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We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previ-
ous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic
structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K,n
= 21.24 nm−3) and (T = 23.0 K,n = 24.61 nm−3), respectively. When applied to this challenging
system, it is shown that this new FK-QCW method consistently reproduces the experimental
dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all
momentum transfers considered. This shows that FK-QCW provides a substantial improvement over
the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used.
Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same
results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a
potentially more appealing algorithm than RPMD since it is not formally limited to correlation func-
tions involving linear operators. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922888]

I. INTRODUCTION

Low-temperature liquid para-hydrogen and ortho-
deuterium have become benchmarks in the development of
approximate quantum dynamics methods1–7 that allow for the
practical evaluation of a general quantum time correlation
function of the form



Â(0)B̂(t)� = 1

Z
Tr

(
e−βĤ Â ei Ĥ t/~ B̂ e−i Ĥ t/~

)
, (1)

Z being the partition function and β the inverse temper-
ature 1/kBT . The reason that these systems provide such
good testing grounds for the development of these methods
is because pronounced nuclear quantum effects are exhib-
ited by their dynamical properties. This is due to their low
molecular masses, which in turn cause their thermal de Broglie
wavelength to be relatively large at low temperatures. How-
ever, these quantum effects are not significant enough that
one must worry about the quantum statistics of molecular
indistinguishability,8 and in addition, there exists a relatively
simple pair potential,9 which provides a very accurate descrip-
tion of the molecular interactions.9–11 Hence, low-temperature
liquid para-hydrogen and ortho-deuterium are quantum liq-
uids which are relatively easy to model, thus being ideal testing
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grounds for the development of novel approximate quantum
dynamics methods.

Presently, the most successful approximate quantum dy-
namics methods are the Classical Wigner (CW) approxima-
tion,12–14 Centroid Molecular Dynamics (CMD),15 and Ring-
Polymer Molecular Dynamics (RPMD).16 All of them have
been shown to provide relatively accurate and practical approx-
imations to Eq. (1), and, in addition, to become exact in the
harmonic, high temperature and short time limits.12,13,15–17

However, each of these methods has its own downfalls. For
example, CMD and RPMD begin to break down for correlation
functions involving non-linear operators,15,16,18 while the CW
approximation is equally valid for non-linear operators, but,
in general, it does not produce time invariant thermodynamic
properties for systems at thermal equilibrium. Explicitly, for
Â = 1, the exact quantum expression in Eq. (1) has the property
that

⟨B̂(t)⟩ = ⟨B̂(0)⟩, (2)

while the purely classical propagation of the initially quantized
phase space distribution in the CW approximation does not
ensure this property. As shown in Ref. 19, this downfall can
have a significant impact for slow processes like diffusion due
to zero point energy leakage from intramolecular to intermo-
lecular modes as the system is propagated.

Recently, Liu and Miller17,20–22 proposed a route to rem-
edy this downfall of the CW approximation by replacing the
classical propagation of the initial quantum phase space distri-
bution with a form of dynamics that ensures the equality in
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Eq. (2). Similarly, we proposed in Ref. 23 a different form
of dynamics that also ensures this property by requiring the
dynamics to conserve the initial quantum ensemble within the
Feynman-Kleinert (FK) approximation of the density oper-
ator.12,24,25

In the present paper, version 2 of the Feynman-Kleinert
Quasi-Classical Wigner method introduced in Ref. 23 will be
used and referred to as FK-QCW. It was shown to greatly
extend the accuracy of the Feynman-Kleinert linearized path-
integral (FK-LPI) implementation of the CW approximation
in the challenging model problems of both the quartic and
double well potentials, in which numerically exact solutions
are obtainable. Furthermore, we were able to show that one can
introduce an arbitrary frequency function into the dynamics of
this method, resulting in an entire class of ensemble conserving
dynamics that preserve the equality in Eq. (2). The FK-QCW
method was shown to recover the exact classical and high
temperature limits of the quantum time correlation function
and may be applied to systems with barriers.23 Furthermore,
since this method is developed within the framework of the CW
approximation, no problems arise for non-linear operators.

The purpose of this work is to test how well the FK-QCW
method performs when applied to the standard benchmark
systems of low-temperature liquid para-hydrogen and ortho-
deuterium. We accomplish this task by computing the dynamic
structure factor, which is experimentally accessible by inelastic
X-ray scattering (IXS). We then provide a comparison between
the present calculations and the experimental determinations,
as well as with the ones obtained by RPMD and FK-LPI as
previously published in Ref. 7. Specifically, it was found in
Ref. 7 that for a momentum transfer of k = 20 nm−1, the FK-
LPI method fails to correctly reproduce the IXS spectrum for
the para-hydrogen system, in which quantum effects are more
prevalent. In addition, due to the increased non-linearity of the
correlation function at high momentum transfers, RPMD has
been shown in the case of para-hydrogen to be limited to a
maximal momentum transfer value of k = 15 nm−1, see Ref. 1.
For larger values of k, RPMD becomes inaccurate. Hence,
a challenging test case has been established for the develop-
ment of improved methods, and it is therefore interesting to
check how the FK-QCW method performs where these leading
methods fail.

This paper is organized as follows: In Sec. II, we provide
an introduction to the CW approximation to quantum time
correlation functions, as well as the multidimensional gener-
alization of the FK-QCW method. In addition, we also give
a brief introduction to the theory of inelastic scattering. In
Sec. III, we begin by discussing the computational details of
our simulations, followed by a comparison of the FK-QCW
method with the experimental dynamic structure factor and
that obtained by RPMD and FK-LPI previously published in
Ref. 7. The conclusions are presented in Sec. IV.

