
c12) United States Patent
Rostami et al.

(54) PUF AUTHENTICATION AND
KEY-EXCHANGE BY SUBSTRING
MATCHING

(71) Applicants:WILLIAM MARSH RICE
UNIVERSITY, Houston, TX (US);
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY, Cambridge, MA
(US)

(72) Inventors: Masoud Rostami, Houston, TX (US);
Mehrdad Majzoobi, Houston, TX
(US); Farinaz Koushanfar, Houston,
TX (US); Daniel S. Wallach, Houston,
TX (US); Srinivas Devadas, Lexington,
MA (US)

(73) Assignees: WILLIAM MARSH RICE
UNIVERSITY, Houston, TX (US);
MASSACHUSETTS INSTITUTE OF
TECHNOLOGY, Cambridge, MA
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 46 days.

(21) Appl. No.: 14/147,230

(22) Filed:

(65)

Jan. 3, 2014

Prior Publication Data

US 2015/0195088 Al Jul. 9, 2015

(51) Int. Cl.
H04L 9/08
H04L 9/32
G09C 1/00

(52) U.S. Cl.

(2006.01)
(2006.01)
(2006.01)

CPC H04L 9/0866 (2013.01); G09C 1/00
(2013.01); H04L 9/3271 (2013.01); H04L

9/3278 (2013.01); H04L 2209/24 (2013.01)
(58) Field of Classification Search

CPC . H04L 9/3278; H04L 9/3271; H04L 2209/12;
G06F 2221/2229; G06F 21/31

See application file for complete search history.

300
~

-z= I
305 i

I

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US009628272B2

(IO) Patent No.: US 9,628,272 B2
Apr. 18, 2017 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

6,223,174 Bl* 4/2001 Ladwig et al.
7,010,605 Bl* 3/2006 Dharmarajan H04L 9/0822

709/227

(Continued)

OTHER PUBLICATIONS

Annknecht, Frederik; Maes, Roel; Sadeghi, Ahmad-reza; Standaert,
Francois-Xavier: Wachsmann, Christian: "A Formal Foundation for
the Security Features of Physical Functions" IEEE 2011 Sympo
sium on Security and Privacy, DOI 10.1109/SP.2011.10; Oct. 2011;
pp. 397-412; (16 pages).

(Continued)

Primary Examiner - Linglan Edwards
(74) Attorney, Agent, or Firm - Meyertons Hood Kivlin
Kowert & Goetze!, P.C.; Jeffrey C. Hood; Mark K.
Brightwell

(57) ABSTRACT

Mechanisms for operating a prover device and a verifier
device so that the verifier device can verify the authenticity
of the prover device. The prover device generates a data
string by: (a) submitting a challenge to a physical unclonable
function (PUF) to obtain a response string, (b) selecting a
substring from the response string, (c) injecting the selected
substring into the data string, and (d) injecting random bits
into bit positions of the data string not assigned to the
selected substring. The verifier: (e) generates an estimated
response string by evaluating a computational model of the
PUF based on the challenge; (f) performs a search process
to identify the selected substring within the data string using
the estimated response string; and (g) determines whether
the prover device is authentic based on a measure of
similarity between the identified substring and a correspond
ing substring of the estimated response string.

17 Claims, 8 Drawing Sheets

320

D-

US 9,628,272 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,347,091 B2 * 1/2013 Nonaka G06F 21/31
713/168

9,208,355 Bl* 12/2015 Areno G06F 21/73
9,219,722 B2 * 12/2015 Chellappa H04L 63/08

2002/0138728 Al* 9/2002 Parfenov H04L 63/0815
713/170

2005/0002532 Al* 1/2005 Zhou et al. 380/277
2007/0094556 Al* 4/2007 Udell GOlR 31/318314

714/724
2008/0028219 Al* 1/2008 Booth H04L 9/3271

713/171
2011/0119240 Al* 5/2011 Shapira . 707/693

OTHER PUBLICATIONS

Beckmann, Nathan; Potkonjak, Miodrag; "Hardware-Based Public
Key Cryptography with Public Physically Unclonable Functions"
IH 2009, LNCS 5806; 2009; pp. 206-220; Springer-Verlag Berlin
Heidelberg, Belgium (15 pages).
Majzoobi, Mehrdad; Koushanfar, Farinaz; Potkonjak, Miodrag;
"Lightweight Secure PUFs" IEEE 2008 International Conference on
Computer-Aided Design (ICCAD'08), Nov. 10-13, 2008; pp. 670-
673, San Jose, California, U.S.A. (4 pages).
Ruhrmair, Ulrich; Sehnke, Frank; Solter, Jan; Dror, Gideon;
Devadas, Srinivas; Schmidhuber, Jurgen; "Modeling Attacks on
Physical Unclonable Functions" In Proceedings of the 17th ACM
Conference on Computer and Communications Security (CCS
2010); Oct. 4-8, 2010; pp. 237-249; ACM 978-l-4503-0244-9/10/
1 O; Chicago, Illinois, U.S.A. (13 pages).
Suh, G. Edward; Devadas, Srinivas; "Physical Unclonable Func
tions for Device Authentication and Secret Key Generation" Pro
ceedings of the 44th Annual Design Automation Conference (DAC
2007); Jun. 4-8, 2007; pp. 9-14; ACM 987-1-59593-627-l/07/0006;
San Diego, Calilfornia, U.S.A. (6 pages).
Maes, Roel and Verbauwhede, Ingrid; "Physically Unclonable
Functions: A Study on the State of the Art and Future Research

Directions" Towards Hardware-Intrinsic Security, Information
Security and Cryptography, pp. 3-37; 2010; DOI 10.1007/978-3-
642-14452-3_1, Springer-Verlag Berlin Heidelberg, Belgium (35
pages) .
Ruhrmair, Ulrich; Solter, Jan; Sehnke, Frank; Xu, Xiaolin;
Mahmoud, Ahmed; Stoyanova, Vera; Dror, Gideon; Schmidhuber,
Jurgen; Burleson, Wayne; "PUF Modeling Attacks on Simulated
and Silicon Data" IEEE Transactions on Information Forensics and
Security, vol. 8, No. 11, Nov. 2013; pp. 1876-1891 (16 pages).
Zdenek, (Sid) Para! and Devadas, Srinivas; "Reliable and Efficient
PUF-Based Key Generation Using Pattern Matching" IEEE 2011
International Symposium on Hardware-Oriented Security and Trust
(HOST); 978-l-4577-1058-2/11; Jun. 5-6, 2011; pp. 128-133; San
Diego, California, U.S.A. (6 pages).
Pappu, Ravikanth; Recht, Ben; Taylor, Jason; Gershenfeld, Neil;
"Physical One-Way Functions" Science magazine; Sep. 20, 2002;
pp. 2026-2030; vol. 297; American Association for the Advance
ment of Science (AAAS), New York, New York U.S.A. (6 pages).
Gassend, Blaise; Clarke, Dwaine; Van Dijk, Marten; Devadas,
Srinivas; "Silicon Physical Random Functions" Proceedings of the
9th ACM Conference on Computer and Communications Security
(CCS 2002); Nov. 18-22, 2002; pp. 148-160; ACM l-58113-612-
9/02/0011; Washington, DC, U.S.A. (13 pages).
Majzoobi, Mehrdad; Rostarni, Masoud; Koushanfar, Farinaz; Wal
lach, Dan S.; Devadas, Srinivas; "Slender PUF Protocol: A Light
weight, Robust, and Secure Authentication by Substring Matching"
IEEE 2012 Symposium on Security and Privacy Workshops (SPW);
DOI 10.1109/SPW.2012.30; May 24-25, 2012; pp. 33-44; San
Francisco, California U.S.A. (12 pages).
Majzoobi, Mehrdad; Koushanfar, Farinaz; Potkonjak, Miodrag;
"Techniques for Design and Implementation of Secure
Reconfigurable PUFs" AMC Transactions on Reconfigurable Tech
nology and Systems, vol. 2, No. 1, Article 5, DOI 10.1145/1502781.
1502786; Mar. 2009; pp. 1-33 (33 pages).
Ozturk, Erdinc; Harnmouri, Ghaith; Sunar, Berk; "Towards Robust
Low Cost Authentication for Pervasive Devices" IEEE 2008 Sixth
Annual International Conference on Pervasive Computing and
Communications; Mar. 17-21, 2008 (9 pages).

* cited by examiner

U.S. Patent

100
~

Verifier
110

200
~

202

Ir=

300
~

-f
305

Apr. 18, 2017 Sheet 1 of 8

Communication
Medium

120

FIG. 1

Challenge Bits

FIG. 2

'·, ,•'

FIG. 3

Co

·-...... ····
.. , :-: , ..

US 9,628,272 B2

Prover
130

Response
Bit

315

D Q

C

D Q

C

O,n 310

U.S. Patent Apr. 18, 2017

400

Verifier

(1) Noncev

(2)

~

(3) Seed={Noncev II Noncep}

(4) C=G(Seed)

(5) R'=PUF _model(C)

(6)

(7)

(8) W=search(R' ,PW)

T=match(R',W,e)

Authenication Pass: T=true?

Sheet 2 of 8

FIG. 4

US 9,628,272 B2

Prover

Noncep

Seed={Noncev 11 Noncep}

C=G(Seed)

R=PUF(C)

W=sub-seq{ind1 ,Lsub,R)

PW=padd{ind2, W)

U.S. Patent

Fig. 5A

Fig. 58

I
I
I
I
I
l
\
\
I

Apr. 18, 2017

I
I

I

I
I

I

/
/

/

I
\
\

\
\

\
\

' ' ' ' ' ' '

Sheet 3 of 8

Zero

Response
String R

Substring W

Position

ind2=22 Zero

Padded
Substring

PW

Random Bits

'

/
/

/
/ ,,

' ' '

US 9,628,272 B2

\
\

\
\
\

I

I
I

I

I

I

\
I
I
I
I
I
I
I
I

I

/
/

/

U.S. Patent Apr. 18, 2017 Sheet 4 of 8 US 9,628,272 B2

Position
Zero ind(=9

t •
R: 111 o I a 1111111 a I a 11 amuummmuuumm 11 o I a 11111

w· 11011111010101111111010

random
< bits > Lsu'->= 12 random bits

PW: ! 1l 1IOfADJQQDJDJDJQQQDJDJ 1l 1IOiOl 1l 1iOi 1l 11

Positiot inl=J
Zero FIG. 6A

Position
Zero

• Recevied PW· ! 1i 1iOl,IJIQQDJDJDJQQQJIDJ 1 I 1iOIOl 1l 1!0i 1l 11

errors:lfl fl
R'. jtjOjJjtjljOjOjtrmu-arDIJIJll1J1jOjOj1j11

Position fnd1=9
Zero FIG. 68

U.S. Patent Apr. 18, 2017 Sheet 5 of 8 US 9,628,272 B2

0.5

0.45

0.4

0.35

···········*···---··---·-... * .. ····---------*---------······*··········-----·* .. ··---··· .. · .. *···············*

i 0.3
6:: ',
g 0.25 ',,

UJ ',
' 0.2 ~

0. 15

0.1

0.05

·., * ····-.... *//\

-+-One PUF
-e-- Two XORed
···*· .. Three XORed

--+----+-- -+---+-+--0_ _ __,____,___,.......__...___ _ __,_ ____....__,_ __ ..,__ _ __.__........__.
100 1000 2000 8000 16000 64000

Number of Compromised CRPs

FIG. 7

U.S. Patent Apr. 18, 2017 Sheet 6 of 8 US 9,628,272 B2

Prover 802 Verifier 814

@] CK]@] 808 - --...
e 6 PUF

Model C:
0

Matching

@]~
() 820_

Algorithm 810 812 818

FIG. 8

900
~

TRNG Based on Arbite Metastability 902 r I

Tunable PUF Counter
904

_.
906

f----to, - i----.-
Post

t + Processing

Feedback - Encoder 908

910

FIG. 9

U.S. Patent Apr. 18, 2017 Sheet 7 of 8 US 9,628,272 B2

1000
JI

receive a data stting from a communicating party, wherein the data
stdng is generated by the communicating party by (a) submitting a
challenge to a physical unclonabfe function to obtain a response
string, (b) selecting a substring of predetermined length from the
response string, (c) injecting the selected substring into the data
string, and (d) injecting random bits into bit positions of the data

string not assigned to the selected substring
1010

t
generate an estimated response string by

evaluating a computational model of the physical
uncfonable function based on the challenge

1012

i
perfomi a search process to ideniffy the seiected substring
wHhin the data string using the estimated response string

1015

i
determine whether the communicating party is authentic based on
a measure of similarity between the identified selected substring
and a corresponding substring of the estimated response string

1100
~

Digital
Circuitry

1110

1020

FIG. 10

Receiver
1115

FIG. 11

Communication
Medium

1120

U.S. Patent Apr. 18, 2017 Sheet 8 of 8 US 9,628,272 B2

1200
JI

generate a data string by: (a) submitting a challenge to a physical
unclonabfe function to obtain a response string, (b) selecting a
substring of predetermined length from the response string, (c)

injecting the selected substring into the data string, and (d)
injecting random bits into bit positions of the data string not

assigned to the selected substring 1210

1

transmit the data string to the second
device through a communication medium

1300
~

Communication
Medium

1325

FIG. 12

Transmitter
1320

FIG. 13

1215

Digital
Circuitry

1310

US 9,628,272 B2
1

PUF AUTHENTICATION AND
KEY-EXCHANGE BY SUBSTRING

MATCHING

GOVERNMENT RIGHTS IN INVENTION

This invention was made with govermnent support under
Grant No. CNS-0644289, awarded by the National Science
Foundation; and under U.S. Army Research Office Grant
No. W911NF-11-l-0474, awarded by the U.S. Department 10

of Defense, and U.S. Navy Grant No. N00014-11-l-0885,
also awarded by the U.S. Department of Defense. The
govermnent has certain rights in the invention.

