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PATH METHOD: A CASE STUDY 

Behzad Montazeri May 2017         57 Pages 

Directed by: A. Mark Doggett, Shahnaz Aly, and Neal A. Downing 

Department of Architectural and Manufacturing Sciences Western Kentucky University 

Scheduling is a major task in project management. The current scheduling 

technique, Critical Path Method (CPM), has been widely applied for several decades, but 

a large number of projects fail to be completed on time and schedule delays occur in 

many projects. This raises question about the validity of the current project scheduling 

system. Critical Chain Project Management (CCPM), derived from Theory of 

Constraints, is a relatively new alternative approach toward scheduling projects. This 

study compared CCPM and CPM to determine which scheduling method delivers a 

shorter project duration and has a better usage of resources. A scheduling software called 

ProChain was used to reschedule a CPM based construction project using CCPM. The 

study concluded that the CCPM has the possibility to deliver shorter project duration and 

better resource usage in comparison to CPM. It was revealed that ProChain has limitation 

in the process of transforming a CPM schedule to a CCPM schedule. For example, 

ProChain treats any tasks without any predecessor as a project terminating task and puts a 

project buffer after it. 
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Introduction 

Project management changed substantially between 1950s and 1960s with 

appearance of the Critical Path Method (CPM) technique for scheduling. Despite the fact 

that CPM and the invention of computers enabled the success of Apollo, projects almost 

always seem to be behind schedule. Although the advance of personal computers has 

brought sophisticated scheduling techniques, there has been little progress in improving 

the on-time delivery of projects (Leach, 2014; Umble & Umble, 2000). 

An alternative scheduling method to CPM, offered by Dr. Goldratt, is informally 

known as Critical Chain. Created by Dr. Goldratt based on his Theory of Constraints, 

CCPM pulls out self-embedded safety-times (contingency) in tasks and puts them at the 

project level. A growing number of companies implementing this project scheduling 

methodology have reported success. For example, Harris Corporation, by applying 

critical chain concepts, was able to complete the project of building the first eight-inch 

wafer facility in less than 14 months with activities, such as construction of the facility, 

installing new equipment, and training new workers. The industry norm for this type of 

project is between 28 to 36 months (Umble & Umble, 2000). 

Problem Statement 

In 1990, the Department of Energy (DOE) began implementing reforms to 

strengthen its project management practices. Although the DOE has taken many steps to 

improve its project management practices, they still experience significant problems 

completing projects on time. In 1996, the DOE reported schedule slippage in at least half 

of its 34 ongoing projects. In 2009, the DOE showed a cumulative delay of 45 years for 

its ongoing construction projects. A list of delayed projects follows: 
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1- Reports from March 2012 showed eight to 12 years of delay from the initial plan 

for the construction of a chemistry and metallurgy research replacement nuclear facility. 

2- Reports from December 2012 showed nearly a decade of slippage from the initial 

plan for construction waste treatment and immobilization plant. 

3- In 2013, the DOE reported three years of delay in the start of operation of a 

Mixed Oxide (MOX) fuel fabrication facility and two years of delay in the start of 

operation of Waste Solidification Building project in South Carolina. DOE noted that 

most schedule delays are attributed to the inconsistent usage of project management tools 

and techniques (GAO, 2013). The constant delays in projects deliveries raise the 

suspicion that conventional techniques widely used to schedule projects are conceptually 

flawed (Umble & Umble, 2000). 

Significance of Research 

Globalization has increased the intensity of competiveness in business. The 

increased number of competitors and networked firms working in collaboration to design, 

build, sell, and support new products and services has made development speed a critical 

factor for success. This matter makes project scheduling a key issue in project 

management (Cerveny & Galup, 2002). Goldratt asserted in his book Critical Chain that 

time is more important than cost for project managers and empirical studies support his 

claim. Studies have concluded that a project that is on-time, but over-budget by 50 

percent, will earn four percent less. Studies have forecasted that a project that is late by 

six months, but on-budget, will earn 33 percent less than an on-time project. These facts 

demonstrate the strategic importance of reducing project time (Hoel & Taylor, 1999; 

Goldratt, 1997). 
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A successful project is a project that satisfies three necessary conditions. The first 

necessary condition is scope. It sets a minimum standard for the project results while cost 

and schedule are the second and third necessary conditions usually setting the 

maximums. These necessary conditions are interdependent. Projects that take longer to 

complete cost more and also increase the opportunity for change of the project scope. 

Projects that cost more take longer to complete and the more changes to scope, the more 

cost and length of the project. Therefore, it is a benefit to finish projects as soon as 

possible (Leach, 2014). Improving construction scheduling and shortening the length of 

the projects results in better usage of human resources and efficient usage of financial 

resources. Improving resource usage creates the possibility of executing more 

construction projects within a certain period of time (Budd & Cooper, A project 

Management approach to increasing agency margins, 2004). 

Scheduling a project is a critical task for successful construction project 

management. Commercially available project management software packages for 

scheduling use the bar chart, the Critical Path Method (CPM), and the program 

evaluation and review technique (PERT) for scheduling analysis. In general, CPM is the 

first choice for scheduling purposes. CPM identifies the critical path and the total length 

of a project. As mentioned before, one of the pitfalls of CPM is its neglect of resource 

contention, making the produced schedules unreasonable. In order to address this issue, 

CPM uses resource leveling techniques, resulting in suboptimal schedules. The critical 

chain scheduling technique, derived from the theory of constraints, is an alternative to 

CPM scheduling and can make scheduling more effective (Lu & Li, 2003). 
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Statement of Purpose 

This study compared the CPM and CC scheduling methods in the construction 

industry by transforming the schedule of a project that originally used CPM scheduling 

method with the CC scheduling method instead. This study looked at the concepts and 

methodology of CPM and CC scheduling methods, the differences between CC 

scheduling and CPM, and the project duration difference between using these two 

methods for a construction project. 

Research Questions 

Goldratt’s book Critical Chain applied his theory of constraints to project 

management by developing a method for scheduling projects that cuts project times. 

Goldratt believed that estimate times are inflated and carry safety times embedded in 

each of them that results an increased duration of the project. Goldratt suggested that 

project times can be decreased by using 50 percent expected activity times instead of 

using inflated times and adding a project buffer to the end for estimating errors in activity 

task times (Hoel & Taylor, 1999; Goldratt, 1997). This study examined the claim of CC 

scheduling, which is the reduction of the project time using CC method instead of CPM 

by answering these questions: 

1- Which scheduling method delivers the shorter planned project duration in this 

study? 

2- Which scheduling method makes the most efficient usage of time in this study? 

Efficient usage of time was measured based on man-hours consumed. A Spent 

man-hour is the actual man-hour spent on site during the execution of any given activity 

(i.e. actual work in the MS Project software). 
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Assumptions 

 Each task within a project is statistically independent. 

 The selected project is executed in a single project environment. 

Delimitations 

This study is conducted under the following delimitation: 

 This study is a project for which original execution plan was about 7 months. 

Limitation 

This study is limited by the following: 

 The resulting critical chain schedule was not going to be executed; hence, the 

practicality of the created schedule is unknown.  
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Definition of Terms 

Buffer: Time or budget allowance used to protect the scheduled delivery dates on a 

project. 

Critical Activity: An activity located on the critical chain 

Critical Chain (CC): The longest set of dependents activities, with explicit consideration 

of resource availability, to achieve a project goal. 

Critical Chain Project Management (CCPM): The system of project schedule planning 

and execution deployed by Theory of Constraints practitioners including the critical chain 

schedule, buffer management, and pipelining for multiple projects, but not including 

many or most features of professional project management as codified by the PMBOK 

(Leach, 2014). 

