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It is well known that single-reference coupled cluster theory truncated to low orders of excitations
gives the right answer for the right reason when systems are dominated by dynamical or weak
correlation. Static or strong correlation is more problematic, causing often catastrophic breakdown
of restricted coupled cluster. This failure can be remedied, e.g., by allowing symmetry breaking
in the reference or taking a multi-reference approach, but poses an interesting theoretical problem,
especially since many groups have found that simplifying the T2 operator or the doubles amplitude
equations gives better results. In singlet-paired coupled cluster, eliminating the triplet-pairing channel
recovers reasonable qualitative behavior for strong correlation at the cost of a decreased description
of dynamical correlation in weakly correlated situations. This behavior seems to hold for both closed-
and open-shell systems. In this work, we explore the coupling of the singlet- and triplet-pairing
channels of T2 and attempt to recouple them in order to recover dynamical correlation without
reintroducing catastrophic failure due to strong correlation. In the weakly correlated regime, these
pairing channels are only weakly coupled, and a simple recoupling gives good results. However, as
strong correlation dominates, the coupling strength between the singlet- and triplet-pairing channels
increases, making it difficult to perturbatively recouple the singlet- and triplet-pairing channels in this
regime. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963870]

I. INTRODUCTION

The electronic structure of weakly correlated systems
is accurately described by the coupled cluster (CC) family
of methods.1–4 Coupled cluster with single, double and
perturbative triple excitations, CCSD(T), gives quantitative
results for weakly correlated systems, and is routinely
applied to a wide range of quantum chemical problems.
Unfortunately, single-reference coupled cluster often breaks
down catastrophically in the presence of strong correlation,
e.g., near degeneracies in bond-breaking processes, a failure
typically associated with the qualitatively incorrect nature of
the mean-field reference. An archetype of this failure is in the
CCSD description of the dissociation of N2 in the STO-3G
basis, shown in Fig. 1, where the potential energy surface
unphysically turns over around 3.2 bohrs and predicts N2 to
have a very low binding energy. This failure persists even in
larger bases. Despite the inadequacy of the restricted Hartree-
Fock (RHF) reference at dissociation, recent work has shown
that simplifying CC by eliminating or decoupling channels
of the T2 operator enables restricted single-reference CC to
recover qualitatively correct behavior in describing strongly
correlated systems.5–12 Thus, failures of CC to describe strong
correlation can be attributed in part to instabilities in the
truncated CC ansatz itself.13–23

For example, singlet-paired (triplet-paired) coupled
cluster12 is derived by retaining only the singlet-paired
(triplet-paired) channel of T2. Both singlet- and triplet-
paired coupled cluster are protected from failure due to
strong correlations without requiring symmetry breaking in

the reference, but sacrifice some dynamical correlation. In
this work, we explore the recombination of the singlet-
and triplet-pairing channels of T2 in order to recover
weak correlation without reintroducing the failures of
traditional CC for strong correlation in both closed- and
open-shell systems. Although Garza et al.24,25 have had
good results using density functional theory (DFT) to add
dynamical correlation to singlet-paired coupled cluster, it
is worth exploring the possibility of developing a full
wavefunction method that treats all correlations on equal
footing.

II. THEORY AND METHODS

We first briefly review singlet- and triplet-paired coupled
cluster theory.12,26

A. Restricted coupled cluster

In order to describe singlet- and triplet-paired coupled
cluster, we begin with restricted CCD. Symmetry-adapted
single excitations from T1 do not affect the singlet- and
triplet pairing channels and will be added later, if needed or
convenient. In closed-shell CCD, we write the wavefunction
as

|Ψ⟩ = eT2|0⟩, (1)

where |0⟩ is the RHF reference. The cluster operator T2 is spin
adapted27 and creates double excitations,
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FIG. 1. N2 dissociation in STO-3G. CCSD0 recovers correct behavior while
CCSD breaks down, exhibiting an unphysical bump in the potential sur-
face and overcorrelating at dissociation. Reprinted with permission from
J. Chem. Phys. 144, 244117 (2016). Copyright 2006 AIP Publishing LLC.

