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We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum
ensemble when used in combination with the Feynman-Kleinert approximation of the density
operator. These dynamics are used to improve the Feynman-Kleinert implementation of the clas-
sical Wigner approximation for the evaluation of quantum time correlation functions known as
Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover
the exact classical and high temperature limits of the quantum time correlation function, while a
subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time
correlation functions obtained from both classes of dynamics is made with the exact results for the
challenging model problems of the quartic and double-well potentials. It is found that these dynamics
provide a great improvement over the classical Wigner approximation, in which purely classical
dynamics are used. In a special case, our first method becomes identical to centroid molecular
dynamics. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922887]

I. INTRODUCTION

One of the main goals in quantum statistical mechanics is
the calculation of quantum time correlation functions, which
in the canonical ensemble takes the general form



Â(0)B̂(t)� = 1

Z
Tr

(
e−βĤ Â ei Ĥ t/~ B̂ e−i Ĥ t/~

)
, (1)

Z being the partition function and β the inverse temperature
1/kBT . The time correlation functions defined by Eq. (1) are
of pivotal interest since they are accessible by most experi-
mental spectroscopic techniques. For example, the dynamic
structure factor, which is measured by either inelastic x ray
or neutron scattering, the diffusion constant, and absorption
spectra are just some of the quantities that can be related to
quantum time correlation functions of the form of Eq. (1).
Unfortunately, to compute these quantities exactly, we must
either compute a full real time path-integral or solve the cor-
responding time-dependent Schrödinger equation, which is
not practical for most realistic systems due to the intense
computational load. In order to overcome this difficulty, it is
desirable to develop approximate quantum methods which are
as accurate and efficient as possible, and therefore enable the
practical evaluation of Eq. (1). To date, there exists multiple
approximation schemes including the Classical Wigner (CW)
approximation,1–3 Centroid Molecular Dynamics (CMD),4 as
well as Ring-Polymer Molecular Dynamics (RPMD)5 in which
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semi-classical methods are used to calculate quantum time
correlation functions approximately.

While all of these methods provide relatively accurate
and practical approximations to Eq. (1), each has their own
downfalls. For example, while both CMD and RPMD have
been shown to be exact in the harmonic, high temperature, and
short time limits, both of these methods begin to break down
for correlation functions involving non-linear operators.4–6 In
addition, the intrinsic dynamics of the ring-polymer in RPMD
can introduce artificial frequencies in the spectrum of the corre-
lation function, which become especially problematic when
simulating absorption spectra.7 On the other hand, the CW
approximation is also exact in the harmonic, high temperature,
and short time limits, even for correlation functions involving
non-linear operators.1,8 However, the CW approximation does
not, in general, correctly produce time invariant thermody-
namic properties of thermal equilibrium systems. Explicitly,
for Â = 1, the exact quantum expression in Eq. (1) has the
property that

⟨B̂(t)⟩ = ⟨B̂(0)⟩. (2)

This is however generally not true for the CW approximation
due to the classical dynamics used. While both CMD and
RPMD also use a form of classical dynamics, these methods
are able to retain the desirable property in Eq. (2) of the
exact quantum time correlation function because the form
of classical dynamics used in these methods conserves the
initial quantum ensemble, while the purely classical dynamics
used in the CW approximation do not. Recently, Liu and
Miller8–10 have proposed a route to remedy this downfall of
the CW approximation by replacing the classical propagation
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of the initial phase space distribution with a form of dy-
namics that conserves the initial quantum ensemble. Simi-
larly, we set out to present a simple form of dynamics which
conserve the ensemble and can be used to improve upon the
Feynman-Kleinert (FK) implementation of the CW approxi-
mation known as the Feynman-Kleinert linearized path-inte-
gral (FK-LPI)1 method.

This paper is organized as follows: An introduction to the
CW approximation and the FK approximation of the density
operator is presented in Secs. II and III. In Sec. IV, we present
the main idea of how to extend the FK-LPI dynamics scheme
so as to conserve the ensemble. We then present two different
classes of ensemble conserving dynamics in detail in Secs. V
and VI. In Sec. VII, we apply these dynamics within the CW
approximation for both the quartic and double-well potentials,
and a comparison with the exact quantum time correlation
function, as well as RPMD, CMD, and FK-LPI is made. The
conclusions are presented in Sec. VIII.

II. CLASSICAL WIGNER APPROXIMATION

The CW1–3 expression for a general quantum time corre-
lation function of a system in one dimension is given by



Â(0)B̂(t)� ≈ 1

Z 2π~

 ∞

−∞
dpdq[e−βĤ Â]W(q,p)

× [B̂]W(qt,pt), (3)

where (qt,pt) are coordinates in the classically evolved quan-
tum phase space, (q,p) being the coordinates of the initial
quantum distribution, and the Wigner transform of a general
operator Ĉ is given by

[Ĉ]W(q,p) ≡
 ∞

−∞
dηe−i pη/~


q +

η

2
�
Ĉ
�
q − η

2


. (4)

The CW approximation can be shown to follow not only
from a path linearization approximation implemented within
the semiclassical initial value representation (SC-IVR) of the
propagator2 but also from a linearization of the action differ-
ence between the forward-backward time paths in the cor-
responding exact path-integral expression for a general time
correlation function.1,11 Furthermore, the CW approximation
is exact in the limit that t → 0 since in this limit Eq. (3) reduces
to the Wigner representation of ⟨ÂB̂⟩.

In fact, the CW approximation can be conjectured from the
exact Wigner representation of the quantum time correlation
function given by



Â(0)B̂(t)� = 1

Z 2π~

 ∞

−∞
dpdq[e−βĤ Â]W(q,p)

× [B̂(t)]W(q,p) (5)

since this approximation simply amounts to replacing the exact
quantum evolution of B̂(t) = ei Ĥ t/~ B̂ e−i Ĥ t/~with the classical
evolution of the quantum phase space such that

[B̂(t)]W(q,p) → [B̂]W(qt,pt). (6)

However, the classical evolution of the quantum phase space
does not, in general, conserve the initial quantum phase space
distribution, which results in thermodynamic properties of

equilibrium systems being, incorrectly, time dependent. Liu
and Miller8–10 have proposed a route to remedy this downfall
of the CW approximation by replacing the classical propa-
gation of the initial phase space distribution with a form of
dynamics that preserves the time invariance of thermodynamic
properties, such that ⟨B̂(t)⟩ = ⟨B̂(0)⟩ in accord with the exact
correlation function. As we show in Secs. V and VI, the CW
expression in Eq. (3) can be made to share this property, if
we use the FK approximation to the density operator and tie
the dynamics of the phase-space points (qt,pt) to the evolving
centroid variables in the FK model. We present two classes of
dynamics in Secs. V and VI that preserve the ensemble and can
therefore be used to improve the CW approximation.