2
being able to recover that information, even when they have
access to communications between the source and destina
tion.

SUMMARY

In one set of embodiments, a prover device may perform
the following method to enable a remote verifier device to
authenticate the prover device.

The prover device may generating a data string by: (a)
submitting a challenge to a physical unclonable function to
obtain a response string, (b) selecting a substring of prede
termined length from the response string, (c) injecting the
selected substring into the data string, and (d) injecting

FIELD OF THE INVENTION

The present invention relates to the field of cryptography,
and more particularly, to mechanisms for performing
authentication and key exchange in a mamier that is robust
and immune to reverse-engineering attacks.

15 random bits into bit positions of the data string not assigned
to the selected substring. The prover device may transmit the
data string to the second device through a communication
medium.

The position of the selected substring within the response

DESCRIPTION OF THE RELATED ART

20 string and the position of selected substring within the data
string are secrets, not revealed by the prover device. Thus,
the prover device makes it very difficult for an attacker to
model the physical unclonable function from observations of

A prover desires to prove its authenticity to a verifier, and
to that end, sends authentication information to the verifier. 25

The verifier examines the authentication information, and
verifies or rejects the authenticity of the prover based on the
authentication information. The prover may use (and may
include) a physical unclonable function (PUF) to generate
the authentication information, e.g., as described in: 30

the transmitted data string.
In some embodiments, the action of selecting a substring

of predetermined length from the response string may
include randomly selecting a number, where a start position
of the substring within the response string is determined by
the randomly selected number.

In some embodiments, the action of selecting a substring
of predetermined length from the response string may
include determining a number by encoding a non-empty
subset of bits from a key, where a start position of the
substring within the response string is determined by the

"Slender PUF Protocol: A Lightweight, Robust, and
Secure Authentication by Substring Matching", by
Mehrdad Majzoobi, Masoud Rostami, Farinaz Koush
anfar, Dan S. Wallach, Srinivas Devadas, IEEE CS
Security and Privacy Workshops, 24-25 May 2012. 35 number.

A PUF is a hardware device that receives a challenge
(vector of input bits) and produces a response (a vector of
output bits), where the space of possible challenges and the
space of possible responses are vast, where the relationship
between challenge and response is complicated and unique 40

to the individual hardware device.

In some embodiments, the action of generating the data
string may include randomly selecting a number, where the
number determines a start position of the selected substring
within the data string.

In some embodiments, the action of generating the data
string may include determining a number by encoding a
non-empty subset of bits from a key, where a start position
of the selected substring within the data string is determined
by the number.

The prover submits a challenge to the PUF, receives the
response from the PUF, and selects a substring of predeter
mined length from the response. The prover then transmits
the selected substring to the verifier. However, the prover 45

does not reveal the position of the substring with the
In one set of embodiments, a method for operating a

verifier device to verify the authenticity of a communicating
party may include the following operations. response.

The verifier receives the selected substring and matches
the selected substring to a substring of a simulated PUF
response. The verifier generates the simulated PUF response
by evaluating a model of the PUF on the challenge, i.e., the
same challenge used by the prover. If the selected substring
and the matching substring of the simulated PUF response
are sufficiently close, the verifier declares the prover to be
authentic.

The above-described mechanism of authentication makes
its difficult for an attacker to accurately model the PUF
based on observations of the transmitted substrings. (If the
attacker were able to accurately model the PUF, it could pose
as a prover, and gain authentication by submitting a selected
substring of a response produced from its model.) However,
due to the ever-increasing compute power available to
attackers, there is a strong incentive to provide ever-increas
ing levels of authentication security. Thus, improved PUF
based authentication mechanisms are desired. Furthermore,
it is generally desirable to transmit secret information (such
as keys) from a source to a destination without third parties

The verifier device may receive a data string from the
communicating party, where the data string is generated by

50 the communicating party by (a) submitting a challenge to a
physical unclonable function to obtain a response string, (b)
selecting a substring of predetermined length from the
response string, (c) injecting the selected substring into the
data string, and (d) injecting random bits into bit positions

55 of the data string not assigned to the selected substring.
The verifier device may generate an estimated response

string by evaluating a computational model of the physical
unclonable function based on the challenge. The computa
tional model may be evaluated in software and/or hardware.

60 The parameters of the computational model are maintained
as a secret by the verifier device.

The verifier device may perform a search process to
identify the selected substring within the data string using
the estimated response string, e.g., by executing a string

65 alignment algorithm.
The verifier device may determine whether the commu

nicating party is authentic based on a measure of similarity

US 9,628,272 B2
3

(such as Hamming distance) between the identified selected
substring and a corresponding substring of the estimated
response string.

4
substring W of a predefined length. Bottom: padding the
substring W with random bits.

FIG. 68 illustrates an embodiment of a process by which
the Verifier matches the received padded substring (PW) In some embodiments, the action of selecting a substring

of predetermined length from the response string may
include randomly selecting a number, where a start position
of the substring within the response string is determined by
the randomly selected number.

In some embodiments, the action of selecting a substring

5 against his simulated PUF response R', assuming that the
substring W occurs within the padded substring PW as one
contiguous whole, i.e., without circular wrapping. The
authentication is deemed to be successful if the Hamming
distance between the received substring Wand the simulated

10 substring is lower than a predefined threshold value. of predetermined length from the response string may
include determining a number by encoding a non-empty
subset of bits from a key, where a start position of the
substring within the response string is determined by the
number. The search process provides an estimate of the

15
number. Thus, the verifier device may recover the non
empty subset of bits of the key from the estimate of the
number.

In some embodiments, the action of generating the data
string may include randomly selecting a number, where the 20

number determines a start position of the selected substring
within the data string.

In some embodiments, the action of generating the data
string may include determining a number by encoding a
non-empty subset of bits from a key, where a start position 25

of the selected substring within the data string is determined
by the number. The search process provides an estimate of
the number. Thus, the verifier device may recover the
non-empty subset of bits of the key from the estimate of the
number.

BRIEF DESCRIPTION OF THE DRAWINGS

30

FIG. 7 illustrates the modeling error rate for an arbiter
based PUF, and XOR PUFs with 2 and 3 outputs as a
function of number of train/test CRPs, according to one set
of embodiments.

FIG. 8 illustrates resource usage on the Prover side and
the Verifier side, according to one embodiment.

FIG. 9 illustrates one embodiment of a true random
number generation architecture, based on flipflop metasta
bility.

FIG. 10 illustrates one embodiment of a method for
operating a verifier device to verify the authenticity of a
communicating party.

FIG. 11 illustrates one embodiment of a system 1100 for
verifying authenticity of a communicating party.

FIG. 12 illustrates one embodiment of a method for
operating a prover device so that a verifier device is enabled
to authenticate the prover device.

FIG. 13 illustrates one embodiment of a prover system
1300.

While the invention is susceptible to various modifica
tions and alternative forms, specific embodiments thereof
are shown by way of example in the drawings and are herein
described in detail. It should be understood, however, that
the drawings and detailed description thereto are not A better understanding of the present invention can be

obtained when the following detailed description of the
preferred embodiments is considered in conjunction with the
following drawings.

FIG. 1 illustrates a verifier and prover communicating via

35 intended to limit the invention to the particular form dis
closed, but on the contrary, the intention is to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the present invention as defined by the
appended claims. a communication medium. The prover is interested in being

authenticated by the verifier, and thus, sends information to 40

the verifier in order to prove itself to the verifier. The verifier
is responsible for verifying the authenticity of the prover.

FIG. 2 shows one embodiment of an arbiter linear PUF
block with an N-component challenge vector and one
response bit. The arbiter converts the analog delay difference 45

between the two paths to a digital value.
FIG. 3 illustrates one embodiment of a system comprising

two independent linear arbiter PUFs whose outputs are
XOR-mixed in order to implement an arbiter PUF with
better statistical properties. The challenge sequence in the 50

second stage is applied in the reverse order (relative to the
application order in the first stage) to help achieve this
property.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Terminology

A memory medium is a non-transitory medium config
ured for the storage and retrieval of information. Examples
of memory media include: semiconductor-based memory
such as various kinds of RAM and ROM; various kinds of
magnetic media such as magnetic disk, tape, strip and film;
various kinds of optical media such as CD-ROM and
DVD-ROM; various media based on the storage of electrical
charge and/or any of a wide variety of other physical
quantities; media fabricated using various lithographic tech-FIG. 4 shows one embodiment of a method for executing

a PUP-based authentication protocol.
FIG. SA illustrates an example of the circular extraction

of a substring W of length Lsub =5 from a response string R
of length L=24.

55 niques; etc. The term "memory medium" includes within its
scope of meaning the possibility that a given memory
medium might be a union of two or more memory media that
reside at different locations, e.g., on different chips on a

FIG. SB illustrates an example of the circular padding of
the extracted substring W with random bits to form a padded 60

substring PW of length Lpw=24.
FIG. 6Aillustrates an embodiment of the substring extrac

tion and padding steps performed by the Prover, where the
substring Wis injected into the padded substring PW as one
contiguous whole, i.e., without allowing the substring W to 65

circularly wrap within the padded substring. Top: random
selection of an index value ind1 . Middle: extracting a

circuit board or on different computers in a network.
A computer-readable memory medium may be configured

so that it stores program instructions and/or data, where the
program instructions, if executed by a computer system,
cause the computer system to perform a method, e.g., any of
the method embodiments described herein, or, any combi
nation of the method embodiments described herein, or, any
subset of any of the method embodiments described herein,
or, any combination of such subsets.

US 9,628,272 B2
5

A computer system is any device (or combination of
devices) having at least one processor that is configured to
execute program instructions stored on a memory medium.
Examples of computer systems include personal computers
(PCs), workstations, laptop computers, tablet computers, 5

mainframe computers, server computers, client computers,
network or Internet appliances, hand-held devices, mobile
devices, personal digital assistants (PDAs), computer-based
television systems, grid computing systems, wearable com
puters, computers implanted in living organisms, computers 10

embedded in head-mounted displays, computers embedded
in sensors of a distributed network, computers embedded in
a smart card, etc.

A programmable hardware element (PHE) is a hardware
15

device that includes multiple progrannnable function blocks
connected via a system of programmable interconnects.
Examples of PHEs include FPGAs (Field Programmable
Gate Arrays), PLDs (Programmable Logic Devices), FPO As
(Field Progrannnable Object Arrays), and CPLDs (Complex 20

PLDs). The programmable function blocks may range from
fine grained (combinatorial logic or look up tables) to coarse
grained (arithmetic logic units or processor cores).

In some embodiments, a computer system may be con
figured to include a processor (or a set of processors) and a 25

memory medium, where the memory medium stores pro
gram instructions, where the processor is configured to read
and execute the program instructions stored in the memory
medium, where the program instructions are executable by
the processor to implement a method, e.g., any of the various 30

method embodiments described herein, or, any combination
of the method embodiments described herein, or, any subset
of any of the method embodiments described herein, or, any

6
unclonable functions," in ACM Conference on Computer
and Communications Security (CCS), 2010, pp. 237-249.

[9] Z. Para! and S. Devadas, "Reliable and efficient PUF
based key generation using pattern matching," in Inter
national Symposium on Hardware-Oriented Security and
Trust (HOST), 2011, pp. 128-133.

[10] M. Majzoobi, M. Rostami, F. Koushanfar, D.S. Wal-
lach, and S. Devadas, "Slender PUF protocol: A light
weight, robust, and secure authentication by substring
matching," in IEEE Symposium on Security and Privacy
Workshops (SPW). IEEE, 2012, pp. 33-44.

[11] F. Koushanfar, Hardware Metering: A Survey. Springer,
2011.

[12] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas,
"Delay-based circuit authentication and applications," in
Proceedings of the 2003 ACM symposium on Applied
computing, 2003, pp. 294-301.

[13] D. Lim, "Extracting Secret Keys from Integrated Cir
cuits," Master's Thesis, Massachusetts Institute of Tech
nology, May 2004.

[14] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Test
ing techniques for hardware security," in International
Test Conference (ITC), 2008, pp. 1-10.

[15] G. Suh and S. Devadas, "Physical unclonable functions
for device authentication and secret key generation," in
Design Automation Conference (DAC), 2007, pp. 9-14.