Critical Chain Schedule (CCS): A late finish schedule controlled by the critical chain, 

including a critical-chain completion buffer (project buffer) and feeding buffer. 

Critical Path (CP): The longest sequence of activities in a network. Usually, a sequence 

with zero float. 

Critical Path Method: The original innovation in using networks and defining a critical 

path. 

Early Finish (EF): The earliest day on which an activity can finish. 

Early Start (ES): The earliest day on which an activity can begin. 

Feeding Buffer: A time buffer at the end of a project activity chain that feeds the critical 

chain. 
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Float or Slack: The amount of time that a task in a project network can be delayed 

without causing a delay to subsequent tasks ("free float") or the project completion date. 

Late Finish (LF): The latest day on which an activity can finish without prolonging the 

project duration. 

Late Start (LS): The latest day on which an activity can begin without prolonging the 

project duration. 
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Literature Review 

Critical Path Method: Traditional Method for Managing and Scheduling Projects 

The most common used scheduling method is the Critical Path Method (CPM), 

which was originally developed by two companies, DuPont and Remington Rand in the 

1950s. Current project management body of knowledge and project management 

practitioners consider CPM as the primary scheduling procedure. Computer software 

using CPM are widely available with capability of handling projects with thousands of 

activities. The critical path by itself is representative of the longest possible path within a 

network of processor/successor activities. Critical path duration represents the minimum 

time that is required to complete a project. Delays in the critical path will result in an 

increase of time required to complete the project. It is possible for a project to have more 

than one critical path (Hendrickson & Au, 1989; Weber, 2005). 

The process of creating a critical path method network. Creation of a CPM 

scheduling network for a project starts by listing the activities that need to be executed to 

complete the project and determining their logical relationships. Four types of 

relationships exist between activities: finish to start (FS), start to start (SS), start to finish 

(SF), and start to finish (SF). CPM allocates a specific duration to each task. Arranging 

the tasks based on their logical relationship, the sequence with the longest duration will 

be determined as the critical path (CP). This path determines the project length and 

alteration of the duration of tasks located on this path will cause changes in the project 

duration. In a project, more than one path through the network may be the longest path, 

but one will be selected as the CP. The other paths must be either equal in length or 

shorter than this path. It should be noted that the alteration of task durations in paths that 
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have equal length as the CP may result in change of the CP.  Figure 1 is an example of a 

CPM network. The critical path for this network is ADFGJK. Each node in the figure has 

several boxes with numbers showing a different aspect of each particular task (refer to the 

legend). In the process of creating this chart, unlimited resources were considered 

(Hendrickson & Au, 1989; Weber, 2005; Kerzner, 2009). After creation of the network, 

the resources are allocated and dependence to resource contention of the network is 

rescheduled. This process is known as resource leveling. In general, the result of 

rescheduling is a longer critical path. Project managers make every attempt to reallocate 

resources to find the shortest critical path, but unfortunately this is not an easy task, 

considering that float times were not intentionally planned as safety (Kerzner, 2009). 

 

Figure 1. Standard Critical Path Method Logic Method. 

Resource contention is often a major problem in projects. CPM assumes unlimited 

availability of resource, which is an invalid assumption in the real world. In practical 

situations, the amount of resources available are finite and these resources are shared by 

activities or projects. CPM schedules the project based on the dependencies of the tasks 
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and afterward allocates resources to each task and performs resource leveling. The hidden 

assumption for this way of scheduling is the existence of an acceptable way to account 

for resource contention and resource leveling. In order to overcome this draw back, 

analytical and heuristic techniques for resources leveling in a CPM network plan have 

been developed. Although many algorithms exist for resource leveling, there is no 

optimum method for resource leveling. Algorithms with the aim of finding the shortest 

CPM schedule face a combinatorial explosion problem in mathematics. An alternative 

approach is to use heuristic methods that apply priority rules based on activity 

characteristics. The result may satisfy the logical and technical aspects of the project, but 

it is not optimal to achieve the shortest project duration. In most cases, application of the 

resource leveling algorithms lengthens the overall schedule (Leach, 2014; Lu & Li, 2003; 

Umble & Umble, 2000; Yang, 2007).  

There are several methods to decrease the length of the rescheduled critical path, 

but each carry their own difficulties and are not always practical (Kerzner, 2009). These 

methods are mentioned below. 

 Transferring resources from tasks with float to tasks located in the critical path. 

This may cause the changing of the non-critical task to a critical task. In addition, the 

resources that are used in different tasks are not always the same. 

 Elimination of some parts of the project. This means changing the scope of the 

project, which is not an option in most cases. 

 Addition of more resources (i.e., crashing). This method increases the cost of the 

project. 
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 Increasing the number of work hours per day. This method also increases the cost 

of the project and is not always an option. 

Another down side of CPM scheduling is consideration of having fixed time for 

activities. This consideration stems from the assumption that the productivity of a given 

resource is stable. Practical observation shows that productivity varies considerably, 

especially in the construction industry (Jaafari, 1984). 

Jafaari (1984) mentioned the following as the arguments against CPM in 

construction projects: 

1- CPM does not satisfy the planning needs of construction projects. 

2- The assumption that project activities have fixed and discrete natures is untrue, 

especially in projects with repetitive or linear activities. 

3- Construction planning essentially involves giving equal attention to all processes 

critical (cost wise) and not just determining an incidental path related to the activity 

duration. 

4- Resource allocation, smoothing or leveling procedures are incapable of ensuring 

full continuity for production crew or processes, which are the backbone of operational 

planning in construction process, especially in repetitive cases. 

5- Even with electronic advancement, CPM scheduling is expensive to run. Status 

reports take time to reach managers and decision makers and are not updated on a real 

time basis, and by the time they receive their information tend to be outdated 

6- Practical integration of CPM-based progress and cost control has been extremely 

difficult, expensive, and non-productive. 



12 

 

An Alternative Approach 

Another approach to scheduling projects is the Critical Chain Project 

Management (CCPM) method, derived from Theory of Constraints (TOC). CCPM 

recognizes the importance of resource contention and defines the critical chain (CC) as 

the sequence of dependent events that prevents the projects from completing in a shorter 

interval. Resource dependencies determine the critical chain as much as task 

dependencies. CCPM scheduling considers dependencies a result of usability of resources 

in advance, not just their logical relationships (Leach, 2014; Yang, 2007). CCPM also 

suggests that delays in project deliveries stem from human behavioral issues, such as 

multitasking, student syndrome, Parkinson law, and sandbagging (Budd & Cerveny, 

2010; Leach, 2014). 

Multitasking. In traditional management, human resources are allocated to more 

than one task. This act is known as multitasking. This phenomenon resulted from the fast-

paced, technologically-driven world. Traditional management encourages multitasking 

and assumes it increases productivity. Although simulations such as the Tony Rizzo’s 

bead game demonstrate that application of multitasking prolongs completion of projects. 

The reason for such prolongation is the required time by the human resource to re-

familiarize themselves with the task, or in operational terms, the set-up time. This set-up 

time would not be needed if the resource would have continued executing a particular 

task till it was finished. Multitasking also induces additional stress on resources (Adler & 

Benbunan-Fich, 2012; Rubinstein, Meyer, & Evans, 2001; Roggenkamp, Park, & 

Tsimhoni, 2005; Budd & Cerveny, 2010). 



