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SOFTWARE METRICS FOR OBJECT-ORIENTED SOF TWARE
John €. Coppick May 15, 19%0 32 Pages

Directed by: Or. Thomas Cheatham, Dr. John Crenshaw, and Dr. Ken
Modesitt

Department of Computer Science Western Kentucky University

Within this thesis the application of softiare complexity metrics in the
object-oriented Paradige s examined. Severa) factors which may affect
the complexity of software objects are identified and discussed. The
specific applications of Maurice Haistead's Software Science and Thomas

McCabe’s c;clo-nl:-cwlull; melric are discussed in detail.

The goals here are to identify methods for applying existing software

metrics to objects and to provide a basis of analysis for future studies
of the measurement and control of software cosplexity in the object-

oriented paradigs of software developsent .

Halstead's length, vocabulary, voluse, program level awd effort metrics
are defined for objects. A limit for the McCabe cyclumatic complexity of
an object is suggested. Also, teols for calculating these metrics have

been developed in LISP on Texas Instrusents’ Explorer,




1. INTRODUCTION

During the past decade we have seen a marked vise in the level of
Interest in developing metrics to measure software complexity, As
software systems have grown larger and mare costly to maintain, greater
emphasis has been placed on the use of software-engineering practices to
strengthen software development Consequently, research into developing
software metrics and Implementing these metrics into the software
development 11fe cycle has intensified. [t is hoped that the ability te
obtain accurale measures of software complexity will aid in reducing that
complexity and subsequently lead to an increase in software reliability
and maintatnability, This will in turn reduce software costs,

Likewise, the use of the object-oriented programming paradigm has
Increased dramatically in recent years. Widely viewed as a means of
promoting good software-developsent practices, such as design modularity,
encapsulation, and software reuse, object-oriented design and
implementation is also considered as a means of reducing software costs,
Unlike the traditional function-based paradigm, where probless are

decomposed into functional units which operate on some defined set of

data, object-oriented problem decomposition centers around developing
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software representations of the data which then perform regquested
operations on themselves.

While the use of softwire metrics has been widely researched
relative to functional paradigm of program development, there seems to
have been considerably less work done In the area of applying these
metrics to object-oriented software development. In this paper we will
discuss some of the factors affecting the complexity of object-oriented
software developsent and the use of a few common metrics Lo measure the
complexity of objects. The metrics chosen for study were Halstead's
Software Science and McCabe’s cyclomatic complexity. Each of these
approaches to software evaluation has its iIndividual strengths and
weaknesses. However, the purpose here 1s not to evaluate the value of a
setric, but rather to analyze its application within the object-oriented
paradigm, Since both the works of Halstead and McCabe have been widely
researched ana applied within the functiunal paradigm, their metrics
seemed to be logical cholces for an initial investigation. Also, esach
provides an example of one of the two basic divisions of metrics: volume
melrics and coverage melrics.

Interpretations of both Halstead's and Mclabe's matrics were
isplemented in both the functicnal and object-oriented paradigas in LISP
on a Texas Instrusents’ Explorer by the author. In the Explover

environment, the cbject-oriented paradigm is implemented through the use

of LISP Flavors. First a flavor representing an object class s defined,

then methods (operations) on that flavor are defined. LISP was chosen

over other available object-oriented languages (such as C++ and Smalltalk)
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partially for the ability to quickly parse LISP source code using LISP.
By avciding the need for complex lexical analysis, more Lime was available
to concentrate on the metrics themselves. The tools developed to amalyze
flavors includ: a system for examining LISP source code to collect
information about the set of flavors (object classes) defined in the

tource code. The tools developed were used on some software objects of

different personally-perceived complexities as an aid in determining If

our definitions of the metrics relative to the object-oriented paradigm
would produce reasonable results.

The next two chapters provide a brief introduction of software
metrics and object-oriented programming, respectively. Chapter four
discusses the characteristics of object-oriented programming which may
affect complexity. Chapters five and six then discuss the initial
applications of Malstead's and McCabe’s work to the object-oriented

paradigm.




