) (b) (c) 

(d) (e) 

Figure 22. Cyclic voltammograms for representative constituents (a) CoO, (b) Co
3
O

4
, 

and (c) ErGO and their corresponding (d) CoO/ErGO and (e) Co
3
O

4
/ErGO hybrids for 

scan rates 10, 20, 50, 100, 200 mV/s in 1 M KOH. 
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of scan rate (Fig. 23). The quasi-linear behavior characteristic of heterogeneous 

electrodes obeys the Randles-Sevcik equation for quasi-reversible processes  

    𝑖𝑝 = 2.68 ⨯ 105 ⨯ √𝑛3𝐴√𝐷𝐶√𝑣      (11),  

where ip is peak current, n is the number of electrons transferred per mole, A is the area 

of the electrode, D is the diffusion coefficient, C is the electrolyte concentration, and v is 

the scan rate). From fitting the results with the Eq. 11, the diffusion coefficients were 

determined, ranging between 4⨯10-8 - 6⨯10-6 m2 s-1 and following the order CoO/MLG 

< Co3O4/MLG < Co3O4/rGOHT < CoO/ErGO.  

 Specific gravimetric capacitance (Cs) was also calculated by dividing the peak 

current with the mass of the material, m, and the scan rate  

     Cs = ip ⨯ m-1 ⨯ v-1      (12). 

Higher values of Cs are indicative of efficient charging (more charge/energy per applied 

potential). The corresponding values were plotted with respect to scan rate as shown in 

Fig. 24. All hybrids followed a decreasing trend of Cs with increasing scan rate. 

Maximum values of Cs were observed for CoO/ErGO (450 F/g), CoO/MLG (300 F/g), 

(a) (b) 

Figure 23. CV analyses in the form of current as a function of square root of scan 

rate for (a) CoO/graphene and (b) Co
3
O

4
/graphene hybrids. 
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Co3O4/rGOHT (425 F/g), and Co3O4/MLG (375 F/g). In the case of Co3O4/rGOHT, the 

higher specific capacitance could be attributed to the 3-dimentional blend obtained 

through hydrothermal synthesis which contains Co3O4 micro/nano crystallites on the 

surface and throughout the structure that increase the specific capacitance. Similarly, the 

micro-sized CoO crystals loaded and distributed on the sheets of ErGO result in higher 

specific capacitance. For the grid-like structure of MLG on Ni foam, the holes facilitate 

mass transport hence the construction of a double layer by ion absorption while the 

cobalt oxide crystals allow energy storage by reduction/oxidation of Co2+ from/to Co3+ 

and Co3+ from/to Co4+. Thus, the combination of these two types of materials showed 

enhanced performance in terms of specific capacitance due to both their physical 

(morphology) and chemical (bonding/interaction between defect and/or functional 

groups of graphene variants and cobalt oxides) properties.  

Impedance Spectroscopy 

 Electrochemical impedance spectroscopy (EIS) data was collected and analyzed 

to determine additional parameters to those obtained through CV analysis. EIS involves 

(a) (b) 

Figure 24. CV analyses in terms of gravimetric capacitance as a function of scan rate 

for (a) CoO/graphene and (b) Co
3
O

4
/graphene hybrids. 



53 

applying a small ac potential monitoring the impedance of the system (Z) for a wide 

range of frequencies (Z(ω), where ω is frequency). The Nyquist plots (Figs. 25a and 

25b) showing the imaginary component of Z (Z´´(ω)) vs. the real component of Z 

(Z´(ω)) contain a high frequency region (semicircle related to kinetics) and a low 

frequency region (line related to mass transfer). These features may arise due to the 

contribution from solution resistance, Rs, and Warburg impedance, ZW, relative to 

charge-transfer resistance, Rct, kinetically allowing the system to be continually 

available for mass transfer.48 However, the trend of Co3O4/rGOHT, for instance, showed 

more contribution from Rct, having a clearer semicircle and a lack of linearity which 

could indicate that the system is kinetically slow and has a small frequency window for 

mass transfer. 

