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ABSTRACT 
International Journal of Exercise Science 10(3): 365-378, 2017. The purpose of the 
current study was to examine the time course of changes in neuromuscular responses from the 
vastus medialis (VM) during low versus high intensity dynamic constant external resistance 
(DCER) leg extension muscle actions to failure. Thirteen men performed DCER leg extensions to 
failure at 30% and 70% 1-repetition maximum (1-RM) as well as 1-RM measurements pretest and 
posttest. Electromyogaphy and mechanomyographic signals were measured from the VM. There 
were no differences in neuromuscular responses pretest versus posttest 1-RM. There were time-
dependent differences between the 30% and 70% 1-RM protocols. The initial phase of the 30% 1-
RM protocol exhibited increases in electromyographic-amplitude and mechanomyographic 
amplitude, but no changes at 70% 1-RM. The middle phases indicated decreases in 
mechanomyographic amplitude at 30% 1-RM, but increases in mechanomyographic amplitude at 
70% 1-RM. The 70% 1-RM protocol had earlier decrease in mechanomyographic frequency than 
30% 1-RM. Both protocols in the final phases exhibited increases in electromyographic amplitude 
and mechanomyogrpahic-amplitude, but decreases in electromyographic frequency and 
mechanomyographic frequency. Low and high intensity DCER leg extensions to failure have 
time-dependent differences in neuromuscular responses during the process of fatigue which 
suggested that motor unit activation strategies may by influenced by the intensity of a fatiguing 
workbout. Thus, examining the time course of changes in neuromuscular responses during a 
fatiguing workbout allowed for the identification of the time-points associated with the onset of 
fatigue.  
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INTRODUCTION 
 
Fatigue is a process that occurs over time which can be reflected by a decrease in maximal 
force production and may be influenced by the intensity of the workbout. Identifying the 
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presence of fatigue has become common place, however, identifying the time-point that 
fatigue began can be difficult. Thus, examining the time course of change in neuromuscular 
responses may allow for the identification of the onset of fatigue in a muscle. Surface 
electromyography (EMG) and mechanomyography (MMG) have been used to examine 
neuromuscular responses during fatiguing workbouts (7-9, 32). It has been suggested that a 
fatigue-induced increase in the amplitude (root mean square; RMS) of the EMG signal reflects 
greater muscle activation (4), while a decrease in the frequency (mean power frequency; MPF) 
content reflects a slowing of motor unit action potential conduction velocity (MUAP CV) (4). 
The MMG signal, however, has been described as the mechanical counterpart of the motor 
unit electrical activity as measured by EMG and quantifies the low-frequency oscillations of 
activated skeletal muscle fibers (26). Under some conditions, the amplitude (root mean square; 
RMS) of the MMG signal reflects motor unit recruitment (26) and the frequency (mean power 
frequency; MPF) content is qualitatively related to the global motor unit firing rate of unfused, 
activated motor units (26). Thus, a fatigue-induced increase in MMG amplitude may indicate 
greater motor unit recruitment, while a decrease in MMG frequency is associated with a 
decrease in firing rate (6, 25). Typically (4, 9, 18, 31) during fatiguing submaximal workbouts 
there are fatigue-induced increases in EMG amplitude and MMG amplitude, but decreases in 
EMG frequency and MMG frequency. It has been suggested (19, 20, 31), however, that the 
intensity of a fatiguing workbout may uniquely influence the magnitude and direction of 
changes in neuromuscular parameters. Thus, examining the magnitude and time-dependent 
changes in neuromuscular parameters at different intensities may provide a better 
understanding of the process of fatigue and allow for comparisons between studies which 
performed fatiguing muscle actions at different intensities. 
 