III. FEYNMAN-KLEINERT DENSITY OPERATOR

Regardless of the dynamics used, the first step in invoking
the CW approximation is obtaining the corresponding matrix
elements of the Boltzmann operator since the Wigner trans-
form of e−βĤ Â is required. As in the FK-LPI method, we
accomplish this by combining the effective frequency varia-
tional theory of Feynman12 and Kleinert13 with the quasiden-
sity operator formalism of Jang and Voth.14 This FK approx-
imation to the Boltzmann operator enables one to obtain an
analytical expression for the Wigner transform of e−βĤ Â
which in turn allows for an efficient numerical evaluation of
the CW approximation. The FK approximation of the density
operator is exact in the harmonic and high temperature limits.
Furthermore, the FK approximation to e−βĤ gives the best
local harmonic approximation to the systems’ free energy and
has been shown to be very accurate.1,15–19

The FK approximation for e−βĤ in one dimension is given
by

e−βĤ ≈
 ∞

−∞
dxc dpc ρFK(xc,pc) δ̂FK(xc,pc), (7)

where (xc,pc) are the classical centroid phase space variables
describing the average position and momentum of a particle
during thermal time β~ and are defined as

xc ≡
1
β~

 β~

0
dτ x(τ), pc ≡

1
β~

 β~

0
dτ p(τ). (8)

The FK approximation to the centroid phase space density
ρFK(xc,pc) is given by

ρFK(xc,pc) = 1
2π~

exp

−β

(
p2
c

2m
+W1(xc)

)
, (9)

W1(xc) being the FK approximation to the centroid potential.
The effective frequency quasidensity operator δ̂FK(xc,pc) is

δ̂FK(xc,pc)

=


mΩ(xc)
π~α(xc)

 ∞

−∞
dx dx ′ |x ′⟩ ⟨x |

× exp



i
pc
~

(x ′ − x) − mΩ(xc)
~α(xc)

(
x ′ + x

2
− xc

)2


× exp

−mΩ(xc)α(xc)

4~
(x ′ − x)2


, (10)
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where the centroid dependent variational effective frequency
Ω(xc) is determined from the local curvature of the system’s
Gaussian smeared potential and is given by

Ω
2(xc) = 1

m


∂2Va2(xc)

∂x2
c



a2=a2(xc)
. (11)

The smeared potential, Va2(xc), which accounts for quantum-
statistical path fluctuations is given by

Va2(xc) =


1
2πa2

 ∞

−∞
dy V (y) exp


− (y − xc)2

2a2


, (12)

the smearing width a2(xc) being

a2(xc) = 1
mβΩ2(xc)

(
β~Ω(xc)

2
coth

(
β~Ω(xc)

2

)
− 1

)
, (13)

which measures the importance of quantum fluctuations
around the classical-like position xc. In Eq. (10), α(xc) is
related to the smearing width a2(xc) by

α(xc) = 2mΩ(xc)a2(xc)
~

= coth
(
β~Ω(xc)

2

)
− 2

β~Ω(xc) .
(14)

Note that when using Eq. (11) to determine the effective fre-
quency Ω(xc), the derivative is taken while treating a2(xc) as
a constant. Furthermore, by using Eqs. (11) and (12), one can
write the explicit form thatΩ2(xc) takes in terms of a2(xc), and
it is given by

Ω
2(xc) = 1

m


1

2πa2(xc)
 ∞

−∞
dy

∂2V (y + xc)
∂x2

c

× exp

− y2

2a2(xc)

. (15)

Once Ω(xc) is determined by solving Eqs. (13) and (15)
iteratively, the FK approximation to the centroid potential
W1(xc) is given by

W1(xc) = 1
β

ln



sinh
(
β~Ω(xc)

2

)
β~Ω(xc)

2



+ Va2(xc)

− 1
2

mΩ2(xc)a2(xc). (16)

Using this FK approximation of the density operator, the
Wigner distribution function, [e−βĤ]W(q,p), takes the form

[e−βĤ]W(q,p) =


dxcdpc ρFK(xc,pc)[δ̂FK]W(q,p), (17)

where the Wigner transform of the QDO is written explicitly
as

[δ̂FK]W(q,p) = 2
α

exp

−mΩ
~α

(q − xc)2 − (p − pc)2
m~Ωα


. (18)

IV. A NEW PRINCIPLE THAT PRESERVES
THE CANONICAL ENSEMBLE UNDER
PROPAGATION—AN INTUITIVE PICTURE

As it turns out, there are multiple ways of generating dy-
namics that conserve the initial quantum ensemble and can be

used to evaluate the CW approximation. For example, Liu and
Miller9 proposed a clever way of generating ensemble conserv-
ing dynamics by making an analogy to Liouville’s theorem in
classical mechanics and set

d
dt
[e−βĤ]W(qt,pt) = 0 (19)

and then proceed to generate the dynamics from this relation
by choosing

q̇t =
pt
m

(20)

from which it will follow that the effective force will be given
by

ṗt = −
∂Ve f f (qt,pt)

∂qt

= − pt
m

∂

∂qt
[e−βĤ]W(qt,pt) / ∂

∂pt
[e−βĤ]W(qt,pt). (21)

However, if one takes this equilibrium Liouville dynamics9

route for the FK approximation of the Wigner distribution
function then, as shown in Ref. 21, the dynamics involve an
integration over the centroid distribution at each time step,
which adds a significant computational load.

The main result of this paper is two new ensemble conserv-
ing extensions of the original FK-LPI method that indeed
are computationally efficient. Before considering the detailed
derivations of them, which involve some algebra, we pres-
ent here the simplest of them, the Feynman-Kleinert Quasi-
Classical Wigner method 1: FK-QCW(1) and leave the finer
mathematical details for later.

We first consider why the original FK-LPI method con-
serves the canonical ensemble under time propagation in the
case of a globally harmonic potential but fails to do so more
generally. Understanding this problem guides us in formulat-
ing a corrected form of quantum dynamics that has the property
that it always conserves the ensemble.

In the original formulation, the FK-LPI propagation of
the Wigner distribution of the Boltzmann operator proceeds
as follows. The centroids (xc,pc) are sampled as classical-
like variables and used for constructing a set of “local” quasi-
density operators (QDOs). The Wigner transform of these
operators [δ̂FK(xc,pc)]W(q,p) is local Gaussian functions and
they sum up to the global FK Boltzmann Wigner distribution
(see Eq. (17)). Each of the [δ̂FK(xc,pc)]W(q,p) provides a
means to sample locally to obtain a set of phase-space points
(x,p), and each point is then driven forward independently
by classical dynamics. In Figure 1, we illustrate how four
such points, sampled from a local QDO Wigner distribution
[δ̂FK(x ′,p′)]W(q,p) centered at (x ′,p′), are propagated.

By sampling and propagating a sufficient number of (x,p)
points, the whole QDO Wigner distribution can be time-
evolved (see Figure 1). From the evolved positions of the (x,p)
points, a new centroid position (x ′′,p′′) can be calculated. For
harmonic systems, where the classical propagation is exact,
the propagated QDO Wigner distribution is easily shown to
retain its shape around the centroid position as time evolves.
We note that for a globally harmonic potential, in the set of
initial FK QDO Wigner distributions {[δ̂FK(xc,pc)]W(q,p)},
all members have the same shape. It therefore follows that a
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FIG. 1. Dynamics of a QDO Wigner distribution for a globally harmonic
potential. The coloured contours on the initial QDO Wigner distributions
represent points in phase-space that are equally important when sampled from
that QDO Wigner distribution (the coloured rings should be infinitesimally
narrow and infinitely many but here we only draw three for ease of visual-
ization). After a time t, the four points marked as yellow dots have moved to
new positions governed by classical dynamics. When these points are used for
reconstructing the time-developed QDO Wigner distribution, it has a shape
that is identical to the original QDO Wigner distribution.

time-evolved QDO Wigner distribution, which is now centred
at (x ′′,p′′) is simply equal to [δ̂FK(x ′′,p′′)]W(q,p), i.e., it
is equal to the original FK QDO Wigner function that was
centred at (x ′′,p′′) at the initial time. Moreover, the statis-
tical weight associated with the centroid position, i.e.,
exp


−β

(
p2
c

2m +W1(xc)
)

(see Eq. (9)) is identical when eval-
uated for (xc,pc) = (x ′,p′) and (xc,pc) = (x ′′,p′′). The propa-
gated QDO Wigner function is, therefore, not only still a FK
QDO Wigner function from the original set but also of equal
weight as the one that at the initial time was associated with
(x ′′,p′′). Hence, the ensemble is conserved. We will refer to
this property—that a propagated QDO Wigner distribution
replaces one from the initial time with a QDO Wigner distri-
bution with identical shape and weight—as a replacement
mapping. This property holds for classical dynamics and glob-
ally harmonic potentials but need not for other potentials (see
Figure 2). Therefore, in general, the FK approximation to the
canonical ensemble is not conserved under classical dynamics.