 Using the RC circuit in Fig. 25 and equivalent circuits with more complex forms, 

data simulations were generated with in-built digital simulation software with the 

electrochemical workstation that resemble the experimental behavior of Z. From the 

simulation, circuit elements including solution resistance (Rs), double-layer capacitance 

(Cdl), Zw, and Rct were obtained and are summarized in Table 2. These parameters 

Figure 25. Nyquist plots (-Z´´ vs. Z´) for (a) CoO and CoNP and for (b) Co
3
O

4
, based 

hybrids, and (c) the Randles’ circuit with its corresponding elements. 
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derived from the si mulations for Co3O4/rGOPHYS, Co3O4/MLG, CoNP/MLG, CoO/GO, 

and CoO/MLG had significant contributions from Rs and Zw while for both CoO/rGO 

and Co3O4/ErGO the contribution was mostly attributed to Rct. The rest of the samples 

had relatively high values of Rct, coupled with large values of Rs. Furthermore, Cdl 

values were outstandingly high, ranging from 4.3⨯104 μF for CoO/MLG to 1.99⨯10-1 

μF Co3O4/GO for a working area of approximately 3 cm2. The low error values validate 

the integrity of the data (within 10% discrepancy). 

Table 2. Circuit elements, solution’s resistance-Rs, charge-transfer resistance-Rct, 

double-layer capacitance-Cdl, and Warburg impedance-Zw, from ac impedance 

simulation and fitting. 

 

Synthesis/ 

Fabrication Sample Rs (Ω) Rct (Ω) Cdl (F) Zw (Ω) 

Error 

(%) 

  Co3O4/GO 26.76 0.1012 1.985E-07 9.992E-05 7 

Physical Co3O4/rGO  22.88 0.001 0.01256 0.001984 6 

  CoO/rGO 5.76 0.001 0.0137 0.0001759 5 

  Co3O4/ErGO 39.42 596.2 0.004587 0.00427 7   

Electro- 

deposition Co3O4/GO 37.09 0.001 3.864E-03 0.0005801 4 

  Co3O4/MLG  0.7847 0.002956 1.429E-02 0.1989 10 

  CoNP/MLG 0.8013 0.001 3.692E-02 0.009382 11 

  CoO/ErGO 30.7 9.417 3.664E-07 0.05236 3 

  CoO/GO 30.1 0.0003825 9.672E-04 0.006341 3 

  CoO/MLG 0.6314 0.02996 4.280E-02 0.1643 13 

  CoO/rGO  10.39 25.83 1.825E-02 0.01156 2 

 

 In addition, low-frequency capacitance, Clf, and the imaginary component of 

capacitance, C´´(ω) were determined from EIS. Clf was obtained following the equation 

1

𝐶𝑙𝑓
=

𝑍′′(𝜔)
1
(𝜔)⁄

, peaking for CoO/MLG, CoO/ErGO, Co3O4/rGOHT, and Co3O4/ErGO (Figs. 

26a and 26b), in agreement with the results from CV analysis, showing overall improved 
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performance of cobalt oxides in the presence of a graphene variant. Similarly, the 

imaginary component of capacitance, C´´(ω), was calculated through the relation 

𝐶′′(𝜔) = −
𝑍′(𝜔)

𝜔|𝑍(𝜔)|2
. The features of C´´(ω) as a function of the logarithm of frequency 

correspond to time-response/charge-discharge time (Figs. 26c and 26d). While some 

hybrid electrodes had relatively large charging-discharging times (i.e. physically 

deposited Co3O4/rGOPHYS, 8.25 s), the times for most hybrids fell between 0.38 s and 4 

s, neighboring the optimal value of 0.1 s. 