T2 =
1
2

tabi j c†aσc†
bξ

cjξciσ, (2)

where orbitals i j(a b) are occupied (unoccupied) in the RHF
reference, summation over repeated indices is implied, and
spin indices σ and ξ are summed over up and down spins.
The amplitudes tabi j are found by solving

⟨abi j |e−T2HeT2|0⟩ = Rab
i j [T2] = 0, (3)

and the energy is calculated by

⟨0|e−T2HeT2|0⟩ = E, (4)

using the amplitudes from Eq. (3). Although well-behaved
when weak correlation dominates, CCD breaks down when
systems take on multireference character, as evidenced by
the aforementioned unphysical hump and very small binding
energies in the dissociation of N2.

B. Singlet- and triplet-paired coupled cluster

Bulik et al.12 used the particle-particle/hole-hole recou-
pling of T2

28,29 to write Eq. (2) as

T2 = T [0]
2 + T [1]

2 , (5)

where

T [0]
2 =

1
2
σab

i j P†
ab

Pi j, (6)

T [1]
2 =

1
2
πab
i j

−→
Q†

ab
· −→Q i j . (7)

The singlet-paired operators P†
ab

and Pi j give rise to N + 2
and N − 2 singlets, respectively. The triplet-paired operators
−→
Q†

ab
and
−→
Q i j give rise to N + 2 and N − 2 electron triplets,

respectively. These pair operators are given by

Pi j =
1
√

2
(cj↑ci↓ − cj↓ci↑) (8)

and
−→
Q†

ab
· −→Q i j = (Q+ab)†Q+i j + (Q−ab)†Q−i j + (Q0

ab)†Q0
i j, (9)

where

Q+i j = cj↑ci↑, (10a)

Q−i j = cj↓ci↓, (10b)

Q0
i j =

1
√

2
(cj↑ci↓ + cj↓ci↑). (10c)

We see from Eqs. (6) and (10) that T [0]
2 and T [1]

2 are,
respectively, symmetric and antisymmetric upon interchange
of indices a and b or i and j. Thus, we have

σab
i j =

1
2
(tabi j + tbai j ), (11)

πab
i j =

1
2
(tabi j − tbai j ). (12)

One can derive equations for σ and π by taking symmetric
and antisymmetric combinations of the amplitude equations
in Eq. (3),

Rab
i j [T2] + Rba

i j [T2] = 0, (13)

Rab
i j [T2] − Rba

i j [T2] = 0 (14)

and by writing tabi j = σab
i j + πab

i j .
We define singlet-paired CCD (CCD0) by replacing T2

in Eq. (13) with T [0]
2 ; similarly, we define triplet-paired CCD

(CCD1) by replacing T2 in Eq. (14) with T [1]
2 . As can be

seen in Fig. 1, CCSD0 recovers qualitatively correct physics
where standard CCSD breaks down. Including higher-order
excitations with the modified T2 operator, e.g., CCSDT0,
preserves correct behavior while improving the accuracy.12

We have recently introduced a version of singlet-paired
coupled cluster for open-shells: restricted open-shell singlet-
paired coupled cluster (ROCCSD0).26 In order to take
advantage of the singlet-pairing framework, ROCCSD0 is
performed on ROHF orbitals in the natural orbital basis,
i.e., the basis that diagonalizes the charge density matrix.30

Working in this non-canonical framework, we then take the
symmetric part of tabi j , i.e., σab

i j , in the doubly occupied to
virtual block while solving for the full open-shell amplitudes,
i.e., excitations into and out of the singly occupied space.31

This procedure requires symmetrizing the oo–vv block of the
amplitude equations. To illustrate this concept, we write the
coupled cluster equations as