[16] B. Gassend, "Physical Random Functions," Master's
Thesis, Massachusetts Institute of Technology, Jan 2003.

[17] E. Ozturk, G. Hammouri, and B. Sunar, "Towards
robust low cost authentication for pervasive devices," in
Pervasive Computing and Communications (PerCom),
2008, pp. 170-178.

combination of such subsets.

LIST OF REFERENCES

The following publications are referenced in the present
patent.

35
[18] U. Ruhrmair, J. Salter, F. Sehnke, X. Xu, A. Mahmoud,

V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson, and
S. Devadas, "PUF modeling attacks on simulated and
silicon data." IEEE Trans. on Information Forensics and
Security, p. 1, 2013.

[1] V. Boyko, P. MacKenzie, and S. Patel, "Provably secure
password-authenticated key exchange using Diffie-Hell
man," in Advances in Cryptology. Springer, 2000, pp.
156-171.

40 [19] M. Majzoobi, F. Koushanfar, andM. Potkonjak, "Light
weight secure PUF," in International Conference on Com
puter Aided Design (ICCAD), 2008, pp. 670-673.

[2] M. Bellare, D. Pointcheval, and P. Rogaway, "Authen
ticated key exchange secure against dictionary attacks," in 45

Eurocrypt, 2000, pp. 139-155.
[3] P. S. Ravikanth, B. Recht, J. Taylor, and N. Gershenfeld,

"Physical one-way functions," Science, vol. 297, pp.
2026-2030, 2002.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, 50

"Silicon physical random functions," in Computer and
Communication Security Conference (CCS), 2002, pp.
148-160.

[5] U. Ruhmiair, S. Devadas, and F. Koushanfar, Security
based on Physical Unclonability and Disorder. Springer, 55

2011.
[6] F. Armknecht, R. Maes, A. Sadeghi, F.-X. Standaert, and

C. Wachsmann, "A formalization of the security features
of physical functions," in IEEE Symposium on Security
and Privacy, 2011, pp. 397-412. 60

[20] M. Majzoobi, F. Koushanfar, and M. Potkonjak, "Tech
niques for design and implementation of secure recon
figurable PUFs," ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 2, no. 1, 2009.

[21] A. Mahmoud, U. Ruhrmair, M. Majzoobi, and F.
Koushanfar, "Combined modeling and side channel
attacks on strong pufs," IACR Cryptology ePrintArchive,
2013.

[22] J. Delvaux and I. Verbauwhede, "Fault injection mod
eling attacks on 65 nm arbiter and ro sum pufs via
environmental changes," 2013.

[23] C. Bosch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and
P. Tuyls, "Efficient helper data key extractor on FPGAs,"
in Cryptographic Hardware and Embedded Systems
(CHES), 2008, pp. 181-197.

[24] R. Maes, P. Tuyls, and I. Verbauwhede, "Low-overhead
implementation of a soft decision helper data algorithm
for SRAM PUFs," in Cryptographic Hardware and
Embedded Systems (CHES), 2009, pp. 332-347. [7] R. Maes and I. Verbauwhede, "Physically Unclonable

Functions: a Study on the State of the Art and Future
Research Directions," in Towards Hardware-Intrinsic
Security, A.-R. Sadeghi and D. Naccache, Eds. Springer,
2010.

[8] U. Ruhrmair, F. Sehnke, J. Salter, G. Dror, S. Devadas,
and J. Schmidhuber, "Modeling attacks on physical

[25] M.-D. M. Yu and S. Devadas, "Secure and robust error
correction for physical unclonable functions," IEEE
Design and Test of Computers, vol. 27, pp. 48-65, 2010.

65 [26] Y. Dodis, L. Reyzin, and A. Smith, "Fuzzy extractors:
how to generate strong keys from biometrics and other
noisy data," in Advances in Cryptology-Eurocrypt, 2004.

US 9,628,272 B2
7

[27] N. Beckmann and M. Potkonjak, "Hardware-based
public-key cryptography with public physically unclon
able functions," in Information Hiding. Springer, 2009,
pp. 206-220.

[28] M. Majzoobi, G. Ghiaasi, F. Koushanfar, and S. Nassif,
"Ultra-low power current-based PUF," in Circuits and
Systems (ISCAS), 2011 IEEE International Symposium
on. IEEE, 2011, pp. 2071-2074.

[29] M. Baldi, F. Chiaraluce, N. Boujnah, and R. Garello,
"On the autocorrelation properties of truncated maxi
mum-length sequences and their effect on the power
spectrum," Signal Processing, IEEE Transactions on, vol.
58, 2010.

[30] C. Paar, J. Pelz!, and B. Preneel, "Understanding
cryptography: a textbook for students and practitioners,"
Springer, 2010.

[31] S. Katzenbeisser, U. Kocabas, V. Rozic, A.-R. Sadeghi,
I. Verbauwhede, and C. Wachsmann, "PUFs: Myth, fact or
busted? A security evaluation of physically unclonable
functions (PUFs) cast in silicon," in Cryptographic Hard
ware and Embedded Systems, 2012, pp. 283-301.

[32] M. Majzoobi, F. Koushanfar, and S. Devadas, "FPGA
based true random number generation using circuit meta
stability with adaptive feedback control," Cryptographic
Hardware and Embedded Systems--CHES 2011, pp.
17-32, 2011.

[33] M. Majzoobi, F. Koushanfar, and S. Devadas, "FPGA
PUF using programmable delay lines," in Information
Forensics and Security (WIFS), 2010 IEEE International
Workshop on. IEEE, 2010, pp. 1-6.

[34] C. K. Koc, Ed., Cryptographic Engineering, 1st edition,
Springer, December 2008.

8
tation. The low overhead and practicality of the protocols are
evaluated and confirmed by hardware implementation.

FIG. 1 shows a verifier 110 and a prover 130 that
communicate via a communication medium 120. The com-

5 munication medium 120 may include any desired physical
medium or combination of physical media. For example, the
communication medium may include one or more of the
following: the atmosphere or free space, a body of water
such as an expanse of sea or ocean, a fiber optic channel, a
wired channel or cable connection, a portion of the earth's

10
subsurface. In some embodiments, the communication
medium 120 may be a computer network such as the
Internet. The verifier and the prover may be configured to
communicate information over the communication medium
120 in any of a wide variety of conventional ways. For

15 example, the verifier and prover may each be configured to
transmit and receive one or more of the following types of
signals: electrical signals, electromagnetic signals (such as
radio signals, infrared signals, visible light signals or ultra
violet signals), acoustic signals, mechanical signals such as

20 displacement, velocity or acceleration signals, chemical
signals or chemical gradient signals, electrochemical signals
propagating along neurons, thermal signals, etc.

In some embodiments, the prover 130 is operated by a
person or entity that desires access to products and/or

25 services provided by a business. The business may use the
verifier 110 in order to authenticate the prover 130 (or person
operating the prover) as having legitimate access to the
products and/or services.

In some embodiments, the prover 130 is operated by a
30 person or an entity that desires access to information main

tained by a business or governmental agency. The business
or governmental agency may operate the verifier 110 in
order to verify that the prover 130 (or person operating the

[35] B. Sunar, W. Martin, and D. Stinson, "A provably
secure true random number generator with built-in taler- 35

ance to active attacks," Computers, IEEE Transactions on,
vol. 56, no. 1, pp. 109-119, 2007.

prover) has authority to access the information.
In some embodiments, the prover 130 is operated by a

business or governmental agency that desires to prove its
authenticity to a person (or other entity). The person (or
other entity) may use the verifier 110 in order to authenticate
the business or governmental agency.

[36] M. Kim, J. Ryou, and S. Jun, "Efficient hardware
architecture of SHA-256 algorithm for trusted mobile
computing," in Information Security and Cryptology, 40

2009, pp. 240-252.
In some embodiments, the prover 130 may be a mobile

device (such as a cell phone or media player or tablet
computer) that is interested in authenticating itself with a
wireless network or a service provider. In this case, the
communication medium 120 may include a wireless con-

[37] S. Drimer, T. Guneysu, and C. Paar, "DSPs, BRAMS,
and a pinch of logic: Extended recipes for AES on
FPGAs," ACM Trans. on Reconfigurable Technology and
Systems, vol. 3, no. 1, p. 3, 2010.
PUF Authentication and Key-Exchange by Substring

Matching

45 nection with a wireless communication network, and the
verifier 110 may be a computer operated by the wireless
network or the service provider.

In some embodiments, the communication medium 120 is
(or includes) a physical object or entity that passed or

50 transported from the prover 130 to the verifier 110. For
example, the prover 130 may write or record information
(such as the padded substring PW described herein) on the
physical object, and the verifier 110 may read the informa
tion from the physical object. The physical object may

In this patent document, we disclose (among other things)
robust and low-overhead Physical Unclonable Function
(PUF) authentication and key exchange protocols that are
resilient against reverse-engineering attacks. The protocols
are executed between a party (the Prover) with access to a
physical PUF and a trusted party (the Verifier) who has
access to the PUF compact model. The presently-disclosed
protocols do not follow the classic paradigm of exposing the
full PUF responses or a transformation of them. Instead,
random subsets of PUF response strings are sent to the
Verifier. So the exact position of the subset is obfuscated for
the third-party channel observers. Authentication of the
responses at the Verifier side is done by matching the
substring to the available full response string; the index of
the matching point is the actual obfuscated secret (or key)
and not the response substring itself. We perform a thorough
analysis of resiliency of the protocols against various adver
sarial acts, including machine learning and statistical 65

attacks. The attack analysis guides us in tuning the param
eters of the protocol for an efficient and secure implemen-

55 include memory to support the storage of the information.
The examples given above are just a few of the practically

infinite range of possible applications of the presently dis
closed methods, and are not meant to be limiting.

In some embodiments, the communication medium 120 is
60 an insecure medium, where third parties are able to access

some or all communications transmitted onto the commu-
nication medium.

I. Introduction

Classic security paradigms rely on a stored digital secret
key and cryptographic algorithms. Secret keys are stored in

US 9,628,272 B2
9 10

access to the full string, can perform a substring matching,
and thereby discover the secret index. The matched strings
may not be the same, but as long as they are within a small
distance of each other (as defined by a threshold), the

an on-chip non-volatile memory (NVM). However, on-chip
NVM storage is prone to invasive physical attacks (e.g.,
probing) and non-invasive imaging attacks (e.g., by scan
ning electron microscopes). Moreover, correct implementa
tion of security algorithms based on a pre-distributed secret
key requires Password-Authenticated Key Exchange
(PAKE) protocols. These protocols are provably secure;
however, they require costly exponentiation operations [1],
[2]. Therefore, they are not suitable for many low power
resource-intensive applications.

5 matching is declared to be successful. Therefore, the method
is inherently robust to the noise in the PUF responses,
eliminating the need for costly error correction or fuzzy
extraction.

The protocol may be devised such that the Verifier and the
10 Prover jointly generate the challenges to the PUF. The

challenges may be generated in a way that neither a dishon
est Prover nor a dishonest Verifier can solely control the
challenges used for authentication. While none of the

Physical unclonable functions (PUFs) have been pro
posed [3] to provide a desired level of security with low
implementation overhead. One type of PUF is based on
silicon, and is designed to bind secrets to silicon hardware
[4]. Silicon PUFs use the unclonable intrinsic process vari- 15

ability of silicon devices to provide a unique mapping from
a set of digital inputs (challenges) to a set of digital outputs
(responses). The imperfections and uncertainties in the fab
rication technology make cloning of a hardware circuit with
the exact same device characteristics impossible, hence the 20

term unclonable. Moreover, PUFs must be designed to make
it prohibitively hard to simulate, emulate, or predict their
behavior [4]. Excellent surveys of various PUF designs can
be found in [5]-[7].

Strong PUFs are a class of PUFs which have the property 25

that the number of their possible challenge-response pairs
(CRPs) has an exponential relationship with respect to the
number of their physical components. This huge space of
possible CRPs hinders attacks based on pre-recording and
re-playing previously used CRPs. However, physical com- 30

ponents of a Strong PUF are finite. Therefore, given access
to these components, a compact polynomial-order model of
the CRP relationships can be built.

A trusted intellectual property owner with physical access
to the device (e.g., the original manufacturer) can build such 35

a compact model by measuring the direct responses of the
PUF. Such compact models can be treated as a secret which
can be used by a trusted Verifier to authenticate the Prover's
PUF. (Physical access to these components may be perma
nently disabled before field deployment to avoid direct 40

compact modeling.) An unfortunate fact is that third party
observers may also be able to model the PUF based on a
finite number of CRPs exchanged on the communication
channel as has been done before. See, e.g., [8]. This type of
PUF modeling by untrusted third parties is also called a 45

machine-learning or reverse-engineering attack, as it harms
the PUF security. Such attacks were possible because the
challenge and response strings leak structural information
about the PUF and compact models.