The majority of research examining fatigue of the quadriceps during dynamic muscle actions 
have focused on the vastus lateralis (VL). The vastus medialis (VM), however, has a unique 
role during leg extension muscle actions which result in different neuromuscular responses 
throughout a fatiguing workbout compared to the VL (8, 21, 31). In addition, the VM is a major 
contributor to leg extension muscle actions (8, 21) and has different fatigue characteristics than 
the VL (16). Thus, identifying the time course of changes in neuromuscular responses from the 
VM may provide additional information regarding the process of fatigue during submaximal 
leg extension muscle actions. No previous studies, however, have examined the effects of low 
versus high intensity dynamic constant external resistance (DCER) leg extension muscle 
actions on the time course of changes in neuromuscular parameters during the process of 
fatigue. Therefore, the purpose of the current study was to examine the time course of changes 
in neuromuscular responses from the VM during low versus high intensity DCER leg 
extension muscle actions to failure. Based on previous studies (8, 20, 31), we hypothesized that 
there would be greater fatigue-induced increases in EMG RMS and MMG RMS, as well as 
greater decreases in EMG MPF and MMG MPF during the high compared to low intensity 
DCER leg extension muscle actions to failure. In addition, we hypothesized that the high 
intensity workbout would result in earlier changes in the neuromuscular parameters 
compared to the low intensity workbout.  
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METHODS 
 
Participants 
Thirteen men (mean ± SD age 20.1 ± 1.8 yr; body mass 79.0 ± 6.2 kg; height 1.73 ± .05 m) 
volunteered to participate in this study. The subjects ranged between 19 to 26 years of age, 
were free from any musculoskeletal injuries or neuromuscular disorders, and stated that they 
performed recreational resistance training for at least 6 months prior to the study. This study 
was approved by the University of Nebraska – Lincoln Institutional Review Board; and all 
subjects signed a written informed consent and completed a health history questionnaire prior 
to participation. 
 
Protocol 
The pretest unilateral concentric (CON)-only one repetition maximum (1-RM) tests were 
performed using the dominant leg (based on kicking preference) and in accordance with the 
National Strength and Conditioning Association’s guidelines (3). The subjects performed a 
warm-up set of 5 to 10 repetitions at approximately 50% 1-RM, and 3 to 5 repetitions at 
approximately 75% 1-RM. The subjects then performed a series of single repetitions to 
determine the unilateral CON-only 1-RM within 1.13 kg. The unilateral CON-only 1-RM was 
defined as the greatest amount of weight that was moved through the full range of motion 
during the DCER leg extension (free weight, plate-loaded, leg extensions). After completion of 
the pretest CON-only 1-RM subjects were given 3-min of rest prior to performing the fatiguing 
protocol. The posttest unilateral CON-only 1-RM tests were performed immediately following 
the 30% 1-RM and 70% 1-RM protocols. Weight was added until the greatest amount of weight 
that could successfully be move through the full range of motion was determined (± 1.13 kg). 
This usually required 2 to 3 trials for the pretest 1-RM, and 1 trial for the posttest 1-RM. 
 
The 30% 1-RM and 70% 1-RM protocols were performed on different days, randomly ordered 
and separated by at least 48 hrs. During the 30% 1-RM and 70% 1-RM protocols the subjects 
performed unilateral CON-only DCER leg extensions to failure with the dominant leg. Failure 
was defined as the inability to extend the leg to full extension during the CON phase of the leg 
extension or the inability to complete the CON phase of the leg extension within 1.5 seconds. 
During each repetition an investigator lowered the lever arm at the end of each CON phase of 
the leg extension to the starting position to eliminate the eccentric (ECC) phase of the muscle 
action. All testing was performed on a Hammer Strength Iso-Lateral Leg Extension machine 
(LifeFitness, Rosemont, IL). 
 
