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Financial data by nature are inter-related and should be analyzed using multi-
variate methods. Many models exist for the joint analysis of multiple financial
instruments. Early models often assumed some type of constant behavior between
the instruments over the time period of analysis. But today, time-varying covari-
ance models are a key component of financial time series analysis leading to a
deeper understanding of changing market conditions. Models for covolatility of
financial data quickly grow in their complexity and parameters, and 20 years of
research offers a variety of solutions to this complexity. After a short introduction of
univariate volatility models, this article begins with the basic multivariate formu-
lation for time series covariance modeling and moves to leading time series tools
that address this complexity. Coupling these models with regime switching via a
Markov process extends the features that can be understood from market behav-
ior. We ground this review in an example of modeling the covariance of securities
within sectors and sectors within markets, with dynamics that allow for two differ-
ent market regimes. Specifically, we simultaneously model individual daily stock
data that belong to one of three market sectors and examine the behavior of the
market as a whole as well as the behavior of the market sectors over time. A motiva-
tion for this characterization concerns portfolio diversification and stock anomalies,
and we capture the changing comovement of stocks within and between sectors as
market conditions change. For example, some of these market conditions include
market crashes or collapses and common external influences. © 2014 The Authors. WIREs
Computational Statistics published by Wiley Periodicals, Inc.
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INTRODUCTION

Modeling the daily volatility (variance or standard
deviation) of an asset return is an important step

in estimating how much risk a particular asset carries.
However, the variance is not directly observable from
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a time series because there is only one observation at
each time point. The seminal paper by Engle1 which
introduced the Autoregressive Conditional Het-
eroscedasticity (ARCH) model allowed researchers
to obtain such an estimate. Since then, many more
developments in modeling heteroscedasticity or the
changing variance of the process have been made,
such as the generalization to the (G)ARCH model
which includes lagged components of squared innova-
tions in the model.2 Furthermore, it is widely accepted
that financial volatilities are correlated across assets
and markets, and models have been developed which
make use of this fact. The multivariate Generalized
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Autoregressive Conditional Heteroscedasticity
(MGARCH) model is used for studying the relation-
ships between the volatilities and covolatilities of mul-
tiple stocks. An excellent survey on MGARCH models
(with over 1000 citations) is provided by Bauwens.3

Highlighted are important early contributions to the
vast MGARCH literature including Refs 4–13, and 14.

Challenges of MGARCH modeling include the
fact that the covariance matrix must be positive def-
inite at ever time point as well as the obvious curse
of dimensionality leading to a large number of param-
eters for even simplistic model formulations. A very
popular MGARCH model from the early era that
solves these issues is the constant conditional correla-
tion (CCC) model.6 The CCC model decomposes the
conditional covariances of the returns into the con-
ditional correlations and conditional standard devia-
tions. The basic premise of the CCC model is that the
conditional correlation matrix between returns is con-
stant over time but the univariate conditional standard
deviations change over time. This changing structure
is captured using time series models for the conditional
standard deviations.

Of further importance is recognition that mar-
kets structurally change over time and that any model
or system must adapt to this change. Dynamic con-
ditional correlation (DCC) models are designed to
adapt to market conditions. Variants of the DCC
models have become one of the most popular finan-
cial time series methods in the recent literature due
to this need to capture changing market dynamics. In
this article, we highlight some of the new findings of
this important class of MGARCH models. Another
strategy to adapt to changing market dynamics is
through Markov switching models where model
parameterizations change with market conditions. In
the univariate setting, GARCH models with varying
parameters, such as the regime switching model by
Fleming and Kirby, and Klaassen15,16 are shown
to improve volatility forecasting. Similar improve-
ments are observed in regime switching models for
multivariate covolatility models,17–20 where copulas
are used to capture the multivariate dependence. A
regime switching MGARCH model is highlighted in
this article, with an example of stock market returns
through the late 1990s and early 2000s, including the
fall of ENRON. Structural change from the subprime
crises of 2008 is a current topic in many studies
(e.g., Refs 21, 22, and 23) and our methodologies
hold up well under these dynamics. For example, we
are able to foreshadow events such as the decline of
Lehmann Brothers with large lead times. However,
for this review manuscript we focus our examples
on the earlier time period, which ends with the 2001

financial crisis. We first give a brief introduction to
the univariate GARCH model followed by the focus
of this advanced review, namely the multivariate
version or MGARCH model with some of the key
extensions including the regime switching model. We
follow the extensive model exploration section with
a section explaining estimation of one specific model,
the hierarchical regime switching dynamic covariance
(HRSDC) model, on which our example is based. We
then present an example that highlights the utility
of a hierarchical MGARCH model used to model
the covariance structure within and between mar-
ket sectors where the correlation structure changes
with market conditions. We conclude with a dis-
cussion of general computing resources and general
comments.

A MOTIVATING EXAMPLE: THE
DYNAMICS OF SECTORS AND STOCKS
WITHIN SECTORS

Consider daily stock returns of the largest 21 com-
panies in three different market sectors, of Energy,
Financial, and Technology for the time period Jan-
uary 2, 1998 to December 31, 2001. Figure 1 displays
the data for a time period of 6 months. Each cluster
includes the 21 time series plots for a particular sector
during the 6-month period. Included in Figure 2 are
returns for two different 6-day periods. Each of the
two panels demonstrates a different type of comove-
ment between the stocks. The left panel demonstrates
a time period when the stock returns are following
each other closely. The right panel demonstrates a
time period with less correlation. We are interested
in detecting this difference. If we can model this dif-
ferent structure and forecast the changes, we can use
our results to answer specific questions about market
dynamics as well as how individual stocks behave with
respect to these dynamics.

