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Abstract Plasma sheet bursty bulk flows often oscillate around their equilibrium position at about
10 RE downtail. The radial magnetic field, pressure, and flux tube volume profiles usually behave differently
earthward and tailward of this position. Using data from five Time History of Events and Macroscale
Interactions during Substorms (THEMIS) probes, we reconstruct these profiles with the help of an empirical
model and apply thin filament theory to show that the oscillatory flow braking can occur in an asymmetric
potential. Thus, the thin filament oscillations appear to be anharmonic, with a power spectrum exhibiting
peaks at both the fundamental frequency and the first harmonic. Such anharmonic oscillatory braking can
explain the presence of the first harmonic in Pi2 pulsations (frequency doubling), which are simultaneously
observed by magnetometers on the ground near the conjugate THEMIS footprints.

1. Introduction

Bursty bulk flows (BBFs) [Baumjohann et al., 1990; Angelopoulos et al., 1994] are believed to provide magnetic
flux transport to overcome the pressure balance inconsistency [Erickson and Wolf, 1980; Pontius and Wolf, 1990;
Yang et al., 2014] and may lead to a substorm current wedge [Baumjohann et al., 1991; Shiokawa et al., 1997; Birn
et al., 1999; Ohtani et al., 2009; Nishimura et al., 2010] and substorm onset. The arrival of BBFs in the innermost
part of the plasma sheet causes more field lines in that region to be dipolar in shape [Nakamura et al., 1994;
Schödel et al., 2001; Baumjohann, 2002; Nakamura et al., 2002; Kaufmann et al., 2005]. Dipolarization is first
observed in the near-Earth plasma sheet and then extends tailward [Baumjohann et al., 1999; Birn et al., 2011].

Braking of BBFs, decelerated by the dominant dipolar magnetic field at around 10 RE downtail, can often
be oscillatory [Chen and Wolf, 1999; Panov et al., 2013]. Estimates of bursty bulk flow oscillation periods can
be derived analytically in the MHD approximation using typical background plasma sheet parameters [Wolf
et al., 2012]. Farther out in the tail where field lines are longer, the oscillation period increases [Wolf et al., 2012;
Panov et al., 2014a].

BBFs may lead to onset of Pi2 pulsations [Shiokawa et al., 1998; Kepko et al., 2001]. Periods and damping factors
of Pi2 pulsations correlate with the ones of oscillatory flow braking in the magnetotail, although the presence
of the first harmonic in the power spectrum of Pi2 pulsations (frequency doubling) remains puzzling [Panov
et al., 2014b].

Asymmetry in the radial background plasma sheet profiles of magnetic field, pressure, and flux tube volume
leads to an asymmetric potential around the equilibrium position that causes anharmonicity [Wolf et al., 2012].
In the case of a strong asymmetry, harmonic generation is expected to occur.

We employ Time History of Events and Macroscale Interactions during Substorms (THEMIS) [Angelopoulos,
2008] space (probes P1–P5) and ground magnetometer observations on 23 March 2009 between 06:00 and
06:40 UT to reveal the level of the potential asymmetry and identify the anharmonicity signatures of Pi2
pulsations during oscillatory flow braking.

Magnetotail observations were provided by the probes’ fluxgate magnetometers (FGM) [Auster et al., 2008]
and electrostatic analyzers’ [McFadden et al., 2008] particle detectors. The AM03 model [Kubyshkina et al., 2011]
is used to reconstruct the radial magnetic field, pressure, and flux tube volume profiles in the background
plasma sheet. The ground-based observations of the ionospheric magnetic field were provided by the THEMIS
and Canadian Array for Realtime Investigations of Magnetic Activity (CARISMA) magnetometer arrays over
North America (see Mende et al. [2008] and Mann et al. [2008] for details).
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Figure 1. Oscillations in the radial velocity VR, at P1–P3, and in the BH component of the magnetic field at
Gillam, Canada.

2. THEMIS Observations and Theoretical Expectations

Figure 1 shows the oscillations in the radial velocity VR at P3 located about 11 RE downtail (top) and P1 and
P2 located about 14 RE downtail (bottom) on 23 March 2009 between 6:00 and 6:40 UT. It was shown recently
that these oscillations in VR can be interpreted as signatures of a thin filament oscillation [Panov et al., 2014a].
At 6:08 UT, the equilibrium position of the thin filament was near the location of P3, i.e., near X = −11 RE ,
whereas at 6:21 UT, the equilibrium position moved closer to the location of P1 and P2, i.e., near X = −14 RE .