2. SOFTWARE COMPLEXITY

The fssue of software complexity deals with aspects of software
developmant  such as programming effert, understandability, and

maintainability. Defined in relation to the programmer, complexity is the

difficulty of such tasks as coding, debugging, testing, and modifying

softwire [1]. The need to identify the characteristics of software
which affect complexity has led to the research and development of
software melrics.

One of Lhe simplest examples of a software metric is counting the
Tines (instructionsj of code. Houever, simply counting the 1ines of code
has proven an unrealistic measure of complexity [2]. Several other
metrics have been proposed for measuring different characteristics of
software, but some of the most significant work to date has been performed
by Maurice Haleicad and Thomas \icCabe

Halstead's work, known as Softiware Sclence, was done In the early
1870"s.  His measures provide an example of volume metrics. Volume

metrics seek to represent sofiware complexity based on some measure of the
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slze of a program. Halstead based his measures on counts of the nusber of
operands and operators in a program. The specific counts used include:

the number of unique operators
the number of unique operands

the total number of cperators
the total number of operands

For examgle, the LISP statement
(+1(*AB) (+AcC)
would be interpreted as follows:"

the unique operators being '+ and '*')
n, R, !

the unigue operands being ‘. and 'C')

2
4

Ny = 3 {all the operators used: ¥
5 {all the operands used: ‘1°, 'A’, 'B', 'A’, 'C’)

Halstead defined the volume (V) of a program to be:
Vo= (N, + M)log,ln, + n,)

The voluse af a program 15 considered a better measure of the program size
than just the nusber of operands and cperators, since the voluse increases
directly with the nusber of wunique operators and operands [3].

Halstead also expressed what is called the potential volume (V') as:

¥ o= (2 + n3)log,(2 + ny)

“Note that in our implementation, LISP parentheses are not considered
as tokens.
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The potential voluse represents an algorithe’s shortest possible form;
l.e., Just the volume mecessary to invoke the algorithm, as if it were
built into the language. The n; represents the algoritha's number of input
and output parameters. The algorithaic level is then defined as L = 'I"ﬂ,
Thus, an algorithm which can be implemented in the shortest possible form
has a level of one, and as the voluse necessary 12 implesent the algorithm
increases, the Tevel decreases. The programming effort [approximating the
nusber of elemeatary mental discriminations needed to create the progras)
s E = W/L [4]. However, computing V" is not always a straight-forward
procedure. Calling syntax varies from language to language and even
determining the actual number of input and output paramiters can be

difficult. Therefore, Helstead developed an approximation of L, called L.

where [ = (2/n,)(ny/M,). So. E could be written as ¥nMy/2n,. There are

other measures developed by Halstead which predict such things as
programaing time, the number of errors, and program length which will not
be discussed Thase predictors howsver have been shown to have high
correlations with actual programming results [5]. One of the major
drawbacks of Software Science 15 the difficulty which often arises whan
discriminating between operators and operands [&]. In LISP for
instance {is will be seen in Chapter 5), it is sometimes quastionable
whether there is wny difference between the two at all.

McCabe's work, starting im the late 1970's, is directed towards the
goal of producing software modules that are both testable and
maintainable. McCabe has attespted to ful fill the need for a mathematical

technique that will provide a guantitative basis for measuring
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modularization and identifying modules that will be difficult to test and
saintain (7). To do this, McCabe sought to measure the number of
execution paths through & program. Due to the possibly unwieldy magnitude
of such a number, he defined his complexity measure in terms of the basic
paths of execution by using the cyclomatic complexity of a program’s
control-flow graph. A control-flow graph 1s essentially a flow chart in
which sequences of statements without control-flow constructs S« =apped
to a single node in the graph. By using the graph a program’s basic paths
can be easily derived. These basic paths may be taken in combination to
produce every possible path. For example, consider a function (Figure 1)
which determines if the roots of a non-degenerate quadratic equation (ax

+ bx + c = D) are repeated (real), real (distinct), or complex. The

(DEFUN RDOT-TYPE (A B C)
(LET ((DISC {- (* B B) (* 4 AC)))
(RTYPE *COMPLEX)

((ZEROP DISC) (SETF RTYPE 'REPEATED))
({> DISC 0) (SETF RTYPE 'REAL))

RTYPE

ﬂsnrl 1: LISP Function Definition for Determining the Root
Type of a Non-Degeneratsz, Quadratic Equation




control-flow graph for this function is given in Figure 2.