A bipolar electrode arrangement (Ag/AgCl, AccuSensor, Lynn Medical) was placed on the 
vastus medialis (VM) of the dominant leg with an interelectrode distance of 30 mm during the 
unilateral CON-only 1-RM tests, 30% 1-RM protocol, and 70% 1-RM protocol. The bipolar 
electrode arrangement was placed 80% the distance between the anterior superior iliac spina 
(ASIS) and the joint space in front of the anterior border of the medial ligament and orientated 
at a 53° angle to approximate the pennation angle of the muscle fibers (17). A reference 
electrode was placed over the ASIS. The skin was dry shaven, abraded, and cleaned with 
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isopropyl alcohol prior to placing the electrodes. The MMG signal was measured using 
accelerometers (EGAS-FT-10/V05, Measurement Specialties, Inc., Hampton, VA) placed 
between the bipolar electrode arrangements on the VM using double-sided adhesive foam 
tape. All electrode and accelerometer placements were performed by the primary investigator 
(CMS) and were marked with black permanent marker to assure the same electrode and 
accelerometer placements each day. 
 
The EMG and MMG signals were zero-meaned and bandpass filtered (fourth-order 
Butterworth) at 10-500 Hz and 5-100 Hz, respectively (4, 5, 23, 25). The EMG RMS, EMG MPF, 
MMG RMS, and MMG MPF values were calculated between knee joint angles of 110° and 160° 
(180° being full extension) during each unilateral CON-only 1-RM test, as well as for each 
repetition at every 10% of the repetitions to failure during the 30% 1-RM and 70% 1-RM 
protocols. All signals were collected at a sampling frequency of 2000 per second. A goniometer 
was placed along the long axis of the femur and tibia of each subject to determine the knee 
joint angle throughout the range of motion. The EMG RMS, EMG MPF, MMG RMS, and MMG 
MPF values were normalized as a percent of the first repetition to examine the time course of 
changes in neuromuscular parameters during the unilateral CON-only DCER leg extensions to 
failure at 30% 1-RM and 70% 1-RM. Repetitions were normalized as a percentage of the total 
repetitions completed and if the percent to failure was between repetitions, the repetition 
immediately following were selected (i.e., if 10% of the time to failure was at repetition 5.5, 
repetition 6 was used as the 10% of the time to failure). The EMG RMS, EMG MPF, MMG 
RMS, and MMG MPF from the MVIC muscle actions were calculated from a 2 second time 
period corresponding to the middle 33% of each 6 second MVIC. All signal processing was 
performed using custom programs written with LabVIEW programming software (Version 
15.0, National Instruments, Austin TX). 
 
Statistical Analysis 
Five separate, 2 (Protocol: 30% 1-RM protocol and 70% 1-RM protocol) by 2 (Time: pretest and 
posttest) repeated measures ANOVAs were performed to compare the EMG RMS, EMG MPF, 
MMG RMS, MMG MPF, and unilateral CON-only 1-RM strength from the pretest versus 
posttest measurements. Follow-up paired sampled t-tests were performed when appropriate. 
 
The time course of changes in neuromuscular responses involved combining polynomial 
regression analyses with ANOVA and post-hoc Student Newman-Keuls comparisons to 
identify the patterns of responses and time-points at which these values became different than 
the initial values. Polynomial regression analyses were used to determine the patterns (linear, 
quadratic, or cubic) for the mean, normalized (% of initial repetition) EMG RMS, EMG MPF, 
MMG RMS, and MMG MPF versus repetition relationships from the 30% 1-RM and 70% 1-RM 
protocols. Time course of changes in normalized EMG RMS, EMG MPF, MMG RMS, and 
MMG MPF from the initial repetition were identified by two, one-way repeated measures 
ANOVA (1 x 11) with post-hoc Student Newman-Keuls tests from the 30% 1-RM and 70% 1-
RM protocols. The Student Newman-Keuls test was chosen for the post-hoc analyses because 
it is designed to analyze the time course of changes in repeated measure variables (30). An 
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alpha of p ≤ 0.05 was considered statistically significant for all statistical analyses (SPSS 
Version 22.0, Armonk, NY).  
 