Chronopotentiometry 

(a) (b) 

(c) (d) 

Figure 26. C
lf
 values for (a) CoO and CoNP and (b) Co

3
O

4
 hybrids. C’’(ω) vs. logarithm 

of frequency showing the time response for charging-discharging of graphene variants 

with (c) CoO and (d) Co
3
O

4
. 
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 Chronopotentiometry was performed to assess the cyclability of the electrodes by 

monitoring the charge-discharge cycling (V-t) for an applied current and to calculate Cs. 

Figure 27 shows the V-t profiles for representative CoNP/MLG sample, demonstrating 

stability under applied current for a total of 110 cycles. In the case of both physically 

and electrochemically deposited GO based hybrids, cyclability was considerably less 

consistent for the different currents, likely due to the affinity of GO for water which 

increases the solubility of the sample in the electrolyte and may also facilitate 

detachment of the material from the substrate. The latter behavior could also occur for 

thick samples like in the case of CoO/ErGO for which the material undergoes slow 

“pealing” from the ITO with prolonged exposure to the electrolyte. Despite probable 

loosening of the material, all samples stably cycled for at least two currents, indicating 

durability, namely rGO and MLG based hybrids. From the V-t profiles, Cs was 

calculated for each current using the relation  

      𝐶𝑠 =
𝑖⨯∆𝑡

∆𝑉
      (13), 

where Δt corresponds to the change in time and ΔV to the change in potential for 

Figure 27. Charge-discharge profiles of representative CoNP/MLG hybrid for 0.25 A 

g-1, 0.20 A g-1, 0.10 A g-1, and 0.05 A g-1. 
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discharge current. The largest values of Cs were found for Co3O4/rGOPHYS for all applied 

currents while the lowest values were shared between CoO/ErGO for 0.25 A g-1 and 

0.20 A g-1 and CoNP/MLG for 0.10 A g-1 and 0.05 A g-1 as summarized in Table 3. The 

Cs values for the rest of the hybrids followed the expected decreasing trend with 

decreasing applied current.  

Table 3. Summary of maximum and minimum Cs values obtained from galvanostatic 

measurements 

 

Scanning Electrochemical Microscopy 

 To gain insights into the storing mechanisms and physical/chemical processes at 

the electrode/electrolyte interface, scanning electrochemical microscopy (SECM) was 

used in two modes: probe approach, which probes the nature of the substrate, and 

imaging mode, which measures the electrochemical behavior at the electrode/electrolyte 

interface.  

Experimental Setup 

 Since the hybrids were deposited on ITO (only conductive on the deposited 

side), copper wire was placed at the initial site of deposition and fixed with conductive 

silver paste to ensure contact. The resulting electrodes were dried under a lamp at ~50°C 

for 10 minutes, followed by air drying, thus avoiding complete dehydration of the silver 

paste. The hybrids were then mounted on the SECM stage, and the custom three-

Applied Current (A g-1) / 

Sample ID 

0.25 

(Cs, F g-1) 

0.20 

(Cs, F g-1) 

0.10 

(Cs, F g-1) 

0.05 

(Cs, F g-1) 

Co3O4/rGOPHYS 81.6 81 42.9 22.7  

CoNP/MLG   2.34  1.32  
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electrode electrochemical cell was fixed exposing a circular area (5 mm diameter) of the 

sample. The experiments were performed using the tip as the first working electrode, the 

ITO substrate as second working electrode, Ag/AgCl reference electrode, and platinum 

counter electrode.  

Probe Approach  

 Similar to atomic force microscopy, the probe approach uses a tip that comes 

near (in the order micrometers) the surface of the substrate and interacts with it. 