Note that

there are three basic paths through the function:

Thus, the McCabe complexity s

three. HcCabe's  metric 43
considered a coverage metric; |.e.,
a metric which measures aspects of
software 1ike control flow or data
flow. Skipping the mathematical
foundation of McCabe's work, it may
be simply stated that the McCabe
complexity of a subroutine
(function) is the number of simple
predicates which affect the flow of
execution

plus  one [8). A

McCabe complexity of 10 s
generally recognized as the limit
for one subroutine. Subroutines
with complexities higher than 10
should be

examined for further

decomposition possibilities.

fgure 2: Control-Flow Graph
for the Function

REAL-TYPE

Strong correlations have been found between

2 high cyclomatic complexity and the occurrence of errors in a

subroutine [9].

Soma of the weaknesses of McCabe's metric are that it
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does not take 1ato account such things as the nesting level of conatrol
structures (10] eor program size [11), Also, the metric's
usefulness as an index of testing effort required (its original intended
purpose) has been questioned [12].

Papers presenting variations on Halstead's and McCabe's works are
abundant . Several suggest additions to the McCabe complexity or

combination of Halstead's and McCabe's techniques in order to produce a

general indicator of software complexity. My intent in this papar is not

te absolutely prove or disprove either of these techniques® applicability
3 complexity measurement in general, but rather to examing how each of
these techniques may be applied within the object-oriented paradiga with
the goal of producing results equivalent to those obtained in the

functional paradigm




3. OBJECT-ORIENTED PROGRANMING

Object-oriented software development provides a different
methodology than the traditional functional decomposition. In the
functional paradigm a problem s solved by decomposing the problem into
functions which then accept a set of data and return a transformation of
that data. Thus, the usual unit of decomposition or bullding block used
to construct programs is the function (or subroutine or procedure).
However, in the cbject-oriented model the basic unit of decomposition is
the object, which is a representation of the data itself. Thus, the
object-orientad technique s somsetimes referred Lo as "data orlented
decomposition” as oppused to “function-oriented decomposition.” More
specifically, an object represents an abstract data type which includes a
data type and a related set of operations which can be pertormed on that
Lype.

Objects are usually feplemented by defining an object class which
specifies the set of object values (also known as instance variables) and
the object behavior (operations). Im LISP Flavors, a class consists of a
flaver definition and a set of associated method definitions which
represent the operations. An object is created by instantiating a
variable of a particular cbject-class type.

The concept of fnheritance in the object-oriented paradigs is the

ability to define and alter object classes by combining and adding to

10
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proviously defined classes. When an object class (called the child) has
inherited another class (the parent), then the child has all the same
characteristics and operations as the parent. The child class Bay provide
different versfon: of operations inherited from the parent, as well as
providing new operations which were not defined by the parent. Some
object-oriented languages only allow an object class to inherit one other
class directly (single inheritance), while other implementations (such as
LISP Flavors) provide for the direct inheritance of numerous object
classes (multiple inheritance). Through inheritance, complicated objects
can be designed by combining simpler objects which have already been
designed and tested. Thus, finheritance provides a powerful tool for
encouraging the reuse of software which has already been developed and
tested,

An instantiated object is used by sending the object a message which
specifies some operation for the object to perform and miy contain some
set of necessary parameters. In LISP Flavors, messages are sent lo

objects (flavor instances) by using the SEMD functicn. For example,
(SEND screen-object :draw-circle x-coord y-coord radius)

would tell an object representing the screen (the screen-cbject) to
execute its draw-circle operation using the parameters A-coord, y-coord,
and radius.