II. THEORY AND METHODOLOGY

A. Classical Wigner

The CW12–14 expression for a general quantum time corre-
lation function of a many-body system is given by



Â(0)B̂(t)� ≈ 1

Z (2π~)3N
 ∞

−∞
dq dp[e−βĤ Â]W (q,p)

× [B̂]W (q(t),p(t)) , (3)

where (q(t),p(t)) are the classically evolved quantum phase
space variables propagated from the initial quantum distribu-
tion (q,p). Here, the Wigner transform of a general operator Ĉ
is given by

[Ĉ]W (q,p) ≡
 ∞

−∞
dηe−ip·η/~


q +

η

2
�
Ĉ
�
q − η

2


, (4)

where |q⟩ is the direct product of the single particle position
kets.

Although the CW approximation has been shown to
perform relatively well,3,7,12,13,26–28 as we previously noted,
the classical evolution of the quantum phase space results
in thermodynamic properties of equilibrium systems be-
ing incorrectly time dependent. Our newly developed FK-
QCW method corrects this inconsistency by replacing the
purely classical dynamics used within Eq. (3) with a time
evolution that ensures that the initial quantum ensemble is
conserved such that ⟨B̂(t)⟩ = ⟨B̂(0)⟩, in accord with the exact
quantum time correlation function. However, since these
dynamics were developed within the FK approximation to
the density operator,12,24,25 before we present their multidi-
mensional generalization, we first provide an introduction to
the FK density operator, which allows for a practical eval-
uation of the Wigner function [e−βĤ Â]W (q,p) appearing in
Eq. (3).

B. Many-body Feynman-Kleinert density operator

The most difficult part in evaluating the CW expression
of Eq. (3) is obtaining the Wigner transform of e−βĤ Â, since
knowledge of the many-body density matrix is required. As
in the FK-LPI method, we accomplish this within the FK-
QCW method by combining the effective frequency variational
theory of Feynman24 and Kleinert25 with the quasidensity
operator (QDO) formalism of Jang and Voth.29 This Feynman-
Kleinert approximation to the density operator allows for
an efficient evaluation of the Wigner transform of e−βĤ Â
and has been shown to be very accurate when applied
to realistic many-body systems.3,7,12,26–28 In addition, the
FK approximation to the density operator gives the best
local harmonic approximation to the systems free energy24,25

and becomes exact in the harmonic and high temperature
limits.12

For a many-body system, the FK approximation to the
density operator is explicitly given by

e−βĤ ≈
 ∞

−∞
dxc dpc ρFK (xc,pc) δ̂FK(xc,pc), (5)

where (xc,pc) are the 3N dimensional vectors of centroid posi-
tions and momenta and δ̂FK(xc,pc) is the effective frequency
QDO. The FK approximation to the centroid phase space den-
sity, for a system of N particles, is given by

ρFK (xc,pc) ≡ 1
(2π~)3N exp

(
− β

2
M−1pTcpc − βW1 (xc)

)
, (6)
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W1 (xc) being the FK approximation to the centroid potential.
In Eq. (6), M is the diagonal matrix of particle masses.

The FK variational effective frequency matrix is deter-
mined from the local curvature of the system’s Gaussian
smeared potential by

Ω2(xc) = 1(2π)3N det(A(xc))
×
 ∞

−∞
dq M−1/2H(q)M−1/2

× exp

−1

2
(q − xc)TA−1(xc) (q − xc)


, (7)

H(q) being the 3N × 3N classical Hessian matrix and A(xc)
the smearing width matrix which measures the importance
of quantum fluctuations around the classical-like centroid
positions. Defining U(xc) as the orthonormal matrix con-
taining the eigenvectors of the effective frequency matrix,
then

U†(xc)Ω2(xc)U(xc) = Iω2(xc), (8)

where ω2(xc) is the 3N dimensional vector of eigenvalues and
I is the identity matrix. Using this, one can define the mass-
weighted normal modes as

η ≡ U†(xc)M1/2q,
ηc ≡ U†(xc)M1/2xc,

ν ≡ U†(xc)M−1/2p,
νc ≡ U†(xc)M−1/2pc,

(9)

and the smearing width matrix can be diagonalized through

U†(xc)M1/2A(xc)M1/2U(xc) = Λ(xc), (10)

where

[Λ(xc)]i j = δi j
1

βω2
i (xc)

×

β~ωi(xc)

2
coth

(
β~ωi(xc)

2

)
− 1


. (11)

In terms of the eigenvalues of the effective frequency
matrix, the centroid potential in Eq. (6) is explicitly written
as

W1(xc) = 1
β

3N
i=1

ln


2 sinh
(
β~ωi(xc)

2

)
β~ωi(xc)


+ VA(xc)

− 1
2

3N
i=1

Λii(xc)ω2
i (xc), (12)

where

VA(xc) = 1(2π)3N det(A(xc))
 ∞

−∞
dq V (q)

× exp

−1

2
(q − xc)TA−1(xc) (q − xc)


(13)

is the FK smeared potential. In 3N dimensions, the effective
frequency QDO written in terms of the mass-weighted normal
modes is simply a direct product of 1-dimensional QDOs and
is given by

δ̂FK (xc,pc)

=

3N
k=1


ωk(xc)
π~αk(xc)

 ∞

−∞
dηk dη ′k

�
η ′k
� ⟨ηk |

× exp



i
νc
k

~

�
η ′k − ηk

�
− ωk(xc)
~αk(xc)

(
η ′
k
+ ηk

2
− ηc

k

)2


× exp

−ωk(xc)αk(xc)

4~
�
η ′k − ηk

�2

, (14)

with

αk(xc) ≡ coth
(
β~ωk(xc)

2

)
− 2

β~ωk(xc) . (15)

For all but the simplest potentials, determination of the FK
effective frequency matrix is the main computational load in
applying the FK approximation to the density operator since
Eqs. (7) and (10) must be solved iteratively. For a discussion of
efficient ways to determine the FK effective frequency matrix
using different numerical schemes, the interested reader is
referred to Ref. 27.