However, the interaction is facilitated through a redox mediator rather than Van der 

Waals forces. The mediator creates a redox cycle (reaction) between the tip and the 

material in study. Thus, depending on the nature of the substrate, the cycle is stimulated 

(conductive material) or suppressed (insulating material). For all of the hybrid materials, 

it followed tip current- iT larger than steady state current- iT,∞ (iT > iT,∞), exhibiting a 

ratio of  iT to iT,∞ larger than 1 with respect to the normalized distance (Fig. 28), 

demonstrating conductive character. In addition, probe approach curves obeyed the 

equation  

     
𝑖𝑇

𝑖𝑇,∞
=

1

𝐾1+
𝐾2
𝐿
+𝐾3∗𝑒

−𝐾4
𝐿⁄
      (14),  

∞ 

(a) (b) 

Figure 28. Probe approach curves including experimental (solid) and fitting 

(dashed) for graphene based hybrids with (a) CoO and (b) Co
3
O

4
. 
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where K1 is the one electron heterogeneous rate constant, K2 is the multi-electron rate 

constant, and K3 and K4 are fitting parameters describing more complex convoluted 

processes relate to charge transfer and mass transport. By fitting the probe approach with 

this equation, K1 through K4 were obtained and are summarized in Table 4. 

Table 4. Summary of fitting parameters the one electron heterogeneous rate constant- 

K1, the multi-electron rate constant- K2, and fitting parameters describing more complex 

convoluted processes relate to charge transfer and mass transport-K3 and K4 from probe 

approach of various cobalt oxide constituents and cobalt oxide/graphene hybrids. 

 

Sample ID K1 K2  K3 K4 

Co3O4 1.13526 -5.26472 2.29E+14 583.284 

Co3O4/GO 1.16017 -5.81842 1.50E+14 600.26827 

Co3O4/GOPHYS 1.3043 -7.81377 3.28E+12 544.97382 

Co3O4/rGOPHYS 1.43038 -9.7527 7.37E+14 612.3436 

Co3O4/ErGO 1.55276 -11.54524 4.19E+14 602.68102 

CoO 0.96945 -0.86143 8.58E+02 96.74951 

CoO/ErGO 0.87897 -0.56885 20.30655 64.31714 

CoO/GOPHYS 1.11866 -1.72954 5.77E+08 156.52439 

 

Imaging Mode 

 Using SECM, the electrochemical reactivity of a local region of the electrode 

was probed, generating areal scans that were plotted as two- and three-dimensional maps 

as shown in Fig. 29. The constituents of representative ErGO hybrids evidenced some 

reactivity featured through the broad ridges and valleys (Figs. 29a and 29b) and highly 

electroactive localized sites also called hot spots (Figs. 29b and 29c). The topographical 

features of the hybrids integrate those of their constituents, visually confirming their 

combination and the successful distribution of electroactive sites. Compared to the 

constituents, CoO and Co3O4 when coupled with ErGO showed an enhancement of the 
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reactivity through a high current response on the order of 10 A and 102 A. The peaking 

values for the hybrids were comparable to ErGO, demonstrating that the electrochemical 

(a) (b) 

(c) 

(d) 

(e) 

Figure 29. Two- and three-dimensional areal scans of representative (a) Co
3
O

4
, (b) CoO, (c) 

ErGO, and their corresponding (d) Co
3
O

4
 and (e) CoO hybrids.  
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reactivity of the hybrids was improved relative to the cobalt oxide constituents. This 

behavior highlights the importance of ErGO as the physical (supporting network of the 

crystallites) and chemical (available structural defects/functional groups to serve as a 

chemical bridge with cobalt oxide and/or as an electroactive site) support.  

Electrocatalytic and Sensing Applications 

 In addition to collecting different properties of the hybrids, two other 

applications were explored, demonstrating the potential of these materials as catalysts 

for oxygen reduction-reaction (ORR) and enzymeless glucose sensing. The ORR as the 

primary reaction for fuel cells requires catalysts that can compete with the current 

platinum electrode which is scarce and expensive. Therefore, the hybrids were subject to 

cycling using CV to observe their i-V response (Fig. 30).  