13 

 

Student syndrome. The name student syndrome is derived from the student 

behavior for procrastination. For example, students request an extension for an 

assignment that is two weeks away while in best case scenario, they start the assignment 

only few hours before it is due. This potential behavior not only applies to students, but to 

every human. Figure 2 shows typical human resource behavior towards an allotted task. 

Having been allotted a task, the human resource normally and after a short period of time, 

tries to save or reserve their work effort. Finding out that the allotted task will not be 

done at the designated time, there is a break point in the behavior of the human resource. 

Increasing stress leads to the tension of the resource (Bartoska & Subrt, 2012; Budd & 

Cerveny, 2010; Leach, 2014). 

 

Figure 2.The variablity of work effort during the “Student Syndrome”. Adopted from 

“The effect of human agent in project management,” by J. Bartoska, and T. Subrt, 2012, 

Central European Journal of Operations Research, 20(3), p.372. Copyright 2011 by 

Springer-Verlag. 

Parkinson’s Law. Few people force themselves to carry out tasks in the shortest 

period of time using the maximum effort available (road-runner ethics). Human 

resources, due to their natural character, are inclined to reserve their vital energy during 

work effort. They are not motivated to surpass their natural behavior unless they are 
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exposed to some sort of stress from loss of profit (Bartoska & Subrt, 2012). This 

behavioral issue of human resources to expand work so as to fill the time available for its 

completion is known as Parkinson’s Law. Krakowski (1974) pointed out that the slack of 

project activities in the CPM scheduling network may eventually be absorbed by 

Parkinson’s Law effect. In many cases, this elasticity of work in its demand on time is a 

major cause for project delays (Gutierrez & Kouvelis, 1991). 

Sandbagging. In many cases, a resource that finished a task early avoids turning 

it in. The reason for such behavior may include the discounted task duration for future 

activities or the fear of additional assigned work. Therefore, most experienced resources 

avoid turning in a finished work early and will only turn it in on the due date. This act is 

similar to Parkinson’s Law and will extend a task to consume its full allotted time. 

Therefore, any embedded safety in the task duration will be consumed and will not be 

passed on to the next activities (Budd & Cerveny, 2010). 

Critical Chain Project Management 

Theory of Constraints (TOC) was initially introduced by Goldratt in his book The 

Goal. TOC is based on the principle that every system has a weakest link (constraint or 

bottleneck) that affects throughput. Total throughput of the system is dependent on this 

constraint; otherwise, the throughput will increase. TOC is a management technique to 

continuously improve the systems’ performance. TOC offered five steps for continuous 

improvement of systems. The five focusing steps of TOC are: 

1- Identify the constraint 

2- Exploit the constraint 

3- Subordinate everything else to the constraint 
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4- Elevate the constraint 

5- Prevent inertia from becoming the constraint, repeat the process (Goldratt, 1986; 

Yang, 2007).   

CCPM was introduced by Goldratt in his book Critical Chain in 1997. CCPM 

methodology was the application of Dr. Goldratt’s Theory of Constraints to project 

management. This method gained attention among practitioners as a method for resource 

scheduling in projects. What differentiates CCPM scheduling is its attention to both 

precedence and resource dependencies. This distinguishes CCPM from CPM, which is 

based only on technological relationships and does not consider resource availability 

(Tukel, Rom, & Eksioglu, 2006; Goldratt, 1997). 

In the project management environment, the goal is to complete the project as 

soon as possible; hence, the constraint that dominates the project is the CC. The duration 

of the project is the aggregation of critical chain activities’ duration. CCPM challenges 

traditional CPM management as being impractical by not considering resource contention 

and embedding too much contingency in each individual task. CCPM takes out individual 

contingency and allocates a contingency time (project buffer) at the end of the project. 

This is why the duration of a CC schedule may be shorter than a CPM schedule. CC 

scheduling concentrates all the safety time at the end of the project to protect the target 

date against variations and maintain focus on critical activities (Yang, 2007). 

CCPM considers that the original duration of tasks are estimates on the likelihood 

of 90 to 95 percent and they should be reduced to the point where the likelihood is 50 

percent. This pooled safety time or contingency from individual tasks can be allocated at 

the end of the project. It should be noted the project buffer is part of the project schedule 
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and duration (Raz, Barnes, & Dvir, 2003; Blackstone, Cox III, & Schleier Jr, 2009). 

CCPM provides the following as the rationale for decreasing the original duration: 

1- Every activity in the project is exposed to some degree of variation 

2- Task/activity owners provide estimates containing a margin of contingency to 

ensure that they complete the task on time 

3- In many cases, the activity will be completed sooner than its due date and will not 

require the entire contingency margin 

4- Since protection times are embedded within tasks; if it is not needed, it is wasted. 

The next activity will not start till the scheduled time due to unavailability of resources. 

Therefore, when it becomes apparent that the embedded safety time is unnecessary, the 

incentive for finishing the activity early will vanish (Parkinson law). On the other hand, 

any delays in the completion of the tasks on the critical chain propagate to the successor 

tasks. Hence, gains are lost, delays are passed on in full. Even if there is enough safety 

time hidden within tasks, the project is likely to be late 

5- CCPM does not split attention among numerous tasks (multitasking). Empirical 

studies shows that multitasking increases each task duration (Raz, Barnes, & Dvir, 2003). 

Assuming each task is statistically independent, half of the tasks will be 

completed after the 50 percent and half before; therefore, CCPM suggests that the project 

buffer can be less than the sum the contingency margins of the individual tasks. It is 

unlikely that all the tasks on the critical chain be completed after their 50 percent mark; 

hence, the protection against uncertainty is improved by combining all the hidden 

contingencies embedded in individual tasks. This matter can be supported by a statistical 

theory that the standard deviation of the sum of a number of mutually independent 
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random variables is less than the sum of the individual standard deviation. This process 

can be executed on the non-critical chain activities (Raz, Barnes, & Dvir, 2003). 

In a CCPM schedule, three types of buffer exist to protect the target date from 

variations. The project buffer protects the project date completion. The feeding buffer 

protects the critical chain against disruption from other chains. The resource buffer is for 

notifying the scheduler of a new resource being employed on the critical chain. Many 

techniques exist for determining the buffer length. Determining a reasonable buffer is an 

important task. Large buffers generate a schedule that resemble the traditional CPM 

schedule and short buffers fail to protect the schedule from variations (Yang, 2007; 

Newbold, 1998). 

Buffer Sizing 

Cut and Paste Method (C&PM). The most important buffer is the project 

buffer, because it protects the project schedule from uncertainty. As rule of thumb, 

Goldratt proposed 50 percent of the Critical Chain duration as the project buffer and half 

of the non-critical chains’ duration that join the Critical Chain as the feeding buffer. This 

is a linear approach to buffer sizing and as the duration of the project increases, the length 

of the project buffer increases. Using the 50 percent rule may lead to allocation of an 

unnecessarily overestimated project buffer, but the advantage is its simplicity. This 

method is known as the Cut and Paste Method (C&PM) (Ashtiani, Jalali, Aryanezhad, & 

Makui, 2007; Goldratt, 1997; Herroelen & Leus, 2000; Tukel, Rom, & Eksioglu, 2006; 

Newbold, 1998). 

Root Square Error Method (RSEM). The Goldratt’s approach is probably 

sufficient for most purposes; although, Newbold (1998) offered a more realistic approach 
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for buffer sizing considering the risk variation that exists among tasks. His approach 

assumed a lognormal distribution for the probability of a task completion. Also, it 

assumed that a task should be completed within the worst-case duration estimates around 

90 percent of the time. The difference between the average expected duration and the 

worst-case duration will be approximately two standard deviation. If 𝑤𝑖is the worst-case 

duration and 𝑎𝑖 is the average duration, the standard deviation would be(𝑤𝑖 − 𝑎𝑖) 2⁄ . 