Modeling the multivariate covariance or the
covolatility is the objective of the general class of
MGARCH models. We begin this review with a basic
discussion of univariate GARCH models and then
move in to the complexities of expanding to multiple
time series.

MODELING VOLATILITY AND
COVOLATILITY

Volatility or the movement in stock prices has many
definitions in financial analysis. We define volatility
as the conditional variance of the daily stock return
prices, conditioned on information prior to that day.
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Daily Returns: Top 21 Financial, Energy and Technology Stocks
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FIGURE 1 | Daily stock returns of 63 series spanning three sectors.

As our time series realization is daily stock returns,
the conditional variance is not directly observed and
cannot be directly estimated because we have a sin-
gle observation. One could use information on a finer
timescale to estimate the variance, e.g., using intra-
day stock prices to estimate the daily variability in
the returns, or using daily returns to estimate the
volatility of a monthly return process. These empirical
estimates of volatility, often called realized volatility
require careful examination due to bias from mar-
ket microstructure and other factors that get rolled
up into the estimate (for more on realized volatility,
see Refs 24–30, and 31). One might also estimate the
volatility of an equity by reverse engineering a fixed
model for price, such as the Black-Scholes option pric-
ing model which has as one of its parameters the
conditional variance of the underlying process. This
resulting volatility estimate is referred to as implied
volatility and has implicit assumptions, not the least
of which is a strong belief in the underlying option
pricing model.

The time series solution to the challenge of
estimating volatility, is to model the daily conditional

variance or standard deviation directly (covari-
ance in the multivariate case). Specifically, consider
the univariate stochastic process {yt}, with t∈T,
where the time index T =Z, the set of integers.
The volatility is defined as the conditional vari-
ance, or 𝜎2

t = Var
[
yt|yj, j < t

]
. The two basic classes

of models for the conditional variance bifurcate
based on whether a fixed or stochastic equation
is used to describe the evolution in volatility. The
GARCH/MGARCH class of models fall in the first
category of a fixed equation, but as we highlight in this
overview there are natural perturbations that expand
this class of models to changing market dynamics.

The univariate GARCH model for the process
{yt} is defined as

yt = 𝜇t (𝜃) + 𝜖t, 𝜖t = 𝜎t (𝜃) zt.

where 𝜇t(𝜃) is the process mean conditional on the
information up to time t, 𝜃 are mean model param-
eters, 𝜎t is the conditional standard deviation of the
process, and the innovation process zt has E[zt]=0,
Var[zt]= 1 and is uncorrelated in time. The random
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FIGURE 2 | Daily stock returns of 63 series spanning three sectors. High- and low-correlation regimes are depicted. The estimated regime
probabilities, rounded to 1 decimal place, are given at the top of each graph.

process represented by the conditional variance 𝜎2
t is

modeled as a function of itself at previous time points
as well as a function of the squared values of the mean
adjusted returns at previous time points. Specifically,
the classic GARCH model is given by

𝜎2
t = 𝛼0 +

p∑
i=1

𝛼i𝜖
2
t−1 +

q∑
j=1

𝛽j𝜎
2
t−j

where 𝛼0 >0, 𝛼i ≥ 0, 𝛽 j ≥0, and
max(p,q)∑

i=1

(
𝛼i + 𝛽j

)
< 1 for

mean reversion of the filter. One might also model
the conditional standard deviation rather than the
conditional variance, as in our example of this review.

There are numerous and important perturba-
tions of the classic GARCH model that are impor-
tant for modeling financial returns. Some of the
most important improvements include: (1) using dif-
ferent distributions for the process zt (e.g., using a
t-distribution with low degrees of freedom can cap-
ture the heavier tails of the volatility), (2) asymmetric
modeling of upside and downside volatility (e.g., this

can be accomplished through the exponential GARCH
model), and (3) extending the basic GARCH model to
a random coefficient model. For a full exposition of
GARCH modeling, we refer the reader to Refs 17, 32,
and 33.

The simple GARCH model for the condi-
tional variance is scaled to the multivariate setting
under numerous strategies. The modeling complex-
ities increase exponentially as the number of series
increases and various methods to handle this com-
plexity result in different modeling paradigms. To
understand these complexities, we outline some of
the classes of MGARCH models that result from
different approaches to mastering the complexity. We
conclude with a real example using one approach. A
comprehensive comparison of all the approaches is
beyond the scope of this overview.

The basic MGARCH process is defined as fol-
lows. Suppose we have a vector stochastic process
{yt} of dimension K × 1 governed by the following
equations:

yt = 𝜇t (𝜽) + 𝜖t,
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where 𝝁t(𝜽) is the mean vector conditional on the
information up to time t and parameters 𝜽, and

𝜖t = H1∕2
t (𝜽) zt,

where H1∕2
t (𝜽) is a K × K positive definite matrix. The

stochastic process zt has the following properties:

E
[
zt

]
= 0

Var
[
zt

]
= IK,

with IK denoting the K × K identity matrix and zt is
uncorrelated over time. The matrix H1∕2

t is a K × K
positive definite matrix such that Ht is the conditional
covariance matrix of yt, again conditional on the
information of the process up to time t.