RESULTS 
 
Table 1 shows the results for the pretest versus posttest neuromuscular responses and 1-RM 
strength during the 1-RM measurements for the 30% 1-RM and 70% 1-RM protocols. The 2 
(Protocol: 30% 1-RM and 70% 1-RM) by 2 (Time: pretest and posttest) ANOVAs indicated no 
changes from pretest to posttest EMG RMS (p = 0.98), MMG RMS (p = 0.89), or MMG MPF (p 
= 0.87). The 2 (Protocol: 30% 1-RM and 70% 1-RM) by 2 (Time: pretest and posttest) repeated 
measures ANOVAs for EMG MPF indicated no significant 2-way interactions, but there was a 
significant (p < 0.01) main effect for time (pretest > posttest). The 2 (Protocol: 30% 1-RM and 
70% 1-RM) by 2 (Time: pretest and posttest) repeated measures ANOVA for 1-RM values 
indicated a significant protocol by time interaction (p < 0.01). The follow-up paired sampled t-
tests indicated that 1-RM strength decreased significantly from pretest to posttest for both the 
30% 1-RM (p = 0.01) and 70% 1-RM protocols (p < 0.01). In addition, there was a significant (p 
= 0.04) difference between the 30% and 70% 1-RM posttest strength (70% 1-RM > 30% 1-RM) 
(Table 1).  
 
Table 1. Mean ± SD for the pretest and posttest electromyographic (EMG) root mean square (RMS), EMG mean 
power frequency (MPF), mechanomyographic (MMG) RMS, and MMG MPF during the 1 repetition maximum (1-
RM) measurements from the 30% 1-RM and 70% 1-RM protocols. 
 

Figure 1 shows the pretest to posttest EMG RMS, EMG MPF, MMG RMS, and MMG MPF 
normalized to the initial MVIC for both the 30% 1-RM and 70% 1-RM protocols. 
 
The total repetitions completed during the 30% 1-RM protocol were 55 ±19. Figure 2 shows the 
results of the polynomial regression analyses and one-way repeated measure ANOVAs with 
post-hoc Student Newman-Keuls tests for the normalized EMG RMS, EMG MPF, MMG RMS, 
and MMG MPF versus repetition relationships from the VM at 30% 1-RM. There were 
significant cubic relationships for the EMG RMS (R2 = 0.95) and MMG RMS (R2 = 0.67) versus 
repetitions from the VM at 30% 1-RM that were greater than the initial repetition from 10 to 

  Protocol Pretest Posttest 

EMG RMS (µV) 
30% 810  ± 463 845  ± 460 
70% 765  ± 354 795  ± 377 

MMG RMS (m·s2) 
30% 0.46  ± 0.13 0.43  ± 0.09 
70% 0.46  ± 0.13 0.48  ± 0.22 

EMG MPF (Hz) 
30% 78  ± 19 60  ± 12* 
70% 81  ± 18 71  ± 12* 

MMG MPF (Hz) 
30% 20.7  ± 10.1 19.1  ± 5.8 
70% 19.8  ± 7.9 16.5  ± 3.7 

1-RM Strength (kg) 
30% 46.5 ± 10.7 12.7 ± 3.0** 
70% 45.6 ± 10.5 29.2 ± 6.7* 

*Significantly less than Pretest, **Significantly less than Pretest and 70% Posttest 
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100% of the total repetitions (Figure 2). There were significant negative quadratic relationships 
for EMG MPF (R2 = 0.97) and MMG MPF (R2 = 0.91) versus repetition from the VM at 30% 1-
RM that began to decrease from the initial repetition at 90 and 60% to 100% of the total 
repetitions, respectively (Figure 2). 
 

 
Figure 1. Electromyographic (EMG) amplitude (root mean square; RMS), mechanomyographic (MMG) RMS, 
EMG mean power frequency (MPF), and MMG MPF responses pretest versus posttest 1 repetition maximum (1-
RM) measurements during the 30% and 70% 1-RM protocol, normalized to pretest maximal voluntary isometric 
contraction (MVIC). * Significantly less than pretest value at p < 0.05 
 