Object-oriented development closely links the design and

implementation phases of software engineering since objects can be

designed, implemented and tested as separate units without waiting for an
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entire system to be designed. Also, object-oriented development provides
as 1ts basis encapsulation, software reuse, and extendibility. It is

thought that due to these characterfstics, use of the object-oriented

paradigs will help manage software complexity and actually emhance the

usability of some software metrics [13].




4. EVALUATING THE COMPLEXITY OF OBJECT CLASSES

As stated earlier, the basic unit of decomposition in the object-
orfented paradign |s the object. Therefore It would be appealing to
develop a measure of the complexity of an object. Here the question which
arises 15 "What is It that makes an object more (or less) complex than
some other object?” The seemingly reasonable answers to that gquestion
which have so far been presented include: the size (volume) of the
object, the complexity of the operations (methods), the number of
operations, the complexity of the object values (instance varfables), the
number of object values, and fmheritance. Also, there is certainly the
possibility of providing a measure based on some combination of these
factors.

Since an object is Implemented a5 a set of program code which
Jvafines its characteristics and operations, it should be reasonable to
seasure its size using volume metrics such as Halstead's. Applying
Halstead's measures to objects will be discussed in mare detail in the
next chapter.

Since object operations are commonly implemented as individual
functions, 1t makes sense to compute the complexity of the code defining
the ocperations of am object and then combine the complexitie: of the

operations to determine the complexity of the entire object. Since the

McCabe complexity of a module (f.e., the nusber of basic execution paths
13
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represented by the module) is defined as the sum of the McCabe
complexities of its functions, then we should be able to define the McCabe
complexity of an object (1.e., the number of basic execution paths
represented by the object) as the sum of the McCabe complexities of that
object’s operations. This methodology will be discussed in Chapter 6.

Intuitively, the more operations definad in an object, the more
complex it seems. Therefore it is reasonable to want to limit the nusber
of operaticns defined by any one object. At first this would seem to
limit the potentia) usefulness of any object by saying that one object can
only do so much. However, the point here s to limit the number of
operations defined by an object class, not the nusber of operations
supported by that class. [If an object definition grows too large, then

that object should be decomposed into two or more objects (and potentially

combined through inheritance). In this way, the complexity of an object

can be reduced, without reducing its usefulness. Note that this fis
squivalent to what happens in the functional paradigms; that is, when one
function grows too complex it ts decomposed into sultiple functions. An
actual numerical Vimit on the number of operations is undefined at this
point but {s thought that the limit should be inversely proportienal to
the sum of the complexities of the operations. In other words, the higher
the complexity of an object's operations, the smaller the number of
oparations which should be defined by that object.

Since object-oriented design is data centered rather than function
centered, evaluating an object’s complexity based on the complexity of the
data it represents and/or the number of object values utilized 1s a
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possibility. Researchers are studying measures of the complexity of both
static and dynamic data cosponents. It is considered important to obtain
estimates of data complexity as early as possible in the design
process [14], and this is certainly applicable to the object-oriented
paradigm
At first glance, it would seem sensible when considering Lhe
complexity of an object to also consider the complexity of the objects
which it inherits, particularly since higher-level objects {which
intuitively seem more complex) are often built upon several inherited base
objects. However, this type of consideration has at least one serious
side effect. If we place a limit (say L) on the complexity of any object

(regardiess of how we are measuring that complexity), and the complexity

of a parent object (C) is included (cusulatively) into the complexity of

its chilé object (C), then we have effectively said that the child object
can not have a complexity of more than (L - C'l before the complexity of
the inherited-parent object is Included. Also, by cousidering the
complexity of inherited objects, we have placed a limit on the amount of
{nheritance. 7o tae that this is so, imagine that you have placed a limit
on object complexity at 100 and you combine the complexities of parent and
child objects with addition. Then 1f you have a base object with a
complexity of 99, any object nesding to inherit that base object would not
be allowed to have a complexity of more than one, and would not be allowed
to finherit any other objects (assuming you are allowing multiple
inheritance). Also, the newly formed object, having a complexity of 100

already. could not be inherited by any other objects. While it appears
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that considering the complexity of Inherited objects when computing an
object’'s complexitly imposes some serious constraints, considering the
nusber of objects inherited or the level of inheritance could provide some
measure of object complexity. For example, an object which fnherits five
objects might be considered more complex than an object which inherits one
object, and an object which insherits no objects (thus having an
inheritance level of zero) might be considered Tess complex than an object
which inherits another object which has itself inherited another object
(thus having an inberitance level of 2).

