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Abstract

Objective—The age- and disease-dependent presence of microvessels within heart valves is an 

understudied characteristic of these tissues. Neovascularization involves endothelial cell (EC) 

migration and cytoskeletal reorientation, which are heavily regulated by the Rho family of 

GTPases. Given that valve ECs demonstrate unique mesenchymal transdifferentiation and 

cytoskeletal mechanoresponsiveness, compared to vascular ECs, this study quantified the effect of 

inhibiting two members of the Rho family on vasculogenic network formation by valve ECs.

Approach and results—A tubule-like structure vasculogenesis assay (assessing lacunarity, 

junction density, and vessel density) was performed with porcine aortic valve ECs treated with 

small molecule inhibitors of Rho-associated serine-threonine protein kinase (ROCK), Y-27632, or 

the Rac1 inhibitor, NSC-23766. Actin coordination, cell number, and cell migration were assessed 

through immunocytochemistry, MTT assay, and scratch wound healing assay. ROCK inhibition 

reduced network lacunarity and interrupted proper cell–cell adhesion and actin coordination. Rac1 

inhibition increased lacunarity and delayed actin-mediated network formation. ROCK inhibition 

alone significantly inhibited migration, whereas both ROCK and Rac1 inhibition significantly 

reduced cell number over time compared to controls. Compared to a vascular EC line, the valve 

ECs generated a network with larger total vessel length, but a less smooth appearance.

Conclusions—Both ROCK and Rac1 inhibition interfered with key processes in vascular 

network formation by valve ECs. This is the first report of manipulation of valve EC vasculogenic 

organization in response to small molecule inhibitors. Further study is warranted to comprehend 

this facet of valvular cell biology and pathology and how it differs from vascular biology.
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Introduction

Calcific aortic valve disease (CAVD) has a prevalence of about 3% in patients older than 75 

and leads to ~ 50,000 heart valve replacements each year (Go et al., 2014). 

Neovascularization (the formation of new blood vessels) is a well-recognized histological 
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characteristic of CAVD (Chalajour et al., 2004a, Chalajour et al., 2007, Charest et al., 2006, 

Hakuno et al., 2010, Mariscalco et al., 2011, Mazzone et al., 2004, Paranya et al., 2001, 

Poggio et al., 2011, Rajamannan et al., 2005, Soini et al., 2003 and Syväranta et al., 2010). 

Angiogenesis, the process in which new vessels and capillaries sprout from existing ones, is 

also known to promote mineralization within diverse tissues, thereby contributing to the 

progressive hardening and resultant lack of function in pathologies such as atherosclerosis or 

ectopic bone formation (Collett and Canfield, 2005). The cell-mediated mechanisms of 

angiogenesis have not been widely investigated in CAVD, with some notable exceptions. 

The glycoprotein chondromodulin, which is anti-angiogenic, was demonstrated to be 

abundant in normal adult heart valves but present in lower amounts in regions of diseased 

heart valves marked by neovascularization (Yoshioka et al., 2006).

It has been proposed that a targeted antiangiogenic therapy could stop the progression of 

valve disease by preventing the entrance of excess nutrients and inflammatory infiltrates 

through neovessels generated by the valve endothelial cells (VECs) (Hakuno et al., 2010). 

Statin-based, lipid-lowering therapies used in the treatment of atherosclerosis progression do 

not appear to reduce CAVD progression (Teo et al., 2011). Studies showing that CAVD 

involves endochondral bone formation (Xu et al., 2010) – a process that, in normal bone, 

requires neovascularization (Ishijima et al., 2012) – also supports investigating the inhibition 

of functional neovessel formation as a treatment for CAVD. Interestingly, normal pediatric 

heart valves (unlike normal adult valves) are richly vascularized (Duran and Gunning, 1968), 

which suggests that vascularization may be an important factor to consider in the tissue 

engineering of heart valves for pediatric patients. All in all, there is compelling evidence for 

further characterization of vasculogenic behavior by heart valve cells.

During angiogenesis, the Rho family of GTPases transduces proangiogenic signals into 

organized cytoskeletal movements. These GTPases, RhoA, Rac1, and Cdc42, are activated 

by downstream signaling cascades of the membrane receptors of several angiogenic 

molecules (Huber et al., 2003). Rac1 regulates lamellipodia formation through activation of 

p21-activated kinase (PAK), whereas RhoA is involved in cell adhesion and forward 

movement through regulation of stress fiber formation and contraction via the Rho-

associated serine-threonine protein kinase (ROCK), which leads to the phosphorylation of 

myosin light chain (pMLC) (Defilippi et al., 1999, Huber et al., 2003 and Pollard and 

Borisy, 2003). Therefore, these proteins transduce angiogenic stimuli into coordinated 

cellular motility and network formation. Several studies have demonstrated the unique 

attributes of valve endothelial cells (VECs) compared to vascular-derived endothelial cells 

(ECs) including their transduction of angiogenic stimuli. Additional sources of differences 

include the valve cells’ physiological predisposition toward endothelial to mesenchymal 

transdifferentiation during valvulogenesis and their distinct mechanical environment 