The total repetitions completed during the 70% 1-RM protocol were 15 ± 4. Figure 3 shows the 
results of the polynomial regression analyses and one-way repeated measures ANOVAs with 
post-hoc Student Newman-Keuls tests for the normalized EMG RMS, EMG MPF, MMG RMS, 
and MMG MPF versus repetition relationships from the VM at 70% 1-RM. There was a 
significant positive quadratic relationship for the EMG RMS (R2 = 0.97) versus repetition from 
the VM at 70% 1-RM that was greater than the initial repetition from 20 to 100% of the total 
repetitions (Figure 3). There was a significant positive linear relationship for the MMG RMS 
(R2 = 0.45) versus repetition from the VM at 70% 1-RM that was greater than the initial 
repetition from 20 to 100% of the total repetitions (Figure 3). There were significant negative 
quadratic relationships for EMG MPF (R2 = 0.96) and MMG MPF (R2 = 0.84) versus repetition 
from the VM at 70% 1-RM that began to decrease from the initial repetition at 80 and 20% to 
100% of the total repetitions, respectively (Figure 3). 
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Figure 2. The time course of changes in electromyographic (EMG) amplitude (root mean square; RMS), EMG 
mean power frequency (MPF), mechanomyographic (MMG) RMS, and MMG MPF during the 30% 1 repetition 
maximum (1-RM) protocol (normalized to the initial repetition). *Significantly different from the initial repetition 
at p < 0.05 
 

 
 
Figure 3. The time course of changes in electromyographic (EMG) amplitude (root mean square; RMS), EMG 
mean power frequency (MPF), mechanomyographic (MMG) RMS, and MMG MPF during the 70% 1 repetition 
maximum (1-RM) protocol (normalized to the initial repetition). *Significantly different from the initial repetition 
at p < 0.05 
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DISCUSSION 
 
In the present study, there were 76 and 36% decreases in 1-RM strength as a result of the 
fatiguing DCER workbout after the 30 and 70% 1-RM protocols, respectively, but no changes 
in EMG RMS, MMG RMS, or MMG MPF following either protocol (Figure 1). The EMG MPF, 
however, decreased following both protocols (Table 1). These findings were in agreement with 
Pincivero et al. (29) who reported no pretest versus posttest changes in EMG RMS during 1-
RM measurements, but decreases in EMG MPF from the VL, VM, and RF after DCER leg 
extension muscle actions to failure at 50% 1-RM. These findings were also in agreement with 
Akima et al. (1) who reported no changes in EMG RMS from the VL, VM, and RF after DCER 
leg extension muscle actions to failure at 50 and 70% 1-RM. It was suggested (1, 29) that the 
decrease in pretest versus posttest strength, without changes in EMG RMS, were a result of 
excitation contraction coupling failure. Thus, these findings indicated no difference between 
the 30% versus 70% protocols in the neuromuscular responses from the pretest versus posttest 
1-RM measurements. In addition, the current findings were in agreement with previous 
studies (1, 29) which suggested no changes in muscle activation (EMG RMS), but decreases in 
MUAP CV (EMG MPF) during the 1-RM measurements following submaximal, DCER leg 
extension muscle actions to failure. 
 