Using the FK approximation to the density operator, the
Wigner transform of e−βĤ Â becomes

[e−βĤ Â]W (q,p) ≈
 ∞

−∞
dxc dpc ρFK (xc,pc)

× [δ̂FK(xc,pc)Â]W (q,p) . (16)

Due to the Gaussian form of the QDO in Eq. (14), an analytical
expression for the Wigner transform of δ̂FK(xc,pc)Â is readily
obtained for any operator Â depending only on position or
momentum.

C. FK-QCW in many dimensions

The multi-dimensional generalization of the FK-QCW
dynamics derived in Eq. (67) of Ref. 23 simply becomes

˙̃qk(t) = fk(xc(t))p̃k(t),
˙̃pk(t) = − fk(xc(t))q̃k(t), (17)

where

q̃k(t) ≡


ωk(xc(t))
~αk(xc(t))

�
ηk(t) − ηc

k(t)
�
,

p̃k(t) ≡


tanh
(
β~ωk(xc(t))

2

)
~ωk(xc(t)) νk(t)

(18)

are the kth elements of the dimensionless normal mode coordi-
nates (q̃(t), p̃(t)), and fk(xc(t)) is an arbitrary frequency func-
tion. As shown in Ref. 23, the 1-dimensional version of these
dynamics gives the exact real, but not imaginary, part of the
position autocorrelation function in the harmonic limit if the
FK effective frequency is chosen for the frequency function.
Similarly, one can show that this exact limit is also obtained in
the multi-dimensional case if we choose

fk(xc(t)) = ωk(xc(t)). (19)

In Eq. (18), the time evolved normal modes are given by
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η(t) = U†(xc(t))M1/2q(t),
ηc(t) = U†(xc(t))M1/2xc(t),
ν(t) = U†(xc(t))M−1/2p(t),
νc(t) = U†(xc(t))M−1/2pc(t),

(20)

where U(xc(t)) diagonalizes the effective frequency matrix
evaluated at xc(t), and the centroid dynamics are governed by
the classical-like equations

ẋc(t) = M−1pc(t),
ṗc(t) = −∇c[VA(xc(t))]A=A(xc(t)),

(21)

the gradient with respect to xc(t) being taken while holding the
smearing width matrix constant.

Once the centroid and dimensionless normal mode coor-
dinates have been propagated through Eqs. (17) and (21), the
instantaneous quantum phase space variables can be obtained
from

q(t) = xc(t) +M−1/2U (xc(t)) η̃(t),
p(t) = M1/2U (xc(t)) ν̃(t), (22)

where

η̃(t) ≡ η(t) − ηc(t),
ν̃(t) ≡ ν(t), (23)

and in terms of the dimensionless normal mode coordinates,
they have the elements

η̃k(t) =

~αk(xc(t))
ωk(xc(t)) q̃k(t),

ν̃k(t) =


~ωk(xc(t))
tanh

(
β~ωk(xc(t))

2

) p̃k(t).
(24)

The FK-QCW approximation to the quantum time corre-
lation function takes the same form as the CW expression in
Eq. (3),



Â(0)B̂(t)� ≈ 1

Z (2π~)3N
 ∞

−∞
dq dp[e−βĤ Â]W (q,p)

× [B̂]W (q(t),p(t)) . (25)

However, within FK-QCW, [e−βĤ Â]W (q,p) is obtained
through Eq. (16), and (q(t),p(t)) are propagated from the initial
quantum distribution (q,p) using the ensemble conserving
dynamics in Eq. (17). It should be noted that the Wigner
transform of B̂ in this expression is easily obtainable when B̂
is a function of only position or momentum operators; since in
this case, one obtains the corresponding classical expression

[B (x̂)]W (q(t),p(t)) = B (q(t)) (26)

or

[B (p̂)]W (q(t),p(t)) = B (p(t)) . (27)

For completeness, we note that the multi-dimensional
generalization of the dynamics within the FK-QCW method
that was derived in Eq. (43) of Ref. 23 is very similar to
Eq. (17), the only difference is that p̃k(t) in Eq. (18) takes the

form

p̃k(t) ≡


1
~ωk(xc(t))αk(xc(t))

�
νk(t) − νck (t)

�
, (28)

and Eq. (22) is changed accordingly. As shown in Ref. 23 (see
Appendix C therein), these dynamics reduce to CMD when
used within the expression for the Kubo transformed time
correlation function and also become exact in the harmonic
limit, if one uses Eq. (19) for the frequency function. However,
they are not very practical when used within Eq. (25) for
non-linear operators since they are ill-defined when ωk(xc(t))
becomes imaginary. This then makes the FK-QCW dynamics
in Eq. (17) preferable for condensed phase systems since one
can show that these dynamics are well defined in this case
as long as |ωk(xc(t))| < π/β~. In addition, by adopting the
same convention as FK-LPI12 in which we set νk(t) = 0 for
frequencies outside of this range, we are then able to apply
these FK-QCW dynamics for imaginary frequencies as long
as |ωk(xc(t))| < 2π/~β, which is the entire range where the FK
approximation to the density operator is well defined.