Each of the preceding factors of object complexity needs to be
studied 'n considarably more detall. There 1% & need to develop measures
based on these factors and test thoie measures for correlations relative

to error rates, testability, and maintainability. Such effective measures

of object complexity could then be used to strengthen the process of

object-oriented software developsent.




5. APPLYING SOFTWARE SCIENCE TO OBJECTS

A tool for computing the length, vocabulary, volume, estimated
program level, and estimated programming effort of objects implemented in
LISP Flavors has been developed and tested. Table | shows its results
after analyzing the LISP source code for a set of objects of different
personally-perceived sizes and complexities. The objects themselves are
part of a sieple graphics editor which Is provided by Texas Instruments as
4 demonstration of the Explorer's object-oriented and graphics
capabilities. The objects represent a fair range of different
characteristics, such as amount of inheritance, number of operations, etc.
The toel’s outputs seem reasonable in that they reflect the personally-
perceived complexities of the objects.

There are a few noteworthy aspects of applying Software Sclence Lo

LISP source. Firstly, since the Software Science tool operates on LISP

Table 1: Software Sclence Measurements of Various Objects

e, of st.
st Beibods Leowth Yocsb. Yoluee

BARIC-CRAPRICE - CRJICT
13

[
3

1 1
CRAPMIC-CIRDLL 2
GRAPHIC-RECTARCLE 2
BIWPLE - COMRAKS - PASE L]
BINPLE - CRAPNICE - PhlE Ll
BINPLE-IPP CRAPNICE-ERITON 34
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LLF T
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]
The author’s Software S5cience prograa computes the volume of an
object by first computing the Tength and vocabulary relative Lo the entire
object as opposed Lo computing and summing the volumes of the individual
object components. It s thought that the former provides a betler
estimate of the object’s volume. Since It has been shown that the volume
metric is not additive [15], it follows that we will not zlways get
the same results from both technigues. MHowever, we can show thal the
volime computed relative to the entire object will always be greater than
or equal to the sum of the voluses of the object’s components.
To prove this, assume that cbject O has two operations, ml and m2.
Let n, be the nusber of distinct tokens relative 1o the entire object, n,
be the number of distinct tokens in ml, and ng be the nusber of distinct
tokens in m2. Likewise, leL M, Le the tolal tokens in the object, M, be
the total tokens in ml, and N be the total tokens in B2.” First we show
that My = M, + M. Any token in an operation Is a token in the object,
0 Ny, + N <= I' Also, any token in the cbject Is in at least one of the
sperations, thus Ny <= N, + M.
Since the first occurrence of a token In an operalion can be taken
to be the unigue occurrence of the token In both the operation and the

object, we can say that n, <= n, and n <= n,.

“for the purposes of argumcnt, we will not count the tokems in the
object-class declaration. However, that could be considered the same as
aMIﬂgl another operation definition, so the proof will still hold in
general.
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Thus, we can argue that the sum of the voluses of the operations, Vet
and Vg, 15 less than or equal to the voluse of the entire object, Voo
treated as a whole:

VY * Ve = N logn,, + Nylogn,
= logy(ng "My + log,(ngHy)
= logy[(ny*My) (ng"Hg))
<= Tog,[{ng*Nyy) (ng"N) ]
= Tog,lng" (M + M)
= (Mg + Ng)logng = Nlogyng = ¥,

By proving that the voluse of the object treated as a whole, V,, is

always greater than or equal to the combined voluses of the object

components, we can at least consider ¥, as an upper-bound on the object’s

voluse. So by using ¥, we will not underestimate the object’s volume
(size).