The results of the present study indicated four unique phases (1 to 30, 30 to 60, 60 to 90, and 90 
to 100% of the repetitions to failure) of the neuromuscular responses from the VM during the 
30% 1-RM protocol (Figure 2). The unique phases were identified by the time-points that the 
neuromuscular responses became significantly different than the initial repetition. During the 
first 30% of the repetitions to failure there were increases in EMG RMS and MMG RMS, but no 
change in EMG MPF or MMG MPF. These findings were not consistent with those of Pincivero 
et al. (29) who reported an increase in EMG RMS, but decrease in EMG MPF from the VM 
during the first 30% of DCER leg extensions to failure at 50% 1-RM. These findings were also 
not consistent with those of Ebersole et al. (12) who reported increases in EMG RMS and MMG 
RMS, decreases in MMG MPF, and no change in EMG MPF from the VM during the first 15 of 
50 maximal CON-only isokinetic muscle actions of the leg extensors. Thus, these findings (12, 
28) suggested mode- (isokinetic versus DCER) and intensity-related (maximal versus 
submaximal) differences in neuromuscular responses during dynamic leg extension muscle 
actions. During the second phase (30 to 60% of the repetitions to failure) there was an increase 
in EMG RMS, decrease in MMG RMS, and no changes in EMG MPF or MMG MPF. The MMG 
RMS responses were similar to those of Ebersole et al. (12) who reported a decrease in MMG 
RMS from the VM during repetitions 15 to 40 of 50 maximal CON-only isokinetic leg extension 
muscle actions. The decrease in MMG RMS was likely a result of intramuscular fluid pressure 
(12, 24)  having a greater effect on the MMG signal than increases in motor unit 
recruitment(12). During the third phase (60 to 90% of the repetitions to failure), however, there 
were increases in EMG RMS and MMG RMS, a decrease in MMG MPF, but no change in EMG 
MPF. These findings were similar to those of Ebersole et al. (12) who reported increases in 
EMG RMS and MMG RMS, a decrease in MMG MPF, and no change in EMG MPF from the 
VM during repetitions 40 to 50 of 50 maximal CON-only isokinetic muscle actions of the leg 
extensors. The increases in EMG RMS and MMG RMS suggested that motor unit recruitment 
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overcame the competing influences of intramuscular fluid pressure on the MMG signal (12). In 
addition, the decrease in MMG MPF suggested a decrease in the global motor unit firing rate 
of activated motor units (9, 22). During the final phase (90 to 100% of the repetitions to failure) 
there were increases in EMG RMS and MMG RMS, but decreases in EMG MPF and MMG 
MPF. These findings were similar to those of Jenkins et al.(20) and Pincivero et al. (29) who 
reported increases in EMG RMS and decreases in EMG MPF from the VM during the CON 
phase of DCER leg extension muscle actions to failure at 30% and 50% 1-RM, respectively. The 
decrease in EMG MPF in the present study suggested a buildup of metabolic byproducts that 
slowed MUAP CV, which further supported the fatiguing nature of the workbout. Thus, the 
VM exhibited four unique phases (1 to 30, 30 to 60, 60 to 90, and 90 to 100%) of neuromuscular 
responses during CON-only DCER leg extension muscle actions to failure at 30% 1-RM. 
 
The results of the present study indicated three unique phases (1 to 20, 20 to 80, and 80 to 100% 
of the repetitions to failure) of neuromuscular responses from the VM during the 70% 1-RM 
protocol (Figure 3). During the first 20% of the repetitions to failure there were no changes in 
EMG RMS, MMG RMS, EMG MPF, and MMG MPF from the VM. These findings were not in 
agreement with Akima et al. (1) who reported an increase in EMG RMS from the VM during 
the first 25% of the repetitions to failure of DCER leg extension muscle actions to failure at 70% 
1-RM. The fatigue-related differences in neuromuscular responses in the current study and 
those of Akima et al. (1) may be explained by the differences between protocols. Specifically, 
the present study included only the CON phase of the leg extension muscle actions, but Akima 
et al. (1) included the CON and ECC phases of the leg extension muscle actions. Indicating the 
ECC phase following the CON phase may result in earlier fatigue-related changes in the 
neuromuscular responses than during CON-only DCER leg extension muscle actions.  
During the middle phase (20 to 80% of the repetitions to failure) there were increases in EMG 
RMS and MMG RMS, a decrease in MMG MPF, but no change in EMG MPF. These findings 
were in agreement with Akima et al. (1) who reported an increase in EMG RMS from the VM 
during 25 to 75% of the repetitions to failure of DCER leg extension muscle actions to failure at 
70% 1-RM. The current study was not in agreement, however, with those of Croce et al. (8) 
who reported a decrease in EMG RMS, MMG RMS, and MMG MPF, but a plateau in EMG 
MPF from the VM during 15 to 75% of the repetitions to failure during maximal isokinetic 
muscle actions. The differences in the present study and those of Croce et al. (8) suggested 
mode- (isokinetic versus DCER) and intensity-related (maximal versus submaximal) 
differences in neuromuscular responses. Thus, the neuromuscular responses during the 
middle phase (20 to 80% of the repetitions to failure) suggested increases in muscle activation 
(EMG RMS) and motor unit recruit (MMG RMS) that were accompanied by a decrease in 
global motor unit firing rate (MMG MPF).  
 