FIG. 2. Dynamics of a QDO Wigner distribution for a general potential.
The coloured contours on the QDO Wigner distributions represent points in
phase-space that are equally important when sampled from that QDO Wigner
distribution (the coloured rings should be infinitesimally narrow and infinitely
many but here we only draw three for ease of visualization). After a time t,
the sampled points do not add up to the FK QDO Wigner distribution that was
originally centred at (x′′, p′′).

Our new algorithm FK-QCW(1) is designed specifically so
that replacement mapping holds for a general potential.

In FK-QCW(1), the centroids, rather than the individual
(x,p) phase space points, are driven forward in time and this
is done by centroid molecular dynamics using the Feynman-
Kleinert centroid potential W1(xc). The motion of the phase-
space points (x,p) is determined relative to their centroid. Note
that the dynamics of the centroid point do not depend on the
dynamics of the (x,p) phase-space points that evolve around it.
The relative motion is chosen as harmonic, and as frequency,
we pick the effective FK frequency Ω(xc). Nevertheless, as
in the original FK-LPI method, the direct application of this
idea will not lead to conservation of the ensemble since the FK
effective harmonic frequencies depend on the centroid position
(x ′′,p′′). Figure 2 still applies. However, it turns out that by
performing the relative dynamics in dimensionless coordinates
defined in terms of the local effective frequencies, all FK QDO
Wigner functions will have an identical shape, and (see below)
the equations of motion solved in these scaled coordinates
introduce the replacement mapping of the FK QDOs. Hence,
with a position-dependent scaling of the coordinates, we can
recover ensemble conservation.

V. THE FEYNMAN-KLEINERT QUASI-CLASSICAL
WIGNER METHOD: FK-QCW(1)

The FK approximation to the canonical ensemble average
of an operator B̂ is



B̂
�
=


dxcdpcρFK(xc,pc)

×


dqdp
2π~

[δ̂FK(xc,pc)]W(q,p)(B̂)W[q,p]. (22)

The phase-space points (q,p) may be used as starting points
for trajectories, propagated by, e.g., classical dynamics, as in
the classical Wigner model or by some other form of dy-
namics. (q,p) is sampled “locally” from a QDO Wigner func-
tion [δ̂FK(xc,pc)]W(q,p). Depending on the dynamics, the
ensemble average



B̂(t)� may or may not be time-dependent,

and it becomes



B̂(t)� =


dxcdpcρFK(xc,pc)

×


dqdp
2π~

[δ̂FK(xc,pc)]W(q,p)(B̂)W[qt,pt]. (23)

In passing, we notice that it is important to always keep
(qt,pt) in the inner integral, as we will in a moment let (qt,pt)
depend on the centroids (xc,pc) of the QDO Wigner function
it was sampled from. We will find a criterium for (qt,pt) so
that



B̂(t)� = 


B̂
�

for an arbitrary operator B̂, whereby the
ensemble is conserved. As discussed in Sec. IV, we will let
the centroids (xc,pc) of the QDO Wigner functions evolve by
centroid molecular dynamics, i.e.,

ẋc(t) = pc(t)
m

, (24)

ṗc(t) = −∂W1(xc(t))
∂xc(t) (25)
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and formulate the motion of (qt,pt) relative to (xc(t),pc(t)). In
the following, we abbreviate δ̂FK(t) ≡ δ̂FK(xc(t),pc(t)). Let
us establish a requirement on the dynamics of the unknown
(qt,pt) trajectories if they are to conserve the ensemble. As
shown in Appendix A, if the trajectories (qt,pt) do not cross,
then Eq. (22) can be written equivalently by virtue of the multi-
dimensional change-of-variables theorem20 as



B̂
�
=


dxcdpc

dqdp
2π~

�
J(qt,pt)

�
ρFK(xc(t),pc(t))

× [δ̂FK(t)]W(qt,pt)(B̂)W[qt,pt], (26)

where J(qt,pt) is the Jacobian pertaining to the coordinate trans-
form from old (q,p) to propagated coordinates (qt,pt),

J(qt,pt) = det
*....
,

∂qt
∂q

∂qt
∂p

∂pt
∂q

∂pt
∂p

+////
-

, (27)

see Appendix A. Taking the time-derivative of ρFK(xc(t),
pc(t)) and using Eqs. (24) and (25), it follows that ρFK(xc(t),
pc(t)) = ρFK(xc,pc). Then, Eq. (26) may be written as



B̂
�
=


dxcdpcρFK(xc,pc) ×


dqdp
2π~

�
J(qt,pt)

�

× [δ̂FK(t)]W(qt,pt)(B̂)W[qt,pt]. (28)

Thus, Eqs. (22) and (23) are equal if
�
J(qt,pt)

� [δ̂FK(t)]W(qt,pt) = [δ̂FK(0)]W(q,p). (29)

If Eq. (29) is satisfied, then the FK ensemble will be invariant
under time-propagation of the (qt,pt) trajectories. The Jaco-
bian in Eq. (27) is explicitly given by9

�
J(qt,pt)

�
= exp(

 t

0

∂q̇t
∂qt
+
∂ ṗt
∂pt

dt). (30)

As we now show, we are able to find a set of dynamics
that fulfil this relation and therefore is guaranteed to conserve
the ensemble. This is accomplished by working in terms of the
dimensionless relative coordinates

q̃(t) ≡


mΩt

~αt
(qt − xc(t)) ,

p̃(t) ≡


1
m~Ωtαt

(pt − pc(t))
(31)

in which the Wigner transformed QDO takes the simple form

[δ̂FK(t)]W(qt,pt) = 2
αt

exp(−q̃(t)2 − p̃(t)2), (32)

and, as shown in Appendix B, the Jacobian in Eq. (30) takes
the form

�
J(qt,pt)

�
= exp

( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

)
αt

α0
. (33)

Thus, using these relations in Eq. (29), we see that the ensemble
will be conserved as long as the dynamics fulfil

exp
( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

)
exp(−q̃(t)2 − p̃(t)2)

= exp(−q̃(0)2 − p̃(0)2). (34)

Therefore, if we require the dynamics to satisfy

exp(−q̃(t)2 − p̃(t)2) = exp(−q̃(0)2 − p̃(0)2) (35)

or equivalently

q̃(t) ˙̃q(t) + p̃(t) ˙̃p(t) = 0 (36)

and furthermore require

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) = 0, (37)

then the ensemble will be conserved.
This then gives us two conditions that must be met. How-

ever, it does not give us a way to generate dynamics without
first assuming a form for either ˙̃q(t) or ˙̃p(t). Therefore, to guide
us in this matter, we look to the harmonic limit in which Ω is
constant and the exact dynamics of the centroid and quantum
phase space variables are given by their corresponding clas-
sical equations. In this limit, it is straightforward to show that
the exact relation for ˙̃q(t) is

˙̃q(t) = Ωp̃(t). (38)

Thus, assuming this harmonic form and furthermore introduc-
ing an arbitrary frequency function f such that for a general
potential, ˙̃q(t) takes the form

˙̃q(t) = f p̃(t), (39)

then from the condition in Eq. (36), we have that

˙̃p(t) = − f q̃(t). (40)

Furthermore, the second condition in Eq. (37) that must be met
for these dynamics to conserve the ensemble is

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) =

∂ f
∂q̃(t) p̃(t) − ∂ f

∂ p̃(t) q̃(t) = 0. (41)