Ht = G(t), (15)

where Ht is shorthand for

f ki tabk j + f lj t
ab
il − f ac tcbi j − f bd tadi j , (16)

and f p
q are matrix elements of the Fock operator. Spin

summing Eq. (16) gives two same-spin (αα and β β) equations
and one mixed-spin (αβ) equation. For the αβ equations,
Eq. (16) becomes

f KI tAB

KJ
+ f L

J
tAB

I L
− f A

C tCB

I J
− f B

D
tAD
IJ

, (17)

where an overbar indicates a beta spin index, a lack of an
overbar indicates an alpha spin index, and the indices run over
the occupied/virtual dimensions appropriate for that spin.
ROCCSD0 is defined by solving

Hsymσ = Gsym(σ) (18)
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in the oo–vv block. Hsym is constructed by replacing the Fock
matrices in Eq. (17) by Fock charge,

F = 1
2
( f α + f β). (19)

We have found that this method remedies the failures of
standard ROCCSD to describe static correlation in open-shell
systems in a manner similar to that seen for closed-shell
CCSD0: it is protected from failure, but sacrifices part of the
description of dynamical correlation.26

C. Recoupling the singlet- and triplet-pairing channels

The lack of quantitative accuracy in the singlet-paired
and triplet-paired coupled cluster models described above
is apparent in the structure of the singlet-pair operator in
Eq. (8), where there is clearly no explicit correlation between
same-spin electrons, and in the high energies CCSD1 predicts
for the dissociation limit of N2 in Fig. 1.

The coupling between the singlet- and triplet-pairing
channels of T2 is needed for the exact answer. “Full” CC0
including all excitations, but using T [0]

2 to describe the doubles,
would not be correct. Yet, this same coupling is apparently
responsible for the breakdown of truncated coupled cluster
in the presence of strong correlation. Here, we explore the
possibility of allowing σ and π to couple in order to recover
dynamical correlation without reintroducing the breakdown
due to static correlation. One way to do this would be
first to solve the CCD0 equations, obtaining a set of σab

i j

amplitudes. We could then solve for a π′ab
i j

correction, giving
a set of full tabi j amplitudes subject to the constraint that
the σab

i j amplitudes from the CCD0 calculation remain fixed
or “frozen.” Likewise, we could first solve for a set of πab

i j

amplitudes from the CCD1 equations, which we then freeze,
calculating a σ′ab

i j
correction to construct full tabi j amplitudes.

We refer to these procedures as frozen sigma (FSig) and frozen
pi (FPi) CCD, respectively. Singlet- and triplet-paired coupled
cluster can be obtained as zeroth order approximations to full
CC. FSig and FPi include first-order corrections to the missing
singlet-triplet coupling. This series should sum to standard
CC, which we know breaks down, but we want to know
whether we can make low-order corrections to CC0 and CC1
in order to recover the correlations we miss in the zeroth-order
methods without reintroducing the failures of coupled cluster
theory.

In order to include single excitations, constructing
FSigCCSD and FPiCCSD, we must decide whether to allow
the singles to relax due to the π′ab

i j
and σ′ab

i j
corrections

following the initial CCSD0 or CCSD1 calculation, or whether
we will freeze them as well. We have found that allowing
the single excitations to relax during the second part of an
FSigCCSD or FPiCCSD calculation provides slightly better
energies, so we have used this approach. Although we can in
principle include higher-order excitations, we have not done
so here.

The open-shell equivalent of FSigCCSD is only slightly
more complicated. Since ROCCSD0 generates open-shell
tabi j amplitudes, we must decide whether to freeze them

as well or allow them to relax when calculating the π′ab
i j

correction. We employ the former approach, having found
that allowing the open-shell tabi j amplitudes to relax in
response to the antisymmetric π′ab

i j
correction in FSigCCSD

significantly reintroduces the pathological breakdown of
standard ROCCSD.

D. Computational details

All post-SCF calculations with modified T2 were
performed using in-house code. Hartree-Fock and standard
coupled-cluster calculations were done in Gaussian 09.32 In
order to maximize strong-correlation effects, we work in small
basis sets throughout.33,34 Strong correlation is much less basis
set dependent than dynamical correlation and should dominate
in small bases. Our in-house code uses Cartesian d functions
and does not support point-group symmetry. We show coupled
cluster results for multiple SCF references where we found
more than one smooth SCF dissociation curve. Lastly, we
use DIIS to accelerate convergence of our coupled cluster
methods.35 Our coupled cluster calculations with modified T2
typically converge in a number of iterations comparable to
standard coupled cluster, but can become more difficult to
converge at stretched bond lengths.