(Butcher et al., 2006, Hinton and Yutzey, 2011, Poggio et al., 2011, Xu et al., 2009, Xu et 

al., 2010 and Yang et al., 2008). Further, key differences between ECs and VECs arise in the 

expression of genes and proteins that regulate blood vessel development, angiogenesis, 

adhesion, migration, and cell fate in in vitro comparisons (Butcher et al., 2004 and Butcher 

et al., 2006).
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Compared to ECs, however, the Rho family of GTPases has had limited study in the context 

of heart valves. ROCK inhibition was previously shown to block calcific nodule formation 

by valvular interstitial cells (VICs) (Gu and Masters, 2011) and to inhibit mesenchymal 

invasion by cultured atrioventricular endocardial cells, which are embryonic precursors to 

VECs (Sakabe et al., 2006). It was also reported that flow-dependent VEC orientation was 

independent of PI3K, a downstream effector of Rac1, despite its known role in regulating 

vascular endothelial cell organization in response to flow and during angiogenesis (Butcher 

et al., 2004 and Holmes et al., 2007). Given the importance of ROCK and Rac1 in regulating 

endothelial cell motility and organization during angiogenesis (Hoang et al., 2004), as well 

as the atypical nature of VEC responses to various angiogenic stimuli (Xu et al., 2009 and 

Yang et al., 2008), and the potential impact of a VEC-specific anti-angiogenic therapy for 

the treatment of CAVD (Hakuno et al., 2010), there is compelling motivation for further 

study of the effects of ROCK and Rac1 inhibition on vasculogenic network formation by 

heart valve cells.

This study investigated the ability to tune the complex vasculogenic networks using small 

molecule inhibitors of the ROCK (Y-27632) and Rac (NSC-23766) pathways of adult 

porcine aortic valve endothelial cells (APAVECs) on Matrigel, a reconstituted basement 

membrane substrate that has been widely used previously to invoke a vasculogenic response 

from endothelial cells (Arnaoutova and Kleinman, 2010). Several basement membrane 

components such as SPARC (Charest et al., 2006), laminin (Afek et al., 1999), and collagen 

type 4 (Afek et al., 1999), as well as transforming growth factor β (Nakajima et al., 1997) 

have been found to be increased in fibro-calcific valves compared to normal valves. Thus, 

Matrigel was used to mimic the transition from an anti-angiogenic to a pro-angiogenic 

environment that the aortic valve cells experience during the progression of CAVD. The 

geometry of the resulting vasculogenic networks was controlled using small molecule 

inhibitors for the ROCK (Y-27632) and Rac1 (NSC-23766) pathways. Since cell migration 

and proliferation play crucial roles in angiogenesis, the effect of the inhibitors on these 

outcomes was also assessed. Furthermore, the cells in these networks were immunostained 

for actin, CD31, and α-smooth muscle actin (α-SMA) to demonstrate how cell phenotypes 

were affected by ROCK and Rac1 inhibition.

Materials and methods

Isolation, purification, and culture of VECs

Adult porcine aortic valve endothelial cells (APAVECs) were used to model physiologically 

healthy adult human valve cells due to the established similarities between human and 

porcine valve physiology (Stephens et al., 2011). Previous studies with human cells have 

demonstrated that VECs from diseased valves are more angiogenic than those harvested 

from control tissues (Chalajour et al., 2004a). This study aimed to induce previously healthy, 

quiescent VECs to enter into the proangiogenic phenotype that is associated with CAVD, 

and to control this phenotype using small molecule inhibitors. Therefore, all APAVECs were 

harvested from aortic valve leaflets removed from healthy 6-month old pig hearts received 

from a local abattoir (Fisher Ham and Meats, Houston, TX).
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VECs were harvested using a protocol modified from previously described techniques 

(Butcher et al., 2004 and Cheung et al., 2008). Multiple cell harvests were performed to 

ensure biological replication, and in each harvest, VECs were pooled from the aortic valve 

leaflets of 3 separate hearts. In brief, valve leaflets were soaked in an enzyme digest 

composed of 2 U/mL of dispase (Stemcell, Tukwila, WA) and 60 U/mL of collagenase type 

II (Worthington Biochemical, Lakewood, NJ) and horizontally shaken at 37 °C for 1 h. After 

the enzyme digestion, the VECs were lifted from the leaflet by gently rolling a sterile cotton 

swab over the entire surface. The cells were removed from the cotton swab with multiple 

washes of EBM-2 media (Lonza, Basel, Switzerland) containing 1% penicillin/streptomycin 

solution (Lonza) and the growth factor bullet kit EGM-2 (Lonza), which includes epidermal 

growth factor, hydrocortisone, gentamicin, amphotericin-B, vascular endothelial growth 

factor (VEGF), fibroblast growth factor beta, R3-insulin like growth factor 1, ascorbic acid, 

heparin, and fetal bovine serum. The cell suspension was then plated onto sterile 2.5% 

gelatin-coated T-75 tissue culture flasks and cultured in a humidified incubator at 37 °C and 

5% CO2. After reaching confluence, the valve cells were gently removed from the flask 

using Trypsin EDTA 1 × (Corning, Manassas, MA) and magnetically sorted for CD31 to 

ensure VEC purity using the Dynabeads Pan Mouse IgG kit (Invitrogen, Carlsbad, CA). 

Resulting VEC populations were cultured in EBM-2 media at 37 °C and 5% CO2 in 

preparation for use in subsequent experiments. An immortalized murine cardiac endothelial 

cell line (MCEC, CELLutions Biosystems, Ontario, Canada) was commercially acquired 

and cultured in the same manner as the VECs (He et al., 2008).