However, by using Eq. (31), we can make a change of variables
for the partial derivatives and this condition can be equivalently
written as 

~αt

mΩt

∂ f
∂qt

p̃(t) − 
m~Ωtαt

∂ f
∂pt

q̃(t) = 0, (42)

which we recognize is always satisfied as long as our arbitrary
function f does not depend on qt or pt. Therefore, the dynamics
of the general form

˙̃q(t) = f (xc(t),pc(t)) p̃(t),
˙̃p(t) = − f (xc(t),pc(t)) q̃(t) (43)

are guaranteed to conserve the ensemble since they fulfill the
relation in Eq. (34) and therefore Eq. (29). Furthermore, using
Eq. (31), these dynamics can be written explicitly in terms of
the quantum phase space variables as

q̇t = ẋc(t) + f
mΩt

(pt − pc(t)) − 1
2
(qt − xc(t)) d

dt
ln

(
Ωt

αt

)
,

ṗt = ṗc(t) − f mΩt (qt − xc(t))

+
1
2
(pt − pc(t)) d

dt
ln (Ωtαt)

(44)
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from which one can show that the determinant of the Jacobian
matrix is given by

�
J(qt,pt)

�
=

αt

α0
. (45)

Therefore, since we are able to introduce an arbitrary
function f (xc(t),pc(t)) into the dynamics, we have found an
entire class of dynamics that conserves the ensemble and can
be used within the CW expression for the time correlation
function. Furthermore, the direct propagation of the (qt,pt)
variables through the dynamics in Eq. (44) is not necessary due
to the fact that once the dimensionless and centroid variables
have been propagated according to Eqs. (43), (24), and (25),
respectively, we can obtain the instantaneous quantum phase
space variables through

qt =


~αt

mΩt
q̃(t) + xc(t),

pt =


m~Ωtαt p̃(t) + pc(t),
(46)

which is the inversion of Eq. (31). Note also that the multi-di-
mensional generalization of this method is relatively straight-
forward since it amounts to propagating the dimensionless
relative coordinates through the same dynamics in Eq. (43),
only now written in terms of the mass-weighted normal mode
coordinates defined in Ref. 1.

There is one clear drawback to the entire class of dynamics
since the momentum becomes imaginary when the FK effec-
tive frequency takes on imaginary values. Explicitly, when
Ω2

t < 0, the Ωtαt term in Eq. (46) becomes negative, which
does not allow us to transform from p̃(t) to pt. Thus, there
exists a limitation in these dynamics; since in order to use them
for barriers, one must adopt the convention to set pt = pc(t),
which is the limiting value of pt for Ωt → 0, as seen from
Eq. (46). While this convention does not present a problem
when used within the CW expression for the time correlation
of linear operators, it would be desirable to have a similar
method that conserves the ensemble and is also able to handle
imaginary frequencies in a robust way. This is the motivation
for an additional class of dynamics which are presented in
Sec. VI. We also note that, as we show in Appendix C, the
entire class of dynamics described above when used within the
CW approximation for the Kubo-transformed time-correlation
function reduces to CMD for linear operators.

We next consider which form of the f function that is
appropriate.

A. Harmonic limit

Although a whole class of dynamics exists which conserve
the initial quantum ensemble, one can easily conjecture that
only a subset of these would actually be useful and pro-
vide a reasonable approximation to the real quantum dy-
namics. Therefore, we now provide a way to tailor the gen-
eral frequency function introduced into the dynamics such
that we recover exact quantum dynamics in the harmonic
limit.

For a harmonic potential, Ωt and αt are simply constants.
Furthermore, as we alluded to in Eq. (38), the exact dynamics

of the dimensionless variables in Eq. (31) in the harmonic limit
take the form

˙̃q(t) = Ωp̃(t),
˙̃p(t) = −Ωq̃(t), (47)

which is easily shown by using the fact that the exact dynamics
of the centroid and quantum phase space variables are given
by their corresponding classical equations. Therefore, if we
choose for our arbitrary function in the dynamics of Eq. (43),
the FK effective frequency

f (xc(t)) = Ω(xc(t)), (48)

then these dynamics will be exact in the harmonic limit since in
this limit Ω(xc(t)) → Ω. Furthermore, since the CW approxi-
mation is exact in this limit, the time correlation function will
also be exact.

B. Classical and high temperature limits

In both the classical (~ → 0) and high temperature (β
→ 0) limits, it is easy to show from Eq. (46) that qt and pt
become fixed at xc(t) and pc(t), respectively. Furthermore,
the centroid equations of motion reduce to the correspond-
ing classical equations of motion since the smearing width
a2(xc(t)) → 0 in both of these limits. Using these properties,
it is straightforward to show that when the FK approximation
to the density operator is used, the CW expression for the
time correlation function in Eq. (3) reduces to the correspond-
ing classical expression. Thus, the entire class of dynamics
in Eq. (43) is able to recover both the classical and high
temperature limits of the quantum time correlation function
exactly.

C. Low temperature limit

At low temperatures, the centroid distribution in Eq. (9)
singles out pc = 0 as well as the xc value corresponding to the
global minimum of the centroid potential W1(xc), denoted xm

c .
Therefore, from Eqs. (24) and (25), we have that (xc(t),pc(t))
will be fixed at (xm

c ,0), and the dynamics of Eq. (44) reduce to

q̇t =
pt
m

f (xm
c ,0)

Ω(xm
c ) ,

ṗt = −m f (xm
c ,0)Ω(xm

c ) (qt − xm
c ) .

(49)

Furthermore, as discussed in Refs. 12 and 13, in the low
temperature limit, ~Ω(xm

c ) provides an approximation to the
energy difference between the ground and first excited states.
Thus, choosing for the dynamics, the FK effective frequency
f = Ω(xc(t)), we have in the low temperature limit that f
→ Ω(xm

c ) and the solution to Eq. (49) is

qt = xm
c + (q − xm

c ) cos(Ω(xm
c )t) + p

mΩ(xm
c ) sin(Ω(xm

c )t),
pt = p cos(Ω(xm

c )t) − mΩ(xm
c ) (q − xm

c ) sin(Ω(xm
c )t).

(50)

Therefore, since in the low temperature limit, the exact dy-
namics are dominated by the ground and first excited states,
then, similar to CMD,22 this method produces coherent quan-
tum dynamics in this limit when the FK effective frequency is
used in the dynamics.



244112-7 Smith et al. J. Chem. Phys. 142, 244112 (2015)

VI. AN ADDITIONAL FEYNMAN-KLEINERT
QUASI-CLASSICAL WIGNER METHOD: FK-QCW(2)

The imaginary frequency problem encountered in the dy-
namics of Sec. V occurs because the Ωtαt factor in Eq. (31)
becomes negative for imaginary frequencies. Looking back
at how we defined the dimensionless variables, we see that
the root of this problem is the exp{−(pt − pc(t))2/m~Ωtαt}
factor contained within the FK Wigner distribution function in
Eq. (18), which in addition becomes divergent for imaginary
frequencies. However, the FK Wigner distribution function is
Gaussian in the centroid momentum, and after integrating this
variable out, it takes the form

[e−βĤ]W(q,p) =


dxcρFK(xc)

×


8πm tanh( β~Ω0

2 )
βα0

ρ̃(xc,q,p), (51)

where we have defined

ρFK(xc) ≡ 1
2π~

exp {−βW1(xc)} (52)

and

ρ̃(xc,q,p) ≡ exp

−mΩ0

~α0
(q − xc)2


exp



−

tanh( β~Ω0
2 )

m~Ω0
p2


.

(53)

One can show that this form is well defined for imaginary
frequencies as long as |Ω0| < π/~β.