III. RESULTS

A. Linear H6

Figure 2 shows the results of dissociating a linear
chain of six equally spaced hydrogen atoms in the cc-
pVDZ basis,36 using various coupled cluster models. For
this system, the breakdown of standard coupled cluster is
apparent, with CCSD turning over at around 3.6 bohrs. Both
FPiCCSD and FSigCCSD recover correlation at equilibrium,
giving values comparable to those given by unrestricted
CCSD(T). UCCSD(T) should be quite accurate here, but
requires significant spin contamination in the underlying UHF
wavefunction, and we would like to preserve symmetries of
the Hamiltonian as much as possible. In general, CC0 already

FIG. 2. H6 dissociation in cc-pVDZ. CCSD breaks down, turning over at
around 3.5 bohrs. CCSD0 and CCSD1 recover correct behavior. FSigCCSD
and FPiCCSD recover dynamical correlation without reintroducing the break-
down of standard CC.
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does pretty well for systems where we basically localize one
electron per site, e.g., hydrogen clusters. While this statement
holds here, FSigCCSD recovers more correlation than CCSD0
throughout the range of bond lengths. While CCSD1 is
quite poor, adding the σ′ab

i j
correction recovers excellent

energies while preserving good behavior of the energy
surface.

B. Circular H4

H4 on a circle is known to cause problems for standard CC.
Here, the system consists of four Hydrogen atoms on a circle
of radius R = 1.738 Å, separated by an angle θ. For small
and large θ, the system is approximately two non-interacting
H2 molecules. As θ approaches 90◦, the system acquires a
two-fold degeneracy. The molecule is shown graphically in
Fig. 3.

The top plot of Fig. 4 shows results from CCD and
related methods for this system in Dunning’s DZP basis37,38

for θ ranging from 85◦to 95◦. The bottom plot of Fig. 4
shows the same calculations, with the addition of singles. Full
configuration interaction shows a smooth curve with a local
maximum at θ = 90◦.39 The breakdown of standard coupled
cluster for this system consists of a deep minimum at θ = 90
and a cusp in the curve, due to the crossing of two SCF
solutions. Adding singles does not remedy the deficiencies of
CCD, but exacerbates both the depth of the minimum and the
sharpness of the cusp. In the top plot of Fig. 4, both CCD0
and CCD1 correctly predict a local maximum at θ = 90◦, but
still give an unphysical cusp (the CCD1 energy for this system
is too high to be shown on this plot). Frozen-Sigma CCD
improves noticeably on CCD0, shifting the energy toward the
FCI result, and slightly smoothing out the cusp. Frozen-Pi
CCD improves on CCD1 by shifting the energy down, but,
while the recoupling of σab

i j and πab
i j smooths the cusp at

θ = 90, here it reintroduces a slight local minimum. The
top plot of Fig. 4 also shows results for CCD(0+1), which
means we take the correlation energy to be simply the sum
of the CCD0 and CCD1 correlation energies. There is no
coupling between the singlet- and triplet-pairing channels
in CCD(0+1). Although this procedure overcorrelates in

FIG. 3. Geometry of H4 on a circle. Adapted with permission from I. W.
Bulik et al. J. Chem. Theory Comput. 11, 3171 (2015). Copyright 2015
American Chemical Society.

FIG. 4. H4 circle in Dunning’s DZP basis (4s1p/2s1p) using coupled clus-
ter models with doubles (top) and singles and doubles (bottom). Standard
coupled cluster breaks down, predicting a deep minimum and cusp at θ = 90◦.
CC0 and CC1 models recover a maximum, but still have a cusp. FSig recovers
correlation. FPi recovers correlation but reintroduces the erroneous local
minimum. CC(0+1) recovers a smooth curve.

general, here the model gives surprising results. Not only
does CCD(0+1) give reasonable energies for this system,
but it also gives correct physical behavior, eliminating
the unphysical cusp given by the other coupled-cluster
methods. We would expect to need connected quadruple
excitations to accurately capture this feature, but apparently
for this system, the necessary quadruples are factorizable into
doubles.