Considering that Central Theorem applies, the sum of distributions will be normally 

distributed. Assuming the required buffer that is two standard deviation, the buffer will 

be: 

 2 × 𝜎 = 2 × √((𝑤1 − 𝑎1) 2⁄ )2 + ((𝑤2 − 𝑎2) 2⁄ )2 + ⋯ + ((𝑤𝑛 − 𝑎𝑛) 2⁄ )2 (1) 

This approach is known as Root Square Error Method (RSEM). It should be noted 

that these calculations are very approximate and further modification based circumstance 

may be required for adjusting the buffers sizes (Newbold, 1998). 

Modified RSEM. However, the assumption that difference between the average 

expected duration and the worst-case duration will be approximately two standard 

deviation will not hold (Herroelen & Leus, 2000). To resolve this matter, Ashtiani et al. 

(2007) suggested replacing the denominator in the standard deviation formula with 1.3 as 

a more realistic approach. The resulting formula was: 

 2 × 𝜎 = 2 × √((𝑤1 − 𝑎1) 1.3⁄ )2 + ((𝑤2 − 𝑎2) 1.3⁄ )2 + ⋯ + ((𝑤𝑛 − 𝑎𝑛) 1.3⁄ )2 (2) 

 The common assumption in the previous buffer sizing methods is that 50 percent 

of the safe estimate corresponds to variability in task duration. Although this 50 percent 

is not a reflection of variability since the distribution of task durations is typically skewed 

to the right. It is possible that the actual task duration would be much longer than 
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predicted. While there might be more instances of shorter than predicted durations, these 

deviations will be relatively small. Therefore, in process buffer sizing one should be 

explicit about the underlying assumption regarding task duration (Goldratt, 1997; Tukel, 

Rom, & Eksioglu, 2006).  

In the cases where the resource usage is close to the total resource availability, the 

probability that a delay will occur increases; therefore, larger buffers should be allocated 

to protect the due dates. Similarly, for a given number of tasks, when the number of 

precedence activity relationships increase, the probability of a delay increases. Since the 

tasks are more interrelated in this case, any delays in a task will affect all of its 

successors. Thus, the buffer size should be increased (Tukel, Rom, & Eksioglu, 2006).  

Adaptive procedures. The buffer sizing method that takes into account the 

project characteristics, level of uncertainty, resource utilization, and network complexity 

are adaptive procedures. Adaptive Procedures with Resource Tightness (APRT) considers 

resource tightness, which is represented by Resource Factor (RF). It is a utilization factor. 

RF is the ratio of total resource usage to the total resource availability for each resource. 

Network complexity is represented as the ratio of the total number of precedence 

relationships to the total number of tasks (Tukel, Rom, & Eksioglu, 2006). 

Assuming 𝑟(𝑖, 𝑞) is the resource usage of activity 𝑖 for resource type 𝑞; 𝑑𝑖 the 

duration of activity 𝑖; 𝑅𝑎𝑣(𝑞) is the availability of resource type 𝑞; 𝑇 is the length of the 

critical chain; and 𝑉𝐴𝑅𝑖 is the variance of activity 𝑖. For each feeding chain: 

 𝑅𝐹(𝑞) = (𝛴𝑖𝑟(𝑖, 𝑞) ∗ 𝑑𝑖)/𝑇 ∗ 𝑅𝑎𝑣(𝑞); For each resource type 𝑞 (3) 

 𝑟′ = 𝑚𝑎𝑥𝑞{𝑅𝐷(𝑞)} (4) 
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 𝐾 = 1 + 𝑟′ (5) 

 𝑆𝑈𝑀 = 0 (6) 

For every activity 𝑖 on the longest path terminating at the critical chain: 

 𝑆𝑈𝑀 = 𝑆𝑈𝑀 + 𝑉𝐴𝑅𝑖 (7) 

 𝐵𝑈𝐹𝐹𝐸𝑅 𝑆𝐼𝑍𝐸 = 𝐾 ∗ 𝑠𝑞𝑟𝑡(𝑆𝑈𝑀) (8) 

The Adaptive Procedure with Density (APD) assumes 𝑇𝑂𝑇𝑃𝑅𝐸 is the total 

number of precedence relationship on a sub-network that feeds the critical chain and 

𝑁𝑈𝑀𝑇𝐴𝑆𝐾 is the total number of tasks on the subnetwork (Tukel, Rom, & Eksioglu, 

2006). For each feeding chain the K is: 

 𝐾 = 1 + (𝑇𝑂𝑇𝑃𝑅𝐸 𝑁𝑈𝑀𝑇𝐴𝑆𝐾)⁄  (9) 

 𝑆𝑈𝑀 = 0 (6) 

For every activity 𝑖 on the longest path ending by feeding to the critical chain: 

 𝑆𝑈𝑀 = 𝑆𝑈𝑀 + 𝑉𝐴𝑅𝑖 (7) 

 𝐵𝑈𝐹𝐹𝐸𝑅 𝑆𝐼𝑍𝐸 = 𝐾 ∗ 𝑠𝑞𝑟𝑡(𝑆𝑈𝑀) (8) 

In the process of selecting the buffer size, a project manager should consider 

selecting a method that results in a shorter project completion schedule, but also one that 

can be met with a high degree of probability. Simulations comparing C&PM, RSEM, 

APRT, and APD (not the modified RSEM) indicated that the C&PM and RSEM methods 

perform well in terms of probability of meeting the target due date, but buffer sizes are 

considerably larger, especially with C&PM. C&PM is considered to be a good enough 

method due to its simplicity, but simulation studies indicated that C&PM schedule is 17 

to 25 percent longer than either of the adaptive methods (APRT and APD). Adding large 
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buffers to the project schedule push the target due date further to the future, but the 

probability of passing the due date only decreases marginally. In a project environment 

where the uncertainty level is relatively low, adaptive procedures are good choices, but in 

high uncertainty environments, specifically large projects, the probability of meeting on-

time completion can be as low as 60 percent. The RSEM holds the middle ground 

between C&PM and adaptive procedures (Tukel, Rom, & Eksioglu, 2006; Bie, Cui, & 

Zhang, 2012). 

In most buffering methods, all activities in the project are assumed to be 

independent of each other. However, this is an unrealistic assumption because effects of 

resource sharing and common environmental risk factors on some activities is inevitable. 

Uncertainty of the project increases as the duration of these risk-related activities tend to 

vary together. Therefore, previous approaches may underestimate the required buffer size 

to protect the target due dates.  Adaptive procedure with Activity Dependence (APAD) 

considers these dependencies and calculates buffer size differently (Bie, Cui, & Zhang, 

2012). Assuming: 

 𝑁 is the total number of activities in the critical chain 

 𝑀 is the number of the activities affected by the risk factor in the critical chain 

 𝐾𝑖 is the percentage of uncertainty if duration activity 𝑖 explained by the risk 

factor 

 𝑉𝐴𝑅𝑖 is the variance of the duration of activity 𝑖. 