As we now show, we are able to use this form to find
another class of ensemble conserving dynamics that are well
defined for this range of imaginary frequencies. This is accom-
plished by multiplying Eq. (51) by

1 =


β

2πm


dpc exp


−βp2

c

2m


, (54)

after which we obtain

[e−βĤ]W(q,p) =


dxcdpcρFK(xc,pc)

×


4 tanh( β~Ω0

2 )
α0

ρ̃(xc,q,p). (55)

We may use this expression for calculating the time-
independent ensemble average of an operator B̂,



B̂
�
=


dxcdpcρFK(xc,pc) ×


4 tanh( β~Ω0

2 )
α0

×


dqdp
2π~

ρ(xc,q,p)(B̂)W[q,p]. (56)

Similarly as in Sec. V, we may perform a change of inte-
gration variables in this equation, by appealing to the multi-
dimensional change of variables theorem, see Appendix A.
Equation (56) then becomes



B̂
�
=


dxcdpcρFK(xc(t),pc(t))


4 tanh( β~Ωt2 )

αt

×


dqdp
2π~

�
J(qt,pt)

�
ρ(xc(t),qt,pt)(B̂)W[qt,pt], (57)

where the Jacobian is again given by Eq. (27). As noticed
before, ρFK(xc(t),pc(t)) = ρFK(xc,pc) and so we arrive at



B̂
�
=


dxcdpcρFK(xc,pc)


4 tanh( β~Ωt2 )

αt

×


dqdp
2π~

�
J(qt,pt)

�
ρ(xc(t),qt,pt)(B̂)W[qt,pt]. (58)

We may also write the possibly time-dependent ensemble
average of B̂ using the propagated trajectories (qt,pt) as



B̂(t)� =


dxcdpcρFK(xc,pc)


4 tanh( β~Ω0

2 )
α0

×


dqdp
2π~

ρ(xc,q,p)(B̂)W[qt,pt]. (59)

If Eq. (59) is identical to Eq. (58), then the canonical ensemble
is “conserved” under time-propagation. Comparing these
equations, we see that this is the case, if

4 tanh( β~Ωt2 )
αt

�
J(qt,pt)

�
ρ(xc(t),qt,pt)

=


4 tanh( β~Ω0

2 )
α0

ρ(xc,q,p). (60)

However, similar to our previous analysis in Sec. V, this
condition for the dynamics to conserve the ensemble can be
greatly simplified by working in new dimensionless coordi-
nates defined as

q̃(t) ≡


mΩt

~αt
(qt − xc(t)) ,

p̃(t) ≡


tanh( β~Ωt2 )
m~Ωt

pt,

(61)

so that

ρ̃(xc(t),qt,pt) ≡ ρ̃(q̃(t), p̃(t)) = exp
�
−q̃(t)2 − p̃(t)2� . (62)

Furthermore, one can show, by using an argument similar to
that in Appendix B, that the absolute value of the Jacobian in
terms of these new dimensionless coordinates takes the form

�
J(qt,pt)

�
= exp

( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

) 
αt tanh( β~Ω0

2 )
α0 tanh( β~Ωt2 ) .

(63)

Therefore, using these relations in Eq. (60), we have that the
ensemble will be conserved as long as these new dynamics
fulfil

exp
( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

)
exp(−q̃(t)2 − p̃(t)2)

= exp(−q̃(0)2 − p̃(0)2), (64)

which we recognize is the same condition as in Eq. (34), only
now written in terms of these new dimensionless variables.
Therefore, as long as these new dynamics simultaneously fulfil

q̃(t) ˙̃q(t) + p̃(t) ˙̃p(t) = 0 (65)
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and

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) = 0, (66)

the ensemble will be conserved.
Thus, after assuming the same harmonic like form of ˙̃q(t)

as in Sec. V, one can show that these two conditions determine
these new dynamics as

˙̃q(t) = f (xc(t)) p̃(t),
˙̃p(t) = − f (xc(t)) q̃(t), (67)

where now q̃(t) and p̃(t) are given by Eq. (61). Furthermore, by
using Eq. (61), these new dynamics can be written explicitly
in terms of the quantum phase space variables as

q̇t = ẋc(t) +
f

αt tanh( β~Ωt2 )

mΩt
pt

− 1
2
(qt − xc(t)) d

dt
ln

(
Ωt

αt

) ,

ṗt = −
f mΩt

αt tanh( β~Ωt2 )
(qt − xc(t))

− 1
2

pt
d
dt

ln *
,

tanh( β~Ωt2 )
Ωt

+
-

(68)

from which one can verify that the absolute value of the Jaco-
bian is given by

�
J(qt,pt)

�
=


αt tanh( β~Ω0

2 )
α0 tanh( β~Ωt2 ) . (69)

Thus, we have found another class of dynamics which
conserve the ensemble and can be used within the CW approxi-
mation of the quantum time correlation function. Furthermore,
the direct propagation of the (qt,pt) variables is again not
necessary for this new class of dynamics since the instanta-
neous quantum phase space variables can be obtained through

qt =


~αt

mΩt
q̃(t) + xc(t),

pt =


m~Ωt

tanh( β~Ωt2 ) p̃(t).
(70)

In addition, one can show from this relation that pt is real as
long as |Ωt | < π/~β and we are therefore able to use these
dynamics in the presence of barriers. Furthermore, by adopting
the same convention as FK-LPI1 in which we set pt = 0 for
frequencies outside of this range, we are able to apply this
method for imaginary frequencies as long as |Ωt | < 2π/~β,
which is the entire range where the FK approximation to the
thermal density operator is well defined. Thus, this new class of
dynamics allows us to handle imaginary frequencies in a robust
way. Similar to the dynamics in Sec. V, the multi-dimensional
generalization of this method is relatively straightforward
since it only amounts to propagating the dimensionless coor-
dinates written in terms of the mass-weighted normal mode
coordinates defined in Ref. 1 through the dynamics in Eq. (67).

A. Harmonic limit

In general, there does not exist a frequency function,
f (xc(t)), such that we are able to recover the harmonic limit
exactly for these dynamics. This hindrance can be traced back
to the way that we defined p̃(t), in which pc(t) is absent. How-
ever, if one chooses for the frequency function the FK effective
frequency f = Ωt, then one can show that in the harmonic limit
these dynamics used within the CW approximation give for the
position autocorrelation function

⟨x̂(0)x̂(t)⟩ = ~

2mΩ


coth

(
β~Ω

2

)
cos(Ωt)

+ i


α tanh

(
β~Ω

2

)
sin(Ωt)


, (71)

while the exact expression is

⟨x̂(0)x̂(t)⟩exact =
~

2mΩ


coth

(
β~Ω

2

)
cos(Ωt) + i sin(Ωt)


.

(72)

Thus, one sees that these dynamics correctly reproduce the
real part of the position autocorrelation function, but not the
imaginary part. In addition, one can show that

lim
T→0

α tanh
(
β~Ω

2

)
= 1 (73)

and

lim
T→∞

α tanh
(
β~Ω

2

)
= 0 (74)

such that Eq. (71) reduces to the exact expression in both the
high and low temperature limits.

B. Classical and high temperature limits

Using an argument similar to that presented in Sec. V B,
one can show that this entire class of dynamics produces the
correct classical and high temperature limits of the quantum
time correlation function for position dependent operators
when used within the CW approximation.

C. Low temperature limit

For low temperatures, the dynamics in Eq. (67) with f
= Ω(xc(t)) reduce to the same low temperature limit as Eq. (50)
in Sec. V C. Thus, it follows that when the FK effective fre-
quency is used in the dynamics of Eq. (67), one also obtains
coherent quantum dynamics in the low temperature limit that
approximate the exact dynamics.