Variations in MGARCH models result from
how one approaches modeling Ht, the conditional
covariance.

MGARCH Models for the Conditional
Covariance
MGARCH models that are direct generalizations of
the univariate GARCH model include the VEC (name
initiates from the vectorization of the covariance
matrix) model of Ref 5 and the BEKK (named after
the originators Baba, Engle, Kraft, and Kroner) model
of Ref 9. In short, the VEC model vectorizes Ht and
models the vector of conditional covariances in an
ARMAX (multivariate ARMA) fashion. Although a
natural extension to the univariate GARCH model,
issues arise with ensuring a positive definite condi-
tional covariance matrix as well as the escalating num-
bers of parameters as the dimension increases. The
BEKK model reformulates this approach by writing
a multivariate model for Ht without the vectoriza-
tion of the matrix, guaranteeing a positive definite
matrix at each time point and reducing the num-
ber of parameters. The BEKK model is a special
case of the VEC model encompassing all the prac-
tical VEC formulations.9 The number of parameters
in the BEKK model remains high, however, especially
as the model complexity increases. Due to the high
number of unknown parameters, these models are
rarely used when the number of series is larger than
three or four.3 For a detailed review of these methods,
see Ref 17.

A second group of MGARCH models that
directly address the issue of escalating model param-
eters are factor models. Factor models reduce the

parameterization due to a common dynamic struc-
ture they impose on all the elements of Ht. These
factor models capture the comovements of the mul-
tiple series by a small number of common under-
lying variables.8 There exist several variants of the
MGARCH factor models including the full-factor
multivariate GARCH (FF-MGARCH) model of Ref 14
where:

Ht = WΣtW
′,

and W is a K × K triangular matrix with ones on
the diagonal and the matrix Σt = diag

(
𝜎2

1,t, … , 𝜎2
K,t

)
where 𝜎2

i,t is the conditional variance of the ith factor.
In this formulation, the ith element of W− 1𝜖t can be
separately defined as a univariate GARCH model. An
overview of general time series factor models is found
in Ref 34.

A third group of MGARCH models are com-
posed of linear combinations of several univariate
models for the covariances. This class includes mod-
els such as the orthogonal-GARCH (O-GARCH) and
latent factor models. In the O-GARCH model,4,11 the
K × K time-varying variance matrix Ht is generated
by m≤K univariate GARCH models. Parameter iden-
tifiability becomes an issue in the case of a Gaussian
model but is mitigated when mixtures of normal distri-
butions are considered. We refer the interested reader
to Ref 17 or Ref 35 for more detail.

MGARCH Models for Conditional
Correlation and Univariate Variance (or
Standard Deviation)
Finally, consider the class of MGARCH models that
include nonlinear combinations of univariate GARCH
models. These models allow analysts to specify uni-
variate conditional variances (or standard deviations
as in our example) and the conditional correlation
matrix of the multiple series. This group includes the
important CCC model of Ref 6 which is defined as
follows:

Ht = DtRDt =
(
𝜌ij

√
hiithjjt

)
,

where
Dt = diag

(
h1∕2

11t , … ,h1∕2
KKt

)
, (1)

The diagonal element of Ht or univariate con-
ditional variance hiit can be defined as any univari-
ate GARCH model. The constant (in time) correlation
matrix R= [𝜌ij] is a symmetric positive definite matrix
with 𝜌ii =1,∀ i.
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Time-Dependent Conditional Correlation
Models
When the assumption that the conditional correla-
tions are constant is relaxed as in Refs 7, 10, and
13 we refer to the model as a DCC model. Then
the question becomes, how to model the changing
correlation structure? One strategy is that of Ref
7 that uses the Fisher transformation of the cor-
relation coefficient, guaranteeing the positive defi-
niteness of the conditional correlation matrix. How-
ever, this model formulation is limited to a bivariate
process.

A DCC model useful for high-dimensional time
series is the one of Ref 13 and is defined as:

Ht = DtRtDt, (2)

where Dt is defined in Eq. (1) and hiit can be defined
as any univariate GARCH model, and

Rt = (1 − 𝛼 − 𝛽)R + 𝛼Ψt−1 + 𝛽Rt−1. (3)

where 𝛼 and 𝛽 are nonnegative parameters satisfying
𝛼 + 𝛽 < 1, R is a symmetric K × K positive definite
parameter matrix with diagonal elements equal to 1,
and Ψt−1 is the K × K correlation matrix of 𝜖𝜏 for
𝜏 = t−M, t−M+ 1, … , t− 1. Thus, the ijth element of
Ψt− 1 is:

Ψij,t−1 =

M∑
m=1

ui,t−muj,t−m√√√√(
M∑

i=1

u2
i,t−m

)(
M∑

j=1

u2
j,t−m

) ,

where uit = 𝜖it∕
√

hiit, representing a standardization
of 𝜖t. The matrix Ψt− 1 can be expressed as:

Ψt−1 = B−1
t−1Lt−1L′

t−1B−1
t−1,

where Bt− 1 is a K × K diagonal matrix. The ith
diagonal element is given by

(
M∑

h=1

u2
i,t−h

)1∕2

and Lt−1 = (ut− 1, … , ut−M) is a K × M matrix, with
ut = (u1t, … , uKt)

’. Also, M≥K to ensure that Rt is
positive definite. In essence, Eq. (3) is an autoreges-
sive moving average approximation to the changing
correlation structure.