In this patent disclosure, we describe (among other 50

things) secure, low overhead, and robust authentication and
key exchange protocols (e.g., for Strong PUFs) that thwart
machine-learning attacks. The protocols enable a Prover
with physical access to the PUF to authenticate itself to a
trusted Verifier. It is assumed that the trusted Verifier has 55

access to the secret compact PUF model. The protocol leaks
a minimal amount of information about secret PUF param
eters on the communication channel. This is because the
secret is the index of a response substring, which is selected
(e.g., randomly) from the full response string. The Prover 60

also adds random padding strings before and after the
response substring. The indices (i.e., lengths) of the padding
strings are also a part of the secret.

In some embodiments, only the padded substring is sent
on the channel. Since the indices are not correlated with the 65

substring content in any way, the secret itself is never
exposed on the communication channel. The Verifier, with

authenticating parties can solely control the challenges, the
resulting challenge values are publicly known. The authen
tication protocol, described above, can also be leveraged to
implement a low-power and secure key-exchange algorithm.
The Prover only needs to select a key (e.g., a random
password) and then encode it as a set of secret indices to be
used in the authentication protocol.

We provide a thorough discussion of the complexity and
effectiveness of attacks on the presently-disclosed protocols.
The protocols are designed to achieve robustness against
inherent noise in PUF response bits, without costly tradi
tional error-correction modules. We demonstrate that our
protocols can be implemented with a few simple modules on
the Prover side. Therefore, we do not need expensive
cryptographic hashing and classic error-correction tech
niques that have been suggested in earlier literature for
achieving security. Note that recent work has used pattern
matching for correcting errors while generating secret keys
from a PUF [9]. However, unlike the presently-disclosed
key-exchange protocol, the number of generated secret keys
was limited. In addition, a higher level of protection against
machine learning attacks can be achieved by the presently
disclosed protocols.

We have published a paper [10] on PUP-based authenti-
cation. That paper only discussed the application of PUFs
for robust and attack-resilient authentication and did not
propose a key exchange protocol based on PUFs. The
proposed authentication protocol in [10] achieves a lower
level of security than the protocol disclosed in this patent.
This is because we also add random padding to the PUF
substring, which generates a larger number of secret indices.

In brief, some of the new contributions of the present
patent disclosure are as follows:

(a) We introduce and analyze two lightweight and secure
protocols based on substring-matching of PUF response
strings to perform authentication and session key exchange.

(b) The protocols automatically provide robustness
against inherent noise in the PUF response string, without
requiring externally added and costly traditional error-cor
rection modules or fuzzy extraction.

(c) We perform a thorough analysis of the resiliency of
protocols against a host of attacks.

(d) Our analyses provide guidelines for setting the pro
tocol parameters for robust and low-overhead operation.

(e) The lightweight nature, security and practicality of the
new protocol are confirmed by a set of hardware implemen
tation and evaluations.

If the reader is familiar with PUF circuits and its related
literature, he/she may now jump to Section IV.

II. Background on Strong Pufs

In this section, without loss of generality, we introduce a
popular instance of Strong PUF known as arbiter PUF or

US 9,628,272 B2
11

delay-based PUF. Desired statistical properties of a Strong
PUF are briefly reviewed, and XOR mixing of arbiter PUFs
to improve the statistical properties is discussed. Note the
presently-disclosed protocol may be used with any desired
PUF. However, it is generally preferable for the PUF to be 5

Strong PUF that satisfies the requirements discussed in this
section.

A. Strong PUFs and their Implementation
There are a number of different PUF types, each with a set

12
According to expression 1 B, if the path delay difference

is greater than zero, then the response will be '1 '; otherwise
the response is 'O'. To simplify the notations, expressions IA
and lB, can be rewritten as:

r~Sign(!:.·<l>), (3)

where
£l.=[01,02, · · ·, ON+ll

is the delay parameter vector, where
<P=[(-])P1, (-])P', ... , (-])PH,]]=[cp1, <P2, · · ·, <PN+ll

is the transformed challenge vector, in which cp,E{l,-1},
where "•" is the dot product operator, and Sign is the sign
function. We will refer to C as the input challenge vector in
the remainder of the disclosure. Note that the parameters <I>,

of unique properties and applications. For example, Weak 10

PUFs, also known as Physically Obfuscated Keys (POKs)
are commonly used for key generation applications. The
other type is called Strong PUF [11]. Strong PUFs are built
based on the unclonable disorder in the physical device
features, with very many challenge-response pairs. The size

15 p, and C are related to each other.
B. Linear Arbiter PUF Statistical Properties

of the CRP space is an exponential function of the number
of underlying components. Strong PUFs have the property
that they are prohibitively hard to clone; a complete enu
meration of all their CRPs is intractable. To be secure, they
should be resilient to machine learning and prediction
attacks.

In this subsection, the statistical properties of a linear
arbiter PUF are reviewed. It has been demonstrated in [14]
that when the delay parameters 111Eli. come from identical

20 symmetric distributions with zero mean (in particular it is

In some embodiments of the presently-disclosed proto
cols, we use a Strong PUF implementation called "delay
based arbiter PUF" introduced in [12]. In this PUF, the delay 25

difference between two parallel paths is compared. The
paths are built identically to make their nominal delays equal
by design. However, the delay of fabricated paths on chips
will be different due to process variations. See FIG. 2. A step
input 202 simultaneously triggers the two paths. At the end 30

of the two parallel (racing) paths, an arbiter 212 (typically a
D-Flip Flop) is used to convert the analog difference
between the paths to a digital value. The arbiter output (i.e.,
the response bit) is one if the signal arrives at its first input
earlier than the second input; otherwise, it stays at zero. The 35

two paths are divided into several smaller sub-paths by
inserting path-swapping switches SW 1 through SW N Each
set of inputs { C,} to the switches acts as a challenge set
(denoted by vector C). Each switch has two inputs and two
outputs, and couples the inputs to the outputs in either an 40

identity configuration (INa-OUTa and IN1-0UT1) or a
crossover configuration (INa-OUT1 and IN1-0UTa),
depending on the current value of the corresponding chal
lenge bit C,.

In some embodiments, the PUF includes only linear 45

addition and subtraction of delay elements. Therefore, the
behavior of the PUF can be modeled by the following
expressions [13]:

safe to assume that the 1\s are independent and identically
distributed Gaussian variables, i.e.,

0/sN(O,o),

j=l, 2, ... , N+l,
then the following statistical properties hold for a linear
arbiter PUF:

(a) The output response bits are equally likely over the
entire space of challenges, i.e.,

Prob{r~-1 }~Prob{r~l }~0.5.

Half of the challenges map to r=-1 and the other half maps
to r=l.

(b) The responses to similar challenges are similar. In
other words, the probability that the responses ra and r1 to
respective input challenge vectors Ca and C1 are different is
a monotonically increasing function of the Hamming dis
tance between the input challenges, i.e.,

Prob{r0,orl}~j(HD(C0,C1).

For example, in the trivial cases, HD(Ca,C1)=0, i.e., Ca=C1,
then Prob{r0>'rl }=O. The Hamming distance between chal
lenges Cx and CY may be defined as

N

HD(Cx, Cy)=~ ICx[i]-Cy[i]I/N,
i=l

N

!:.t= ~ (-1/ioj+ON+!,
j=l

(lA)

50 where Cx[i], Cy[i]E{-1,1}. As the Hamming distance
between the input challenge vectors becomes larger, the
probability of having different PUF response bits increases.

r = { 0 if !:.t < 0 ,

1 1f !:.t > 0

(lB)

where li.t denotes the arrival time difference between the two
paths at the arbiter, where r denotes the response bit, where

The second property leaks information about the PUF
response sequence, which would help in breaking the PUF

55 security by pattern matching. Ideally, PUFs are expected to
have a property called strict avalanche criterion. Any flip in
the challenge bits of a PUF with avalanche criterion should
cause the response bits to flip with probability of 50%. Any

p1 is related to the input challenge that controls the switch 60

selectors by the following relation,

deviation from this criterion reduces the security of the
system built based on these PUFs. To achieve this criterion,
it has been proposed in [14] and [15] to mix the responses
from the arbiter PUFs with XOR logic. In the next subsec
tion, we review this subclass of PUFs.

Pi= EB Cx=CiEBCi+lEB ... EBcN. (2)
x=i,i+l, .. ,N 65

C. XOR-Mixed Arbiter PUFs
FIG. 3 shows a two-stage XOR-mixed arbiter PUF

denoted with label 300. The first stage includes switches Sa a

through Sa,n and flip-flip 310. The second stage includ~s

US 9,628,272 B2
13

switches S1 ,0 through S1 ,n and flip-flip 315. The output of the
first stage and the output of the second stage are coupled to
the inputs of an XOR gate 320. The step input 305 is
supplied to the inputs of both stages. Note that the challenge
sequence in the second stage is applied in reverse order 5

relative to the order of application in the first stage. The
order is reversed to help achieve the avalanche criterion. As
more independent PUF response bits are mixed, the prob
ability that the output is flipped when one input bit changes,
comes closer to the ideal probability of 0.5. 10

In addition to achieving the avalanche criterion, the
XOR-mixed arbiter PUF requires a significantly larger set of
challenge-response pairs to successfully train the PUF
model for a given target level of accuracy. However, there is

15
a cap on the number of stages that can be actually used in
practice. This is due to the fact that XOR-mixing causes
error accumulation of PUF responses. For instance, for a
single PUF response bit error of 5%, the probability of error
for a 4-XOR-mixed PUF is 19% [14]. The protocols dis- 20

closed in this patent disclosure allow a higher level of
security without increasing the number of XOR stages.

III. Related Work

14
All of the aforementioned methods incur a rather high

overhead of error correction and/or hashing, which prohibits
their usage in lightweight systems. An alternative efficient
error correction method by pattern matching of responses
was very recently proposed [9]. However, their proposed
protocol and application area was limited to secret key
generation.

This patent disclosure introduces (among other things)
lightweight PUF authentication and commitment protocols
based on string pattern matching and covert indices. Mod
eling attacks against these protocols is thwarted by leaking
very limited information from a PUF response string. The
random indices used in the protocols are inherently inde
pendent of the response string content.

IV. Authentication and Key Exchange Protocols

In this section, an authentication and key exchange pro
tocol are introduced and explained in detail. The protocols
may be based on a Strong PUF with acceptable statistical
properties, like the one shown in FIG. 3. The authentication
protocol enables a Prover with physical access to the PUF to
authenticate itself to a Verifier, and the key exchange pro
tocol enables the Prover and the Verifier to securely

25 exchange secret keys between each other.
PUFs have been subject to modeling attacks. The basis for

contemporary PUF modeling attacks is collecting a set of
CRPs, and then building a numerical or an algorithmic
model from the collected data. For the attack to be success
ful, the models should be able to correctly predict the PUF 30

response to new challenges with a high probability. Previous
work on PUF modeling (reverse engineering) used various
machine learning techniques to attack both implementation
and simulations of a number of different PUF families,
including linear arbiter PUFs and feed-forward arbiter PUFs 35

[8], [13], [14], [16], [17]. More comprehensive analysis and
description of PUF security requirements to protect against
modeling attacks were presented in [18]-[20]. In recent
years, there has been an ongoing effort to model and protect
PUFs against side channel attacks such as power analysis 40

[21] and fault injection [22].
Extracting secret keys from PUF responses has been

explored in previous work, including [4], [16] and [23]
[25]. Since cryptographic keys need to be stable, error
correction is used for stabilizing inherently noisy PUF 45

response bits. The classic method for stabilizing noisy PUF
bits (and noisy biometrics) is error correction, which is done
by using helper bits or syndrome [26], which has a high
overhead.

It is assumed that an honest Verifier has access to a
compact secret model of the functional relationship between
challenge and response of the Strong PUF. Such a model can
be built by training a compact parametric model of the
Strong PUF on a set of direct challenge-response pairs. As
long as the responses of the challenge-response pairs are
obtained from the linear PUF, right before the XOR-mixing
stage, building and training such a compact model is pos
sible with a relatively small set of CRPs as demonstrated in
[8], [13], [14], [16], [17]. The physical access to the mea
surement points may then be permanently disabled before
deployment, e.g., by burning irreversible fuses, so other
entities cannot build the same model. Once these access
points are blocked, any physical attack that involves de
packaging the chip will likely alter the shared secret.

Unlike the original PUF challenge-response pair identi
fication and authentication methodologies, our protocols are
devised such that both Prover and Verifier jointly participate
in producing the challenges. The joint challenge generation
provides effective protection against a number of attacks.
Unlike original PUF methods, an adversary cannot build a
database of CRPs and use an entry in the database for
authentication or key exchange. The next two subsections
describe various embodiments of our protocols in detail. The

In the context of challenge-response based authentication
for Strong PUFs, sending the syndrome bits for correcting
the errors before hashing was investigated [4]; the necessity
for error correction was due to hashing the responses before
sending them to avoid reverse engineering. Naturally, the
inputs to the hash have to be stable to have a predictable
response. The proposed error-correction methods in this
context are classic error correction and fuzzy extraction
techniques. Aside from sensitivity to PUF noise (because it
satisfies the strict avalanche criterion), hashing and error
correction has the drawback of high overhead in terms of
area, delay, and power.