VII. APPLICATION TO MODEL PROBLEMS

As we have shown, the CW approximation in Eq. (3)
evaluated with the dynamics of Secs. V and VI, which we term
FK-QCW(1) and FK-QCW(2), respectively, is able to recover
the exact classical and high temperature limits of the quantum
time correlation function. In addition, the FK-QCW(1) method
is able to recover the exact harmonic limit when the function
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f = Ωt is used in the dynamics. To find out how well these
dynamics perform outside of these limits, we compute the
quantum time correlation function of two challenging systems,
the quartic potential and the double-well potential, in which
quantum coherence effects are very important. However, since
the CW approximation in Eq. (3) lacks the phase information
necessary to capture these effects, the main goal of study-
ing these model problems is to see how FK-QCW(1) and
FK-QCW(2) compare to exact results and other approximate
methods over relatively short times. This is because ultimately
we would like to apply these dynamics to realistic condensed
phase systems, in which the coupling to the many degrees of
freedom quenches long time quantum coherence effects,1,23

and the behavior of the correlation function over relatively
short times is most important. To this end, we compute both
linear and non-linear correlation functions for these two model
systems using FK-QCW(1) and FK-QCW(2) and then provide
a comparison to the exact results, as well as to those obtained by
RPMD, CMD, and FK-LPI. It should be noted that the results
we present here can also be compared with those previously ob-
tained by Jang and Voth,4 Craig and Manolopoulos,5 and Liu.10

In all of the following simulations, we have used natural
units in which m = ~ = kB = 1. The quantum time correla-
tion function was evaluated using the FK-QCW(1) and FK-
QCW(2) methods by performing a molecular dynamics
simulation of the centroid variables, which are propagated
according to Eqs. (24) and (25). For each centroid trajec-
tory, 100 (q̃(0), p̃(0)) values were sampled according to the
Gaussian distribution exp(−q̃(0)2 − p̃(0)2). For FK-QCW(1)
(FK-QCW(2)), these dimensionless coordinates were then
propagated through Eq. (43) (Eq. (67)) and then by using
Eq. (46) (Eq. (70)) the instantaneous (qt,pt) values were
obtained. For all of the time correlation functions presented
in this section, we constructed the CW approximation of
⟨Â(0)B̂(t)⟩ in Eq. (3) by averaging over 50 000 consecutive
centroid trajectories, in which the centroid momentum was
resampled at the beginning of each trajectory and a time step

of 0.005 was used. To illustrate the applicability of multiple
sets of dynamics, we have performed the simulations using
two different frequency functions,

f1 = Ωt (75)

and

f2 =
Ωt

αt tanh( β~Ωt2 )
, (76)

where Ωt = Ω(xc(t)) is the FK effective frequency and f2 is a
temperature dependent effective frequency such that f2 ≥ Ωt,
and the equality is met in the limit that T → 0.

The evaluation of CMD using the FK approximation of
the density operator was accomplished by also performing a
molecular dynamics simulation of the centroid variables in
which the centroid momentum was resampled at the beginning
of each trajectory and a time step of 0.005 was used. The
Kubo transformed time correlation function was constructed
by averaging over 50 000 consecutive centroid trajectories. For
the implementation of RPMD, a molecular dynamics simula-
tion in the extended ring-polymer phase space was performed
in which we used n = 48 beads. At the beginning of each
trajectory, the momentum was resampled from the Boltzmann
distribution at an inverse temperature of β/n, and a time step of
0.005 was used. The Kubo transformed time correlation func-
tion was also constructed by averaging over 50 000 consec-
utive trajectories. For both RPMD and CMD, the standard
time correlation function was obtained from the Kubo trans-
formed quantity by inverse Fourier transforming the relation
in Eq. (C2).

A. The double-well potential

The first model system is the double-well potential in
which

V (x) = −1
2

x2 +
1

10
x4. (77)

FIG. 3. A representative trajectory for
the double well potential in Eq. (77)
for β = 8. Black line: xc(t); blue line:
qt from FK-LPI; and red line: qt from
FK-QCW(2) ( f =Ωt). The FK-LPI and
FK-QCW(2) dynamics were propa-
gated from the same initial conditions.
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FIG. 4. The real part of the autocor-
relation function for the double well
potential in Eq. (77) for β = 8. Black
points: exact; green dotted-dashed line:
RPMD; orange dotted-dashed line: FK-
CMD; gold line: FK-LPI; blue dashed
line: FK-QCW(1) ( f =Ωt); and ma-
genta dashed line: FK-QCW(2) ( f
=Ωt). The exact results were taken
from Ref. 4.

This system presents a very challenging case due to the
presence of a barrier, the maximum of the barrier being
located at x = 0. For imaginary frequencies encountered
within FK-QCW(1), we used the convention to set pt = pc(t).
For imaginary frequencies |Ω| ≥ π/~β encountered within
FK-QCW(2), we set pt = 0 which is the limiting value for
|Ωt | → π/~β in Eq. (70).

In Fig. 3, we present a representative trajectory that really
shows the differences between these new ensemble conserving
dynamics and the classical dynamics used within the normal
CW approximation. As seen, the coupling of the quantum
phase space to the time evolved centroid through the dy-
namics in Eq. (67) results in relative motion about the centroid.
Furthermore, one sees that when the initial momentum is not
enough to make it over the barrier for the classical dynamics,
a particle undergoing relative motion about the centroid is

essentially pulled over the barrier by the centroid, which
evolves on a smeared potential.

As seen in Fig. 4, for ⟨x̂(0)x̂(t)⟩ at β = 8, the exact dy-
namics exhibit significant coherent tunneling, and none of
the approximate methods are able to reproduce this behavior
since they all show significant dephasing. While FK-QCW(1)
and FK-QCW(2) give results comparable to RPMD, FK-CMD
penetrates the potential barrier the deepest of the approximate
methods. However, as we show in Appendix C, the entire
class of dynamics in FK-QCW(1) reduces to FK-CMD when
used in the expression for the Kubo transformed time corre-
lation function for linear operators. This then suggests that
there exists an advantage in obtaining the standard correlation
function from the Kubo transformed version when possible
(e.g., linear operators). In comparing FK-QCW(1) and FK-
QCW(2) to FK-LPI, one sees that even in this challenging case

FIG. 5. The real part of the autocor-
relation function for the double well
potential in Eq. (77) for β = 8. Black
points: exact; gold line: FK-LPI; blue
dashed line: FK-QCW(1) ( f =Ωt); ma-
genta dashed line: FK-QCW(2) ( f
=Ωt); and red line: FK-QCW(2) with
f given by Eq. (76). The exact results
were taken from Ref. 10.
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FIG. 6. The real part of the autocorre-
lation function for the quartic potential
in Eq. (78) for β = 8. Black points: ex-
act; green dotted-dashed line: RPMD;
orange dotted-dashed line: FK-CMD;
gold line: FK-LPI; blue dashed line:
FK-QCW(1) ( f =Ωt); and magenta
dashed line: FK-QCW(2) ( f =Ωt). The
exact results were taken from Ref. 4.

where none of the approximate methods are able to correctly
produce the behavior of the exact correlation function except
at very short times, the ensemble conserving dynamics used
within these two new methods improves the accuracy of the
CW approximation to significantly longer times.

Shown in Fig. 5 are the results for ⟨x̂2(0)x̂2(t)⟩ at β
= 8. Due to the non-linear operators, we did not apply RPMD
or FK-CMD for this correlation function. As seen, the use
of f1 = Ωt is able to produce somewhat coherent oscillations
which agree at least qualitatively with the exact results. How-
ever, the use of f2 in Eq. (76) results in a slightly higher
frequency in the correlation function that is closer to the
exact. Once again, in comparison to FK-LPI, it is evident
that these new dynamics extend the accuracy of the CW
approximation.