D. Inelastic scattering

The quantum time correlation function we apply the FK-
QCW method to in this paper is the intermediate scattering
function given by

F(k, t) = 1
N

N
i, j=1


e−ik·x̂i(0) eik·x̂ j(t)


, (29)

where ⟨· · · ⟩ denotes a canonical ensemble average, and x̂i(t)
is the time-dependent position operator of the ith particle,
given in the Heisenberg picture by x̂i(t) = ei Ĥ t/~ x̂i e−i Ĥ t/~.
This correlation function is related to the dynamic structure
factor, S(k,ω), through

S(k,ω) = 1
2π

 ∞

−∞
dt e−iωt F(k, t). (30)

The dynamic structure factor gives the spectrum of density
fluctuations and Van Hove30 showed that within the first Born
approximation, this quantity is proportional to the inelastic
scattering cross section. Measured by either inelastic neutron
or X-ray scattering, the inelastic scattering cross section mea-
sures the probability that a neutron or photon transfers mo-
mentum ~k = ~(k f − ki) and energy ~ω = ~(ω f − ωi) to the
sample.

The shape of the dynamic structure factor is defined by its
nth spectral moments,

⟨ωn⟩ ≡
 ∞

−∞
dωωn S(k,ω) = i−n


∂nF(k, t)

∂tn



t=0
. (31)

The comparison between measured and computed values of the
spectral moments can be used as a metric to judge the quality
of a theoretical simulation. The zeroth moment of the dynamic
structure factor is referred to as the static structure factor,31

S(k), which is related to the spatial Fourier transform of the
pair distribution function by

S(k) ≡ 

ω0� = 1 +

 ∞

−∞
d3r eik·r g(r). (32)
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The first moment of S(k,ω) is of special interest since for
a system which interacts through a momentum-independent
potential,32 this quantity is exactly given by

⟨ω⟩ ≡
 ∞

−∞
dωωS(k,ω) = ~k

2

2m
, (33)

where m is the molecular mass. This relation, in principle
valid for monatomic systems, can be extended to molecular
ones provided that the rotational and vibrational motions of the
molecule can be neglected in the probed dynamic range.

Since the dynamic structure factor is related to the tempo-
ral Fourier transform of a quantum time correlation function,
it obeys the principle of detailed balance,

S(k,ω) = eβ~ωS(k,−ω), (34)

which is straightforward to show by working in the basis of
energy eigenstates. Using this principle of detailed balance
along with the symmetry of Eq. (29), F(k, t) = F(k,−t)∗, one
can show that the dynamic structure factor can be equivalently
written using only the real part of the intermediate scattering
function as

S(k,ω) = 2
1 + e−β~ω

1
2π

 ∞

−∞
dt e−iωt Re[F(k, t)]. (35)

For an isotropic system such as a liquid, the intermediate
scattering function depends only on the magnitude of k, such
that F(k, t) = F(k, t). Hence when computing the intermediate
scattering function of an isotropic system, we are free to choose
the direction of k.

The FK-QCW approximation to the intermediate scatter-
ing function takes the form

F(k, t) ≈ 1
Z(2π~)3N

1
N

N
i, j=1

 ∞

−∞
dq dp

× [e−βĤe−ik·x̂i]W(q,p) [eik·x̂ j]W(q(t),p(t)), (36)
where, after choosing k to be parallel to the x-axis,

[eik·x̂ j]W(q(t),p(t)) = exp
(
i k q(t)

3( j−1)+1

)
, (37)

and in terms of the FK approximation to the density operator,

[e−βĤe−ik·x̂i]W(q,p)
=

 ∞

−∞
dxc ρFK (xc) exp(−i k q3(i−1)+1)

×
3N
n=1


8πmn tanh

(
β~ωn(xc)

2

)
βαn(xc) exp

�
−q̃ 2

n − p̃ 2
n

	

× exp



tanh
(
β~ωn(xc)

2

)
ωn(xc) k m−1/2

i U(xc)3(i−1)+1,nνn




× exp


−
~ tanh

(
β~ωn(xc)

2

)
4ωn(xc)

(
km−1/2

i U(xc)3(i−1)+1,n

)2


,

(38)

where

ρFK (xc) ≡ 1
(2π~)3N exp (−βW1 (xc)) . (39)

We note that the derivation of Eq. (38) is shown in Ref. 26 (see
Eq. (18) therein), where it was derived for FK-LPI, which uses
the same FK approximation to the density operator in Eq. (5).

III. RESULTS

A. Computational details

To obtain the dynamic structure factor for liquid para-
hydrogen and ortho-deuterium at the state points (T = 20.0 K,
n = 21.24 nm−3) and (T = 23.0 K, n = 24.61 nm−3), respec-
tively, the FK-QCW approximation to the intermediate scat-
tering function in Eq. (36) was evaluated by using the Silvera-
Goldman (SG) potential.9 The SG potential has been used
in a number of previous studies1,2,4–6,17 and has been shown
to provide very accurate descriptions of the fluid and solid
thermodynamics, except at extremely high pressure.10,11 This
semi-empirical isotropic pair potential, applicable to both
para-hydrogen and ortho-deuterium, treats each molecule as
a spherical particle which is justifiable at low temperatures
since only the J = 0 rotational state is populated in each
isotopoloque. To expedite the determination of the FK centroid
potential, we represented the SG potential as a sum over four
Gaussian functions whose parameters can be found in Table II
of Ref. 3.

Starting from an equilibrated centroid configuration, the
real part of the intermediate scattering function was evaluated
using the FK-QCW approximation by performing a molec-
ular dynamics simulation of the centroid variables, which are
propagated according to Eq. (21). For each centroid trajec-
tory, 100 sets of initial dimensionless normal mode coordi-
nates (q̃(0), p̃(0)) were sampled according to their Gaussian
distribution

exp
�
−q̃T(0)q̃(0) − p̃T(0)p̃(0)� =

3N
n=1

exp
�
−q̃ 2

n − p̃ 2
n

	
, (40)

which appears in the FK approximation of [e−βĤ Â]W (q,p)
(see, for example, Eq. (38)). Using the frequency function
in Eq. (19), the dimensionless normal mode coordinates
were then propagated through Eq. (17) and the instanta-
neous (q(t),p(t)) values were obtained from the relations in
Eq. (22). The real part of the intermediate scattering function
was constructed by averaging over 1000 consecutive 3 ps
centroid trajectories, in which the centroid momentum was
resampled at the beginning of each trajectory and a time
step of 1 fs was used. In order to obtain statistical uncer-
tainties, this entire process was repeated six times. For a
more detailed outline of the algorithm used for the integration
of the centroid and dimensionless normal mode coordinates
over one time step ∆t, which allows for the propagation of
(q(t),p(t)) → (q(t + ∆t),p(t + ∆t)), the interested reader is
referred to the Appendix.