50 last subsection concludes the section with some notes about
the PUF secret-sharing process.

A. Authentication Protocol
FIG. 4 illustrates an embodiment 400 of our authentica

tion protocol. Steps 1-4 of the protocol ensure joint genera-
55 tion of the challenges by the Prover and the Verifier. In Steps

1-2 the Prover and the Verifier may each use its own true
random number generator (TRNG) unit to generate a nonce.
(Note that arbiter PUFs can also be used to implement a
TRNG [28].) The Prover-generated nonce and the Verifier-

60 generated nonce are denoted respectively by NonceP and
Noncev. The nonces are exchanged between the parties, so
both entities have access to NonceP and Noncev. Step 3
generates a random seed by concatenating the individual
nonces of the Prover and the Verifier. In other words,

A newer information-theoretically secure Index-Based
Syndrome (IBS) error correction coding for PUFs was
introduced and realized in [25]. In [27], authors proposed the
notion of public physically unclonable functions (PPUF) 65

and proposed a public key-exchange protocol based on
them.

Seed~{NoncevllNoncep}.

where "II" denotes the concatenation operator.

US 9,628,272 B2
15

The generated Seed is used by a pseudo-random number
generator (PRNG) in Step 4. Both the Prover and the Verifier
have a copy of this PRNG module. The PRNG output using
the seed, i.e.,

c~G(Seed),

is then applied to the PUF as a challenge set (C). Note that
in this way, neither the Prover nor the Verifier has full
control over the PUF challenge stream.

In Step 5, the Prover applies the challenges to its physical
PUF to obtain a response stream (R), i.e.,

R~PUF(C).

16
above-described embodiments, besides a PUF (e.g., a Strong
PUF), the Prover only needs to implement one TRNG and
one PRNG. In addition to exchanging their respective ses
sion nonces, the Prover only needs to send a relatively short

5 padded substring to the Verifier. Additionally, the protocol
has the added benefit that the ranges of the respective secret
indices ind1 and ind2 are flexible and can be tuned depending
on the security requirements. The matching threshold can
also be calculated to tolerate a predefined PUF error thresh-

10 old.
FIG. 6A illustrates an embodiment of the extraction and

An honest Verifier with access to a secret compact model of
the PUF ("the PUF model") also estimates the PUF output

15
stream, i.e.,

padding processes, where the substring Wis injected into the
padded substring PW as one contiguous whole, i.e., without
allowing the substring W to circularly wrap within the
padded substring PW. Thus, the value of ind2 is constrained
to be in the range {O, 1, ... , Lpw-Lsub}. In the illustrated

R'~PUF _model(C).

Let us assume that the full response bitstring R is oflength
L. In Step 6, the Prover randomly chooses an index (ind1)

that points to a location in the full response bitstring. (This
index may be of bit-size logiL).) This index points to the
beginning of a substring (W) with a predefined length
denoted Lsub· We use the full response string in a circular
manner, so that if

(ind1 +L,ub)>L,

the remainder of the substring values are taken from the
beginning of the full response bitstream:

W(j)~R((j+ind1)mod L)),

j=O,], ... ' Lsub-1.
This operation is illustrated in FIG. SA.

In step 7, the Prover pads the substring W with random
bits to create a bitstream PW of length Lpw· (The bitstream
PW is also referred to herein as "the padded substring".) In
this padding process, starting from a randomly chosen index
(ind2), the PUF substring W from step 6 is inserted. The
substring W may be inserted into the padded substring PW
according to a circular insertion scheme or a linear insertion
scheme. In the circular insertion scheme, if the value (ind2 +
Lsub) is greater than Lpw, the remainder of the substring
values are taken from the beginning of the full response
bitstream.

PW(k)~R((k+ind1)mod L))

k=ind2 , ind2 +1, ind2 +2, ind2 +Lsu6 -l.
This operation is illustrated in FIG. SB. In the linear inser
tion scheme, the substring W is injected into the padded
substring PW as one contiguous whole, i.e., without allow
ing the substring W to circularly wrap within the padded
substring PW. Thus, the value of ind2 is constrained to be in
the range {O, 1, ... , LnvLsub}.

example, a substring W of length Lsub = 12 is extracted from
a response string R of length L=26. The substring W is
extracted with a start position given by ind1=9. The sub-

20 string W is injected into a padded substring PW of length
Lpw=24 with start position given by ind2 =3.

FIG. 68 continues with the example of FIG. 6A, and
illustrates the process whereby the Verifier matches the
received padded substring PW against his model-generated

25 PUF response R', assuming that the substring W occurs as
one contiguous whole within the padded substring PW, i.e.,
without circularly wrapping. Note that the model-generated
PUF response R' is not exactly equal to the PUF response R.
Two error bits are shown. The authentication is declared to

30 be successful if the Hamming distance between the substring
W and the corresponding portion of the model-generated
PUF response R' is lower than a predefined threshold value.

B. Session Key-Exchange Protocol
It is possible to piggyback a session key-exchange pro-

35 tocol on the authentication protocol of FIG. 4. The Prover
can encode secret keys in the secret indices of authentication
protocol, e.g., in indices ind1 and ind2 . The Verifier can
recover these secret indices at the end of a successful
authentication. If the length of secret indices is not enough

40 to encode the whole secret key, the authentication protocol
may be repeated multiple times until the required number of
secret bits is transmitted to the Verifier. We now describe this
concept with an example.

If the length of PUF response string is 1024 bits, ind1 is
45 chosen from the range of O to 1023. Therefore, we can

encode !Obits by using ind1 . If the length Lpwofthe padded
substring PW is 1024 bits, ind2 is chosen from the range 0
to 1023. Therefore, 10 bits of a secret key can be encoded
by ind2 . In this parameter configuration, 20 bits overall can

50 be exchanged between the parties with one run of the
authentication protocol. If the length of the secret key is 120
bits, the protocol of FIG. 4 should be executed 6=120/20
times to transfer the entire secret key. The present key
exchange protocol can securely exchange session keys with

In step 8, when an honest Verifier receives the padded
substring PW, he performs a circular maximum-sequence
alignment against his simulated PUF output sequence (R') to
determine which bits belong to the PUF response string and
which bits were generated randomly. The authentication is
declared to be successful only if the Hamming distance
between the received substring R and the simulated sub
string R' is lower than a predefined threshold value. After 60

this operation, the Verifier determines the value of the secret
indices ind1 and ind2 . However, these values do not affect
the authentication process.

55 minimum overhead, while protecting against machine learn
ing attacks and PUF response errors.

The key-exchange protocol can be followed up with a step
to check whether the Verifier has received the correct
indices. To do so, the Prover only needs to send the hashed
values of the indices to the Verifier for verification.

C. Secret Sharing
So far we have assumed that the Verifier possesses a

model of the PUF and uses the model to authenticate the
Prover. The PUF may have an e-fuse to protect the secret and
prevent modeling attacks. The chip sets may be handled by
a trusted party before distributing the chip sets to end users.

In the authentication process, the Prover does not reveal
the whole response stream and the protocol leaks a minimal 65

amount of information. The protocol is also lightweight and
suitable for ultra-low power and embedded devices. In the The trusted party performs modeling on the PUF and

US 9,628,272 B2
17

disables the fuse before distribution. Anyone with access to
the IC afterwards will not be able to model the PUF since the
fuse is disabled. The trusted party can share the PUF models
with other authorized trusted parties that want to authenti
cate the ICs.

Thee-fuse mechanism is operates as follows. Before the
e-fuse is disabled, the inputs to the XOR logic of the arbiter
PUF can be accessed from chip IO pins. (XOR is an
acronym for "Exclusive OR". IO is an acronym for input
output.) This way, the Verifier can obtain as many CRPs as
needed to build an accurate model of the PUF. After the
model is successfully trained, the trusted party and/or the
Verifier disables thee-fuse so that no one else can obtain the
"raw" PUF output before the XOR-mixing stage.

V. Analysis of Attacks

In this section, we quantify the resistance of the presently
disclosed protocols against different attacks by a malicious
party (Prover or Verifier). Due to the similarity of the
authentication and key exchange protocols, similar attacks
analysis apply to both of them.

18
protocol, the direct responses are not revealed and the
attacker needs to correctly guess the secret indices to be able
to discover Lsub challenge-response pairs. ind1 is a number
between O and L-1. (L is the length of the original response

5 string R from which the substring W is obtained.) ind2 is a
number between O and Lpw-1. (Lpw is the length of the
padded substring PW.)

Assuming the attacker tries to randomly guess the indices,
he will be faced with LxLpw choices. For each iter choice,

10 the attacker can build a PUF model (M,,er) by training it on
the set of Lsub challenge-response pairs using machine
learning methods.

Now, the attacker could launch LxLpwrounds of authen-
15 tication with the Verifier and each time use one of his trained

models instead of the actual PUF. Ifhe correctly guesses the
indices and his model is accurate enough, one of his models
will pass authentication. To build an accurate model as
mentioned above, the attacker needs to obtain Nm,n correct

20 challenge-response pairs. IfLsub>Nm,m then the attacker can
break the system with O(LxLpw) number of attempts. How
ever if Lsub<Nm,m then the attacker needs to launch Nm,)
Lsub rounds of authentication to obtain at least Nm,n chal
lenge-response pairs. Under this scenario, the number of

In the first subsection, we quantitatively analyze their
resiliency to machine learning attacks. Second, we proba
bilistically investigate the odds of breaking the protocols by
random guessing. Third, we address the attack where a
dishonest Prover (Verifier) attempts to control the PUF
challenge pattern. Lastly, the effects of non-idealities of
PUFs and PRNGs and their impact on protocol security are
discussed. Throughout our analysis in this section, we 30

investigate the impact of various parameters on security and
reliability of protocol operation. Table I lists these param-

25 hypothetical PUF models will grow exponentially. Since for
each round of authentication there are LxLpwmodels based
on the choice of index values ind1 and ind2 , for Nm,)Lsub
rounds, the number of models will be of the following order:

Nmin
(LXLp)L,ub.

(5)

eters.

Parameter

k
N
th

Perr

TABLE I

LIST OF PARAMETERS

Description

Length of nonce.
Length of PUF response string.
Length of PUF response substring.
Length of padded substring.
Index to the beginning of the substring, where
0 ,; ind 1 < L.
Index at which the PUF substring is inserted, where
0 ,; ind2 < Lpw·
Minimum nwnber CRPs needed to train
the PUF model with a misclassification
rate of less than E.

Number ofXORed PUF outputs
Number of PUF switch stages
Matching distance threshold
PUF modeling misclassification rate
Probability of error in PUF responses

A. PUF Modeling Attack
In order to model a linear PUF with a given level of

accuracy, it is sufficient to obtain a minimum number CNm,n)
of direct challenge-response pairs (CRPs) from the PUF.
Nm,n depends on the PUF type and also the learning strategy.
Based on theoretical considerations (e.g., dimension of the
feature space, Vapnik-Chervonenkis dimension), it is sug
gested in [8] that the minimal number of CRPs, N min' that is
necessary to model a N-stage delay based linear PUF with
a misclassification rate of E is given by:

35
From the above equation, it seems intmt1ve to choose

small values for Lsub, to make the exponent bigger. How
ever, small Lsub increases the success rate of random guess
ing attacks. The implications of small Lsub will be discussed
in more detail in the next section.

40 The model that the attacker is building has to be only
more accurate than the specified threshold during the match
ing. For example, if we allow a 10% tolerance during the
substring matching process, then it means that a PUF model
that emulates the actual PUF responses with more than 90%

45 accuracy will be able to pass authentication. Based on Eq. 4,
if we allow higher misclassification rate E, then a smaller
number of CRPs is needed to build an accurate enough
model which passes the authentication.

To improve the security while maintaining reliable per-
50 formance, Nm,n must be increased for a fixed E and N. This

requires a structural change to delay based PUF. In some
embodiments, we use the XOR PUF circuit shown in FIG.
3 for two reasons. First, to satisfy the avalanche criterion for
the PUF. Second, to increase N min for a fixed E. Based on the

55 results reported in the experimental evaluation section, Nm,n
is an order of magnitude larger for XOR PUF than for a
simple delay based PUF.

B. Random Guessing Attack
A legitimate Prover should be able to generate a padded

60 substring of PUF responses that successfully match a sub
string of the Verifier's emulated response sequence. The
legitimate Prover must be authenticated by an honest Veri
fier with a very high probability, even if the response

(4) 65
substring contains some errors. Therefore, the protocol
allows some tolerance during matching by setting a thresh
old on the Haniming distance of the source and target For example, a PUF model with 90% accuracy, has a

misclassification rate of 8=10%. In the presently-disclosed substrings.

US 9,628,272 B2
19 20

Simultaneously, the probability of authenticating a dis
honest Prover should be extremely low. These conditions
can be fulfilled by carefully selecting the Hamming distance
threshold (th), the substring length (Lsub), the total length of
the padded substring (Lpw), and the original response string 5

length (L) by our protocol. A dishonest Prover without
access to the original PUF or its model, may resort to
sending a substring of random bits. In this case, the prob
ability of authentication by a randomly guessing attacker,
denoted P Anv, would be:

10

enated nonces of length Ln bits), the chance that the same
nonce appears twice is 2-Ln). For example, for

the probability of being able to fully control the seed will be
negligibly small. Therefore, one could effectively guard
against any kind of random seed compromise by increasing
the nonce lengths. The only overhead of this approach is a
twofold increase in the runtime of the TRNG.