B. The quartic potential

The next model system we look at is the quartic potential
in which the potential energy takes the form

V (x) = 1
4

x4. (78)

This model system presents a challenging test case due to
the lack of a harmonic term. The results for ⟨x̂(0)x̂(t)⟩ at β
= 8 are shown in Fig. 6. As seen, both FK-QCW(1) and FK-
QCW(2) give essentially the same results for the linear corre-
lation function. Furthermore, both of these methods are able
to maintain coherent oscillations longer than RPMD, which
in comparison show significant dephasing. Out of all of the
approximate methods employed, FK-CMD seems to maintain
coherent oscillations the longest for this correlation function.

FIG. 7. The real part of the autocor-
relation function for the quartic poten-
tial in Eq. (78) for β = 8. Black points:
exact; gold line: FK-LPI; blue dashed
line: FK-QCW(1) ( f =Ωt); magenta
dashed line: FK-QCW(2) ( f =Ωt); and
red line: FK-QCW(2) with f given by
Eq. (76). The exact results were taken
from Ref. 10.
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This again suggest that there is an advantage in working with
the Kubo transformed correlation function, since FK-QCW(1)
and FK-CMD are equivalent for this quantity. In comparison
to FK-LPI, which is almost completely quenched after the first
oscillation, it is evident that these new ensemble conserving
dynamics extend the accuracy of the CW approximation to
much longer times.

Presented in Fig. 7 is ⟨x̂2(0)x̂2(t)⟩ at β = 8. Once again,
due to the limitations of RPMD and CMD for non-linear oper-
ators, neither of these methods were applied for this correlation
function. One notices in Fig. 7 that the use of f1 = Ωt in FK-
QCW(1) and FK-QCW(2) results in a slight frequency shift as
compared to the exact correlation function, while, similar to the
results in Fig. 5, the use of f2 in Eq. (76) results in a slightly
higher frequency which seems to corrects this. Furthermore,
while FK-QCW(1), FK-QCW(2), and FK-LPI are all very
accurate for short times, once again, the ensemble conserv-
ing dynamics used in FK-QCW(1) and FK-QCW(2) maintain
coherent oscillations much longer than FK-LPI, which suffers
from strong dephasing.

VIII. CONCLUSIONS

We have developed two classes of quasi-classical dy-
namics that have been shown to conserve the initial quantum
ensemble. When used within the CW approximation of the
quantum time correlation function, both classes produce the
exact classical and high temperature limits, and one set pro-
duces the exact harmonic limit (FK-QCW(1) with f = Ωt).
Although FK-QCW(1) and FK-QCW(2) were shown to fail
at capturing the long time quantum coherence effects for the
model potentials studied, overall, these dynamics maintain
coherent oscillations much longer than the classical dynamics
implemented within FK-LPI and therefore significantly extend
the accuracy of the CW approximation. Furthermore, the fact
that these new dynamics fail in this regard is not surprising
since they lack the phase information necessary to capture
these effects. However, this does not, in general, present a prob-
lem for realistic condensed phase systems since the coupling
to the many degrees of freedom acts as a bath that quenches
quantum coherence effects.1,23

The fact that these new dynamics were shown to be
comparable to both RPMD and CMD suggests that they
provide a potentially more appealing algorithm than these
methods, since one is not limited to correlation functions
involving linear operators. In addition, one will not encounter
artificial frequencies when using FK-QCW(1) or FK-QCW(2)
to simulate absorption spectra, as compared to RPMD7

(although thermostatted RPMD has recently been shown to
reduce this problem24). Furthermore, the practical application
of these two new methods to realistic condensed phase systems
is not out of reach since they present only a minimum amount
of additional computational load as compared to FK-LPI. This
potential will be realized in a forthcoming paper26 in which we
present the multidimensional generalization of these dynamics
and apply FK-QCW(2) for the determination of the dynamic
structure factor in low temperature liquid para-hydrogen and
ortho-deuterium and compare the results with those presented
in Ref. 19.
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APPENDIX A: THE MULTI-DIMENSIONAL CHANGE
OF VARIABLES THEOREM

Without loss of generality, we consider integration in two
dimensions. The multi-dimensional change of variables theo-
rem states the equality of the two integrals,20


A

dxdy f (x, y) =


B

dtdv f (x(t, v), y(t, v)) |J | , (A1)

where the absolute value of the Jacobian

J = det
*...
,

∂x
∂t

∂x
∂v

∂ y

∂t
∂ y

∂v

+///
-

(A2)

has been introduced. The regions of integration, A and B,
are related through the change-of-variables mapping (x(t, v),
y(t, v)), so that when (t, v) goes through B, A is produced:
A = {(x, y)|(x, y) = (x(t, v), y(t, v)), (t, v) ∈ B}. The theorem
holds when the mapping (x(t, v), y(t, v)) is one-to-one so that
|J | is non-zero. A well-known example is the mapping of
polar coordinates to Cartesian. If we write (t, v) = (r, θ), we
have x(r, θ) = r cos(θ), y(r, θ) = r sin(θ), and J = r . Thus, the
replacement becomes

*
,

x
y
+
-
→ *

,

r cos(θ)
r sin(θ)

+
-
. (A3)

Equations (26) and (57) can both be derived from the above
theorem. We only consider the derivation of Eq. (26) since
the procedure is the same. So let us derive Eq. (26) from
Eq. (22),



B̂
�
=


dxcdpcρFK(xc,pc)

×


dqdp
2π~

[δ̂FK(xc,pc)]W(q,p)(B̂)W[q,p]. (A4)

As will be evident, the proposed dynamics of (xc(t),pc(t),qt,
pt) are “reasonable,” meaning that trajectories do not cross. It
thus follows that the dynamics evolve in a one-to-one manner.
Then, the mapping defined by time-propagation

ϕt(x ′c,p′c,q′,p′) = (x ′c(t),p′c(t),q′t,p′t), (A5)

where x ′c(t) = x ′c(x ′c,p′c,q′,p′; t) and similarly for p′c(t), q′(t)
and p′(t), may be used for changing variables in Eq. (A4). Thus,
the replacement becomes

*.....
,

xc

pc
q
p

+/////
-

→
*.....
,

x ′c(t)
p′c(t)
q′(t)
p′(t)

+/////
-

. (A6)
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Substituting into Eq. (A4), we obtain


B̂
�
=


dx ′cdp′cρFK(x ′c(t),p′c(t))

×


dq′dp′

2π~
[δ̂FK(x ′c(t),p′c(t))]W

× (q′(t),p′(t))(B̂)W[q′(t),p′(t)] �Jϕt

�
, (A7)

where

Jϕt = det

*..............
,

∂x ′c(t)
∂x ′c

∂x ′c(t)
∂p′c

∂x ′c(t)
∂q′

∂x ′c(t)
∂p′

∂p′c(t)
∂x ′c

∂p′c(t)
∂p′c

∂p′c(t)
∂q′

∂p′c(t)
∂p′

∂q′t
∂x ′c

∂q′t
∂p′c

∂q′t
∂q′

∂q′t
∂p′

∂p′t
∂x ′c

∂p′t
∂p′c

∂p′t
∂q′

∂p′t
∂p′

+//////////////
-

(A8)

= det

*..............
,

∂x ′c(t)
∂x ′c

∂x ′c(t)
∂p′c

0 0

∂p′c(t)
∂x ′c

∂p′c(t)
∂p′c

0 0

∂q′t
∂x ′c

∂q′t
∂p′c

∂q′t
∂q′

∂q′t
∂p′

∂p′t
∂x ′c

∂p′t
∂p′c

∂p′t
∂q′

∂p′t
∂p′

+//////////////
-

. (A9)