The DCC model of Ref 10 has the same form for
Ht (see Eq. (2)) but with the time-varying correlation
matrix given by:

Rt = diag
(

q−1∕2
11,t , … ,q−1∕2

KK,t

)
Qtdiag

(
q−1∕2

11,t , … ,q−1∕2
KK,t

)
.

The K × K symmetric positive definite matrix
Qt = (qij,t) defines the evolution of the correlation and
is given by:

Qt = (1 − 𝛼 − 𝛽)Q + 𝛼ut−1u′
t−1 + 𝛽Qt−1,

with uit = 𝜖it∕
√

hiit. In this setting, Q is the K × K
unconditional variance matrix of ut, and 𝛼 and 𝛽
are nonnegative scalar parameters satisfying 𝛼 + 𝛽 <1.
Again, the fundamental issue is how we choose to
model Ht through different parameterizations of the
correlation matrix Rt. In this case, the time-varying
correlation Rt is a weighted average of the uncon-
ditional variance, the observed squared values, and
the previous conditional variance of the standard-
ized conditional standard deviations. The matrix Qt
is not a correlation matrix, so we rescale by the
diagonal elements of Qt as we are modeling the
correlation Rt.

The flexibility of the DCC model is extended
even further by Ref 36 providing a rich parameter-
ization for the correlation process based on a priori
knowledge of asset grouping. An MGARCH strategy
for clustering time series, absent a priori knowledge,
is developed in Ref 37. Recently, a multiplicative
DCC model is used to model the dynamic volatil-
ity and correlation structure of electricity futures.38

The authors are able to identify different dynam-
ics for long- and short-term contracts, resulting in
stronger forecasting performance when compared
with the standard DCC model. In addition to pro-
viding another good overview of general MGARCH
models, DCC models are extended to include realized
measures of correlation in Ref 39.

The DCC models allow for time-varying cor-
relation structure but this structure is allowed to
change at each time point through a structured model
formulation. The bias of estimation in the DCC model
for high dimensions is noted by multiple authors (e.g.,
Ref 40). In a recent study,41 the inconsistent feature
of the traditional two-step estimation of the DCC
model is examined with the authors noting that the
consistency of the local correlation structure estimate
is not substantiated which then impacts the estima-
tion and interpretation of the dynamic correlation
structure. The suggested fix is formulation of the
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correlation process as a linear MGARCH process;
this formulation is referred to as the cDCC estimator
and requires only a marginal increase in computa-
tional time for large systems.41 The cDCC model is
extended to robust forecasting of DCCs in Ref 42.
In essence, strategies are introduced which bound
the influence of large innovations on the estimates of
the cDCC model parameters building off of previous
work in the univariate setting by Ref 43 and the use
of M-estimates for the correlation dynamics.

The MGARCH model of Ref 12 also allows
the correlations between the series to be time-varying
using a two-step approach by addressing the multi-
variate dependence first. The first step removes uncon-
ditional correlation by taking principal components
(PCs) of the data. The conditional means and vari-
ances of each PC are then modeled by a univariate
GARCH model. To construct the MGARCH model,
the PC mapping is reversed using the estimated PCs
from the univariate GARCH models rather than the
data-based principal components. The inverse of the
PC construction is used to transform the conditional
moments of the PCs into the conditional mean and
variance of the data series themselves. This formula-
tion of the MGARCH model is easy to estimate as it
only involves estimates of univariate GARCH models
following a classic PC of the original series.

Market-Dependent Regime Switching
Dynamic Correlation Model
We are seeking to model a system that is constant
within blocks of time but changes as the mar-
ket dynamics change. The Regime Switching for
Dynamic Correlations (RSDC) model of Ref 19
allows time-varying correlation between the series
by allowing the system to switch between regimes.
The covariances in the system are decomposed into
correlations and standard deviations, and the cor-
relation matrix follows a regime-switching model,
i.e., the correlations are constant within regime but
different across regimes. A Markov chain governs
the transitions between the regimes. The model is
described as follows. Again, assume that K-variate
process Yt has the form:

Yt = H1∕2
t Ut,

where Ut is an i.i.d. (0, Ik) process. That is, each
element in Ut has zero mean and unit variance. Also,
each series is uncorrelated with all remaining series.
As before, the time-varying covariance matrix Ht can
be decomposed as:

Ht = StΓtSt (4)

where St is a diagonal matrix composed of the stan-
dard deviations sk,t, for k= 1, … , K and the matrix Γt
contains the correlations (we switch notation from Dt
and Rt in the previous section to limit confusion on the
estimator we develop in the next section for the RSDC
model). Specifically, Γt follows a regime-switching
model:

Γt =
R∑

r=1

I{Δt=r}Γr

where Δt is an unobserved Markov process inde-
pendent of Ut that can take R possible values
(Δt = 1, 2, … , R) and I is the indicator function.
The K × K matrices Γr are correlation matrices with
Γr ≠ Γr′ for r≠ r ′. The probability law governing
Δt is defined by its transition probability matrix Π.
The probability of going from regime i in period t to
regime j in period t+1 is denoted by 𝜋i,j and the limit-
ing probability of being in regime n is 𝜋n. We assume
that the Markov chain is ergodic and irreducible.