Within the simulation, we employed cubic periodic
boundary conditions with the minimum image convention and
a spherical cutoff at half box length. Furthermore, due to the
isotropic nature of the SG potential, the momentum transfer k
was chosen, without loss of generality, to be in the x-direction.
In order to fulfill the Laue condition33 k = 2πn/l, where l is the
length of the simulation cell and n is an integer, the number of
particles N treated in the simulation had to be varied for each
momentum transfer. N , l, and the density used for each k are
listed in Table I.
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TABLE I. The simulation parameters used for the FK-QCW calculation of
Eq. (36).

D2 H2

k (nm−1) N l (bohr) ρ (nm−3) N l (bohr) ρ (nm−3)
5.5 37 21.65 24.61 32 21.66 21.24
12.8 78 27.76 24.61 68 27.85 21.24
15.3 109 31.03 24.61 94 31.03 21.24
20.0 95 29.64 24.61 82 29.65 21.24

The dynamic structure factor was obtained from the real
part of the FK-QCW approximation to the intermediate scat-
tering function using the relation in Eq. (35), which ensures
that this quantity fulfills the detailed balance condition. The
imaginary part of the intermediate scattering function was then
obtained from the inverse Fourier transform of this quantity. By
processing the data in this manner, we ensure that the approx-
imate quantum time correlation function fulfils the detailed
balance condition. Furthermore, since the detailed balance
condition in Eq. (34) holds for the spectrum of any quantum
time correlation function, this procedure could be applied to
any correlation function involving hermitian operators;34 since
in this case, the general relation

CAB(ω) = 2
1 + e−β~ω

1
2π

 ∞

−∞
dt e−iωt Re[CAB(t)] (41)

will always hold due to the symmetry16 relation CAB(t)
= CAB(−t)∗, where CAB(t) is given by Eq. (1) and CAB(ω) is
its Fourier transform.

B. The experimental dynamic structure factor

In an inelastic x-ray scattering experiment on a liquid,
one must cope with spurious scattering from the container
which must be carefully subtracted from the raw intensity.
Due to random temperature drifts in the analyzer crystal7

which introduce an uncertainty in the zero of energy trans-
fer (~ω = 0) between the sample + container and empty
container scattering measurements, such a subtraction was
not completely straightforward for the experimental data used
in our previous study.7 In order to deal with these spurious
experimental effects, we developed in Ref. 7 a method that
enables one to use the dynamic structure factor obtained
from a simulation as an input to fix this unknown spectral
shift.

Denoting Iraw(k,ω) and IEC(k,ω) as the measured inten-
sities scattered by the sample + container system and by the
empty container, respectively, the unknown shift in the zero of
energy transfer, |δ − θ |, can be taken into account within the
experimental dynamic structure factor by writing this quantity
as

Sexp(k,ω) = α(k) (Iraw(k,ω − δ) − T(k)IEC(k,ω − θ)) , (42)

whereα(k) is the proportionality factor that relates the dynamic
structure factor to the inelastic scattering cross section, and
T(k) is the transmission coefficient of the sample.7 Due to the

finite resolution of the experiment, the experimental dynamic
structure factor, Sexp(k,ω), in Eq. (42) is related to the sam-
ple’s true dynamic structure factor, S(k,ω), through a convo-
lution with the instrumental resolution function, R(ω), such
that

Sexp(k,ω) ≡ S(k,ω) ⊗ R(ω) =
 ∞

−∞
dω′S(k,ω′)R(ω − ω′).

(43)

Using the procedure developed in Ref. 7, the refined exper-
imental dynamic structure factor is obtained by performing
a least squares fit of Eq. (42) to the results of a theoretical
simulation which have been convoluted with the instrument
resolution function, R(ω), for the determination of the un-
known spectral shifts (δ, θ). Within this fitting procedure, α(k)
is determined for each (δ, θ) through

α(k) =
~k2

2m

 ∞
−∞ dω R(ω) + S(k)  ∞−∞ dω R(ω)ω ∞

−∞ dωω (Iraw(k,ω − δ) − T(k)IEC(k,ω − θ)) , (44)

which ensures that the refined experimental quantity fulfills
the first moment sum rule in Eq. (33). We note that S(k)
in Eq. (44) is the static structure factor, which in the pres-
ent work has been obtained from the theoretical simulation.
However, if the experimental measurement of this quantity
was available, one could in principal use it within the fitting
procedure.

Within this study, we have reperformed this refinement
process of the experimental quantity using the FK-QCW
method as an input, and the resulting fitting parameters are
shown in Table II. In Sec. III C, we provide a comparison
of the new experimental dynamic structure factors obtained
using the FK-QCW method with the experimental quantities
previously published in Ref. 7, which were obtained using FK-
LPI as an input. In addition, we also compare the theoretical
dynamic structure factors obtained using the FK-QCW method
with the results of FK-LPI and RPMD, also published in
Ref. 7.

TABLE II. The fitting parameters used in Eq. (42) to refine the experimental
dynamic structure factor using the FK-QCW results. Here, the R2 values are
the correlation coefficients of the various fits.