For each feeding chain, the longest path ending at the critical chain should be 

determined, 𝑁 will be the number of activities on this path, 𝑀 will be the number of 
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activities affected by the risk factor on this path, 𝐾𝑖will be the percentage of uncertainty 

of duration of activity 𝑖 explained by the risk factor on this path, and 𝑉𝐴𝑅𝑖 will be the 

variance of the duration of activity 𝑖 on this path. The project buffer size of the feeding 

buffer can be calculated as: 

 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑑𝑒𝑔𝑟𝑒𝑒(𝐷𝐷) = 𝑀 𝑁⁄  (10) 

 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(𝐷𝐹) = ∑ 𝐾𝑖 𝑀⁄

𝑖

 
(11) 

 𝑟 = 𝐷𝐷 ∗ (𝑒𝑥𝑝(𝐷𝐹2) − 1) (12) 

 
𝐵𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 = (1 + 𝑅) ∗ (2 ∗ (∑ 𝑉𝐴𝑅𝑖)

𝑖

1 2⁄

) 
(13) 

The two characteristics representing the dependencies of a project are seen in the 

calculation as Dependence Degree (DD) and Dependence Factor (DF). Computational 

experiments suggested that ADAP provides better protection to target dates compared to 

methods that assume the independency of tasks, when at least either DD or DF is at a 

high level (Bie, Cui, & Zhang, 2012). 

Fuzzy numbers. In non-routine projects, due to the unavailability of the 

statistical data, regular CCPM buffer sizing methods cannot be applied. In order to 

overcome this downfall, Long and Ohsato (2008) developed another buffer sizing method 

based on the square root of the sum of the squares of the safety times estimated by fuzzy 

numbers. The safety time of each activity is determined as the difference between 

suitable deterministic duration and the high agreement duration in the model of 

trapezoidal fuzzy numbers TrFN (a, b, c, d). The high agreement duration is calculated by 

using an agreement index (AI), which is defined as the percent of the fuzzy event (A) 
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inside the boundaries of the fuzzy event (B). Calculations with fuzzy numbers allow the 

incorporation of uncertainty on parameters. Assuming 𝑠𝑡𝑖  is the safety time of activity 𝑖, 

𝑡𝑖
ℎis the high agreement duration, 𝑡𝑖

𝑑  is the suitable deterministic duration, and 𝑃 is the 

number of tasks in the critical chain in the initial deterministic schedule. The project 

buffer size is calculated (Long & Oshato, 2008; Bie, Cui, & Zhang, 2012): 

 𝑠𝑡𝑖 = 𝑡𝑖
ℎ − 𝑡𝑖

𝑑  (14) 

 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒 =  max
𝑝=1,…,𝑃

(∑ 𝑠𝑡𝑖

𝑖∈𝑝

)1 2⁄  
(15) 

Buffer Management 

The purpose of buffers is to protect the schedule from variation. The project 

buffer is depleted as delays along the critical chain accumulate. In order to inform project 

managers about the status of the project in terms of on-time completion of tasks/project 

versus the consumed buffer, the CCPM uses fever charts. To produce fever charts, the 

project buffer is divided into three equal sections. The first one-third section of the buffer 

is the green zone or the expected variation zone. This section is expected to be consumed 

due to inherent task uncertainties. In this case, project managers do not need to take 

excessive corrective actions as it may cause wasted time and loss of focus. The second 

one-third of the buffer is the yellow zone or normal variation. Consumption of the second 

third of the buffer is caused by inherent uncertainty of task duration prediction. 

Consumption of the second third of the buffer is not a reason to raise alarms, but projects 

mangers should start to create plans to recover the lost time. It is important to only create 

plans, but not to execute them. In the yellow zone, project managers should start to be 

prepared. These plans should only be executed if consumption of the last third of the 
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buffer starts to take place. The last third of the buffer is the abnormal variation or the red 

zone and is the result of special cause of variation. In this section, project managers need 

to take actions to avoid missing the deadlines and restore buffer. Procedures are the same 

for the feeding buffers. In case of feeding buffers, if the project buffer still contains 

adequate safety time, immediate actions might not be necessary even if the feeding buffer 

status is red. Figure 3 illustrated buffer variation areas (Budd & Cerveny, 2010; Deming, 

1986). 

     Start of Buffer End of Buffer 

  

 

Figure 3. Buffer Variation Area. Adopted from “A Practical Guide to Earned Value 

Project Management”, 2nd ed., by C. I. Budd, and C. S. Budd, 2010. Copyright 2010 by 

Management Concepts, Inc. 

Critical Chain Scheduling 

In the process of scheduling in the single project environment, there are seven 

generic steps.  

1- Create the initial plan, containing the logical relationships and durations that have 

safety time removed.  

2- Load level, by eliminating all resource contention, working from the end to start 

of the project (first backward pass). 

3- Detect the Critical Chain, which is the longest path of resource and task 

dependencies (second backward pass) 

4- Calculate and insert the project buffer, identifying the buffer points 
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5- Calculate and insert the feeding buffer for all the paths feeding to the critical 

chain, resolving any newly created/discovered resource contention. 

6- Add resource buffers to ensure timely notification of resources that have no 

predecessors and to all resources that have work assigned on the critical chain. 

7- Analyze the schedule and evaluate options to complete the project at an earlier 

date; make selected changes, review and approve changes, and update the schedule. This 

is recommended for longer projects or if the project completion date is far in the future 

(Budd & Cerveny, 2010; Newbold, 1998). 

Criticism of Critical Chain Scheduling 

Existing scheduling software do not carry an optimal algorithm for resource 

leveling and resource-constrained scheduling. These software simply rely on priority 

rules for generating a precedence and resource feasible schedule. Based on these rules, 

the scheduling priority is given to an activity on the basis of activity attributes, such as 

latest start time (LST), latest finish time (LFT), and so forth. Computational experiments 

suggests that LST and LFT rules may be the best priority rules, but it is still possible to 

generate a project schedule that is lengthier than average. These scheduling software 

consider schedule information as proprietary information and do not provide detailed 

description of the rules that are in use. These software may generate a baseline schedule 

that might be far from the optimum. It is suggested that Primavera Project Planner 

delivers the best resource-constrained project scheduling performance (Herroelen & 

Leus, 2000; Kolisch, 1999). CCPM theory does not offer a prescribed resource leveling 

algorithm for the numerous algorithms that have been published in the operations 
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research literature; therefore, there is no specific way to achieve the optimum baseline 

schedule (Raz, Barnes, & Dvir, 2003).  

Decreasing Work in Progress (WIP) is considered one of the most important 

measurements of a project schedule. The aim of the CC scheduling method is to 

minimize the WIP and schedule tasks as late as possible while keeping the project due 

date sufficiently protected. This decreases the chance of rework if a design problem is 

discovered. Also, it concentrates or maximizes the use of cash by pushing out investment 

until it is absolutely needed (Herroelen & Leus, 2000). 

CCPM considers multitasking as the biggest killer of lead time. Some studies 

show that multitasking actually improves productivity at certain level, but too much 

multitasking has a negative effect. It is a well-known fact that taking action ahead of time 

(preemption) for a task is harmful for the flow time of jobs; however, it is also a well-

known project scheduling fact that activity preemption may decrease the duration of a 

project (Herroelen & Leus, 2000; Adler & Benbunan-Fich, 2012; Appelbaum, 

Marchionni, & Fernandez, 2008; Raz, Barnes, & Dvir, 2003). 