 Distinctive redox peaks for representative CoNP/MLG, CoO/ErGO, and 

(a) (b) (c) 

(d) (e) 

Figure 30. CV curves containing ORR catalysis assisted by representative samples: 

(a) CoNP/MLG, (b) CoO/ErGO, and (c) Co
3
O

4
/ErGO, with corresponding current 

response at 0.4 V for (d) CoO and (e) Co
3
O

4
 based hybrids. 
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Co3O4/ErGO occurred at 0.2 V and 0.4 V, attributed to four-electron mechanism of ORR 

(0.401 V) 

    𝑂2 + 2𝐻2𝑂 + 4𝑒− ↔ 4𝑂𝐻−             (14),102 

 showing small variation/shifting between cycles (Fig. 30a-c) as observed in the 

previous CV. The current response indicative of the ability of the hybrids to 

reduce/oxidize oxygen was measured for all cycles at 0.2 V (Figs. 30c and 30d), having 

little to no variation among cycles for most hybrids and finding maximum values for 

CoO/MLG and Co3O4/MLG (2.1⨯10-2 A and 1.2⨯10-2 A, respectively). The 

performance for these hybrids could be attributed to the closely connected three-

dimensional network formed by the foam that facilitates the flow of oxygen related 

species (H2O and OH-) to the electrochemically active surface of the Co micro/nano 

crystallites for reduction/oxidation.  

 Even though commercial glucose sensors are available for purchase, they use 

enzymes as their mechanism of detection which raises their cost. In contrast, these 

affordable hybrids were able to detect glucose by means of electrochemical 

reduction/oxidation. While all hybrids have the potential to serve as sensor, we chose the 

composites that showed an outstanding electrochemical performance. These hybrids 

were monitored to observe their response to glucose in two experiments: using CV at 20 

mV/s for various glucose concentrations (0.2 mM, 0.4 mM, 0.6 mM, 0.8 mM, and 1 

mM) and using amperometry (0.45 V) for the progressive addition of 0.5 mL aliquots of 

20 μM glucose solution. An additional amperometric experiment was performed to 

explore the behavior of the hybrids towards glucose (0.1 M) addition while in the 

presence of other species (0.1 M uric acid-UA and 0.1 M ascorbic acid-AA) present in 
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the human body (Fig. 31).  Figure 31a shows the CV curve for Co3O4/MLG in which I 

and II correspond to redox pair  

    𝐶𝑜3𝑂4 + 𝑂𝐻− ↔ 3𝐶𝑜𝑂𝑂𝐻 + 𝑒−      (15) 

    𝐶𝑜𝑂𝑂𝐻 + 𝑂𝐻− ↔ 𝐶𝑜𝑂2 + 𝐻2𝑂 + 𝑒−      (16)  

and III and IV correspond to redox pair  

    𝐶𝑜𝑂2 + 𝐶6𝐻12𝑂6 ↔ 2𝐶𝑜𝑂𝑂𝐻 + 𝐶6𝐻10𝑂6    (17), 

reducing/oxidizing glucose from/to gluconolactone (Fig. 32) which confirms the 

expected electroactive response of Co. The characteristic features of the redox peaks are 

accentuated for 0.6 mM glucose.  Figure 31b shows the i-t plot for representative 

samples with highest current response for Co3O4/rGOHT. The inconsistency of current 

value with respect to glucose addition could be attributed to experimental error during 

the stirring of the solution after addition. Similarly, Figure 31b shows the i-t plot for UA, 

AA, and glucose addition where all samples show a progression in which the current 

increases upon glucose addition, emphasizing the capability of the hybrid to detect 

glucose even in the presence of other substances.  