The RSDC model has several good properties
that make it appropriate for our example problem.
First, we expect that our system will be in different
regimes depending on the state of the market, and
that there is a structural change in market dynamics.
The resulting regime-switching structure improves our
understanding of this structural change. Secondly, we
can obtain estimates of the parameters, even when the
number of time series is large. Our example involves
detecting changes in an overall market, which in turn
includes many time series within multiple sectors.
Another property of the RSDC model is that it is
easy to impose that the variance matrices are posi-
tive semidefinite. Finally, from the model for the uni-
variate volatility we obtain multistep ahead predic-
tions and couple these predictions with forecasted
regimes, thereby obtaining forecasts of the covariance
matrix.

The example developed in this study is the adap-
tation of Pelletier’s model to one which is appropriate
to the problem of sector relationships and securities
nested within the sectors. We are interested in detect-
ing changes in market behavior as determined by the
dependence structure between market sectors. Instead
of using one measurement of market sector behavior
(such as an index fund), we use multiple measure-
ments of market sector behavior given by the multi-
ple stock return series. We then estimate correlations
both between and within the sectors using the multiple
measurements. Thus, each Γr, r=1, … , R, becomes a
block matrix whose elements include estimates of the
average within- and between-sector correlations. For
our example which includes three market sectors, each

332 © 2014 The Authors. WIREs Computational Statistics published by Wiley Periodicals, Inc. Volume 6, September/October 2014



WIREs Computational Statistics Computational finance

Γr has six parameters (three within-sector correlations
and three between-sector correlations).

ESTIMATION OF THE HIERARCHICAL
RSDC MODEL

For our example, we focus on the regime-switching
dynamic correlation model, adapting this model to
a hierarchical investigation to handle the covolatility
of sectors and stocks within sectors. We refer to this
model as the hierarchical regime-switching dynamic
correlation (HRSDC) model. Estimation of the RSDC
model uses a two-step estimation procedure as out-
lined in Ref 19. In Ref 17, we adapt this estimation
procedure, along with programs initially developed
by Pelletier, to accommodate multiple measurements
for the same quantity as present in our hierarchical
example (i.e., the HRSDC model).

To proceed, denote the vector of model param-
eters as 𝜽, split them into two groups 𝜽= (𝜽1,𝜽2),
where 𝜽1 and 𝜽2 contain the parameters estimated in
the first and the second step of the algorithm, respec-
tively. In the first step, we estimate the univariate
volatility models using the asymmetric power ARCH
(apARCH) model in which a power transform of the
conditional standard deviation (rather than variance)
is modeled as follows:

s𝛿t = 𝜔 +
q∑

i=1

(
𝛼i
||yt−i

|| − 𝛾i𝜖t−i

)𝛿 + p∑
j=1

𝛽js
𝛿
t−j (5)

with 𝛼i = 𝛼i∕E ||ũt
|| . For the ARMACH model (see Ref

44), 𝛿 = 1, but the general asymmetric power ARCH
(apARCH) allows for different power transforma-
tions. The asymmetry parameter 𝛾 captures the dif-
ferent upside and downside volatility. It is noted in
Ref 44 that the conditional standard deviation often
exhibits stronger autocorrelation structure than the
conditional variance. However, we could choose the
best fitting univariate volatility model at this stage and
the R package rugarch45 provides multiple choices.

Next, denote QL1 as the log-likelihood where
the correlation matrix is taken to be an identity
matrix:

QL1

(
𝜽1;Y

)
=

− 1
2

T∑
t=1

(
K log (2𝜋) + 2 log

(||St
||) + U′

tUt

)
.

As this is just the sum of K univariate
log-likelihoods, maximizing it is equivalent to maxi-
mizing (separately) each univariate log-likelihood.

For the second step of the estimation, we need to
maximize QL2 which is the log-likelihood given 𝜽1:

QL2

(
𝜽2;Y,𝜽1

)
=

− 1
2

T∑
t=1

(
K log (2𝜋) + 2 log

(||Γt
||) + U′

tΓ
−1
t Ut

)
.

We can maximize QL2 using the EM algorithm.
We make use of the results in Ref 46 using the parti-
cle filter because the Markov chain Δt is unobserved.
To make inference on the state of the Markov chain,
we compute values for 𝜉t|t and 𝜂t which are defined as
follows: Let 𝜉t|t be an R × 1 vector containing the prob-
ability of being in each regime at time t conditional on
observations up to time t. Thus, 𝜉t|t is an R × 1 vec-
tor containing the elements P{Δt = j|UT ;𝜽2}. Let 𝜂t be
the R × 1 vector whose jth element is the density of Ut
conditional on past observations and being in the jth
regime at time t. To obtain these estimates, we use the
steps outlined below. The differences in our estimation
procedure and in that of Pelletier’s can be observed in
steps 1 and 2 below, whereas steps 3–5 remain iden-
tical. We compute the starting values in a different
manner due to the fact that we have multiple obser-
vations for estimating between- and within-sector cor-
relations. Also, we found it useful to work on the log
scale due to the high dimensionality of our problem.