Depending on how the baseline schedule is generated, different sequences in a 

baseline schedules with a different critical sequence will be created. Suboptimal 

procedures creating schedules for a resource-constrained project may yield a different 

feasible schedule with different critical sequences. Even alternative optimal schedules 

may exhibit different critical sequences. Creating a good baseline schedule is not easy, 

but it is an important a task. There are instances that commercial software produces a 

baseline where the duration is above the optimum (Herroelen & Leus, 2000). 
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Feeding buffers are placed whenever a non-critical chain activity joins the critical 

chain to protect the critical chain from delays taking place on the activities on the feeding 

chain. Feeding buffers are inserted after that critical chain is identified. When feeding 

buffers are inserted by pushing back the feeding chain, the critical chain might not be the 

longest sequence. This becomes more important for a projected schedule in which every 

gating task (tasks without predecessors) is set to start at its scheduled time in the baseline 

schedule and the road runner mentality dictates the start times of the other activities. It 

may cause for the critical chain, which determines the length of the project, to start later 

and push back a non-critical chain. This is rather counter-intuitive. A complicated 

situation might be created after inserting buffers to a feeding chain that feeds another 

chain or is being fed by another chain of activities. This happens if the buffers are 

inserted by pushing back a chain of activities. Contention of resources may be complex to 

resolve (Herroelen, Leus, & Demeulemeester, 2002). 

CCPM assumes that all task owners overestimate task durations and embed safety 

time in the task before with a 95 percent confidence level. Also, execution of each task 

will be expanded to fill the allotted time (Parkinson’s Law). However, CCPM falls short 

on providing proof for task overestimation assumption and Parkinson’s Law. Hill, 

Thomas and Allen (2000) provided contradictory results. In a major financial 

organization, out of 500 analyzed tasks durations, eight percent of the actual task times 

were equal to estimation, 60 percent of the tasks were reported as complete in less than 

the estimated time (in support of overestimation, but against Parkinson’s Law), and 32 

percent of tasks were completed after the estimated time indicating that the contingency 

factor, if it existed at all, was certainly not sufficient for the 95 percent confidence level. 
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CCPM also does not address the issue of how a project manager should determine the 

embedded contingency factor. It is likely that task owners embed more safety time in 

their estimates, with the knowledge that their estimates will be reduced (Raz, Barnes, & 

Dvir, 2003). 

Previous Case Studies 

Using a theoretical, but realistic, set of time estimates for tasks involved in 

creating an advertisement campaign, CCPM showed a 20% reduction in project length 

compared to PERT/CPM method, from 29 weeks to 23 weeks. In this case, the estimated 

task duration was shortened by 50 percent and used the C&PM for setting the buffer 

times (Budd & Cooper, 2004). In a similar study in the advertising industry, in a multi 

project environment, CCPM showed a reduction of between 31 to 43 percent in the 

project duration compared to PERT/CPM (Budd & Cooper, 2005). In a case study by 

Yang (2007), the concept of CC scheduling was used to shorten the total construction 

time, but achieved opposite results. The original schedule under CPM was 366 days and 

after rescheduling using the CCPM the duration was 515 days. This case study makes the 

impression that the CCS does not have shorter duration than CPM, but by excluding the 

project buffer from the CCPM schedule, this scheduling method delivers shorter duration 

in comparison to the CPM schedule. 

Literature Conclusion 

By holding buffers at the project level versus task level, Critical Chain Project 

Management tries to decrease project duration and increase the project schedule fidelity 

(reliability) (Doyle, 2010). CCPM minimizes the negative effects of student syndrome 

and Parkinson’s Law and eliminates multitasking, resulting in reduced time in schedules. 
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By reducing the schedule duration, the possibility of budget overruns and scope creep are 

reduced. Using Critical Chain Project Management provides improvements in aspects 

such as schedule, resource, budget, scope, and quality, resulting in heightened returns for 

stakeholders (Hilbert & Robert, 2010). In order to achieve this duration reduction, every 

completed activity should be reported immediately to carry out other activates (road 

runner ethics) and absorb benefits of early completion of a task. Under CPM, any delays 

in tasks will be passed on to the next activities and cause project delays, but any early 

completion will not advance the project due to sandbagging and Parkinson Law. In 

CCPM, delays in tasks will be absorbed by the project buffer instead of being passed on 

to the next activity and delaying the whole project.  
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Methodology 

Participants and Procedure 

The intention for this study was to determine if CPM or CCPM delivers the 

shorter project duration in a specific construction project. In order to fulfill this intention, 

the researcher acquired a project that was already scheduled and planned using CPM and 

rescheduled it using the CCPM scheduling method. The intended project was in the 

construction industry and had an original duration of seven months.  

The acquired data was the construction of a concourse section in a mall at a 

university. The data was provided by a faculty member in the Architectural and 

Manufacturing Sciences (AMS) department at Western Kentucky University. The data 

was already scheduled using the CPM scheduling method. The task durations for the 

project were predicted based on a 90 percent probability of being completed on time, as 

confirmed by the data provider. The schedule was also part of a larger project and this 

part of the schedule was exported for manageability purposes for this study. The exported 

project had 157 tasks, including summary and milestone tasks. These tasks were scattered 

between seven Work Breakdown Structures (WBS) with no logical relationships existing 

among them.   

The procedure created a single project environment to avoid the complexities that 

exist in a multi-project environment. This kept the comparison between CPM and CCPM 

scheduling method simple enough to facilitate demonstration of the differences between 

the two methods. Since each construction project is unique, the selected project was 

typical in construction, as confirmed by the provider. 
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As discussed in the literature review, the traditional project scheduling method of 

CPM uses estimates that have a 90 to 100 percent probability of on-time completion. 

Critical chain uses estimates that have 50 percent probability of on-time completion. 

Goldratt suggested cutting conservative estimates in half will achieve this objective. 

Therefore, in the process of changing the CPM schedule, each activity duration was 

decreased by half (Goldratt, 1997; Blackstone, Cox III, & Schleier Jr, 2009). The original 

duration for task dependent activities was kept based on their original times. Task 

dependent activities are activities where the allocated number of resources has no impact 

on the determination of duration. In other words, the activity is supposed to take a certain 

amount of time to be performed irrespective of the resources it has, such as concrete 

curing. 

In the process of adding buffers in CC scheduling, the C&PM was used due to its 

simplicity and the fact it creates the longest CC schedule, as discussed in the literature 

review. Therefore, if this schedule is shorter than the CPM schedule, the rest of buffer 

sizing methods will also create shorter schedules than the CPM method. 

The following steps were followed for establishing the CCS: 

1- Established a project basic information schedule using the data provided by the 

original schedule. This schedule included activities, resources and calendar, and 

assignment of resources and calendar. 

2- Leveled the resource, to minimize work-in-progress activities as late as possible 

to avoid multi-tasking, after considering resource contention. 

3- Identified the critical chain, considering all logical and resource-dependency 

relationships between activities. 
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4- Generated all buffer activities and assigned relationships. 

5- Inserted buffers into the schedule network. 

The necessary information for the above steps follows: 

 To resolve resource contention, the activity with the lower ID number in the Work 

Breakdown Structure (WBS) had higher priority and the ID was used to level resource 

contention. 

 As mentioned, 50 percent of the critical chain length was the length of the project 

buffer (C&PM). Similarly, 50 percent of the feeding chain was used as the length of the 

feeding buffer. 

 Buffer activities were assigned a finish to start (FS) logical relationship with their 

related chain. 

Instruments and Materials 

The software used for checking and reading the original CPM schedule was 

Microsoft Project™ (MSP). The selection of this software was based its. The software 

that was used for scheduling based on CCPM was ProChain™, which is a commercial 

software that can be overlaid on Microsoft Project™.  This software was selected for its 

ability to execute CC scheduling and its ability to be overlaid on MSP. The ProChain 

software was funded by Western Kentucky University’s graduate school for the purpose 

of this study. 
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Threats to Validity 

1- The assumption that every task had 50 percent embedded contingency in it might 

not be true for every task. Each task may have had a different amount of embedded 

contingency in it. 