From 80 to 100% of the repetitions to failure there was a plateau in EMG RMS, an increase in 
MMG RMS, but decreases in EMG MPF and MMG MPF. These findings were similar to those 
of Akima et al. (1) and Pincivero et al. (29) who reported a plateau in EMG RMS from VM 
during 75 and 80 to 100% of the repetitions to failure of DCER leg extension muscle actions to 
failure at 70 and 50% 1-RM, respectively. Thus, the neuromuscular responses from 80 to 100% 
of the repetitions to failure suggested an increase in motor unit recruitment, but decreases in 
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global motor unit firing rate and MUAP CV. Thus, during the 70% 1-RM protocol there were 
three unique phases (1 to 20, 20 to 80, and 80 to 100% of the repetitions to failure) of 
neuromuscular responses during CON-only DCER leg extension muscle actions to failure at 
70% 1-RM. 
 
During the initial phase of the 30% 1-RM protocol there were increases in EMG RMS and 
MMG RMS, but no changes in EMG MPF or MMG MPF. There were no changes, however, for 
the neuromuscular parameters during the initial phase of the 70% 1-RM protocol. These 
findings were similar to those of Akima et al. (1) who reported an approximate 12% increase in 
EMG RMS from the VM during the initial phase of DCER leg extension muscle action to 
failure at 50% 1-RM, but only a 3% increase at 70% 1-RM. Thus, the current findings and those 
of Akima et al. (1) indicated greater changes in EMG RMS and MMG RMS at low to moderate 
intensities (30 to 50% 1-RM) compared to high intensities (70% 1-RM) during fatiguing DCER 
leg extension muscle actions. It has been suggested (20, 24, 27, 31) that at lower intensities, 
there is a greater reserve of unrecruited motor units than at higher intensities which may 
account for the greater magnitude of increases in muscle activation (EMG RMS) and motor 
unit recruitment (MMG RMS) throughout the fatiguing workbout at 30% 1-RM than 70% 1-
RM. 
 
During the middle phases (30 to 60% of the repetitions to failure) there were decreases in 
MMG RMS during the 30% 1-RM protocol, but increases throughout the 70% 1-RM protocol. It 
has been suggested (11, 24, 31) that during fatiguing tasks, both intramuscular fluid pressure 
and motor unit recruitment can affect MMG RMS. Typically, fatigue-induced increases in 
intramuscular fluid pressure decreases MMG RMS by restricting the lateral oscillations of the 
active muscle fibers while motor unit recruitment increases MMG RMS (12, 24, 31). Thus, 
during fatiguing tasks, intramuscular fluid pressure and motor unit recruitment are competing 
influences on MMG RMS. Furthermore, the intensity and number of repetitions performed 
during a fatiguing workbout can affect intramuscular fluid pressure. Thus, the decreases in 
MMG RMS during the middle phases of the 30% 1-RM protocol suggested that intramuscular 
fluid pressure had a greater effect on the MMG signal than did increases in motor unit 
recruitment. The increases in MMG RMS during the 70% 1-RM protocol, however, suggested 
that the increases in motor unit recruitment had a greater effect than intramuscular fluid 
pressure on the MMG signal. In addition, MMG MPF decreased during the middle phase of 
the 70% 1-RM protocol, but was unchanged at 30% 1-RM (Figure 2 and 3). The decrease in 
MMG MPF during the 70% 1-RM protocol suggested an earlier reduction in global motor unit 
firing rate when compared to the 30% 1-RM protocol. It has been suggested (9, 10, 13, 22, 31) 
that decreases in MMG MPF and global motor unit firing rates during the process of fatigue 
are a result of motor unit activation strategies being employed to optimize force production 
and maintain the required force. Thus during the middle phases, the neuromuscular responses 
indicated that the increases in intramuscular fluid pressure had a greater effect on the MMG 
signal during the 30% 1-RM than the 70% 1-RM protocol. In addition, the decrease in MMG 
MPF during the 70% 1-RM protocol suggested an earlier reduction in global motor unit firing 
rate than during the 30% 1-RM protocol. Together these findings indicated intensity-related 
differences in the neuromuscular responses during fatiguing DCER workbouts which resulted 
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in unique, time-dependent differences in the motor unit activation strategies used to maintain 
force production.  
 