D. Substring Replay Attack

(6)

PADV = (L·Lpw)X

where Lsub and th are the length of the substring and the
Hamming distance threshold, respectively. Eq. 6 is derived
with this assumption that the adversary has L·Lpw chances
to match the simulated PUF response, and in each match, the
probability of success is calculated using a binomial cumu
lative distribution function.

A dishonest Prover may mount an attack by recording the
padded substrings associated with each used Seed. In this
attack, a malicious Prover records the response substrings
sent by an honest Prover to an honest Verifier for a specific

15 Seed. The recording may be performed by eavesdropping on
the communication channel between the legitimate Prover
and Verifier. A malicious party may even pre-record a set of
response substrings to various random Seeds by posing as a
legitimate Verifier and exchanging nonces with the authentic

20 Prover.

For an honest Prover, the probability of being correctly 25
authenticated, denoted by PHonest is:

After recording a sufficiently large number of Seeds and
their corresponding response substrings, the malicious party
could attempt to impersonate an honest Prover. This may be
done by repeatedly contacting the legitimate Verifier for
authentication and then matching the generated Seeds to its
pre-recorded database. This attack could only happen if the

PHonest = ~ (L,ub) ; L,ub-; U i (l - Perr) Perr ,

(7)

i=Lsub-th

where Perr is i the probability of an error in a response bit.

30

Seeds collide. Selecting a sufficiently long Seed that cannot
be controlled by one party (Subsection V-B) would hinder
this collision attack.

If Lsub is chosen to be a sufficiently large number, P ADV
35

will be close to zero, and P Honest will be close to one.

Passive eavesdropping is performed during the pre-re
cording phase. The chances that the whole Seed collides will
be 2-Ln. The worst-case scenario is when an adversary
impersonates a Verifier and controls half of the seed which
reduces the collision probability to 2-Ln

E. Exploiting Non-Idealities of PRNG and PUF
Thus far, we assumed that the outputs of PRNG and PUF

are ideal and statistically unbiased. If this is not true, an
attacker may resort to exploiting the statistical bias in a
non-ideal PRNG or PUF to attack the system. Therefore, in

C. Compromising the Random Seed
In the protocol, the Prover and the Verifier jointly generate

the random PRNG seed by concatenating the outputs of their
individual nonces (generated by TRNGs); i.e.,

seed~{NoncevllNoncep}.

The stream of PRNG outputs after applying the seed is then
used as the PUF challenge set. This way, neither the Prover
nor the Verifier has full control over generating the PUF
challenge stream.

If one of the parties can fully control the seed and
challenge sequence, then the following attack scenario can
happen. An adversary that poses as a Verifier can manipulate
an honest Prover into revealing the secret information. If the
same seed is used over and over during authentication
rounds, then the generated response sequence (super-string)
will always be the same. The response substrings now come
from the same original response string. By collecting a large
enough number of substrings and putting the pieces together,
the original super-string can be reconstructed. Reconstruc
tion will reveal L CRPs. By repeating these steps, more
CRPs can be revealed and the PUF can be ultimately
modeled.

An imposter Prover (Verifier) may intentionally keep
his/her portion of the seed constant to reduce the entropy of
seed. This way, the attacker can exert more control over the
random challenges applied to the PUF. We argue that if the
seed length is long enough this strategy will not be success
ful.

This attack leaves only half of the bits in the generated
Seed changing. For a seed of length 2Ln bits (two concat-

40 this section we emphasize the importance of the PUF
avalanche criterion for securing against this class of attacks.

If the PUF has poor statistical properties, then the attacker
can predict patterns in the generated responses. The attacker
can use these predicted patterns to guess a matching location

45 for the substring. In other words, statistical bias in the
responses will leak information about the values of secret
indices.

Recall that an ideal Strong PUF should have the strict
avalanche property [20]. This property states that if one bit

50 of the PUF's input challenges is flipped, the PUF output
response should flip with a 1/2 probability. If this property
holds, the PUF output for two different challenges will be
uncorrelated. This probability can be almost achieved when
at least more than two independent PUF output bits are

55 mixed by an XOR. As more independent PUF response bits
are mixed, the probability of a bit flip in the output due a one
bit change in the input moves closer to the ideal case;
however, this linearly increases the probability of error in the
mixed output. For instance, for a single Strong PUF

60 response bit error of 5%, the probability of error for 4-XOR
mixing is reported to be 19% in [20].

In our implementation, linear feedback shift registers
(LFSRs) are used as a lightweight PRNG. An ideal LFSR
must have the maximum length sequence property [29]. This

65 property ensures that the autocorrelation function of the
LFSR output stream is "impulsive", i.e., it is one at lag zero
and is -1/N for all other lags, where N is the LFSR

US 9,628,272 B2
21

sequences length. N should be a sufficiently large number,
which renders the lagged autocorrelations very close to zero
[29]. Therefore, if an LFSR generates a sequence of chal
lenges to the PUF, the challenges are uncorrelated. In other
words, for an ideal LFSR, it is highly unlikely that an 5

attacker can find two challenges with a very small Hamming
distance.

Even if the attacker finds two challenges with a small
Hamming distance in the sequence, the output of our pro
posed PUF would be sufficiently uncorrelated to the Ham- 10

ming distance of the input challenges. Therefore, a combi
nation of PRNG and PUF with strict avalanche criteria
would make this attack highly unlikely. It is worth noting
that it is not required by any means for the PRNG to be a

15
cryptographically secure generator. The seed in the protocol
is public and the only purpose of the PRNG is to generate
sequences of independent random challenge vectors from
the Prover and Verifier nonces.

F. Man-in-the-Middle Attack on Key Exchange 20

Asymmetric cryptographic algorithms, such as RSA and
Diffie-Hellman, are traditionally used to exchange secret
keys. These asymmetric algorithms are susceptible to man
in-the-middle attacks [30]. Therefore, a certificate authority
is necessary for a secure implementation of these algorithms. 25

However, our key exchange algorithm is not susceptible to
man-in-the-middle attack and no certificate authority is
required for implementation.

An attacker, who intercepts the padded PUF substring,
does not know the PUF response string. Therefore, he does 30

not know the value of secret indices, and he cannot change
the padded PUF substring to forge a specific key. An
attacker, however, can possibly rotate the padded substring
to add or subtract from the secret value of ind2 . Even in this
case, the attacker does not know the new value of ind2 and 35

carmot act upon it to open a forged encrypted charmel.
Rotating the padded substring will only result in a denial of
service attack which is already possible by jamming.

VI. Trade-offs in Protocol Parameters 40

In this section, the trade-offs in choosing the parameters
of the protocols are explored by analyzing the PUF mea
surement data collected in the lab. False acceptance and
false rejection probabilities depend on PUF error rates. 45

There have been no comprehensive reports till this date on
PUF response error rates (caused by variations in tempera
ture and power supply conditions) nor any solid data on
modeling error rates measured on real PUF challenge
response pairs. The data reported in the related literature 50

mainly come from synthetic (emulated) PUF results rather
than actual reliable PUF measurements and tests.

A. Experimental Setup
We used the data we measured and collected across 10

Xilinx Virtex 5 (LXllO) FPGAs at 9 accurately-controlled 55

operating conditions (combinations of different tempera
tures and power supply points). Each FPGA holds 16 PUFs
and each PUF is tested using 64,000 random challenges.

Ideal PUF responses are obtained by challenging the PUF
128 times at the nominal condition (temperature=35° C. and 60

V nn=l V), and then taking a consensus of these responses.
The error rate is now defined as the percentage deviation
from the consensus response. For example, if 10 bits from
the 128 bits are ones and the rest are zeros, the deviation
from the majority response, or the response error rate, is 65

(10/128)xl00~7.8%.

22
Table II shows the average deviation (taken over 64,000

challenge-response pairs) of these experiments from the
ideal response at the nominal condition. As it can be seen
from this table, the error rate is substantially higher in
non-nominal conditions. The worst case scenario happens
when the temperature is 5° C. and the voltage is 0.95V. The
table shows that 30° C. degree change in temperature will
have a bigger effect on the error rate than a 5% voltage
change.

TABLE II

AVERAGE BIT ERROR RATE OF PUF IN DIFFERENT VOLTAGE
AND TEMPERATURE CONDITIONS IN COMPARISON WITH

THE IDEAL PUF OUTPUT AT NOMINAL CONDITION

0.95 V
1.00 V
1.05 V

5° C.

8.4%
6.8%
7.2%

Tern erature

35° C.

6.2%
3.1%
6.7%

65° C.

7.1%
6.4%
7.9%

As mentioned earlier, the Verifier repeatedly tests the PUF
in the factory to obtain a consensus of the PUF responses for
an array of random challenges. The Verifier then uses the
reliable response bits to build a PUF Model for himself.
When the PUF is deployed in the field, the Prover challenges
its own PUF and send the responses to the Verifier. The
average error rate of the prover response in different working
conditions against the Verifier's model is listed in Table III.

TABLE III

AVERAGE BIT ERROR RATE OF THE VERIFIERS PUF
MODEL AGAINST THE PUF OUTPUTS IN DIFFERENT

VOLTAGE AND TEMPERATURE CONDITIONS.

Tern erature

VDD 5° C. 35° C. 65° C.

0.95 V 13.2% (*) 10.5% 10.7%
1.00 V 8.9% 6.4% 8.9%
1.05 V 9.3% 10.2% 11.8%

(*) THE WORST-CASE SCENARIO.

The listed errors are the compound of two types of error.
The first type is the error in PUF output due to noise of
environment as well as operating condition fluctuations. The
second type is the inevitable modeling error of the Verifier's
PUF model. These error rates are tangibly higher than the
error rates of Table II. The worst error rate is recorded at 5°
C. temperature and voltage of0.95V. This error rate is taken
as the worst-case error rate between an honest Verifier and
an honest Prover. We will use this error rate to estimate the
false acceptance and false rejection probability of the
authentication protocol.

B. Modeling Attack Complexity and Protocol Parameters
As explained earlier, the attack complexity depends expo

nentially on the minimum required number of challenge
response pairs (CRPs), i.e., Nm,m to reach a modeling error
rate of less than di, the matching threshold in the protocol.
The matching threshold in the protocol is incorporated to
create a tolerance for errors in the responses caused by
modeling error as well as errors due to environment varia
tions and noise.

By relaxing the tolerance for errors in the protocol (i.e.,
increasing di), we basically increase the probability of
attack. In contrast, by lowering the tolerance for errors, the

US 9,628,272 B2
23

rate at which the authentication of a genuine PUF fails due
to noisy responses increases. As a rule of thumb, the
tolerance has to be set greater than the maximum response
error rate to achieve sensible false rejection and false accep
tance probabilities.

Once the tolerance level (th) is fixed to achieve the desired
false rejection and false acceptance probabilities, Nm,n must
be increased to hinder modeling attacks. However, Nm,n and
th are inter-related for a given PUF structure. In other words,
for a given fixed PUF structure, increasing th mandates that
a less accurate model can pass the authentication, and that
model can be trained with a smaller number of CRPs
(smaller Nm,n). The only way to achieve a higher Nm,n for a
fixed th is to change the PUF structure.

24
According to the above tables, the maximum error rates

measured from the XOR PUF responses are 24.7%, 34.6%
and 43.2% for 2-input, 3-input and 4-input XOR-ed PUF,
respectively. To guarantee reliable authentication at all oper-

5 ating conditions, the error tolerance (th) of the protocol must
be set above the maximum error rates. Now after deriving
the PUF error rate, we would like to know how many
challenge-response pairs are required to train the PUF model
and reach a modeling error rate that falls below the tolerance

10 level. In other words, we need to know how many challenge
response pairs the adversary needs to collect in order to pass
the authentication and break the system.

To answer this question, we trained and tested the PUF
model on the data collected in the lab from real PUF

15 implementations. We measured the modeling accuracy as a
function of train/test set size for each PUF. The results in

Earlier in the patent disclosure, we discussed using XOR
PUFs instead of a single arbiter-based PUF in order to
increase Nm,n for a fixed th. As reported previously in the
related literature, XORing the PUF outputs makes the
machine learning more difficult and requires a larger CRP set
for model building. The major problem with XORing the
PUF outputs is error accumulation. For example, if the 20

outputs of two arbiter-based PUFs are mixed withXORs, the
XOR PUF response error rate will be about the sum of each
individual arbiter-based PUF's errors. This means the error

FIG. 7 show the modeling error using evolutionary strategy
(ES) machine learning methods.

Based on the results in FIG. 7, the largest value ofNm,m
after taking into account the error threshold (th) derived
earlier, is achieved for an XORed-PUF with 3 stages. In
other words, 64,000 CRPs must be collected to achieve a
modeling error rate ofless than 34.6%. Therefore, Nm,n =64,
000 for 3-stage XOR-ed PUF. tolerance also has to be doubled to have reliable operation.