Tubule-like structure (TLS) vasculogenesis assay

The TLS assay is widely used to study vasculogenesis in cultured cells (Arnaoutova and 

Kleinman, 2010). This study investigated the extent to which APAVECs cultured from 

healthy aortic valves could form complex vasculogenic networks on Matrigel, a 

reconstituted basement membrane substrate that has been widely used previously to invoke a 

vasculogenic response from endothelial cells (Arnaoutova and Kleinman, 2010). The 

geometry of the resulting networks was altered using small molecule inhibitors for ROCK 

and Rac1.

Prior to the start of each study, phenol red free Matrigel (BD Biosciences, San Jose, CA) 

was thawed overnight on ice. On day 1, 50 μl volumes of cold Matrigel were added to the 

wells of a 96-well plate and then placed in the incubator at 37 °C for 1 h to allow for 

gelation. APAVECs in EGM-2 (100 μl) were then plated on top of the Matrigel at a 

concentration of 24,000 cells per well. In each assay in this study, controls and treatment 

groups were pipetted from the same source of mixed cells to ensure the same number of 

cells was seeded each time. Upon seeding, the cells were treated with the ROCK inhibitor 

Y-27632 (Sigma-Aldrich Research Biochemicals Inc., St. Louis, MO) or the Rac1 inhibitor 

NSC-23766 (Tocris Bioscience, Bristol, UK) at the concentrations noted below. Controls 

were treated with PBS. Plates were then returned to the incubator. After 7 h, the resultant 

tubule-like network structures were imaged in the middle of each well using phase contrast 

microscopy with a 10 × objective. Each condition was applied to at least triplicate wells, and 

the assay was repeated three separate times.
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For a comparison of baseline vasculogenic network formation between the valvular and 

vascular cells, the MCECs were cultured under the same TLS assay conditions, but were not 

subjected to ROCK or Rac1 inhibition.

Automated image analysis for tubule characterization

Phase contrast microscopy can be utilized to image vessel formation in a high throughput 

manner without interrupting the vessel formation, but this approach suffers from a lack of 

contrast when imaging cells grown on gels. To circumvent this limitation and allow for 

downstream analysis, a custom automated script written for ImageJ (Bethesda, MD) was 

used to convert the phase contrast images to a binary mask using an edge detection 

algorithm that ignores small and circular objects, allowing it to only detect elongated tubule 

networks. All images obtained during the TLS experiments were processed using this script 

prior to quantification of network parameters.

Quantitative analysis of vascular networks is not standardized across labs or fields. Most 

commonly this work proceeds in a non-automated fashion that is a labor intensive process 

and prone to human error and biases. The free, open source software Angiotool (Zudaire et 

al., 2011) offers an automated mechanism to quantify several angiogenesis network metrics 

in a high throughput and repeatable manner. In brief, the binary images generated from the 

ImageJ script were convolved with a fast reclusive Gaussian kernel, and the tube-like 

structures were then computed based on the combination of the eigenvalues of the 2D 

Hessian matrix. The vessel response was computed for a set of scales that denotes the 

standard width of the Gaussian filter, and was then in turn interpreted as vessel diameter in 

the graphical user interface. These features were then skeletonized and analyzed for several 

angiogenesis metrics: number of junctions, junction density, vessel length, number of 

endpoints, and average lacunarity. Lacunarity is a parameter that describes the distribution of 

the sizes of gaps surrounding an object within an image. Greater lacunarity reflects a greater 

size distribution of these gaps and lower lacunarity reflects a more uniform size distribution. 

Lacunarity can be used to distinguish objects with similar fractal dimensions, and can be 

used in general for describing the spatial pattern in which neovascularization occurs (Gould 

et al., 2011). Supplemental Figure 1 shows representative images of skeletonized networks 

treated with Y-27632 and NSC-23766.

Immunocytochemistry

In order to image the tubule-like network structures to assess the coordination of cell–cell 

interactions and actin throughout the networks, the TLS assay was repeated in an 8-well #1 

glass chamber slides (Thermo Fisher, Waltham, MA) and immunocytochemistry was 

performed on the resultant networks to elucidate the localization of CD31, alpha smooth 

muscle actin (aSMA), and F-actin after 7 h. A volume of 218 μl of Matrigel was added to 

each well of an 8-well #1 glass chamber slides (Thermo Fisher, Waltham, MA) and allowed 

to harden as previously described for the TLS assay. In order to maintain the same seeding 

density of cells as in previous studies, 52,000 APAVECs in 218 μl of EGM-2 media were 

added to each well and incubated with either the ROCK inhibitor (50 μM) or the Rac1 

inhibitor (100 μM) for 7 h at 37 °C. PBS was added in the control condition. The resultant 

tubule-like structure networks were fixed using 4% paraformaldehyde for 30 min at room 
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temperature. The cells were then washed with PBS followed by treatment with 0.1% Triton 

X-100 for 5 min to permeabilize the cell membranes. A blocking solution of 10% donkey 

serum (Jackson ImmunoResearch, West Grove, PA) and 2% bovine serum albumin (Sigma-