The bottom plot in Fig. 4 shows the result of adding
singles to the calculations shown in the top plot of Fig. 4.
We see the same general trends as for the doubles-only
calculations. Although CCSD0 and FSigCCSD happen to be
near FCI, and all the methods recover some correct behavior
relative to CCSD, the methods generally over-correlate. We
also show BD0+prSCAN and BD0+trSCAN results from
Ref. 25. Briefly, these methods combine the singlet-paired
correlation energy from a singlet-paired Brueckner doubles
(BD0) with the parallel-spin correlation (BD0+prSCAN) and
triplet-paired correlation energy (BD0+trSCAN) obtained
from the strongly constrained and appropriately normed40

(SCAN) meta-GGA functional. The standalone BD0 results
are comparable to CCSD0 for this system. Singlet-paired
coupled cluster plus DFT models have recently been
successfully applied to a variety of systems,24,25 and here,
FSigCCSD is comparable to the BD0+DFT methods,
even overcorrelating less throughout the potential energy
surface.
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To get an idea of basis set effects, we show results of the
above calculations on H4 in the cc-pVTZ basis36 in Fig. 5. In
the top plot of Fig. 5, we see that the larger basis decreases the
depth of the minimum predicted by CCD, but the erroneous
minimum and unphysical cusp persist. In the top plot of Fig. 5,
FPiCCD no longer exhibits the unphysical cusp at θ = 90◦.
It is curious that FPiCCD and CCD(0+1) give essentially the
same result near θ = 90 here, since in CCD(0+1) there is
no coupling between the singlet- and triplet-pairing channels.
This result is not due to CCD1 giving zero correlation energy;
CCD1 gives correlation energies of about 0.01 Hartree across
the range of θ shown here. Rather, in this case the FPiCCD
σ′ab

i j
correction to CCD1 returns nearly the same correlation

energy as CCD0, despite the πab
i j contribution to FPiCCD

being non-zero. The result of adding singles is shown in the
bottom plot of Fig. 5. The minimum predicted by standard
CC becomes deeper, and FPiCCSD reverts to predicting a
slight local minimum at θ = 90. There is now less similarity
between FPiCCSD and CCSD(0+1). We note that, when we
perform FSigCCSD and FPiCCSD calculations, we allow the
singles amplitudes to relax due to the correction to the tabi j
amplitudes. Separate CCSD0 and CCSD1 calculations might
result in substantially different singles amplitudes, worsening
the description given by CCSD(0+1).

FIG. 5. H4 circle in cc-pVTZ using coupled cluster models with doubles
(top) and singles and doubles (bottom). Standard coupled cluster breaks
down, predicting a deep minimum and cusp at θ = 90◦. CC0 and CC1 models
recover a maximum, but still have a cusp. FSig recovers correlation. FPiCCD
recovers correlation and smooths out the cusp. FPiCCSD recovers correlation,
but reintroduces the erroneous local minimum. CC(0+1) recovers a smooth
curve. In general, the larger basis set results in larger overcorrelation by the
FSig and FPi methods.

C. N2

The top plot of Fig. 6 shows the dissociation of N2 in the
cc-pVDZ basis.36 Near equilibrium, FSigCCD and FPiCCD
energies are not only better than both CCD0 and CCD1,
they are better than standard CCD. At dissociation, where
the singlet-triplet coupling becomes problematic, FPiCCD
and FSigCCD split the difference between CCD0 and CCD1.
This means that, although we improve our description of
the system at dissociation by adding a σ′ab

i j
correction to

CCD1, adding the π′ab
i j

correction to CCD0 worsens the
result. We compare to long range-corrected CCD0+trSCAN
from Ref. 25, which recovers significant correlation from
standard CCD, but overcorrelates and reintroduces the hump
in the energy surface. For standard CCD, the breakdown can
be attributed to the correlation energies from the singlet-
and triplet-pairing channels of T2 diverging in opposite
directions. That is, as N2 is dissociated, the singlet-paired
amplitudes give increasingly negative correlation energy,
while the triplet-paired component of the correlation energy
becomes increasingly positive. Although CCD dissociates
N2 poorly, the result is only as good as it is because the
singlet and triplet-paired correlation energies cancel to some
extent. This cancellation effect is minimized for FSig and