The last equality follows from the fact that the centroid vari-
ables (x ′c(t),p′c(t)) are taken to evolve independently of the
(q′t,p′t). It is well-known that if A, B, and C are all n × n
matrices, then we may deduce for the determinant of the larger
2n × 2n matrix,

det(A 0
B C

) = det(A) det(C). (A10)

Thus, we have

�
Jϕt

�
=

���������

det
*...
,

∂x ′c(t)
∂x ′c

∂x ′c(t)
∂p′c

∂p′c(t)
∂x ′c

∂p′c(t)
∂p′c

+///
-

���������

���������

det
*...
,

∂q′t
∂q′

∂q′t
∂p′

∂p′t
∂q′

∂p′t
∂p′

+///
-

���������
≡
�
J(x′c(t),p′c(t))

� ���J(q′t,p′t)
��� =

���J(q′t,p′t)
��� . (A11)

The first Jacobian, J(x′c(t),p′c(t)), is unity since the centroid
variables fulfill Liouville’s theorem, i.e., by following the
centroid trajectories, the density of trajectories does not change
in time.25 Notice that J(q′t,p′t) depends on the centroid coor-
dinates since the phase-space points (q′t,p′t) will. Substituting
Eq. (A11) into Eq. (A7), we obtain Eq. (26) after removing the
prime on all integration variables.

APPENDIX B: DETERMINANT OF THE JACOBIAN
MATRIX IN TERMS OF THE DIMENSIONLESS
COORDINATES

The dimensionless coordinates in Eq. (31) can be written
as

q̃(t) ≡ γt (qt − xc(t)) ,
p̃(t) ≡ ζt (pt − pc(t)) , (B1)

where

γt ≡


mΩt

~αt
,

ζt ≡


1

m~Ωtαt
.

(B2)

Furthermore, by taking the time derivative of Eq. (B1) and rear-
ranging terms, one can show that in terms of these coordinates

q̇t = ẋc(t) +
˙̃q(t)
γt
− γ̇t

γ2
t

q̃(t),

ṗt = ṗc(t) +
˙̃p(t)
ζt
− ζ̇t

ζ2
t

p̃(t).
(B3)

In addition, by using the fact that (xc(t),pc(t)) is independent
of (qt,pt) since the centroid variables evolve according to
the classical like dynamics in Eqs. (24) and (25), then from
Eq. (B1), we have that

∂

∂qt
= γt

∂

∂q̃(t) ,
∂

∂pt
= ζt

∂

∂ p̃(t) .
(B4)

Therefore, using Eqs. (B3) and (B4), one has that

∂q̇t
∂qt
+
∂ ṗt
∂pt
=

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) −

γ̇t
γt
− ζ̇t

ζt
, (B5)

such that
�
J(qt,pt)

�
in terms of these coordinates takes the form

�
J(qt,pt)

�
= exp

( t

0

∂q̇t
∂qt
+
∂ ṗt
∂pt

dt
)

= exp
( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) −

γ̇t
γt
− ζ̇t

ζt
dt

)
. (B6)

Part of this expression can be explicitly integrated to give

�
J(qt,pt)

�
= exp

( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

)
γ0ζ0

γtζt
, (B7)

which after using Eq. (B2) becomes

�
J(qt,pt)

�
= exp

( t

0

∂ ˙̃q(t)
∂q̃(t) +

∂ ˙̃p(t)
∂ p̃(t) dt

)
αt

α0
. (B8)

APPENDIX C: EQUIVALENCE OF FK-QCW(1)
AND FK-CMD FOR THE KUBO-TRANSFORMED
TIME-CORRELATION FUNCTION OF LINEAR
OPERATORS

The Kubo transformed time-correlation function


Â(0)B̂(t)�

K
≡ 1

βZ

 β

0
dλ Tr

(
e−(β−λ)Ĥ Â(0)e−λ Ĥ B̂(t))

(C1)

is related to the standard quantum time correlation function in
Eq. (1) through

CAB(ω) = β~ω

1 − e−β~ω
C̃AB(ω), (C2)

where CAB(ω) and C̃AB(ω) are the Fourier transforms of the
standard and Kubo transformed time correlation functions,
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respectively. This quantity can be expressed in terms of the
exact centroid distribution and QDO in which it takes the form14

⟨Â(0)B̂(t)⟩K = 1
Z2π~


dxcdpcρc(xc,pc)Ac(xc,pc)

× Tr
�
δ̂(xc,pc)B̂(t)� , (C3)

where Ac(xc,pc) ≡ Tr(δ̂(xc,pc)Â). This expression is exact so
long as Â is linear in position and/or momentum.14

Using the Wigner representation for the trace of two gen-
eral operators

Tr(ÂĈ) = 1
2π~


dqdp[Â]W(q,p) [Ĉ]W(q,p), (C4)

we can rewrite Eq. (C3) as

⟨Â(0)B̂(t)⟩K = 1
Z(2π~)2


dxcdpcρc(xc,pc)Ac(xc,pc)

×


dqdp[δ̂(xc,pc)]W(q,p)[B̂(t)]W(q,p).
(C5)

Invoking the CW approximation, [B̂(t)]W(q,p) → [B̂]W(qt,
pt), along with the FK approximation to the density operator,
Eq. (C5) becomes

⟨Â(0)B̂(t)⟩K ≈ 1
Z2π~


dxcdpcρFK(xc,pc)Ac(xc,pc)

×


dqdp[δ̂FK(xc,pc)]W(q,p)[B̂]W(qt,pt),
(C6)

where a factor of 2π~ has been absorbed into the definition of
ρFK . Using Eq. (29), the above equation may be written as

⟨Â(0)B̂(t)⟩K ≈ 1
Z2π~


dxcdpcρFK(xc,pc)Ac(xc,pc)

×


dqdp
�
J(qt,pt)

� [δ̂FK(xc(t),pc(t))]W(qt,pt)
× [B̂]W(qt,pt). (C7)

If we apply the multi-dimensional change of variables theorem
for the (q,p) variables, then the inner integral in Eq. (C7) may
be rewritten, and the result is

⟨Â(0)B̂(t)⟩K ≈ 1
Z2π~


dxcdpcρFK(xc,pc)Ac(xc,pc)

×


dqtdpt[δ̂FK(xc(t),pc(t))]W(qt,pt)
× [B̂]W(qt,pt). (C8)

By renaming the integration variables: (qt,pt) → (q′,p′),
Eq. (C8) can be equivalently expressed as

⟨Â(0)B̂(t)⟩K ≈ 1
Z2π~


dxcdpcρFK(xc,pc)Ac(xc,pc)

×


dq′dp′[δ̂FK(xc(t),pc(t))]W(q′,p′)
× [B̂]W(q′,p′). (C9)

Furthermore, switching back from the Wigner representation
to the trace, we have that

⟨Â(0)B̂(t)⟩K ≈ 1
Z


dxcdpcρFK(xc,pc)Ac(xc,pc)

× Bc(xc(t),pc(t)), (C10)

where we have defined Bc(xc(t),pc(t)) ≡ Tr
�
δ̂FK(xc(t),

pc(t)) B̂
�
. Recognizing this expression as being equivalent to

using the FK approximation of the density operator within
the framework of CMD, we see that the entire class of quasi-
classical dynamics in Sec. V reduces to CMD when used to
evaluate the Kubo transformed correlation function of linear
operators. Furthermore, the fact that one can alternatively
arrive at the expression in Eq. (C10) by only invoking the CMD
approximation4

e−i Ĥ t/~ δ̂FK(xc,pc) ei Ĥ t/~ ≈ δ̂FK(xc(t),pc(t)) (C11)

shows that the CW approximation is equivalent to making
the CMD approximation for the Kubo transformed correla-
tion function, so long as the dynamics retain the property in
Eq. (29).
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