Aldrich, St. Louis, MO) was then applied for 1 h at room temperature. Cells were washed 

again with PBS prior to an overnight incubation with primary antibodies for CD31 

(ab28364, 1:100, Abcam, Cambridge, UK) and aSMA (ab7817, 1:100, Abcam) diluted in 

the blocking solution at 4 °C. Following exposure to primary antibodies, cells were washed 

with PBS and incubated with the fluorescent secondary antibodies AlexaFluor 555 

(A-31572, 1:200, Invitrogen) and AlexaFluor 633 (A-21052, 1:200, Invitrogen) in the same 

blocking agent overnight at 4 °C. The cells were then stained with phalloidin 488 (A12379, 

1:200, Invitrogen) for 20 min. After a final wash with PBS, fluoromount containing DAPI 

(to demonstrate the cell nuclei) was applied to each well. The networks were then imaged 

using a confocal fluorescence microscope (Zeiss LSM Live 5, Oberkochen, Germany) using 

10 × and 20 × objectives. The images were evaluated to assess the APAVECS’ expression of 

CD31 to confirm their endothelial phenotype, their expression of aSMA to ascertain whether 

transdifferentiation had occurred, and their overall cell–cell and actin cytoskeleton 

organization using phalloidin 488. Live-Dead staining was performed by adding 1 μM of 

calcein-AM (Sigma-Aldrich Research Biochemicals Inc.) and 2 μM of ethidium bromide 

(Sigma-Aldrich Research Biochemicals Inc.) to the Matrigel-seeded cells 7 h after treatment 

with ROCK or Rac inhibitors. Thirty minutes later, cells were then washed with PBS and 

imaged using confocal fluorescence microscopy.

MTT assay for cell number

An assay for MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma-

Aldrich, St. Louis, MO, USA) was performed to quantify relative changes in number of 

APAVECs due to ROCK and Rac1 inhibition (Takada et al., 2004). In brief, 120,000 

APAVECs were seeded on a gelatin-coated 24-well plate and incubated at 37 °C for 24 h 

with the ROCK inhibitor Y-27632 (10, 50, or 100 μM) or the Rac1 inhibitor NSC-23766 (20, 

100, or 200 μM). The final concentrations of these inhibitors were selected to range from 5-

fold below the EC50 to 2-fold above the EC50 (Ishizaki et al., 2000 and Lee et al., 2007); 

this range captured the upper range of the concentrations used for the TLS assay. The 

control group received only PBS. The media was then replaced with 500 μl of 1% BGS and 

100 μl of MTT reagent (5 mg/ml sterile MTT in PBS) for 4 h at 37 °C. 1 ml of MTT solvent 

(DMSO) was then added to each well and triturated thoroughly. The resultant absorbance 

was read (570 nm–670 nm) using a spectrophotometer (SpectraMax M2; Molecular Devices, 

Sunnyvale, CA, USA). Six independent wells were tested per treatment group.

Cell migration assay

To observe the migratory behaviors of cells in the presence on ROCK and Rac1 inhibitors, 

APAVECs were first seeded on gelatin-coated 48-well plates and allowed to grow to 

confluence in a volume of 200 μl of medium. A cross-shaped wound was then made in the 

cell layer of each well using a vertical and horizontal scratch from a sterile 200 μl pipette tip. 

The media was changed and a 3 μl aliquot of the ROCK inhibitor Y-27632 or the Rac1 

inhibitor NSC-23766 was added was added to achieve the same range of concentrations as 

described above for the MTT assay. In the control group, cells received a treatment of only 

Arevalos et al. Page 6

Microvasc Res. Author manuscript; available in PMC 2016 August 05.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



PBS. In a negative control group, media was instead replaced with EGM2 containing neither 

serum nor bullet kit. An image was taken at the intersection of the vertical and horizontal 

scratches using a 10 × objective with phase contrast microscopy at hour 0. After 24 h, 

another image was taken at the same location in each well. Percent wound healing was 

quantified as previously reported (Rodriguez et al., 2005) and reported normalized to the 

control treated with PBS. This study was performed with a total n = 4–6 for each condition.

Statistical analysis

A one-way ANOVA was performed followed by a Tukey HSD for post hoc analysis to 

analyze for differences between groups in all assays. Statistical significance was accepted 

for p < 0.05.

Results

APAVECs formed tubule-like-structures (TLS) in an angiogenic environment

Since the source of the cells responsible for the neovascularization in the aortic valves 

during CAVD has not been definitively determined (Chalajour et al., 2004b), we sought to 

establish the ability of CD31-positive APAVECs to form vasculogenic networks and to 

quantify the complexity of any networks formed. After 7 h, the CD31+ APAVECs formed a 

pronounced vascular network structure with readily quantifiable vessel density, junction 

density, total number of junctions, total number of end points, total vessel length, and 

lacunarity (Table 1).

ROCK inhibition increased network complexity in a dose dependent manner

As ROCK is an important mediator of angiogenesis, APAVECs were treated with a 

logarithmic range of concentrations of the ROCK inhibitor Y-27632. At 1, 10, and 100 μM 

of Y-27632, the resulting APAVEC networks displayed significantly increased vessel 

density, junction density, and total network length compared to the untreated control 

networks (p < 0.0001, Fig. 1). At these same concentrations, the number of junctions, vessel 

percentage area, and total number of end points were increased (193, 260, and 290%; 130, 

144, and 144%; and 93, 134, and 158%, respectively; data not shown). There was also a 

significant decrease in lacunarity of the network structures with increased concentrations of 

Y-27632 (p < 0.005, Fig. 1).