The program level as defined by Haistead is dependent on the
potential volume of a program. As noted earlier, delermining potential
volume can be very difficult, and the use of objects would seem to
multiply the difficulties since an object Inlerface can suppurt several
different messages each possibly requiring a different set of paraseters.
Consequently, Malstaad's approximation formula for the program level was
applied to the exasple objects instead of trying to determine the exact
program levels. The resulting level estimates are shown in Table 1. Here

it is interesting to consider the program level of objects which have mo
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operations Such an object Is commonly known as & base object. Base
objects are nol meant to be instantiated and used separately. Rather, a
Base object iy meant to be inherited by other objects which then passibly
provide operations on the base object's data.” Since base objects do mot
explicitly provide any Interface, the potential volume of a base object
can be considered undefined. This in effect invalidates tSe program-level
Bedsuresent of base objects. Jur actual resulls from computing the
program level of objects which define no operations produced levels
greater than one This would imply for & particular object that the
object can be implemented using less volume than the Teast possible amount

of volume which could be uied to Isplecent the object! This is clearly

unreasonable Therefore, we will consider Halstead's program-level

measurement to be undefined for objects which do not define any
operations

Effort measurements 1isted in Table | were compuled using the volume
measures and estimates of the programming levels of the objects. It can
be seen Lhat the effort, as would be expacted, increases along with the
volume of the object Since Halstead's effori measuresent is based upan
the program level, our conclusion that the program leve. of an object
which defines no operations is undefined leads to questions regarding the
effort measuresent for such base cbjects. The effort measuresents which
wery computed for objects with no operations (methods) actually seem

“An exception might be an object which defines no operations itself
but inherits the operations of & parent object. However, the actual
usefulness of such an object 13 questionable
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reasonable and are Included in Table 1. However, these values shouid be
considered as suspect pending further analysis. Another noleworlhy
consideration is the effect of abstraction on programming effort. Two of
the example objects (CIRCLE and GRAPHIC-CIRCLE) that were originally
combined through inheritance were recoded as one object, named COMBINED-
CIRCLE.  The original objects each defined some object values and
operations (including one operation which was defined by the parent r: act
and then redefined by the child object). It can be seen in Table 2 that

the prograsming effort without the use of abstraction and inheritance is

actually higher than the cosbined effort required for the origimal

objects. This lTends support to the intuition that increased abstraction
reduces programming ef fort.
Much wore work needs to be dome in the area of developing and

applying volume metrics to objects. Yalstead's measures should be applied

Table 2: Effect of Abstraction on the Estimeted Effort of Objects

No. of Est.
Qld Objects Hethods  Length

CIRCLE 1483.05
GRAPHIC-CIRCLE 1209.12

Total Est. Effort: 44692.17

Est.

New Oblect
COMBINED -CIRCLE 4972.96
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In a consistent manner to obiect-oriented systems developed in different
languages to determine the dccuracy of these measures independently of the
scftware implementation. Also, Halstecad's predictors of lTength, affort,
and time should be defined for objects and applied during the object-

oriented design process, and then compared with actua) prograsming

results. These items are outside the scope of this project and are left

to a later study.




6. APPLYING CYCLOMATIC COMPLEXITY TO OBJECTS

We compute the complexity of each object operation (method) as
defined by McCabe [16], namely, the nusber of control-flow predicates
plus one. Also, the set of operations of an object potentially represents
a cellection of algorithas which, as shown by McCabe [17], has a
complexity equal to the summation of the complexities of each of the
Individual algorithms. Recall that the McCabe complexity is the size of
the basic set of execution paths of a subroutine. Thus, by computing the
McCabe complexity of each operation defined by an object class and then
suming the complexities, we have found the size of the basic set of
execution paths represented by that object class.” For example, assume
an object has two operations, A and B. The code which defines operation
A contains four predicates. Thus, operation A has a McCabe complexity of
five. Lisewise, operation B contains six predicates, resulting In a
McCabe complexits of seven. So by sumirg the McCabe complexities of all
our object’s operations, nasely A and B, we find our object has a McCabe
complexity of 12. This technique has been applied to objects implemented

in LISP Flavors and produced reascnable results. The program used was

“In the interests of simplicity, we are assuming an absence of any in
line methods (1ike those available in the Ce+ language) or of any
patentially complex instance-variable initialization code ()1ke that which
s possible in LISP). Only the explicitly codcd opeiations for an object
have been considered.