D2

k (nm−1) α(k) T (k) δ (meV) θ (meV)
|δ−θ |
(meV) R2

5.5 7.51 × 104 0.897 −0.616 −0.545 0.070 0.97
12.8 1.41 × 105 0.896 −0.090 0.143 0.233 0.99
15.3 2.12 × 105 0.895 −0.391 −0.205 0.186 0.99
20.0 3.78 × 105 0.893 −0.678 0.228 0.906 0.99

H2

|δ−θ |
k (nm−1) α(k) T (k) δ (meV) θ (meV) (meV) R2

5.5 5.27 × 104 0.731 −0.134 0.233 0.367 0.97
12.8 1.79 × 105 0.954 0.183 0.531 0.348 0.93
15.3 1.57 × 105 0.740 0.188 0.929 0.742 0.97
20.0 4.05 × 105 0.952 −0.734 −0.703 0.032 1.00
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FIG. 1. The FK-QCW (black line with
error bars), FK-LPI (blue line), and
RPMD (magenta dashed line at low
k’s) approximation to the intermedi-
ate scattering function for both ortho-
deuterium (upper four panels) and para-
hydrogen (lower four panels) for the
different momentum transfers consid-
ered (as labeled). The real part of the
correlation function is the upper curve,
while the negative imaginary part is
the lower curve in each panel. The
FK-LPI and RPMD results were taken
from Ref. 7.

C. Dynamic structure factor

The FK-QCW results for the intermediate scattering func-
tion are shown in Fig. 1. Also included in Fig. 1 are the results
obtained by FK-LPI and RPMD previously published in Ref. 7.
Interestingly, for low momentum transfers where RPMD is
least troubled by the non-linearity of the correlation function in
Eq. (29), the FK-QCW method predicts nearly the same results
as RPMD. This suggests that FK-QCW provides a method

with an accuracy comparable to RPMD. Yet, FK-QCW does
not suffer from the non-linear operator problem, since it was
developed within the framework of the CW approximation
and can therefore be used to evaluate correlation functions
involving non-linear operators.

When comparing the intermediate scattering functions of
FK-QCW and FK-LPI in Fig. 1, one notices that a significantly
longer decay time is predicted by FK-QCW for both para-
hydrogen and ortho-deuterium at k = 20.0 nm−1. In Ref. 7,
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FIG. 2. The refined experimental
dynamic structure factors for para-
hydrogen, as obtained using either
FK-QCW (red circles) or FK-LPI
(blue squares) as the input (see text).
The FK-QCW (black dashed-dotted
line), FK-LPI (blue line), and RPMD
(magenta dashed line) dynamic
structure factors are convoluted with
the instrumental resolution function.
The FK-LPI and RPMD results, as well
as the experimental quantity obtained
using FK-LPI as an input were taken
from Ref. 7.

we attributed the failure of FK-LPI for para-hydrogen at this
momentum transfer to the purely classical propagation within
this method not being able to correctly account for the long-
time behavior of the correlation function. The fact that the dy-
namics within FK-QCW predicts a significantly longer decay
time suggests that this method may be able to stand up to this
challenging test case where FK-LPI failed and RPMD was
inaccurate.

The hypothesis just proposed is confirmed in Fig. 2, where
for the case of para-hydrogen at k = 20.0 nm−1, FK-QCW is in
almost exact agreement with the experimental dynamic struc-
ture factor obtained using this method as an input. This then
shows that the ensemble conserving dynamics of FK-QCW
extends the accuracy of the FK-LPI method to longer times,
where the classical propagation within the CW approximation
fails. In addition, one sees that the experimental quantities

FIG. 3. The refined experimental dy-
namic structure factors for ortho-
deuterium, as obtained using either
FK-QCW (red circles) or FK-LPI (blue
squares) as the input (see text). The
FK-QCW (black dashed-dotted line),
FK-LPI (blue line), and RPMD (ma-
genta dashed line) dynamic structure
factors are convoluted with the instru-
mental resolution function. The FK-LPI
and RPMD results, as well as the exper-
imental quantity obtained using FK-LPI
as an input were taken from Ref. 7.
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FIG. 4. The first moment of the dy-
namic structure factors obtained from
the relation in Eq. (33) for both ortho-
deuterium (left panel) and para-
hydrogen (right panel) using FK-QCW
(red circle), FK-LPI (blue circle), and
RPMD (magenta cross). These results
are compared with the exact relation of
Eq. (33) (black line).

obtained using FK-QCW or FK-LPI as an input are in relatively
good agreement for all of the momentum transfers considered.
The fact that this is true for para-hydrogen at k = 20.0 nm−1,
where FK-LPI fails, shows that the process we developed
in Ref. 7 to refine the experimental dynamic structure factor
provides a robust method that allows one to correct for spurious
experimental effects, even when the theoretical input is rela-
tively inaccurate.

For the case of ortho-deuterium at k = 20.0 nm−1, one
sees in Fig. 3 that, similar to the case of para-hydrogen, the
FK-QCW method reproduces the experimental quantity almost
exactly. While FK-LPI is in relatively good agreement with
the experimental quantity for this momentum transfer, the fact
that FK-QCW is more accurate shows that the longer decay
time predicted in the correlation function by the ensemble
conserving dynamics of this method, once again, better reflects
the true dynamics of the system.