Rac1 inhibition decreased network complexity and inhibits network initiation

As shown in Fig. 2, APAVECs treated with the highest dose of 200 μM of the Rac1 inhibitor 

NSC-23766 displayed significantly decreased total numbers of junctions (p < 0.01) and 

vessel percentage area (p < 0.01), and the treatment increased lacunarity (p < 0.05) 

compared to the control. Whereas ROCK inhibition dose-dependently changed the geometry 

of the vasculogenic networks as indicated by the average lacunarity and junction density, the 

highest concentration of Rac1 inhibition actually blocked the formation of vasculogenic 

networks. Although Rac1 inhibition (at 200 μM) decreased the total number of junctions, it 

did not decrease the overall degree of branching, since there was no change in junction 

density (data not shown). Furthermore, the network metrics in the groups treated with Rac1 

inhibitor did not display dose dependency to the same extent as the ROCK inhibitor. 
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Although differences in the network morphology could be observed at Rac1 inhibitor 

concentrations of 2 and 20 μM as shown by Figs. 2A–C, these differences were not 

statistically significant. The dramatic changes in the network metrics at the higher 

concentration, however, could be attributed in part to the inability of the software to quantify 

the lack of a network.

ROCK and Rac1 inhibition influenced cell assemblies

Immunostaining analysis of the APAVEC vasculogenic networks demonstrated that the cells 

maintained their endothelial phenotype in each condition as demonstrated by positive 

staining for CD31 (Fig. 3, green). Since alpha smooth muscle actin (αSMA) positive cells 

that co-express endothelial markers have been shown to sprout from calcific aortic valves 

(Chalajour et al., 2007), αSMA expression in APAVEC vasculogenic network formation was 

also assessed. In each sample, a small number of αSMA+/CD31− cells were found along the 

exterior borders of the tubule structures as shown in Fig. 4A. As demonstrated by the actin 

stain and CD31 localization, the control samples demonstrated tightly assembled, 

multicellular, linear tubule-like structures as shown in Fig. 3 and Fig. 4. Structures formed in 

the presence of Rac1 inhibitor displayed a similar multicellular tube-like morphology, but 

overall these tube-like structures were fewer in number compared to the control (Fig. 3C). 

As shown in Fig. 3B, the ROCK-inhibited cells formed multicellular networks, but displayed 

more flattened junctions and extensions, as opposed to the tube-like morphology 

characteristics of the control.

The higher magnification images allowed for improved visualization of cell–cell 

organization through the localization of the homologous cell–cell binding protein CD31. 

Both the control and Rac1-inhibited multicellular structures displayed tightly organized cell 

assemblies, whereas ROCK inhibition appeared to interrupt this organization during 

vasculogenic network formation, resulting in a looser cell assembly (Fig. 4B). A small 

number of αSMA+ VECs were apparent in each condition as shown by Fig. 4A. In each of 

these cases, these cells appeared to be co-localizing and binding several CD31+/αSMA− 

VECs at the same time.

Changes in the network assemblies was not due to cell death, as demonstrated by the lack of 

ethidium bromide staining and ubiquitous presence of positive calcein AM staining in the 

Live/Dead assay as shown in Supplemental Figure 2, and by the dynamic motion of the cells 

as shown in Supplemental Figure 3.

Rac and ROCK inhibition significantly decreased APAVEC number

One of the more dramatic events of angiogenesis is a sudden and rapid increase in 

endothelial cell proliferation (Kalluri, 2003). The resulting normalized change in MTT 

absorbance, as a measure of cell number, is shown in Fig. 5. The number of APAVECs was 

significantly reduced by both Rac (reduced by 25% at 100 μM and 42% at 200 μM) and 

ROCK (reduced by 23% at 50 μM and 20% at 100 μM) compared to untreated controls, 

although Rac1 displayed a greater dose dependency in its effect. No significant effect was 

found at the lowest doses for either Rac1 or ROCK inhibition.
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ROCK inhibition significantly decreased APAVEC migration

Since cell migration is an important process in angiogenesis and valvulogenesis, the effects 

of ROCK and Rac1 inhibition on APAVEC migration were investigated using a scratch 

wound healing assay. A comparison of the average wound closure given treatment with the 

ROCK or Rac inhibitor is shown in Fig. 6. Inhibition of the ROCK pathway with Y-27632 

significantly inhibited migration (by 18–19% at the two highest inhibitor concentrations), a 

finding that is consistent with prior studies that inhibited ROCK in VECs from embryonic 

aortic valve explants (Sakabe et al., 2006). Inhibition of the Rac pathway with NSC-23766 

showed a trend of reducing APAVEC migration at 200 μM (by 26%), but this result was not 

quite statistically significant (p = 0.08). No significant effect was found at the lower inhibitor 

concentrations.

APAVECs display unique network formation compared to vascular endothelial cells

MCECs were directly compared to APAVECs to elucidate differences in the vasculogenic 

networks formed by each cell type under baseline conditions. At 7 h, both VECs and 

MCECs displayed complex branching networks, but the MCEC networks displayed 

smoother tubule formation as individual cells were more difficult to discern (Fig. 7A). 

Quantification of the MCEC networks relative to the APAVEC networks demonstrated a 

27% larger total network size and 22% lower number of end points for the APAVECs (Fig. 