Estimation algorithm:

1. Choose a starting value for 𝜉1|0 and
𝜽2 = (Π,Γ1, … ,ΓR).
We set each element in 𝜉1|0 = 1/R. To obtain
starting values for the correlation matrices in each
regime, we compute an estimate of the correlation
matrix of the data using the numerically accurate
corrected two-pass method described in Ref 47.
We will denote the empirical estimator as Σ̂. Next,
we set Γ1 = 0.8Σ̂ and Γ2 = 1.2Σ̂. We initially set
the diagonal elements of Π equal to 0.7 as we
expect some persistence in the Markov chain.
We tried several reasonable starting values and
obtained convergence to the same values. Thus,
the starting values did not affect our results–only
the computing time.

2. Compute 𝜂t by evaluating the multivariate nor-
mal density of Ut conditional on past observations
and being in each regime at time t or,

𝜂r,t = −1
2

(
K log (2𝜋) − log |Γ̂r| − UtΓ̂−1

r U′
t

)
,

r = 1, … ,R

with 𝜼r,t = e�̃�r,t .
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Then compute iteratively for t= 1, … , T

𝜉t|t =
(
𝜉t|t−1 ⊙ 𝜼t

)
1′

(
𝜉t|t−1 ⊙ 𝜼t

)
𝜉t+1|t = Π · 𝜉t|t.

We use ⊙ to denote element-by-element multipli-
cation. The R× 1 vector 𝜉t+1|t contains the proba-
bilities of being in each regime at time t+1 condi-
tional on observations up to time t.

3. Compute the smoothed-state variables starting
from t=T − 1, … , 1 as follows:

𝜉t|T = 𝜉t|t ⊙
{
Π′

[
𝜉t+1|T (÷) 𝜉t+1|t

]}
.

We use (÷) to denote element-by-element division.

4. Update 𝜽2 as follows:

Π̂i,j =

T∑
t=2

P
[
Δt = j,Δt−1 = i|ÛT ; �̂�2

]
T∑

t=2

P
[
Δt−1 = i|ÛT ; �̂�2

]

Γ̃r =

T∑
t=1

(
ÛtÛ

′
t

)
P
[
Δt = r|ÛT ; �̂�2

]
T∑

t=1

P
[
Δt = r|ÛT ; �̂�2

] .

We rescale the Γ̃r matrices, so that we have ones on
the diagonal as this does not happen naturally; we
let Γ̃r denote the estimate before rescaling and Γ̂r
represent the estimate after rescaling. Finally, we
compute Γ̂r as:

Γ̂t = D−1
r Γ̃rD

−1
r

where Dr is a diagonal matrix with
√

Γ̃i,i,r on row
i and column i. This rescaling ensures that we have
ones on the diagonal and off-diagonal elements
between −1 and 1.
Now, we will replace the starting value 𝜉1|0 with
its smoothed estimate 𝜉1|T (its estimate conditional
on information from t= 1, … , T). We do this as it
has been shown in30 that the MLE estimate for 𝜉1|0
is given by 𝜉1|T .
This makes the choice of the starting value for 𝜉1|0
less important as we are replacing it by the MLE
in the next iteration.

5. Repeat steps 2 through 4 until convergence
occurs (maximum element of the difference in
successive parameter estimates is small).

Under the usual assumptions of quasi-maximum
likelihood estimation, the two-step maximum likeli-
hood estimates obtained from the procedure detailed
above are consistent and asymptotically normal.19

SIMULATION STUDY

We conducted a small simulation study of our imple-
mentation of the RSDC model for two regimes,
grounding our simulation on the model estimates sim-
ilar to our example that follows in the next section.
The modest study yields good results as shown in
Tables 1 and 2. For the simulation, we use the sim-
pler ARMACH model with asymmetry parameter
𝛾 =0 and power parameter 𝛿 = 1 in Eq. (5). That is,
K=63, T = 1004, R=2, and the correlation model
parameters from the Results section. For the univari-
ate volatility models, we simulate from a GARCH(1,1)
model: s2

k,t
= 0.0005 + 0.6𝜖2

k,t−1
+ 0.1s2

k,t−1
. These

GARCH(1,1) parameters were chosen to obtain
the same level of volatility as in our stock sector
data. In out-of-sample predictions, we predict the
correct regime at 76% of the time points in our
simulation.

Example
To demonstrate the practical application of MGARCH
models and specifically the HRSDC model, we return
to our example of 63 large cap stocks spanning three
different market sectors, Energy, Financial, and Tech-
nology, for the time period January 2, 1998 to Decem-
ber 31, 2001. To obtain stocks from these specific
sectors, we used the Standard Industrial Classifica-
tion Code List published by the U.S. Securities and
Exchange Commission (SEC).a The aim of this study
was to use the 20 companies with the largest mar-
ket capitalization (on January 6, 1998) in each sector.
However, due to missing data issues and classification
code errors, we considered up to the largest 28 com-
panies. For each sector, we used the largest 21 compa-
nies with the correct industry classification code and
no missing data. Thus, our system includes 63 series
of daily stock returns for the time period January 2,
1998 to December 31, 2001. We define the daily stock
return at time t as Yt = (Pricet −Pricet− 1)/Pricet− 1.