As seen in Figs. 2 and 3, the similarity of the FK-QCW
and RPMD intermediate scattering functions for both para-
hydrogen and ortho-deuterium at low momentum transfers
translates to similar predictions for their corresponding dy-
namic structure factors. While not completely systematic due
to the case of para-hydrogen at k = 12.8 nm−1, overall one
sees a better agreement between the predictions of these two
methods and the experimental quantity for both systems, as
compared to FK-LPI. This then suggests that the more pro-
nounced oscillations in the intermediate scattering functions
of FK-QCW and RPMD more accurately describe the large
wavelength density fluctuations of both the para-hydrogen
and ortho-deuterium systems, consistent with the ensemble
conserving dynamics used within FK-QCW being comparable
to RPMD and more accurate than the purely classical dynamics
of FK-LPI.

We note that for para-hydrogen, particularly at k
= 12.8 nm−1, there is disagreement between the FK-QCW and
the experimental dynamic structure factors. At first glance,

this appears to be due to the area underneath the FK-QCW
dynamic structure factor being too small, i.e., a shortcoming
of the method. However, this area is precisely equal to the
static structure factor S(k) = F(k, t = 0), for which FK-QCW
and FK-LPI are equivalent, to within statistical accuracy. The
FK-LPI static structure factor was published in Ref. 7, where it
was found to be in agreement with the experimental measure-
ments of Ref. 35. It is reasonable, then, to look for alternative
explanations. One possibility is an uncertainty in the absolute
scale of the empty container scattering contribution. Adjust-
ment of that scale was found to play a role for the cases of
para-hydrogen at k = 5.5 nm−1 and k = 15.3 nm−1.

The first moment of the dynamic structure factor ob-
tained by FK-QCW, FK-LPI, and RPMD is shown in Fig. 4.
The different dynamics of these three methods become rele-
vant for the first moment since this quantity depends on the
time derivative of the intermediate scattering function through
Eq. (31). However, as seen in Fig. 4, FK-QCW reproduces
the exact values of the first moment of the dynamic structure
factor to within the uncertainty of the simulation for all of the
momentum transfers considered. While FK-LPI is also able
to reproduce this quantity for all of the momentum transfers
considered, this is not true for RPMD. The fact that these
new ensemble conserving dynamics are shown to obey this
exact quantum mechanical sum rule testifies even more to the
accuracy of this new method.

IV. CONCLUSIONS

We have shown that the ensemble conserving dynamics
of the FK-QCW method can be easily applied to realistic
condensed phase systems, such as low temperature para-
hydrogen and ortho-deuterium. Furthermore, it was found
that the dynamics of the FK-QCW method greatly extend the
accuracy of the FK-LPI approximation when the long-time
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behavior of the quantum time correlation function becomes
important. This was evidenced by the FK-QCW method nearly
exactly reproducing the experimental dynamic structure factor
of para-hydrogen at k = 20.0 nm−1, where the purely classical
dynamics used within the FK-LPI approximation fail and
RPMD is too inaccurate.

In addition, where RPMD was applicable due to the
approximate linearity of Eq. (29), we found that FK-QCW
provides an accuracy comparable to RPMD. This then suggests
that FK-QCW may be a top contender in the realm of approxi-
mate quantum dynamics methods, since FK-QCW is able to
assess correlation functions involving non-linear operators,
and will not encounter artificial frequencies in the simulated
absorption spectra arising from unphysical high frequency
oscillations within the dynamics.19,36,37

Readers wanting to use these results can obtain the data set
containing the refined experimental dynamic structure factors
obtained using FK-QCW as an input in Figs. 2 and 3 as well
as the non-convoluted FK-QCW dynamic structure factors of
para-hydrogen and ortho-deuterium for all of the momentum
transfers considered from the supplementary material.38
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APPENDIX: FK-QCW MOLECULAR DYNAMICS
ALGORITHM

Defining the 3N dimensional vector that contains the FK
smeared force as

Fc(t) ≡ −∇c[VA(xc(t))]A=A(xc(t)), (A1)

where the gradient is taken with respect to xc(t), the algorithm
for integrating the FK-QCW method dynamics one time step
∆t using the velocity Verlet algorithm goes as follows:

q̃k(t + ∆t) ← q̃k(t) + fk(xc(t))p̃k(t)∆t, (A2)
p̃k(t + ∆t) ← p̃k(t) − fk(xc(t))q̃k(t)∆t, (A3)

xc(t + ∆t) ← xc(t) +M−1pc(t)∆t +
∆t2

2
M−1Fc(t), (A4)

pc(t + ∆t) ← pc(t) + ∆t
2

[Fc(t) + Fc(t + ∆t)] , (A5)

q̃(t + ∆t) ← U†(xc(t + ∆t))U(xc(t))q̃(t + ∆t), (A6)

p̃(t + ∆t) ← U†(xc(t + ∆t))U(xc(t))p̃(t + ∆t), (A7)

η̃k(t + ∆t) ←

~αk(xc(t + ∆t))
ωk(xc(t + ∆t)) q̃k(t + ∆t), (A8)

ν̃k(t + ∆t) ←


~ωk(xc(t + ∆t))
tanh

(
β~ωk(xc(t+∆t))

2

) p̃k(t + ∆t), (A9)

q(t + ∆t) ← xc(t + ∆t) +M−1/2U (xc(t + ∆t)) η̃(t + ∆t),
(A10)

p(t + ∆t) ← M1/2U (xc(t + ∆t)) ν̃(t + ∆t). (A11)

It is important to note intermediate steps (A6) and (A7).
These are performed to ensure that the dimensionless normal
modes q̃(t + ∆t) and p̃(t + ∆t) are formed properly for the use
in steps (A8) and (A9) since the eigenvector within the jth
column of the orthonormal matrices U(xc(t)) and U(xc(t + ∆t))
will typically not correspond to the same normal mode due to
the numerical method used for the diagonalization ofΩ2(xc(t))
and Ω2(xc(t + ∆t)).