7B). The networks demonstrated no significant difference in lacunarity or junction density 

between the vascular and valvular cells, but there was a strong trend of the APAVECs having 

a 15% larger vessel percentage area (p = 0.07) and 36% greater total number of junctions (p 

= 0.06).

Discussion

The members of the Rho family of GTPases are important mediators of vascular endothelial 

cell–cell and actin reorganization during angiogenesis (Hoang et al., 2004). This study 

investigated the effects of ROCK and Rac1 inhibition on APAVEC reorganization. ROCK 

was shown to have a role in APAVEC migration and network organization, whereas Rac1 

influenced APAVEC proliferation and network initiation. This data provides motivation for 

further investigation into the targeting of Rho family GTPases for the treatment of CAVD by 

preventing valve cell reorganization into a vasculogenic network. In addition, it elucidated 

differences between vascular and valvular endothelial networks.

These ROCK inhibition findings confirmed previously reported effects on VEC migration, 

and provided new information about the effects of ROCK on vascular network formation by 

VECs. There has been only limited study regarding the ROCK inhibition of VECs despite its 

important role in cellular organization (Hoang et al., 2004). Previously, ROCK inhibition 

was shown to prevent transwell migration by transdifferentiating VECs (Sakabe et al., 2006), 

as reported here for CD31+ APAVECs using the scratch wound healing assay. As a 

complement to the migration data, quantifying the changes in the complexity of network 

formation offers a novel assessment of APAVEC responses to vasculogenic stimuli. These 

results demonstrated that ROCK inhibition can be utilized to control the geometry of the 

vascular networks formed by APAVECs. Although ROCK inhibition dose-dependently 
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increased the number of junctions, the resulting quality of the overall network after ROCK 

inhibition appeared poor as shown by the flattened nature of the tube-like structures and 

loosely connected nature of the cell assemblies (arrow in Fig. 4B). This observation is 

consistent with previous reports demonstrating the role of Rho signaling in pinocytosis-

mediated lumen formation, which requires tight cell–cell connections, a tube-like 

morphology (Davis and Bayless, 2003) and overall vascular endothelial cell organization 

during angiogenesis (Hoang et al., 2004). The poor network formation found in this TLS 

assay may be due in part to the ability of the ROCK inhibitor to block cell migration. Rho-

ROCK machinery is normally engaged to arrange the cells into tubule structures (Bryan et 

al., 2010), but when the ROCK pathway is inhibited, the cells are less able to pull 

themselves to a new location (Lamalice et al., 2007). The resulting cell phenotype resembles 

that of tip cells, which have spiny, elongated lamellipodia reaching out to their next location 

(De Smet et al., 2009). Due to the density of the seeded cells, the APAVECs appeared to 

extend out to one another and form a flattened network with a low average lacunarity with 

ablated tubule formation.

In contrast to ROCK, the effect of Rac1 inhibition on network formation by APAVECs was 

less pronounced, except at the highest concentrations, at which few network structures 

formed. Rac1 is understudied in the field of heart valves, despite its well-known role in the 

initiation of cellular extensions and lamellipodia, which is a critical step in migration and 

thus important for angiogenesis (Eming and Hubbell, 2011). The findings of decreased 

number of junctions, decreased vessel percentage area, and increased lacunarity in 

APAVECs treated with Rac1 inhibitor are similar to previous reports of decreased network 

connections in human umbilical vein endothelial cells treated with drugs that inhibit Rac and 

Cdc42 (Bijman et al., 2006). The smaller APAVEC networks might also be explained by the 

dose-dependent reduction in cell number for APAVECs treated with NSC-23766, given that 

cell proliferation is an important facet of tubule elongation during angiogenesis (De Smet et 

al., 2009). Live/Dead staining of the resultant APAVEC networks at the higher concentration 

of NSC-23766 displayed no signs of cell death during the timeframe of these experiments 

(Supplemental Figure 2), therefore the ablated network formation cannot be attributed to cell 

death but is instead due to an inability of the cells to respond to the Matrigel environment. 

Rac1 inhibition appeared to affect the initiation of the tubule-like structures, however, the 

tube-like structures that did form demonstrated tightly clustered assemblies of cells and 

aligned actin structures, similar to the control tubule-like structures.

Further understanding of the differences between vascular and valvular biology will be 

crucial to developing targeted valve therapies that minimize systemic side effects. Several 

studies have demonstrated the unique attributes of VECs compared to vascular-derived 

endothelial cells (Butcher et al., 2004, Butcher et al., 2006, Hinton and Yutzey, 2011, Poggio 

et al., 2011, Xu et al., 2009, Xu et al., 2010 and Yang et al., 2008) and this study identified a 

new set of functional differences between the two. Both cell types formed complex 

networks, but in this work the VECs formed networks that were visibly and measurably 

different, and appeared to branch more. Since VEC networks were also demonstrated to be 

tunable by regulating ROCK and Rac, the regulation of the Rho family of GTPases may play 

a significant role in the functional differences between vascular and valvular endothelial 

Arevalos et al. Page 10

Microvasc Res. Author manuscript; available in PMC 2016 August 05.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



cells. Furthermore, modification to that regulation could influence their switch to a more 

angiogenic phenotype, such as occurs during CAVD.