During the final phases (60 to 100% of the repetitions to failure) there were increases in EMG 
RMS and MMG RMS, but decreases in EMG MPF and MMG MPF for both the 30% 1-RM and 
70% 1-RM protocols (Figure 2 and 3). These neuromuscular responses were typical of those 
observed in previous studies (1, 2, 20) of submaximal, fatiguing workbouts. The overall 
direction and magnitude of changes in these neuromuscular parameters are often used to 
describe differences in neuromuscular responses and make inferences regarding the motor 
unit activation strategies used to maintain force production. For example, in the current study, 
there were no differences in neuromuscular responses between protocols during the final 
phase of the fatiguing workbouts. There were, however, distinct differences in neuromuscular 
responses between the two protocols during the initial and middle phases of the fatiguing 
workbout. These findings indicated that although the direction of changes in neuromuscular 
parameters were similar during the 30% 1-RM and 70% 1-RM protocols, there were time-
dependent differences between the protocols in the patterns of changes which may reflect the 
motor unit activation strategies used to maintain force production during the process of 
fatigue. 
 
The current findings should be viewed within the limitations of the study's methodology. The 
neuromuscular parameters assessed in the present study are indirect indicators of muscle 
activation (EMG RMS), motor unit action potential conduction velocity (EMG MPF), motor 
unit recruitment (MMG RMS), and global motor unit firing rate (MMG MPF). That is, the 
surface EMG signal is affected by a number of physiological and nonphysiological factors that 
are not reflective of motor unit activation strategies (14, 15). The MMG signal is also affected 
by many factors, including motor unit synchronization, intramuscular pressure, and muscle 
stiffness (24-26). 
 
In summary, there were no differences in the neuromuscular responses during the pretest 
versus posttest 1-RM measurements from the 30% 1-RM and 70% 1-RM protocols. The 
decreases in pretest versus posttest 1-RM strength without changes in EMG RMS for both 
intensities suggested excitation contraction coupling failure. The time course of changes in 
neuromuscular parameters from the 30% 1-RM and 70% 1-RM protocols, however, indicated 
distinct differences in responses during the process of fatigue. During the initial phase of the 
30% 1-RM protocol there were increases in EGM RMS and MMG RMS, but no changes at 70% 
1-RM. The middle phases indicated a decrease in MMG RMS during the 30% 1-RM protocol, 
but an increase during the 70% 1-RM protocol which suggested intramuscular fluid pressure 
had a greater effect on the MMG RMS during the 30% 1-RM than the 70% 1-RM protocol. In 
addition, the 70% 1-RM protocol had an earlier reduction in MMG MPF than the 30% 1-RM 
protocol which suggested an earlier reduction in global motor unit firing rate during the 70% 
1-RM protocol. During the final phase, there were no differences in neuromuscular responses 
between the 30% 1-RM and 70% 1-RM protocols. Thus, in the current study, there were no 
differences in the neuromuscular responses during the pretest versus posttest 1-RM 
measurements, but there were time-dependent differences between the 30% 1-RM and 70% 1-
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RM protocols in the direction and magnitude of changes in neuromuscular parameters during 
the process of fatigue. Therefore, the time course of changes in neuromuscular responses were 
sensitive to both intensity and fatigue which may allow for this methodology to be used to 
examine the effectiveness of training programs, supplements, and rehabilitation. 
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