2- As this project was in construction, the result might not be applicable to other 

types of projects. 

3- The data might have carried a modified task duration rather than the original 

estimates reported. 

4- The actual use of CCPM was not studied, since it was not executed in reality. 

Analysis 

Comparison between these two scheduling methods was done based on the final 

scheduling duration. A Gantt chart demonstrated differences between the two scheduling 

methods. In order to compare efficient usage of man power, the percentage of actual 

work completed was used to compare the two methods (actual work / total actual work) 

after consumption of 25, 50, and 75 percent of the duration of the project. In MS project, 

percent complete is really percentage duration completed in the project and is calculated 

as actual duration divided by total duration. Actual work completed in the MS project is 

defined as the man-hour that was used divided by total actual work, which is the total 

man-hours needed. 
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Findings 

The original plan before resource leveling was 199 days. The project had 15 

resource groups. Before resource leveling, nine of the resource groups were over 

allocated. By running the ‘level resource’ function embedded in MSP, the resources were 

leveled. In the process of resource leveling, MSP is able to adjust individual resource 

assignments on an activity and create splits in remaining works. After resource leveling 

the project duration was 218 days. This schedule can be found in Appendix A.  

ProChain software treats separate terminating tasks as endpoints that need to be 

protected with project buffers; therefore, there should be only one task with no successors 

and a project should have only one task or milestone that terminates a project network. 

The provided schedule contained seven tasks (ID numbers 11, 42, 88, 67, 104, 141, 157) 

without any successors. If the CC scheduling process would have been executed with this 

condition, ProChain software would have identified each of these tasks as the end of a 

project network and placed a project buffer in the end of each of them. In order to avoid 

this complication, the task ‘project completion’ was defined as the successors of these 

tasks. The result of this action created only one project buffer and avoided the creation of 

multiple project buffers. ProChain version 12 executes critical chain scheduling different 

than the traditional CC scheduling method described in the literature review. With the 

default settings, feeding buffers are not created in ProChain 12. In order to resolve this 

matter and schedule the project based on the traditional CC scheduling method and 

creation of feeding buffers, the option of traditional critical chain mode was activated 

under the ProChain options, and project/feeding buffers were set as half of the 

critical/feeding chain duration.  
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In order to achieve task durations with a 50 percent probability of being 

completed on-time, the task durations were cut in half.  After these modifications, the 

rescheduling function for the project, based on the CCPM, was executed. Project duration 

decreased to 173 days, with one project buffer (36 days) and 12 feeding buffers. The 

length of the critical chain was 115.5 days. The project buffer duration is less than half of 

the critical chain duration because ProChain does not include time of the predecessor 

when tasks are overlapped due to lead and lag times on the linkages (or, in certain cases 

with FF links, the successor). The effect of overlapping on buffer sizing is similar with 

other link types (SS, FF, and SF). When there is a lead time, the duration of that lead time 

does not contribute to the buffer size. The schedule based on the CCPM can be found in 

Appendix B.  
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Discussion 

Feeding buffers’ duration are calculated as half of the duration of its feeding 

chain. In some cases, adding the feeding buffer duration to the original duration of a 

feeding chain may result in an alteration. Consider the scenario illustrated in Figure 4. 

Task A, with duration of seven days, and task B with the duration of 6 days, both feed 

task C with duration of three days. In this scenario, task A and C are the critical tasks, 

creating the critical chain, and task B is the feeding chain. By adding the feeding buffer to 

the feeding chain, the total length of the feeding chain will be nine days. Based on the 

CCPM concept, the length of the project will be the length of the critical chain plus the 

project buffer, which will be 15 days. As illustrated in the figure, the length of the project 

now is 17 days instead of being 15 days. By putting a feeding buffer for task B as the 

feeding chain, this chain was pushed back for two days. 

 

Figure 4: Complications of Feeding Buffer. 

The original data contained a ‘must start-on’ constraint on the starting tasks in 

each WBS. As a result, the duration of the project was under the influence of this 

constraint rather than solely being dependent on the length of the critical chain and the 

buffers. The combined effect of a ‘must start-on’ constraint for starting tasks and their 

successive tasks being scheduled as late as possible creates an unnecessary buffer 
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extension. An example of this can be seen between task ID 4 (starting task) and task ID 

13 in Appendix B. 

In the CCPM, feeding buffers are used to protect the critical chain from 

uncertainties that exist in the feeding chain. Feeding buffers are connected to the feeding 

chains using a FS relationship, but no resources are allocated to them. If a task runs late 

on a feeding chain, that chain starts to consume its feeding buffer. No resource is 

allocated to feeding buffers because it is not predictable which tasks will run late; 

therefore, the resources to be used in the feeding buffers is unknown. There might be a 

case where resources that are consuming the feeding buffer are actually needed elsewhere 

on other tasks. This will result in further resource contentions and complications. 

It is true that each task’s on-time completion in a schedule is independent, but the 

probability of a project on-time completion is the combined effect of its tasks. Consider a 

project containing two consecutive tasks, each having 50 percent chance of on-time 

completion. The probability of on-time completion of the project is the integration of the 

tasks’ on-time completion probabilities, in this case 25 percent. The more tasks a project 

contains, the more uncertainty the project has to face. The traditional solution is to add 

safety time to each individual task. By adding safety time to each task, the probability of 

on-time completion of each individual task is increased; hence, the combined probability 

which is the on-time completion probability of the project is increased. However, this a 

faulty solution. Consider 𝑋𝑖 is the on-time completion probability of task 𝑖 and 𝑌 is the 

on-time completion probability of the project (0 < 𝑋, 𝑌 < 1 ); therefore, 𝑌 =  𝑋1 × 𝑋2 ×

… × 𝑋𝑖. Now as number of task goes higher (𝑖) the probability of on-time completion gets 

smaller (lim
𝑖→∞

𝑋1 × 𝑋2 × … × 𝑋𝑖 = 0 𝑖𝑓 0 < 𝑋 < 1 ), because 𝑋𝑖 < 1 (mathematically any 
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number multiplied by a number less than 1 gets smaller). In the end, no matter how much 

safety time is added to each task to ensure its on-time completion of the project, it get 

closer to zero, as the number of tasks increase. 

In CCPM, the probability of on-time completion is the combined effect of feeding 

chains and the critical chain. In CCPM, 𝑋 can be defined as probability of on-time 

completion of each chain. The CCPM approach is to concentrate the safety times at 

higher levels i.e. in feeding buffers and project buffer; therefore, increasing 𝑋’s. At the 

same time, by creating chains the number of 𝑖’s is decreased; hence, the number of times 

a number less than one is multiplied to another number less than one is decreased. The 

combined effect of decreasing 𝑖 and increasing 𝑋, is increased probability of on-time 

completion of the project (𝑌). 

Compared to CCPM scheduling method, the CPM scheduling system is more 

forgiving. Under CCPM, determining the correct logical relationship between activities is 

necessary since activities without any relationship will be pushed to be executed as late as 

possible. Also, activities without any successor will be treated as endpoints and create 

complications as discussed earlier, resulting in wrong construction procedures. 

Conversely, activities without clear preceding and succeeding relationship will be 

arranged in their as soon as possible dates under CPM. By executing activities as soon as 

possible the, possibility of later complications are avoided. 

The goal in CC scheduling is to create a shorter project duration and a lean 

schedule. It starts by creating task networks of logical relationships among tasks of 

finish-to-start and adding buffers afterwards. The result is a shorter project duration. 