Figure 1 displays the return series for a time
period of 5 months. Each cluster includes the 21 time
series plots for a particular sector during the 6-month
period. Included in Figure 2 are the same return series
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TABLE 1 Correlation and Transition Probability Estimates in Simulation Study Based on 25 Realizations

Correlation

Between True R1 Est. R1 SD True R2 Est. R2 SD

Energy/Energy 0.354 0.336 0.018 0.644 0.530 0.016

Energy/Financial 0.093 0.010 0.016 0.170 0.129 0.026

Energy/Technical 0.023 0.045 0.014 0.142 0.098 0.028

Financial/Financial 0.480 0.427 0.0167 0.525 0.44 0.022

Financial/Technical 0.119 0.141 0.0124 0.361 0.28 0.024

Technical/Technical 0.149 0.1961 0.021 0.674 0.546 0.016

Transition probability 0.834 0.798 0.017 0.830 0.793 0.021

TABLE 2 Univariate Volatility Estimates in Simulation Study Based
on 25 Realizations

Parameter True Estimated SD

a 0.001 0.001 0.000

𝛼 0.600 0.593 0.069

𝛽 0.100 0.095 0.053

for two different 6-day periods. The two time epochs
highlight different relationships between the series,
in other words, different patterns of comovement
between series within sectors as well as the comove-
ment between sectors.

RESULTS

We fit the HRSDC model to the series of 63 returns,
incorporating the fact that there are three sectors each
consisting of 21 different companies. The HRSDC
model includes two correlation regimes of correlation
representing periods of high correlation and periods
where the correlation is lower. A two regime model
captures the transition between periods of typical
correlation and periods of high correlation, with
the latter being a direct result of the systemic risk
of markets.21,23,48 Again, we model the correlations
within each sector as well as the correlation between
the sectors in a hierarchical fashion. Tables 3 and 4
include parameter estimates for this model. To ensure
proper convergence of the estimation algorithm, we
repeated the process with several very different sets of
starting values and achieved convergence to the same
parameter estimates in each case.

Of additional interest is the relative magnitude
of correlations within and between the three sectors.
Figure 3 displays the one-step ahead forecasts for the
average correlation between and within sectors for
a 9-month time period in 1999–2000. The diagonal

TABLE 3 Correlation and Transition Probability Estimates with
Standard Errors

Correlation Between Regime 1 SE Regime 2 SE

Energy/Energy 0.354 0.009 0.644 0.005

Energy/Financial 0.093 0.012 0.170 0.022

Energy/Technology 0.023 0.009 0.142 0.014

Financial/Financial 0.480 0.006 0.525 0.007

Financial/Technology 0.119 0.019 0.361 0.018

Technology/Technology 0.149 0.008 0.674 0.007

Transition Probabilities 0.8340 0.1807 0.8305 0.0674

TABLE 4 Univariate Volatility Parameter Estimates with Standard
Errors

Parameter Average Average SE

𝜔 0.002 0.006

𝛼1 0.065 0.056

𝛾 0.547 0.459

𝛽1 0.895 0.157

𝛿 1.170 0.590

t-dist skew 1.084 0.074

t-dist shape 10.89 9.06

elements represent the correlations within sectors
where the off-diagonal elements represent the corre-
lations between sectors. Again these correlations are
a weighted average of the correlation estimates for
the two regimes with the weights determined by the
probability of being in each regime. The correlation
between sectors are not near one but do increase
during the higher correlation regimes. The strongest
cross-sector correlation is observed between the finan-
cial and technology sectors. Although the magnitudes
of the within- and between-sector correlations differ,
the pattern in the forecasts is identical because this
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FIGURE 3 | One step ahead forecasts for average correlations between sectors. The scale for each plot is 0 to 0.8.

pattern is driven by the probability of the two fixed
regimes.

Let us revisit the the issue of differing comove-
ment behavior types. In Figure 2, we displayed two
panels: one in which the stock returns followed each
other closely and the other in which the stock returns
exhibited less correlation. Our model is detecting these
differing comovement behaviors by predicting with
high probability the regime with higher correlation
when the stocks are following each other closely and
predicting with high probability the regime with lower
correlation when the stocks exhibit much less comove-
ment.

Using the HRSDC Methodology to Detect
Anomalous Behavior
With the HRSDC model, we can estimate (and fore-
cast) the covariance matrix, Ht, at time t by combining
the estimates (or forecasts) for the standard devia-
tions for each asset and the correlation matrix as in
Equation 2. Note that in our example the correla-
tion structure bounces between two different matrices;
however, the modeled univariate standard deviations
will change dramatically consistent with the observed
behavior of the returns for the underlying security.
As a graphical display of the changes in the overall

market structure, we examine the biplot of the asso-
ciated principal components of the estimate of the
covariance structure, in other words, our model of the
K×K covariance matrix. For each time step, we retain
sufficient principal components to explain 90% of the
total variation of the processes.The evolution of the
principal components directs us to unusual events such
as a market crash or stock anomolies. The evolution
of such structures can identify favorable market con-
ditions for trading strategies, ultimately leading to per-
formance improvements, see Ref 17 for more details.