1
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itself implemented in LISP and was designed to recognize all the Coamon-
LISP structured control-flow constructs.”

The recommended 1imit on Lhe McCabe complexity of a subroutine is
10. Since object operations are normally implemented as subroutines
(functions, procedures, etc.), we should limit their complexity te 10.
However, thiz raises the question of what should be the limit on the
McCabe complexity of an object? 1f we wish to control complexity in
the object-oriented paradigm, then we must place a 1imit on the cosplexity
of an object. This follows logically from the fact that the object is
considered to be the basic unit of decomposition. So we must provide some
guide as to when an object should be decomposed (or abstracted) into
separate objects.

As mentioned eariier, we believe thit the complexity of an object
and the number of operations allowed for an object should both be
considered. By computing the McCabe complexities of the same set of
graphics objects which were examined in the previous chapter we see, in
Table 3, that the complexity of an object roughly correlates with the
number of oparations. MWe believe this to be true in general. This may
lead one to conclude that simply limiting the number of operations defined
by an object will effectively limit the complexity of that object.
However, if we do not Iimit the complexity of each operation as well then

the object’s complexity will certainly not be under contral. The number

of operations may stay the same, but the operations themselves may grow

“The Cummon-L15P control-flow constructs recognized include 1F, MHEN,
UNLESS, COND, TYPECASE, DO, and DO*.
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increasingly complex! Likewise, If we 1imit only the compiexity of the
operations without Timiting the number of operaltions, we have not
effectively controlled the object s complexity. The operations themselves
may romain manageable, but there may be more and more operalions It
apparent that a method for Vimiting an objoct’s complexity sust take into
account both the nusber of operations and vach operation’s complexity

One possibility is to consider the set of algorithas which define
the object’'s operations as 4 whole, thus removing the need to consider the
complexity of each individual operation or even the nusber of operations.
This s equivalent to our appiication of Halstead's measures in the
preceding chapter Howaver, Lhis lechnigue could nol be used Lo apply
McCabe's measure of cyclomatic complexity. The reason being that each of
an object’s operations effectively represents & separate "entry point®

inte the object; i.e., a point al which the flow of control within the

Table 3: McCabe Complexities of Various Objects

No. of McCabe
Gbiscts Methods Complexity

BASIC-GRAPHICS - OBJECT
CIRCLE

RECTANGLE
GRAPHIC-CIRCLE
WPHIE RECTANGLE

LT
("L Y- Ly

I(S PANL
SII'I?I[ EPP-GRAPHICS-COITOR

-
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object can begin. McCabe’s crmplexity metric is defined for algorithas
with only one entry point. This i3 in fact the reason thal we have been
cosput ing the McCabe complexity of an object as stated above: the sum of
the McCabe complexities of the operations, An object’s set of operations
represents a set of distinct algorithms and the complexity of each of
these algorithas must be computed individually.

An obvious and possibly workable approach to the problem i3 to limit
both the numsber of object operations and the complexitly of each operation.
S0 if we allow only 50 cperations and allow each cperation a maxisus
complexity of 10 (the generally-accepted limit for functions), then Lhe
maximum complexity of an object would be 500 (50 timses 10). However, we
believe that 50 operations each with a ccaplexity of 10 is too complex for
one object and that defined In this manner, 500, or any other Timit
derived in the same fashion, does not represent an intultive Indicator of
an object’s complexity.