1I. R. Craig and D. E. Manolopoulos, Chem. Phys. 322, 236 (2006).
2J. Liu and W. H. Miller, J. Chem. Phys. 128, 144511 (2008).
3J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Phys. Chem. B 108, 19799
(2004).

4T. D. Hone and G. A. Voth, J. Chem. Phys. 121, 6412 (2004).
5T. F. Miller III and D. E. Manolopoulos, J. Chem. Phys. 122, 184503 (2005).
6D. R. Reichman and E. Rabani, J. Chem. Phys. 116, 6279 (2002).
7K. K. G. Smith, J. A. Poulsen, A. Cunsolo, and P. J. Rossky, J. Chem. Phys.
140, 034501 (2014).

8D. Scharf, G. J. Martyna, and M. L. Klein, Low Temp. Phys. 19, 364 (1993).
9I. F. Silvera and V. V. Goldman, J. Chem. Phys. 69, 9 (1978).

10T. Omiyinka and M. Boninsegni, Phys. Rev. B 88, 024112 (2013).
11Q. Wang, J. K. Johnson, and J. Q. Broughton, Mol. Phys. 89, 1105 (1996).
12J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys. 119, 12179

(2003).
13H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys. 108, 9726 (1998).
14E. J. Heller, J. Chem. Phys. 65, 1289 (1976).
15S. Jang and G. A. Voth, J. Chem. Phys. 111, 2371 (1999).
16I. R. Craig and D. E. Manolopoulos, J. Chem. Phys. 121, 3368 (2004).
17J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007).
18S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller III,

Annu. Rev. Phys. Chem. 64, 387 (2013).
19S. Habershon and D. E. Manolopoulos, J. Chem. Phys. 131, 244518

(2009).
20J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011).
21J. Liu and W. H. Miller, J. Chem. Phys. 134, 104102 (2011).
22J. Liu, J. Chem. Phys. 134, 194110 (2011).
23K. K. G. Smith, J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Phys.

142, 244112 (2015).
24R. P. Feynman and H. Kleinert, Phys. Rev. A 34, 5080 (1986).
25H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, and Polymer

Physics (World Scientific, Singapore, 1995).
26J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Phys. Chem. A 108, 8743

(2004).
27J. A. Poulsen, G. Nyman, and P. J. Rossky, J. Chem. Theory Comput. 2, 1482

(2006).
28J. A. Poulsen, J. Scheers, G. Nyman, and P. J. Rossky, Phys. Rev. B 75,

224505 (2007).
29S. Jang and G. A. Voth, J. Chem. Phys. 111, 2357 (1999).
30L. Van Hove, Phys. Rev. 95, 249 (1954).
31G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering

(Cambridge University Press, Cambridge, 1978).
32D. Pines and P. Nozieres, The Theory of Quantum Liquids (Benjamin, New

York, 1966), Vol. I.
33C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York,

1996).
34We note that even though the operators in Eq. (29) are not hermitian, the

relation F(k, t) = F(k, −t)∗ still holds; since in this case, A∗ = B, and for
non-hermitian operators, one can show that CAB(−t)∗ = CB∗A∗(t).

35A. Cunsolo, G. Pratesi, D. Colognesi, R. Verbeni, M. Sampoli, F. Sette, G.
Ruocco, R. Senesi, M. H. Krisch, and M. Nardone, J. Low Temp. Phys. 129,
117 (2002).

36S. Habershon, G. S. Fanourgakis, and D. E. Manolopoulos, J. Chem. Phys.
129, 074501 (2008).

37A. Witt, S. D. Ivanov, M. Shiga, H. Forbert, and D. Marx, J. Chem. Phys.
130, 194510 (2009).

38See supplementary material at http://dx.doi.org/10.1063/1.4922888 for
tabulations of the refined experimental dynamic structure factors obtained
using FK-QCW as an input in Figs. 2 and 3 as well as the non-convoluted
FK-QCW dynamic structure factors of para-hydrogen and ortho-deuterium
for all of the momentum transfers considered.

http://dx.doi.org/10.1016/j.chemphys.2005.07.012
http://dx.doi.org/10.1063/1.2889945
http://dx.doi.org/10.1021/jp040425y
http://dx.doi.org/10.1063/1.1780951
http://dx.doi.org/10.1063/1.1893956
http://dx.doi.org/10.1063/1.1458546
http://dx.doi.org/10.1063/1.4851997
http://dx.doi.org/10.1063/1.437103
http://dx.doi.org/10.1103/PhysRevB.88.024112
http://dx.doi.org/10.1080/00268979609482526
http://dx.doi.org/10.1063/1.1626631
http://dx.doi.org/10.1063/1.476447
http://dx.doi.org/10.1063/1.433238
http://dx.doi.org/10.1063/1.479515
http://dx.doi.org/10.1063/1.1777575
http://dx.doi.org/10.1063/1.2743023
http://dx.doi.org/10.1146/annurev-physchem-040412-110122
http://dx.doi.org/10.1063/1.3276109
http://dx.doi.org/10.1063/1.3555273
http://dx.doi.org/10.1063/1.3555274
http://dx.doi.org/10.1063/1.3589406
http://dx.doi.org/10.1063/1.4922887
http://dx.doi.org/10.1103/PhysRevA.34.5080
http://dx.doi.org/10.1021/jp049281d
http://dx.doi.org/10.1021/ct600167s
http://dx.doi.org/10.1103/PhysRevB.75.224505
http://dx.doi.org/10.1063/1.479514
http://dx.doi.org/10.1103/PhysRev.95.249
http://dx.doi.org/10.1023/A:1020840005615
http://dx.doi.org/10.1063/1.2968555
http://dx.doi.org/10.1063/1.3125009
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888
http://dx.doi.org/10.1063/1.4922888

	animtiph: 
	1: 
	2: 
	3: 
	4: 