This observation of trade-off between Nm,n and th, led us to 25

quantify this effect.

Table VII shows the false rejection and false acceptance
error rate of our protocol with the length of PUF response
sequence and the length of additional pads fixed at 1028 and
512, respectively. False rejection rate is the rate at which the
service to the truthful Prover is disrupted. It may be calcu-

In order to quantify the trade-off between Nm,n and th, we
first calculate the effective compound error rate of XOR
mixed PUF outputs for different operating conditions and
different numbers of PUF stages. Tables IV, V and VI show
the effective response error rate respectively for 2-input,
3-input and 4-input XOR PUF.

0.95 V
1.00 V
1.05 V

0.95 V
1.00 V
1.05 V

0.95 V
1.00 V
1.05 V

TABLE IV

2-INPUTXOR

Tern erature

50 C. 35° C.

24.7% 19.9%
17.0% 12.4%
17.7% 19.4%

TABLE V

3-INPUTXOR

50 C.

34.6%
24.4%
25.4%

Tern erature

35° C.

28.3%
18.0%
27.6%

TABLE VI

4-INPUTXOR

50 C.

43.2%
31.1%
32.3%

Tern erature

35° C.

35.8%
23.2%
35.0%

65° C.

20.3%
17.0%
22.2%

65° C.

28.8%
24.4%
31.4%

65° C.

36.4%
31.1%
39.6%

30 latedusingEq. 6: l-PADv·

35

40

TABLE VII

FALSE REJECTION AND ACCEPTANCE ERROR PROBABILITIES
FOR DIFFERENT PROTOCOL PARAMETERS

L,ub 1250

Error threshold 487 477 467
Fake rejection 0.2% 1% 5%
False acceptance 9e-10 0 0

The requirements on the false rejection rate are not
usually as stringent as the requirements on the false accep
tance rate. However, one should assume that a customer

45
would deem a product impractical if the false rejection rate
is higher than a threshold. In our protocol design, we tune
the system parameter to achieve a false negative rate of 1 %,
while minimizing the false acceptance rate. Also, we take
the worst-case error rate as the basis of our calculation of

50
false acceptance and false rejection rates. The error rates that
we report are the upper bound of what can be observed in the
field by a customer/Prover.

Table VII shows that the desired false rejection rate of 1 %
with an acceptable false acceptance rate is achieved when

55
Lsub=l250 and the error threshold is

60

477/1250~38%.

In this scenario, an adversary needs to perform

0((1300·512)<64000/ 1250))=0(2988)

machine learning attacks in order to break this system,
which makes the system secure against all computationally
bounded adversaries.

At the end, it should be noted that the worst case bit error
65 rate of our PUF implementation (13.2% in Table III) is much

higher than a recently reported bit error rate of arbiter PUFs
[31] (""3-5%). The discrepancy might be explained by the

US 9,628,272 B2
25

fact that their implementation is based on a 65 nm ASIC
technology and ours is based on a Virtex 5 FPGA. Therefore,
the reported security performance of our protocol has the
potential to be further enhanced by a more custom imple
mentation with a lower bit error rate.

VII. Hardware Implementation

26
block is used to gather and update statistics for online post
processing. The online post processing may be performed by
post-processing unit 908.

The nonce size is set to 128 for both the Prover and
5 Verifier. Each 128-bit nonce is fed into a 128-bit LFSR. The

content of the two LFSRs are XORed to form the challenges
to the tunable PUF 904.

In this section, we present an FPGA implementation of
our protocol for the Prover side on Xilinx Virtex 5 10

XC5VLX110T FPGAs. FIG. 8 summarizes the resources on

The propagation delay through the PUF and the TRNG
core is equal to 61.06 ns. PUF outputs can be generated at
a maximum rate of 16 Mbit/sec. Post-processing on the
TRNG output bits can lower the throughput from 16 Mbit/

the Prover side and the Verifier side of the protocols,
according to one embodiment. Since there is a stricter power
consumption requirement on the lightweight Prover, we
focus our evaluation on Prover implementation overhead.
The computation on the Verifier side can run solely in
software, however, the computation on the Verifier may also
be carried out in hardware with negligible overhead.

The Verifier 802 may include a physical unclonable
function (PUF) 804, a true random number generator
(TRNG) 806, a FIFO buffer 808, a pseudo-random number
generator (PRNG) 810 and a controller 812. The Verifier 814
may be implemented in software. For example, the Verifier
814 may include software modules such as a TRNG module
816, a matching algorithm unit 818 and a PUF model 820.

sec to 2 Mbit/sec. Since the TRNG is only used to generate
the nonce and the indices, we can run TRNG before the start

15 of the protocol and pre-record these values. Therefore, its
throughput does not affect the overall system performance.

TABLE VIII

IMPLEMENTATION OVERHEAD ON VIRTEX 5 FPGA
20

RAM ROM Clock
No. Type LUT Registers blocks blocks Cycles

4 PUF 128 0 0
TRNG 128 12 4KB 64 KB 8

25 FIFO 0 1250 0 0 NIA
2 LFSR 2 128 0 0 NIA

It is desirable to use a low overhead PUF implementation,
such as the one introduced in [32]. If an ASIC or analog
implementation of the PUF is required, the ultra-low power
architecture in [28] is suitable for this protocol. (ASIC is an 30

acronym for Application Specific Integrated Circuit.) A very
low-power Verifier implemented by a microcontroller such

Control 12 9 0 0 NIA --- --- ---
Total 652 1400 4KB 64 KB NIA

The implementation overhead of our authentication pro
tocol is much less than traditional cryptographic modules.
For example, robust hashing implementation of SHA-2 as
implemented in [36] requires at least 1558 LUTs of a

as the Texas Instruments MSP430 can easily challenge the
PUF and run the subsequent steps of the protocol.

We use the implementation of the arbiter-based PUF in 35

[33]. The arbiter-based PUF on FPGAis designed to have 64
input challenges. In total, 128 look-up tables (LUTs) and one
flip-flop are used to generate one bit of response. To achieve

Virtex-II FPGA and it takes 490 clock cycles to evaluate.
This overhead will occur on the top of the clock cycles
required for PUF evaluation.

The overhead of our key exchange protocol should be
compared against symmetric key-exchange algorithms not a higher throughput, multiple parallel PUFs can be imple

mented on the same FPGA.
There are various existing implementations for TRNGs on

FPGAs [34], [35]. We use the architecture presented in [32]
to implement a true random number generator. One embodi
ment of the TRNG architecture is shown in FIG. 9. This
TRNG (denoted by label 900) may include a tunable PUF
904, a counter 906, a feedback-encoder unit 910 and a
post-processing unit 908. The TRNG 900 may operate by
enforcing a meta-stable state on the flipflop (in the tunable
PUF 904) through a closed loop feedback system.

40 asymmetric key-exchange ones, since our protocol assumes
that a secret PUF as a token has been pre-distributed
between the Provers. Our key exchange protocol achieves a
desired level of security with minimal computational over
head. For example, AES-128 as implemented in [37]

45 requires at least 738 LUTs of a Virtex-V FPGA, which is
higher than the combined overhead of our authentication and
key-exchange as listed in Table VIII.

VIII. Conclusions and Future Direction
The TRNG 900 has a tunable PUF as its core that 50

consumes 128 LUTs that are packed into 16 CLBs on Virtex
5. (CLB is an acronym for "configurable logic blocks".) The
PUF of the TRNG may be identical to the arbiter-based PUF
except that the switches act as tunable programmable delay
lines. The core is incorporated inside a closed-loop feedback
system. The core output is attached to the counter 906 (e.g.,
a 12-bit counter using 12 registers) which monitors the
arbiter's meta-stability. If the arbiter operates in a purely
meta-stable fashion, the output bits from the counter become
equally likely ones and zeros. The counter basically mea
sures and monitors deviation from this condition, and gen
erates a difference feedback signal to guide the system to
return back to its meta-stable state. The counter output
drives an encoding table (e.g., a table of depth 212

) in
feedback-encoder unit 910. Each row of the encoding table
contains a 128-bit word, resulting in a 64 KByte ROM. A
table of size 212x8-bits (=4 KByte) implemented by a RAM

We have presented secure and low-overhead authentica
tion and key-exchange protocols based on PUFs. In the
authentication protocol, the Prover may reveal only a ran
dom subset of responses for authentication. The Verifier,

55 which has access to a compact model of the PUF, can search
and match the received substring with the estimated PUF
response string. The authentication is declared to be suc
cessful if a sufficiently close match is found. Akey-exchange
protocol based on pattern matching has also been described

60 herein. We have demonstrated that carefully-designed pro
tocols based on the pattern-matching concept provides a
much higher level of resiliency against all machine learning
attacks know to the authors. The experimental results on
FPGAs showed a significantly lower area and speed over-

65 head compared to any protocol that potentially uses con
ventional cryptographic modules such as hashing. An even
smaller footprint and power consumption can potentially be

US 9,628,272 B2
27

achieved by using analog leakage based PUFs, analog
TRNGs, and low power micro-controllers.

In one set of embodiments, a method 1000 may involve
the operations shown in FIG. 10. (Furthermore, the method
1000 may include any subset of the features, elements and
embodiments described above.) The method 1000 is useful
for operating a verifier device to verify the authenticity of a
communicating party. The verifier device may include digi-
tal circuitry that is configured to perform the method 1000
or certain elements of the method 1000.

At 1010, the verifier device (e.g., a receiver subsystem of
the verifier device) may receive a data string from the
communicating party via a communication medium. The
data string is generated by the communicating party by: (a)
submitting a challenge to a physical unclonable function to
obtain a response string, (b) selecting a substring of prede
termined length from the response string, (c) injecting the
selected substring into the data string, and (d) injecting
random bits into bit positions of the data string not assigned
to the selected substring. In some embodiments, the selected
substring may be injected into the data string at any start
position within the data string. If the start position is
sufficiently close to the end of the data string, the selected
substring wraps from the end of the data string to the
beginning of the data string, as described above in the
discussion of circular paddding. In other embodiments, the
selected substring is not allowed to circularly wrap, and is
injected into the data string as one contiguous whole. Thus,
the start position may be constrained, e.g., to the range {O,
1, 2, ... , Lpw-Lsub}, where Lpwrepresents the length of the
data string, and Lsub represents the length of the selected
substring.

The position of the selected substring within the data
string is a secret, not revealed by the communicating party.
Indeed, the communicating party intentionally obfuscates
the position of the selected substring by injecting the random
bits into the data string. Likewise, the position of the
selected substring within the response string is a secret, not
revealed by the communicating party.

The physical unclonable function is a hardware device
that receives a challenge (vector of input bits) and produces
a response (a vector of output bits), where the space of
possible challenges and the space of possible responses are
vast, where the relationship between challenge and response

28
challenge bits and output the response bit. However, in many
embodiments, the specialized circuitry may include digital
circuit elements in its internal architecture. In some embodi
ments, the specialized circuitry may also include analog

5 circuit elements.
At 1012, the digital circuitry may generate an estimated

response string by evaluating a computational model of the
physical unclonable function based on the challenge, i.e., the
same challenge used by the communicating party to generate

10 the original response string. (The computational model for
the physical unclonable function may be generated using
any of the techniques described above or using any other
technique known in the art.) In some embodiments, the
verifier device and the communicating party may exchange

15 information to determine the challenge, e.g., as described
above in connection with FIG. 4. In other embodiments, the
communicating party may generate the challenge and send
it to the verifier device. In yet other embodiments, the
verifier device may generate the challenge and send it to the

20 communicating party.
The verifier device may be configured to maintain the

parameters of the computational model as a secret. The
parameters may be intentionally concealed from public
access, or from access by agents external to the verifier

25 device.
At 1015, the digital circuitry may perform a search

process to identify the selected substring within the data
string using the estimated response string. (See, e.g., FIG.
6B.) The digital circuitry knows the length of the selected

30 substring as well as the length of the data string. Indeed, in
some embodiments, both lengths may be public knowledge.

The search process 1015 may determine the relative shift
between the data string and the estimated response string
that produces the maximum alignment (or similarity)

35 between the two strings. In some embodiments, the search
process may be a sequence alignment algorithm such as the
Needleman-Wunsch algorithm.

At 1020, the digital circuitry may determine whether the
communicating party is authentic based on a measure of

40 similarity between the identified selected substring and a
corresponding substring of the estimated response string. In
some embodiments, the measure of similarity is Haniming
distance.

In some embodiments, the action of selecting a substring
45 of predetermined length from the response string may

include randomly selecting a number (e.g., the value of the
index ind1), where a start position of the substring within the
response string is determined by the randomly-selected
number.

is complicated and unique to the hardware device. Thus, it
may be difficult or impossible to accurately model the
challenge-response relationship even when given a larger
number of challenge-response pairs. However, one may
generate a sufficiently accurate model of the input-output
relationship if access to internal components or internal 50

nodes of the hardware device is available, e.g., as variously
described above.