FIG. 6. N2 dissociation in cc-pVDZ using various coupled cluster models
with doubles (top) and singles and doubles (bottom). CCSD unphysically
turns over around 3.6 bohrs. CCD0 and CCD1 recover correct behavior.
FSigCCD recovers correlation at equilibrium, but increases the energy at
dissociation relative to CC0. FPiCCD recovers correlation across the curve,
giving results nearly identical to FSigCCD. Adding singles has little effect on
the energy surfaces, but highlights that FSigCCSD and FPiCSCD probably
overcorrelate near equilibrium.
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FPi, due to the weak coupling between the singlet- and
triplet-pairing channels. The bottom plot of Fig. 6 shows the
same calculations, with the addition of singles. Adding singles
makes the overcorrelation of standard coupled cluster more
pronounced, but seems to have little effect on the modified
coupled cluster models. Although the energies are shifted
downward slightly at dissociation, the results are generally
the same, including the near identical energies given by
FSigCCSD and FPiCCSD.

D. Triplet N2

The top plot of Fig. 7 shows the dissociation of triplet
N2 relative to the energies of the quartet and doublet nitrogen
atoms in the cc-pVDZ basis. We found two ROHF curves
for this system. Reference A is lower at equilibrium, while
reference B dissociates to a lower limit. ROCCSD-B is well
behaved and gives excellent results, while ROCCSD-A fails
dramatically, turning over at around 3.8 bohrs. ROCCSD0-A
dissociates to nearly the correct limit, while ROCCSD-B
maintains good behavior, but part of the weak correlation.
Although both FSigROCCSD curves go to too low of a limit,
they give much more reasonable results at dissociation than
standard coupled cluster on reference A, in a sense alleviating
the problem of ROHF reference choice.

The bottom plot of Fig. 7 shows total energies for the
dissociation of triplet N2, highlighting the effect of the π′ab

i j

correction in the FSigCCSD calculation. ROCCSD0 on both
curves is well behaved, but sacrifices a substantial amount

FIG. 7. Dissociation of triplet N2 in cc-pVDZ. FSigROCCSD on both SCF
references improves on ROCCSD0 throughout the range of bond lengths,
especially at equilibrium.

of correlation throughout the energy surface. We are able to
recover dynamical correlation using FSigROCCSD on both
references. FSigROCCSD-A does have a minor bump around
4.6 bohrs. This hint of the CCSD-like breakdown is worsened
if we allow the open-shell amplitudes to relax in response to
π′ab

i j
. This result is reminiscent of that seen for frozen-pair

coupled cluster.10 There, freezing the paired T2 amplitudes and
calculating the non-paired correction reintroduced a hump
in the dissociation curve of singlet N2. However, we can
attribute the unphysicality of frozen-pair coupled cluster to
the coupling of the singlet- and triplet-pairing channels that
occurs in the non-paired block of the T2 amplitude equations.
We have broken the direct coupling between σab

i j and πab
i j

here, but as with the circular H4 case, calculating the π′ab
i j

contribution from frozen σab
i j amplitudes begins to reintroduce

the breakdown of standard coupled cluster.