  

Figure 31. (a) cyclic voltammogram for Co
3
O

4
/MLG in various glucose concentrations, 

current response (i-t plots) for chosen hybrids of (b) glucose alone and (c) glucose upon 

addition of uric acid and ascorbic acid. 
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3.2 Conclusion 

 The results obtained through the different electrochemical techniques 

emphasized and confirmed the enhanced electrochemical performance of these hybrids 

as supercapacitor electrodes. From the different graphene based hybrids, Co3O4/rGOHT, 

CoO/rGO, and CoO/MLG yielded high values of Cs, diffusion coefficient, and Clf and 

had some of the lowest charge-discharge time (0.46 s, 3.83 s, 0.83 s, respectively), 

indicating that hydrothermal synthesis and electrodeposition produces a synergistic 

blend of these two materials that allows high surface area and high density of 

electroactive sites fo r ion adsorption and electron transfer. In addition, stronger 

adherence of the material to the substrate was observed for electrodeposited and 

hydrothermally synthesized electrodes, highlighting their advantage as synthetic 

approaches as compared to physisorption. Particularly, the structural features of the 

graphene variants showed to strongly contribute to the performance. While for ErGO 

and rGO, the surface defects and functionalities act as both chemical linkage between 

the graphene support and the metal oxide and highly reactive sites, for MLG, the 

intertwined network from the Ni foam template permits accessibility for ion transport. 

Therefore, the combination of both the electrochemical properties and structural 

characteristics of both materials improves the performance of these electrodes as 

Glucose Gluconolactone 

Figure 32. Depiction of the structure of glucose and its oxidized form gluconolactone 
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supercapacitors. In addition, these hybrids showed potential as electrocatalytic platforms 

toward oxygen reduction reaction (namely CoO and Co3O4 on MLG), likely following 

the four-electron pathway, and toward glucose sensing with high current responses upon 

glucose addition alone and in the presence of other species.   
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Chapter 4: Summary and Future Prospects 

 As potential alternative sources of energy storage, cobalt oxide (s)/graphene 

hybrid electrodes were integrated by using physisorption, electrochemical anchoring, 

and hydrothermal synthesis. Their physical and electrochemical properties were 

collected to create a library of electroactive materials with potential application in 

electrocatalysis and glucose sensing. Even though all synthetic methods yielded 

successful coupling observed in the results from TEM and SEM (surface morphology), 

XRD (crystal structure), and Raman Spectroscopy (lattice vibrations), the 

electrochemical and hydrothermal synthesis showed outstanding electrochemical 

performance, suggesting enhancement of the synergy between Co and Gr likely owing 

to chemical binding rather than solely physical interaction. In fact, electrochemical 

properties including higher values of specific capacitance and low frequency capacitance 

along with fast charge-discharge time response and durability upon current cycling 

highlighted the potential for hybrids such as Co3O4/rGOHT, CoO/rGO, CoO/ErGO and 

CoO/MLG as supercapacitive electrodes. Additional parameters, obtained through EIS 

modeling and SECM probe approach and imaging allowed further insight into the 

physical and chemical processes occurring at the interfacial boundary, emphasizing the 

hybrid nature of the electrodes and their highly electroactive surfaces. As the observed 

improvement of the electrochemical performance is directly related to the charge 

transfer dynamics with its corresponding physical and electronic structural 

modifications, in-situ Raman spectroscopy studies were employed, monitoring these 

changes as a function of applied bias. Even though the preliminary results shown here 

point towards charge transfer evidenced in cobalt peak position variation potentially 
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interrelated to changes in the position of G peak, more information can be extracted 

from this data to clearly establish the storage mechanisms and dynamics of electron/ion 

transport occurring at the interface. Additionally, theoretical approximations of the 

bonding and antibonding electronic structures of cobalt in the presence of graphene 

could provide a deeper understanding of the structural shifting occurring as a 

consequence of electron promotion between cobalt and graphene and its association with 

ion transport.  
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Appendix A: In-Situ Raman Spectroelectrochemistry of Graphene-based Hybrids 

 In this appendix, Raman spectroscopy and electrochemistry were coupled to 

monitor the spectral changes with applied potential to understand the physical and 

chemical processes occurring at the electrode-electrolyte interface. The preliminary 

results obtained using this integrated technique will provide insights into the charge 

transfer dynamics of the hybrids. 