Taken together, these data, showing that APAVECs can form vasculogenic structures in vitro 

in a manner that can be regulated by inhibition of ROCK and Rac1, provide compelling 

motivation for future research investigating this inhibition as an interventional treatment for 

CAVD. Based upon the network macrostructures from Fig. 1 and Fig. 2, the microstructure 

changes displayed in Fig. 3 and Fig. 4, and the effects of ROCK and Rac inhibition 

demonstrated previously in vivo (Bryan et al., 2010, Colomba et al., 2011 and Yin et al., 

2007), it is hypothesized that ROCK or Rac inhibition would prevent the functional 

formation of VEC angiogenic structures in vivo. By manipulating these aspects of cell 

behavior to block the vascular network architecture, the presumed function of these vessels – 

delivery of inflammatory infiltrates to VICs and enabling mineralization – could be inhibited 

to prevent progression to CAVD and stenosis. As angiogenesis is reported to occur more in 

early to mid-stage calcification (Soini et al., 2003), this treatment could be applied as soon 

as CAVD is detected using echocardiography. In general, translation of many of the 

currently investigated pathways (Butcher et al., 2011, Caira et al., 2006, Jian et al., 2003, 

Mohler et al., 1999, Mohler et al., 2001 and O’Brien et al., 1995) toward interventional 

treatments for CAVD will likely require the delineation of key characteristics of valvular 

cells in order to target the valve properly; this body of information, however, is continually 

expanding (Tao et al., 2012). For example, there is growing interest in how the VECs 

interact with VICs (Balaoing et al., 2014, Butcher and Nerem, 2006, Gould et al., 2014, 

Tseng et al., 2014, Wang et al., 2013 and Yoshioka et al., 2006), which could reveal whether 

the VICs play a role in vasculogenic behavior by the VECs. Furthermore, there are a myriad 

of biomaterial platforms that have been developed to investigate valvular cell biology and 

pathology (Benton et al., 2009, Chen et al., 2013, Duan et al., 2013a, Duan et al., 2013b, 

Durst et al., 2011, Eslami et al., 2014, Gould and Anseth, 2013 and Kirschner et al., 2014); 

the use of more complex biomimetic in vitro models and in vivo models should facilitate 

discovery of the conditions that regulate vasculogenesis within heart valves.

As a better understanding of angiogenesis within heart valves is developed, there is also the 

potential to apply this research to produce improved pediatric tissue engineered heart valves 

(Weind et al., 2002) and gain further insight into valve developmental pathways. Heart 

valves in the young normally have a rich microvasculature (Duran and Gunning, 1968). It 

may be that in young tissue engineered valves, spatio-temporal control of angiogenesis 

would encourage rapid host integration allowing the tissue to grow with the patient. It has 

also been proposed that certain aspects of valve disease progression involve triggering 

dormant developmental pathways (Tao et al., 2012), thus a greater understanding of the 

many angiogenic mechanisms occurring during valvulogenesis would provide new avenues 

for the investigation of angiogenesis in CAVD.

There were some limitations to this study. First, although both Y-27632 and NSC-23766 are 

widely characterized specific inhibitors of the ROCK and Rac1 pathways, the degree of 

inhibition of these pathways was not quantified by a Rho GTP activation assay. Rather, the 

range of concentrations of the inhibitors used in this study was based on prior reports and 

encompassed the IC 50 of both inhibitors (Ishizaki et al., 2000 and Lee et al., 2007). 
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Differences between the effective concentration ranges of the ROCK and Rac1 inhibitors 

could be attributed to the availability of their respective targets and their individual strengths, 

which was not investigated in this study. Second, there are limitations associated with the 

use of Matrigel. Matrigel is a widely used model for vasculogenesis and angiogenesis, 

although it may not represent the exact pathological microenvironment experienced by valve 

cells during the progression of CAVD. Nonetheless, the use of Matrigel is consistent with 

the reports of increased abundance of selected basement membrane constituents in valve 

leaflets from CAVD (Afek et al., 1999 and Charest et al., 2006). Thus, the Matrigel was 

meant to serve as a pro-vasculogenic environment in comparison to the more quiescent 

gelatin coated environment on which the cells were originally cultured. This change from an 

anti- to pro-angiogenic environment within diseased heart valves has been well-assessed 

histologically (Chalajour et al., 2004a, Chalajour et al., 2007, Charest et al., 2006, Hakuno et 

al., 2010, Mariscalco et al., 2011, Mazzone et al., 2004, Paranya et al., 2001, Poggio et al., 

2011, Rajamannan et al., 2005, Soini et al., 2003 and Syväranta et al., 2010). Third, it is 

possible that the aSMA+ cells in the TLS assay could have arisen from spontaneous 

transdifferentiation from normal culture conditions. However, there was no immunostaining 

or morphological evidence for the presence of aSMA+ cells prior to performing the TLS 

assay.