However, as it can be observed in the current study schedule, complicated relationships 



39 

 

commonly appear in construction projects, i.e. a mixture of finish-to-finish, start-to-start, 

or start-to-finish logical relationships. Therefore, a conclusion might be that CC 

scheduling with the ProChain software is not suitable for projects containing complicated 

logical relationships, as it may create complications in buffer sizing procedures. 

Conclusion 

The first research question was to determine which scheduling method deliver a 

shorter project schedule. The duration of the analyzed project, after cutting the task 

durations to half and rescheduling using the CC method, was decreased to 173 days. This 

duration is more than the sum of critical chain duration and project buffer due to push 

backs created by the feeding buffers and extensions caused by the ‘must start-on’ 

constraint on the starting tasks. The length of the project without its project buffer is 137 

days, different than the critical chain length (115.5 days), containing the push backs 

created by the feeding buffers and ‘must start-on’ constraints. See Table 1. 

Table 1 

Project information on different scenarios 

Situation Total Project 

Duration 

Project Buffer Net Project 

Duration 

Original project 

without resource 

leveling based on 

CPM  

199 days 0 199 Days 

Original project 

with resource 

leveling based on 

CPM  

218 0 218 

Original project 

based on CCPM 

173 36 137 
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Compared to the CPM schedule, the schedule under CCPM is 45 days shorter. 

Completion of the project in 173 days means complete consumption of project buffer, 

which is very unlikely (worst case scenario). There is a possibility that the project under 

CC schedule could be completed in 137 days without consumption of the project buffer, 

but it is very unlikely (best case scenario). The most probable scenario is consumption of 

at least some of project buffer duration and reaching the yellow zone of the buffer. 

Considering this scenario, the project would be completed somewhere in the yellow zone 

(between day 149 and 161) of the buffer. This average time saving under CCPM is about 

25 percent. The length of the project without a project buffer is 137 days. This means if 

all the tasks, each having a 50 percent chance of on-time completion, were completed on-

time, no buffer would be used and project would be completed on day 137. If all tasks 

were late and all of the buffer was consumed, the project would be completed on day 173. 

Comparing the project network between CC scheduling method and CPM reveals that the 

project under CC scheduling would be completed earlier even if the buffers were 

consumed completely. This provides evidence that CCPM can produce more condensed 

schedules. Based on this, the critical chain scheduling method delivers projects faster. 

Therefore, it is a suitable alternative to CPM scheduling. See Table 2.  
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Table 2  

Completion of project based on different scheduling methods 

 Scheduling based on CCPM  Scheduling 

based on 

CPM 

Completion in 

the green zone 

buffer (best 

case scenario) 

Completion in 

the yellow 

zone buffer 

(most probable 

scenario) 

Completion in 

the red zone 

buffer (worst 

case scenario) 

 On-time 

completion 

(most 

probable but 

not with 100 

% chance) 

Project 

Length 

137-149 Days 149-161 Days 161-173 Days  218 

   

The second research question was which scheduling system makes a more 

efficient usage of time. For this study, after 25 percent duration of the project was 

consumed, the percentage of actual work performed by CPM was 25 percent, which is 

lower than the 38 percent under CCPM in a similar situation. After half of the project 

duration was consumed, the actual work completed using CPM was 50 percent and 72 

percent for CCPM. Finally, after 75 percent of the project duration was consumed, the 

percentage of actual work completed for CPM was 75, and 85 percent for CCPM. These 

numbers showed that not only the CC schedule delivers shorter project duration, but also 

better usage of resources. 

Under CC scheduling, the critical chain is determined not only based on the 

duration of the task and logical relation among tasks, but also on the resource 

dependences. The difference between CCPM and CPM not only exist in how to approach 

resource dependencies, but also in their management approach. Creation of only one 

critical chain helps project managers to focus the bulk of their attention on the critical 
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activities (i.e. the critical chain). In CCPM, it is necessary to complete the critical 

activities as early possible. In contrast, there is the possibility in CPM scheduling that 

multiple critical paths may be created. This may cause focus confusion. It may also result 

in multi-tasking when executing projects. 

Critical Chain Project Management, derived from Theory of Constraints, is an 

alternative approach toward scheduling projects. By addressing Critical Path Method 

weaknesses in estimating task durations, removing individual safety times embedded in 

each task, and inserting buffers at a project level, CCPM may be able to reduce the 

duration of projects. This study was a test of this assertion. Comparing the project 

network under CPM and CCPM for this study reveals that CCPM has the possibility of a 

19 percent (worst case scenario and using complete project buffer) to 36 percent (not 

using project buffer at all) time saving in comparison to CPM. CCPM not only delivered 

shorter project deliveries, but also demonstrated better usage of resources. 

Many scheduling textbooks do not contain CC scheduling methods. In order to 

achieve the overall benefits of CCPM, such as shorter project duration, centralized 

contingency, better resource usage, and focused attention, it is essential to educate project 

practitioner’s about CCPM. Current commercial scheduling software packages (e.g. 

Primavera) do not include CC scheduling methods. Incorporating this method in 

commercial software with a comparison function would allow the differences between 

CPM and CCPM scheduling methods to be analyzed. Complete application of CCPM in 

the construction industry requires further studies. 
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Further Research 

CC challenges the duration estimate used in CPM as being impractical. Because 

CPM embeds safety times in task levels, it is essential to revise the duration of each 

activity using CCPM. In order to achieve more realistic estimations and achieving task 

duration with 50 percent probability of on time completion, Goldratt suggested cutting 

duration estimated task times by half. However, in the construction industry, the 

productivity of different working crews and their working rates are very unpredictable; 

therefore, cutting the task duration by half seems unreasonable. Although some data is 

available with regard to tasks durations and productivity of crews in construction from 

commercial databases, it is necessary to develop data that can be used for estimating the 

duration of tasks with 50 percent chance of on-time completion for the application of 

CCPM.  

As observed in this experiment, the completion of the project takes place faster 

than the CPM, raising the possibility of faster consumption of cash resources. Faster 

consumption of cash resources may be considered as a negative point. At the same time, 

better usage of labor resources, as observed, may result in cost reduction. Therefore, the 

combined effect of faster project execution and better resources usage on cash flow is 

unknown. Studies are required in order to set up an appropriate performance 

measurement system under CCPM. 

The buffer method allocation used in this study was C&PM and considering the 

50 percent length of the chain as the buffer size creates the biggest buffer compared to 

other buffer sizing methods, such as RSEM. The question of how to decide a reasonable 

buffer size is essential for successfully running a CC schedule in the construction 
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industry. This issue requires empirical studies, considering various construction projects 

using different buffer sizes. Further studies to find practical buffer sizing methods for 

different types of construction projects is recommended. Also, modified buffer sizing 

systems for practical usage in different projects that are exposed to different level of risks 

and uncertainties is required. For example, locations with more severe weather conditions 

require a lengthier project buffer compared to locations with more stable weather 

conditions. Different seasons may require different buffers. 

In this experiment, part of a bigger schedule was exported and considered as a 

project and its schedule. As mentioned earlier, no logical relationship existed between its 

WBS’s in this schedule. This is due to the fact that this schedule was for a large 

construction project where multiple crews were working simultaneously for a different 

WBS and their work outcome did not have any effect on other WBS. In order to achieve 

a more coherent and realistic picture, rescheduling of the entire project would be 

required. This data was unavailable at the time of this experiment.  
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Appendix A: CPM Schedule
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Appendix B: CCPM Schedule
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