Experimental Setup 

 The measurements were performed in a customized three-electrode cell with a 

side opening for the sample, space for the silver chloride reference electrode and the 

platinum counter electrode. The electrolyte solution was lowered form previous ECHM 

experiments to 0.5 M KOH to avoid deterioration of the samples. Each hybrid was 

introduced into the sample slit and fixed with Teflon tape to prevent electrolyte leakage 

and was further mounted on a glass slide under the Raman microscope (Fig. A1). The 

Raman data was collected for each potential (from -0.2 V to 0.8 in increments of 0.1 V) 

to capture cobalt related peaks, D and G, and 2D in three separate sections (300-800 cm-

1, 1100-1800 cm-1, and 2450-2850 cm-1, respectively) with a 633 nm laser (EL = 1.92 

eV) at 100x magnification and 50% laser power. While the experiments were conducted, 

the i-t curves were observed to ensure the electrochemical stability of the system. 

Figure A1. Sketch of the in-situ set up experiments. 
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Results and Discussion 

 The collected Raman spectra of major peaks (Co400, Co600, Co700, D~1340 cm-1, 

G~1590 cm-1, 2D~2680 cm-1) was obtained and plotted for a series of potentials as 

shown in representative example of Co3O4/ErGO (Fig. A2). Despite the liquid medium 

and potential loss of intensity due to scattering, all characteristic bands were captured as 

previously found in air-acquired spectra. Shifting in wavenumber for D, G, and 2D 

peaks was observed likely associated with mechanical deformation for D and 2D and 

changes in the C-C bond length for G (Fig. A2b). At positive potentials (0 V-0.4 V), all 

peaks of interest are more distinct; however, decrease in intensity and loss of character 

(broadening) was identified at high potentials which could be attributed to different 

occupations of bonding and antibonding states for G peak in the case of C-C bonds and 

potentially for Co-C bonds and to electrostatic factors including the electric field 

generated by the applied potential.103   
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Figure A2. In-situ Raman spectra of Co
3
O

4
/ErGO as a function of applied 

electrochemical biases, monitoring characteristic peaks, (a) Co bands, (b) D and 

G bands and (c) 2D band. 
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 The band position of ωCo, ωD, ωG, and ω2D, intensity ratios of D to G (ID/IG), and 

2D to G (I2D/IG) are plotted as a function of potential (Fig. A3). In Fig. A3a, an 

increasing trend is exclusively observed for ωD corresponding to mechanical 

deformation, but in Figs. A3b-A3d, ωCo_pk2, ωG, and ω2D follow a decreasing pattern 

from 0.2 V onwards. While the peak position of Co400 resembles the trend of ωG, and 

ω2D which may suggest no structural modification for those particular peaks (Co400 not 

engaging in charge transfer), the position of Co700 follows an opposite behavior to ωD 

and ωG which might be indicative of charge transfer occurring between the Co 

nanoparticles and the graphene, with Co being oxidized-Co700 increases and graphene 

being reduced, G peak decreases (Fig. A3e). ID/IG as a semi-quantitative measure of 

defect density shows apparent variation for positive applied potential. As seen in the 

rGO based hybrids synthesized from physisorption, ErGO decorated with Co3O4 seemed 

to adopt similar trend of n-type point defects for 0.2 V, 0.4 V, and 0.7 V, where G band 

increases and 2D band decreases. However, most of the potentials showed both a 
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combination of both p- and n- type where G band decreased and 2D band increased (p-

type) or both bands increased (p-/n-type), demonstrating the dependency upon applied 

electrochemical bias.  

Conclusion 

 The work of this chapter serves as a platform to investigate the charge transfer 

dynamics and mechanisms of the hybrids. Even though this information requires further 

analysis due to its novelty, the current spectroscopic data provided a semi-quantitative 

validation of the initial observations from previous Raman spectra and analysis 

(physically deposited hybrids) where charge transfer was predicted. Theoretical 

calculations may facilitate the interpretation of these data to gain more insight regarding 

the structural modifications that allow ion/electron transport between Co and graphene 

variants. 
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