A better approach is that of limiting the complexity of each of the
operations (to 10) and setting a "reasonable” limit on the cumplexity of
the entire object without explicitly limiting the number of operations.
In fact, once a complexity 1imit for am object is decided upon It will in
practice implicitly provide a limit for the number of operations as well.
This limit on the nusber of uparations will vary inversely with the
combined complexities of the operations. For example, If we limit the

McCabe complexity of an object to 100, thon we may have 10 operations each

with a complexity of 10, or 100 operations each with a cosplexity of one,

This approach mol only limits the complexity of the operations and the
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number of operations, butl relates the two as well. The effort reguired Lo
test an object with 10 operations each having a complexity of 10 should be
equivalent to the effort required for an object with 100 operations each
having & complexity of one. Unfortunately, this approach also leads us
back to the problem of finding a reasonable limit for the McCabe
complexity of an object.

An argument supporting 100 as the limit for am cbject’s McCabe
complexity i1 that one can think of Lhe object’s interface (set of
operations) as resesbling a set of cases as In a “case” statement. As
cuch the interface should be subject to the same complexity limit as a
normal function, masmely 19 Then 10 allowed operations each with a
complexity of 10 oives a limit of J00. However, with less compliex
operations we would allow the nusber of “cases® (operations) to increase,
but still Timit the total cbject complexity to 100. This suggested limit
of 100 seems intuitively ressonable and data collected relating the McCabe

complexities of objects with the number of known dofects in those objects

lenas favorable support te it [18) However, there is certainly a

need for more empirical evidence and it |s hoped that future research into
the degree of correlation between the error rates of object-oriented code
and the McCabe complexity of objects will point towards an optimal

complexity 1imit.




7. SUMMARY

Research into both the areas of software setrics and object-oriented
programming has intensified during the past decade. However, Lhere i3 an
apparent lack of Intensive study concerning the application of software
metrics within the object-oriented paradigs, Here we have discussed some
of the factors affecting the cosplexity of software objects and the
potential application of Halstead's and McCabe's metrics to measure Lhe
slze and complexity of an object. The concern here has not beem to
recommend any metric over the other, but rather to Identify some )ikely
means of applying the metrics towards objects. Metric tools developed by
the author for use in evaluating objects seemed Lo produce reasonable
results, though the accuracy of the Software Science measures msay be

questionable,

Potentially ieportant factors affecting the complexity of object-

oriented software include the size (volume) of the object, the
complexity of the operations, the number of operations, the complexity of
the object values (instance variables), the number of object values, and
inheritance. The degree to which each of these factors affects the
complexity of objects has yet to be determined experimentally. It can be
seen in advance though that factoring the complexity of inherited objects
Into the complexity of the Inheriting cbject has the serious side effect

of limiting inheritance.
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We have ihown thal Malitead's volume and elfort measures roughly
correlate with the sizes and complexities of objects as perceived by the
author.  Alse, the wse of abstracticn and finheritance may reduce
programeing effort. Halstead's seasurement of the program level is
effectively undefined for objects which define no operations (base
objects). Therefore, effort measurements (which are theoretically based
upon the program level) of base objects are questionable as well. The
accuracy of Halstead's predictors of progras length, programming tise, and
programming effort relative to abject-oriented programming meeds further
study.

By computing and susming the McCabe complexities of an object’s
operations, we can compute the McCabe complexity of an object. We feel
that & reasonable appreach to controlling sbject complexity is to set an
independent limit for the ccmplexity of an object which will in turn
Implicitly Timit the number of operations. It is generally agreed that a
McCabe complexity of 10 is a4 reasonable limit for a subroutine. We
suggest a limit af 100 as a reasonable McCabe complexity of an object.
However, further empirical studies are needed to validate this claim.

During the object-oriented design process Lhe object becomes the
basic unit of decomposition, 5o It is imperative that accurate conplexity
®easures be applied to objects, and that reasonable 1'wits for the
complexity of an object be found. The use of objact-oriented programming
does not by itself provide for the g of Texity. Object
complexity mus® be measured and effectively limited befors software
complexity can be controlled in the object-oriented paradige,
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