In other embodiments, the action of selecting a substring
of predetermined length from the response string may
include determining a number by encoding (or perhaps,
simply selecting) a non-empty subset of bits from a key,
where a start position of the substring within the response

In some embodiments, the processes used to manufacture
such hardware devices may involve uncontrollable small
scale randonmess such that the challenge-response relation
ship of the hardware devices will be very different even
though they are manufactured according to the same nomi
nal design, i.e., having the same components with the same
set of nominal parameters. In other embodiments, the manu
facturing processes may involve explicitly-introduced ran
donmess. In yet other embodiments, the manufacturing
processes may involve a combination of intrinsic random
ness and explicitly-introduced randonmess.

The physical unclonable function is realized using spe
cialized circuitry, not in software (i.e., not by executing a
computer program on a processor). The specialized circuitry
includes digital circuit elements at least to receive the

55 string is determined by the number, e.g., as described above
in the discussion of the key-exchange protocol. Any desired
encoding scheme may be employed, including the trivial
encoding that leaves the subset of bits unaltered. (The term
"key" is used here in the generic sense of any secret data that

60 the communicating party desires to send to the verifier
device without revealing the secret data to other parties.)
The search process may provide an estimate of the number.
Thus, the method 1000 may also include recovering the
non-empty subset of bits of the key from the estimated

65 number (e.g., by performing a decoding process that effec
tively inverts the encoding process). If the key is too long to
encode in a single data-string transmission, a plurality of

US 9,628,272 B2
29

such transmissions may be used to convey respective por
tions of the key, until the complete key has been commu
nicated.

30
authenticity to the verifier device. The verifier device is so
named because is it responsible for verifying the authenticity
of the prover device.

At 1210, digital circuitry of the prover device may gen-In some embodiments, the action of generating the data
string includes randomly selecting a number (e.g., the value
of the index ind2 , where the number determines the start
position of the selected substring within the data string.

In some embodiments, the action of generating the data
string may include determining a number by encoding (or
perhaps, simply selecting) a non-empty subset of bits from
a key, where a start position of the selected substring within
the data string is determined by the number. (Any desired
encoding scheme may be employed, including the trivial
encoding that leaves the subset of bits unaltered.) The search
process may provide an estimate of the number. Thus, the
method 1000 may also include recovering the non-empty
subset of bits of the key from the estimate of the number.

5 erate a data string by: (a) submitting a challenge to a
physical unclonable function to obtain a response string, (b)
selecting a substring of predetermined length from the
response string, (c) injecting the selected substring into the
data string, and (d) injecting random bits into bit positions

10 of the data string not assigned to the selected substring.
The physical unclonable function (PUF) may be realized

as variously described above. It is typically preferably for
the PUF to be a strong PUF. In some embodiments, the PUF

15
is an arbiter linear PUF or an XOR-mixed combination of

In one set of embodiments, a system 1100 for verifying
authenticity of a communicating party may include a 20

receiver 1110 and digital circuitry 1115, e.g., as shown in
FIG. 11. (The system 1100 may also include any subset of
the features, elements and embodiments described above.)

The receiver 1110 may be configured to receive a data
string from the communicating party, e.g., via a communi- 25

cation medium 1120. The data string may be generated by
the communicating party by (a) submitting a challenge to a
physical unclonable function to obtain a response string, (b)
selecting a substring of predetermined length from the
response string, (c) injecting the selected substring into the 30

data string, and (d) injecting random bits into bit positions
of the data string not assigned to the selected substring.

The communication medium 1120 may include any
desired physical medium or combination of physical media

35
for the communication of information. In some embodi-
ments, the communication medium may include a computer
network such as the Internet.

linear arbiter PUFs.
At 1215, a transmitter of the prover device may transmit

the data string to the verifier device through a communica
tion medium. As variously described above, the position of
the selected substring within the response string and the
position of the selected substring within the data string are
secrets, not revealed by the prover device. Thus, even if a
dishonest party is able to gain access to a large number of the
transmitted data strings (e.g., by monitoring the communi
cation medium over a period of time), it will have great
difficulty reverse-engineering the physical unclonable func-
tion, i.e., determining a usefully-accurate model of the
functional relationship between challenge and response of
the physical unclonable function.

In some embodiments, the action of selecting a substring
of predetermined length from the response string includes
randomly selecting a number, where a start position of the
substring within the response string is determined by the
randomly selected number.

In some embodiments, the action of selecting a substring
of predetermined length from the response string includes
determining a number by encoding (or perhaps, simply
selecting) a non-empty subset of bits from a key, where a
start position of the substring within the response string is The digital circuitry 1115 may be configured to: generate

an estimated response string by evaluating a computational
model of the physical unclonable function based on the
challenge; and perform a search process to identify the
selected substring within the data string using the estimated

40 determined by the number.

response string.
The digital circuitry 1115 may be further configured to 45

determine whether the communicating party is authentic
based on a measure of similarity between the identified
selected substring and a corresponding substring of the
estimated response string, e.g., as variously described above.

In some embodiments, the digital circuitry 1115 includes 50

one or more of the following: a processor operating under
the control of stored program instructions; one or more
programmable hardware devices; one or more application
specific integrated circuits.

In some embodiments, the action 1210 of generating the
data string includes randomly selecting a number, where the
number determines a start position of the selected substring
within the data string.

In some embodiments, the action 1210 of generating the
data string includes determining a number by encoding (or
perhaps, simply selecting) a non-empty subset of bits from
a key, where a start position of the selected substring within
the data string is determined by the number.

In one set of embodiments, a prover system 1300 may
include digital circuitry 1310 and a transmitter 1320, e.g., as
shown in FIG. 13. (The prover system 1300 may also
include any subset of the features, elements and embodi
ments described above.)

The digital circuitry 1310 may be configured to generate
a data string by: (a) submitting a challenge to a physical
unclonable function to obtain a response string, (b) selecting
a substring of predetermined length from the response
string, and (c) injecting the selected substring into the data

In some embodiments, the system 1100 may also include 55

a transmitter, e.g., combined with the receiver in a trans
ceiver unit. Thus, the system 1110 may engage in two-way
communication with the communicating party. The trans
mitter and/or receiver may be realized using of a wide
variety of existing technologies. 60 string, and (d) injecting random bits into bit positions of the

data string not assigned to the selected substring. The
physical unclonable function may be configured as variously
described above.

In one set of embodiments, a method 1200 may involve
the operations shown in FIG. 12. (The method 1200 may
also include any subset of the features, elements and
embodiments described above.) The method 1200 may be
used for operating a prover device so that a verifier device
is enabled to authenticate the prover device. The prover
device is so named because it is attempting to prove its

The transmitter 1320 may be configured to transmit the
65 data string to a verifier system through a communication

medium 1325. The transmitter may be realized using any of
a wide variety of conventional transmitter technologies.

US 9,628,272 B2
31

In some embodiments, the digital circuitry 1310 includes
one or more of the following: a processor operating under
the control of stored program instructions; one or more
programmable hardware devices; one or more application-
specific integrated circuits. 5

The prover system 1300 has access to the physical
unclonable function so that it can submit challenges to and
receive responses from the physical unclonable function. In
some embodiments, the physical unclonable function is
included as part of the prover system. 10

In some embodiments, the physical unclonable function
includes one or more arbiter linear PUFs, e.g., as variously
described above.

In some embodiments, a verifier system is configured to
authenticate the prover system based on the data string, the 15

challenge, and a computational model of the physical
unclonable function, e.g., as variously described above.

Although the embodiments above have been described in
considerable detail, numerous variations and modifications
will become apparent to those skilled in the art once the 20

above disclosure is fully appreciated. It is intended that the
following claims be interpreted to embrace all such varia
tions and modifications.

What is claimed is: 25

1. A method for operating a device to verify the authen
ticity of a communicating party, the method comprising:

receiving a data string from the communicating party,
wherein the data string is generated by the communi-
cating party by: 30

(a) submitting a challenge to a physical unclonable
function to obtain a response string,

(b) selecting a substring of predetermined length from
the response string,

(c) injecting the selected substring onto a continuous 35

range of bit positions within the data string, wherein
a start position of the selected substring within the
data string is determined by a variable number that is
not communicated to said device, and

(d) injecting random bits into bit positions of the data 40

string not assigned to the selected substring, wherein
said generating the data string also includes ran
domly selecting the variable number;

generating an estimated response string by evaluating a
computational model of the physical unclonable func- 45

tion based on the challenge;
performing a search process to identify the selected

substring within the data string using the estimated
response string;

determining whether the communicating party is authen- 50

tic based on a measure of similarity between the
identified selected substring and a corresponding sub
string of the estimated response string, wherein said
generating, said performing and said determining are
performed by digital circuitry. 55

2. The method of claim 1, wherein the search process is
a maximum-sequence alignment algorithm.

3. The method of claim 1, wherein said selecting a
substring of predetermined length from the response string
includes: 60

determining a start number by encoding a non-empty
subset of bits from a cryptographic key, wherein a start
position of the sub string within the response string is
determined by the start number.

4. The method of claim 3, wherein said search process 65

provides an estimate of the start number, wherein the method
further comprises:

32
recovering the non-empty subset of bits of the crypto

graphic key from the estimate of the start number.
5. The method of claim 1, wherein said randomly select

ing the variable number includes:
determining the variable number by encoding a non

empty subset of bits from a cryptographic key.
6. The method of claim 5, wherein said search process

provides an estimate of the number, wherein the method
further comprises:

recovering the non-empty subset of bits of the crypto
graphic key from the estimate of the number.

7. A system for verifying authenticity of a communicating
party, the system comprising:

a receiver configured to receive a data string from the
communicating party, wherein the data string is gen
erated by the communicating party by:
(a) submitting a challenge to a physical unclonable

function to obtain a response string,
(b) selecting a substring of predetermined length from

the response string,
(c) injecting the selected substring onto a continuous

range of bit positions within the data string, wherein
a start position of the selected substring within the
data string is determined by a variable number that is
not communicated to said receiver, and

(d) injecting random bits into bit positions of the data
string not assigned to the selected substring, wherein
said generating the data string also includes ran
domly selecting the variable number;

digital circuitry configured to:
generate an estimated response string by evaluating a

computational model of the physical unclonable
function based on the challenge;

perform a search process to identify the selected sub
string within the data string using the estimated
response string;

determine whether the communicating party is authen
tic based on a measure of similarity between the
identified selected substring and a corresponding
substring of the estimated response string.

8. The system of claim 7, wherein the digital circuitry
comprises one or more of the following:

a processor operating under the control of stored program
instructions;

one or more programmable hardware devices;
one or more application-specific integrated circuits.
9. A method for operating a first device so that a second

device is enabled to authenticate the first device, the method
comprising:

generating a data string by:
(a) submitting a challenge to a physical unclonable

function to obtain a response string,
(b) selecting a substring of predetermined length from

the response string,
(c) injecting the selected substring onto a continuous

range of bit positions within the data string, wherein
a start position of the selected substring within the
data string is determined by a variable number that is
not communicated to said second device, and

(d) injecting random bits into bit positions of the data
string not assigned to the selected substring, wherein
said generating the data string also includes ran
domly selecting the variable number; and

transmitting the data string to the second device through
a communication medium, wherein the data string is
usable by the second device to authenticate the first
device.

US 9,628,272 B2
33

10. The method of claim 9, wherein said selecting a
substring of predetermined length from the response string
includes:

randomly selecting a start number, wherein a start posi
tion of the substring within the response string is 5

determined by the start number.
11. The method of claim 9, wherein said selecting a

substring of predetermined length from the response string
includes:

determining a start number by encoding a non-empty 10

subset of bits from a cryptographic key, wherein a start
position of the sub string within the response string is
determined by the start number.

12. The method of claim 9, wherein said randomly
selecting the variable number includes: 15

determining the variable number by encoding a non
empty subset of bits from a cryptographic key.

34
data string is determined by a variable number that is
not communicated to a verifier system, and

(d) injecting random bits into bit positions of the data
string not assigned to the selected substring, wherein
said generating the data string also includes ran
domly selecting the variable number; and

a transmitter configured to transmit the data string to the
verifier system through a communication medium,
wherein the data string is usable by the verifier system
to authenticate the prover system.

14. The prover system of claim 13, wherein the digital
circuitry comprises one or more of the following:

a processor operating under the control of stored program
instructions;

one or more programmable hardware devices;
one or more application-specific integrated circuits.
15. The prover system of claim 13, further comprising:
the physical unclonable function. 13. A prover system comprising:

digital circuitry configured to generate a data string by:
(a) submitting a challenge to a physical unclonable

function to obtain a response string,

16. The prover system of claim 13, wherein the physical
20 unclonable function includes one or more arbiter linear

physical unclonable functions.

(b) selecting a substring of predetermined length from
the response string,

(c) injecting the selected substring onto a continuous
range of bit positions within the data string, wherein
a start position of the selected substring within the

17. The prover system of claim 13, wherein the verifier
system is configured to authenticate the prover system based
on the data string, the challenge, and a computational model

25 of the physical unclonable function.

* * * * *