Conclusion

In this study, we demonstrated the ability of valve endothelial cells to form vasculogenic 

networks in vitro, which were significantly different from the networks generated by a 

vascular endothelial cell line, and showed the ability to manipulate the geometry of the 

resulting vascular networks using ROCK and Rac1 inhibitors. Applying analytical tools for 

quantifying networks allowed for a novel assessment of the biological response of valve 

endothelial cells to the vasculogenic environment of Matrigel and the Rho GTPase family 

inhibitors. The results provide motivation for future research to manipulate this pathway and 

regulate vasculogenesis within heart valves as needed, either to prevent pathologic 

mineralization, to promote the formation of a vascular network within pediatric tissue 

engineered heart valves, or to improve understanding of this fundamental aspect of valvular 

biology.
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Abbreviations

APAVECs adult porcine aortic valve endothelial cells

αSMA alpha smooth muscle actin

CAVD calcific aortic valve disease

PAK p21-activated kinase

pMLC phosphorylation of myosin light chain

ROCK Rho-associated serine-threonine protein kinase

TLS tubule-like structure

VEC valve endothelial cells

VIC valvular interstitial cells
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Fig. 1. 
ROCK inhibition increases APAVEC network complexity in vitro. Representative images of 

the networks formed by APAVECs treated with A) PBS, B) 1 μM, C) 10 μM, D) 100 μM of 

the ROCK inhibitor. APAVECs form more complex networks and have increased 

lamellipodia (white arrow) with higher concentrations of the ROCK inhibitor. Scale bars 

represent 100 μm. E) Quantification of dose dependent changes in various network metrics. 

Results are shown as mean ± standard error normalized to the control (n = 9, ANOVA p < 

0.0001 for all but average lacunarity for which p-value < 0.005. *p < 0.05 vs. control, 

Tukey’s HSD).
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Fig. 2. 
Rac inhibition decreases APAVEC network complexity in vitro. Representative images of 

APAVEC network formation based upon treatment with A) PBS, B) 2 μM, C) 20 μM, or D) 

200 μM of the Rac inhibitor. APAVEC form smaller and less dense networks at the highest 

treatments with the Rac inhibitor. Scale bars represent 100 μm. E) Quantification of the 

changes in various network metrics. Results are shown as mean ± standard error normalized 

to the control (n = 9, *p < 0.05 vs. all other groups, Tukey’s HSD). Although there were 

trends in some of the measured network metrics, the lower concentrations of Rac inhibitor 

resulted in less pronounced effects that did not attain statistical significance.
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Fig. 3. 
Representative Z-stack reconstructed confocal fluorescence microscopy images of APAVEC 

networks treated with A) PBS, B) 50 μM of ROCK inhibitor, or C) 100 μM of Rac inhibitor 

taken with a 10 × objective. Control APAVECs organized into tightly bound complex linear 

tubule-like networks, but the ROCK inhibited APAVECs formed flat networks with looser 

organization and ablated tubule formation. Compared to the control, Rac1 inhibition 

appeared to affect the initiation of the tubule formation shown by their fewer tubule like 

structure numbers between nodes. However, tube-like structures that did form demonstrated 

tightly clustered cell assemblies and aligned actin structures, similar to the control tubule 

like structures. Green: CD31. Red: aSMA. Blue: DAPI. Scale bars represent 100 μm.
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Fig. 4. 
Z-stack reconstructed confocal microscopy images of APAVEC networks treated with A) 

PBS, B) 50 μM of ROCK inhibitor, C) or 100 μM of Rac inhibitor. Images were taken with a 

20 × objective. Aligned actin structures and close cell–cell organization typical of tubule-

like sprouts (red arrow) were found in the (A) control and (C) Rac-inhibited networks, but 

neither of these features were displayed in the (B) ROCK-inhibited networks (green arrow). 

In each case, a few aSMA+/CD31− cells were found binding several CD31+ VECs (yellow 

arrow). Scale bars represent 50 μm. Green: CD31. Yellow: aSMA. Red: F-actin. Blue: DAPI.

Arevalos et al. Page 21

Microvasc Res. Author manuscript; available in PMC 2016 August 05.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



Fig. 5. 
Quantification of changes in cell number based upon ROCK or Rac1 inhibition. Results are 

displayed as the mean absorbance relative to the control at 24 h ± standard deviation (n = 6, 

*p < 0.05 vs. control).
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Fig. 6. 
ROCK and Rac regulated APAVEC migration in a scratch wound healing assay. A) 

Representative images of APAVEC wounds 24 h after injury when treated with 50 μM 

ROCK inhibitor or 100 μM Rac inhibitor. The black lines represent the size of the initial 

wound. Scale bar represents 100 μm. B) Quantification of wound closure at 24 h. Results are 

displayed as the mean percent wound closure normalized to the control ± standard error. (n = 

4–6, *p < 0.05 vs. control; †p = 0.08 vs. control.)
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Fig. 7. 
APAVEC network formation was directly compared to MCEC network formation to 

elucidate differences in their angiogenic signal transduction. A) At 7 h, both VECs and 

MCECs displayed branching complex networks, but MCECs displayed smoother tubule 

formation as individual cells were more difficult to discern. Scale bars represent 50 μm. B) 

Quantification of the VEC networks relative to the MCEC networks demonstrated a larger 

total network size and lower number of end points for VEC-generated networks (n = 15, *p 

< 0.05 between cell types). The networks demonstrated no significant difference in 

lacunarity or junction density, but there was a trend of the VECs having a larger total 

number of junctions and total vessel percentage area (p = 0.07 and 0.06 respectively). Data 

is displayed as average ± standard deviation normalized to the MCEC metrics.
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Table 1

Characteristics of tubule-like networks formed by APAVECs under control conditions.

Vascular Network Metric Value

Vessel density (%) 45 ± 1.6

Junction density (%) 36 ± 2

Total number of junctions 38 ± 2.3

Total number of end points 25 ± 1.4

Total vessel length (mm) 8.2 ± 0.38

Lacunarity 0.22 ± 0.02

Values are reported as the average ± the standard error (n = 14).
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