IV. DISCUSSION

The recoupling of the singlet- and triplet-pairing channels
of T2 is ostensibly partly responsible for the breakdown
of truncated, single-reference restricted coupled cluster in
the presence of strong correlation. Decoupling these pairing
channels in singlet- and triplet-paired coupled cluster recovers
more correct behavior, but sacrifices part of the description
of dynamical correlation. We have explored recoupling the
singlet- and triplet-pairing channels of T2 via frozen-sigma
and frozen-pi coupled cluster in both closed and open shells
in order to recover dynamical correlation without allowing
and reintroducing the breakdown of standard coupled cluster.
When standard coupled cluster gives a good description of
the system, e.g., molecules near equilibrium, FSigCC and
FPiCC give results comparable to standard coupled cluster.
For strongly correlated situations, however, the quality of
the FSigCC and FPiCC results depends on the nature of the
correlations present. For the circular four-hydrogen cluster,
FSigCC and FPiCC recover correlation from CC0 and CC1.
However, FSigCC at dissociation for N2 goes to a higher
limit than CC0. This result tells us that the way in which the
coupling between the singlet- and triplet-pairing channels of
T2 causes the breakdown of standard CC may be system-
specific as well, and a good description may require a
more complicated treatment, e.g., recoupling higher-order
excitations. For open-shell FSigCCSD calculations, we found
it useful to freeze open-shell tabi j amplitudes in addition to
σab

i j . Allowing the open-shell tabi j amplitudes to relax in the
presence of the π′ab

i j
correction significantly reintroduces the

breakdown of standard coupled cluster. We speculate that for
open shells the indirect coupling of σ and π through the
open-shell amplitude blocks contributes to the breakdown of
standard ROCCSD for strong correlation, not just the direct
coupling of the singlet- and triplet-pairing channels in the
doubly occupied to virtual block of T2.

FSig and FPi can be viewed as first-order corrections
to CC0 and CC1, respectively. We can imagine resumming
this perturbative expansion by first calculating σ amplitudes
from CC0, then calculating a π′ correction while keeping σ
fixed, and then calculating a new σ′ keeping π′ frozen, and
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so on. However, early tests of this idea did not appear to be
meaningful.

Returning to the CC0+DFT formalism of Garza et al.,25

the CCD0+tDFT energy is given by

ECCD0+tDFT
C = ECCD0

C + 3EDFA
c↑↑ [n↑,n ↓], (20)

where the “t” in tDFT indicates that we take into account the
full triplet-paired contribution to T2. We see that the wave-
function equivalent of the CC0+tDFT energy expression is

EC = Eαβ
C

[σ(CC0)] + Eαβ
C

[π(CC)]
+ Eαα

C [π(CC)] + Eββ
C

[π(CC)], (21)

that is, the singlet-paired component of the energy comes from
CC0, while the triplet-paired component of the energy comes
from standard coupled cluster. Expression (20) has been quite
useful for calculating both energies and properties,24,25 but
Eq. (21) would break down since the triplet-paired component
of the correlation energy from standard coupled cluster is
poorly behaved in the presence of strong correlation.

V. CONCLUDING REMARKS

We asked whether a first-order recoupling of the singlet-
and triplet-pairing channels of T2 might recover dynamical
correlation without breaking down due to strong correlation.
Although not as generally accurate as we might have hoped,
the successes and failures of FSigCC and FPiCC tell us
something about the relationship between the strength of the
coupling between the singlet- and triplet-pairing channels and
the strength of the correlations that characterize the system.
When systems are weakly correlated, FSigCC and FPiCC
are quite accurate, indicating that the singlet-triplet coupling
in these cases is also weak, and a low-order recoupling is
sufficient. We have seen this hold for molecules at equilibrium
as well as stretched H6, a not extremely strongly correlated
system. When systems are strongly correlated, however,
such as the problem of stretched N2, FSigCC and FPiCC
are inaccurate and in some cases give unexpectedly poor
results. This observation would seem to indicate that for
strong correlation, the singlet-triplet coupling becomes more
complex, and therefore, a first-order recoupling of these terms
is inadequate. This conclusion is not surprising, since it is
generally understood that an accurate description of N strongly
correlated electrons requires the presence of up through TN

when working within the exponential ansatz of coupled cluster
theory. Recent work suggests that lower-order truncations are
possible if the exponential ansatz of coupled cluster theory
is abandoned.23 Work along the lines of including these
recouplings to all orders using symmetry projection ideas via
a sinh polynomial, rather than an exponential, is presented
elsewhere.41
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