A well-known outlier in this data is the
Enron collapse. A time line of the Enron collapse
is well-documented due to the litigation between the
U.S. SEC and various Enron executives. On October
16, 2001, Enron announced allegedly ‘nonrecurring’
losses of approximately $1 billion. When examining
the daily biplots for our model, we first detect Enron
as a well-identified outlier on October 4, 2001, as
shown in Figure 4. The biplots look very similar
with respect to Enron’s effects until the end of our
sample or December 31, 2001. To remind the reader
of the timeline of the Enron collapse, on October
29 and November 1, 2001, the two leading credit
rating agencies downgraded Enron’s credit rating. On
November 8, 2001, Enron announced its intention to
restate its financial statements for 1997 through 2000
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FIGURE 4 | Biplot for covariance matrix of October 4, 2001.

and the first and second quarters of 2001 to reduce
previously reported net income by an aggregate of
$586 million. On November 21, 2001, Enron’s credit
rating was downgraded to ‘junk’ status. On Decem-
ber 2, 2001, Enron filed for bankruptcy, making
its stock, which less than a year earlier had been
trading at over $80 per share, virtually worthless.
We compared our model’s outlier detection ability
to a model using a weighted estimate of the covari-
ance matrix using a moving window of 70 trading
days, with weights based on the minimum volume
ellipsoid estimator. The biplots for this estimator
detected Enron as an outlier on November 28, 2001,
well after this detection could be of any use to the
investor.

There were other, albeit less well-known, out-
liers that were detected through our methodology,
which again relies on the HRSDC model of the
covolatility (see Refs 17 and 18 for a full explana-
tion of all examples). For example, on June 2, 2000,
we identified an unusual pattern in the returns for
Silicon Graphics, Inc. (SGI) (Figure 5). On further

investigation of the company’s filings with the U. S.
SEC,b we learned that there was an 8-K filing on June
9, 2000 concerning a spin-off of the company. The 8-K
filings are defined as ‘current report filings’ and are
required when a company has specific ‘trigger’ events
transpire. These reports must be filed within a few
days of the event, and the report must include details
about the event, how it affects the company, and its
impact on shareholders. This filing was made 1 week
after we identified SGI as an outlier in terms of its
behavior with respect to the ‘system’ of stocks.

In total, we identified 16 anamolies during our
study period. Of the 16 anomalies identified, we were
able to find explanations for 13 through subsequent
SEC filings. Again, these detections could be useful to
an investor as they were detected before the the filings
with the SEC. Furthermore, when this methodology
is implemented on the more recent market collapse of
2008 we are able to detect the fall of Lehmann Broth-
ers with the same degree of forewarning. This detec-
tion is based purely on price movement of individual
securities when viewed as a system of securities with
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FIGURE 5 | Biplot for covariance matrix of
June 2, 2000.
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the correlation within and between sectors highlighted
and modeled through the MGARCH-HRSDC model.

GENERAL COMPUTING RESOURCES
FOR MGARCH MODELS

Two recent R packages, ccgarch and rmgarch,
address fitting the constant correlation49 and DCC50

MGARCH models. The rmgarch package includes
the DCC, the asymmetric DCC and the GO-GARCH
models mentioned above as well as more general cor-
relation structures based on copulas. Furthermore, the
rmgarch package follows the same style as the rugarch
package, which provides an extensive selection of uni-
variate GARCH models. Both the rmgarch and rug
arch packages provide standard and problem-specific
model selection and goodness-of-fit diagnostics. These
R tools represent a strong step forward in the general
applicability of MGARCH correlation-based models.
In general, and as expected, as the parameteriza-
tion of the MGARCH model formulation increases,
model fitting is much more difficult. In practice, we
prefer the conditional correlation formulation of the
MGARCH model and find its basic implementation
assessable for moderate scale problems (again thanks
to the software developers). SAS users can approach

several of the above model formulations (e.g., BEKK
and CCC) through strategic utilization of the VAR-
MAX procedure.51 Users of STATA 1352 will find the
mgarch command that provides access to the diago-
nal vech, CCC, DCC, and VCC (varying conditional
correlation) models. For very high-dimensional time
series (e.g., the big data era), one will have to think
more strategically about computing and estimation
issues related to model fitting.

CONCLUSION

The use of multivariate covolatility models is now
common place in the financial time series literature.
Recent computational advances in estimation asso-
ciated with the DCC model has made this method
more applicable to large systems. The main focus of
this review has been on MGARCH models whose
structure depends on the current state of the system
or the regime as modeled by a Markov process. We
demonstrated a nested model useful for understand-
ing the correlation structure between different market
sectors and how these sectors interacted as the mar-
ket changes between regimes. Furthermore, we were
able to model the covariance within a sector using
the nested MGARCH structure. Computing tools are
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available through R to easily implement the dynamic
and regime-switching conditional correlation models.
These models are an important component of a finan-
cial time series suite of tools to understand stock
behavior under changing market structure.

NOTES
a http://www.sec.gov/info/edgar/siccodes.htm.
b http://www.sec.gov/edgar/searchedgar/company
search.html.
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