The oscillatory braking of fast flows in the near-Earth plasma sheet is transmitted down to Earth and observed
as Pi2 pulsations [Panov et al., 2014b]. With the help of the AM03 model, we identified the location of THEMIS
probes’ footprints to be between Rankin Inlet and Gillam/Fort Churchill, Canada [Panov et al., 2014a]. We found
good agreement between P3 and Gillam (see black lines in Figure 1) between about 06:04 and 06:08 UT and
between P1 and P2 and Gillam between about 06:16 and 06:32 UT. Agreement is not clear at other times. This
fact is in agreement with the conclusion that between 6:08 and 6:16 UT, due to tailward expansion of flux
pileup region, the oscillatory flow braking retreated tailward from X = −11.5 RE (location of P3, cf. in Figure 1
(top)) to X = −14 RE (location of P1 and P2, cf. in Figure 1 (bottom)) [Panov et al., 2014b].

With the help of the AM03 model, we also reconstructed the radial profiles of BZ magnetic field component,
pressure, and flux tube volume in the background plasma sheet. Figure 2 shows radial profiles of the back-
ground plasma sheet parameters on 23 March 2009 predicted by the AM03 model at 6:21 UT: (a) Bz,e magnetic
field component at the neutral sheet, (b) total pressure P, (c) flux tube volume V . The AM03 model revealed
that all three radial profiles of Bz,e, P, and V are not radially symmetric around X = −14 RE .

With the help of Bz,e, P, and V using equation (26) of Wolf et al. [2012], we applied two algorithms to analytically
derive force per unit magnetic flux Fx (Figure 2d) and potential U (Figure 2e) around the equilibrium position
at X = −14 RE at 6:21 UT. Appendix A provides further details of the algorithms (specifically, cf. equations (A7)
and (A9) in Appendix A). It appears that the asymmetries in Bz,e, P, and V radial profiles are the reason that the
associated potential U is not symmetric about the equilibrium position. Note that formula (26) in Wolf et al.
[2012] was derived for the tail-like configuration of the plasma sheet. The tail-like plasma sheet configuration
reveals a general agreement in Figure 2 with the qualitative sketch given in Figure 8 of Wolf et al. [2012].

Using the obtained Fx and U, we plot the thin filament oscillation parameters around the equilibrium position
at X = −14 RE at 6:21 UT in Figure 3: (a) coordinate x, (b) velocity v, (c) phase portrait (x,v), and (d) wavelet
spectrum of v. Due to asymmetry in U, the oscillation appears to be anharmonic: the oscillations of the x and v
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Figure 2. Radial profiles of the background plasma sheet param-
eters on 23 March 2009 predicted by the AM03 model at 6:21 UT:
(a) vertical magnetic field component Bz,e at the neutral sheet,
(b) total pressure P, (c) flux tube volume V , (d) force per unit
magnetic flux Fx , and (e) associated potential U. Fx and U were esti-
mated for the equilibrium position at X = −14 RE from equation
(26) of Wolf et al. [2012] with the help of Bz,e , T , and V using two
algorithms. See Appendix A for algorithm descriptions. Blue curves
were calculated from equation (A7), red curves from (A9).

curves (Figures 3a and 3b) are not sinusoidal.
The troughs of x are broader than the peaks,
because the restoring force Fx tends to be
weaker on the low-x side of equilibrium than
on the high-x side. The phase portrait of
the oscillation represents an egg-like shape
rather than an ellipse (Figure 3c). The wavelet
spectrum of v (Figure 3d) reveals two max-
ima with 6.2 min (fundamental mode) and
3.1 min (first harmonic) periods.

Figure 4 shows BH magnetic field compo-
nents from two other magnetometers (at
Fort Churchill and Rankin Inlet in Canada)
located in the vicinity of THEMIS probes foot-
prints on 23 March 2009 between 6:00 and
6:40 UT. There BH exhibited similar oscilla-
tions as those in BH from Gillam, shown in
Figure 1. The corresponding wavelet spec-
tra in Figure 4 show that indeed two spec-
tral maxima can be seen (indicated by black
arrows in Figure 4). Around 6:08 UT, the oscil-
lation period of the plasma sheet flows near
the equilibrium position at about X = −11 RE

was about 3.5 min (compare with the oscil-
lation period of the fundamental ground
Pi2 oscillations in Figure 4c). Later, around
6:21 UT, the oscillation period of the plasma
sheet flows near the equilibrium position
that retreated tailward to about X = −14 RE

increased to about 6.2 min (compare with the
oscillation period of the fundamental ground
Pi2 oscillations in Figure 4d) (see Panov et al.
[2014a] for details). The second maxima in
Figures 4c and 4d correspond to the first har-
monics with periods 1.8 min around 6:08 UT
and 3.2 min around 6:21 UT.

3. Discussion

The velocity data from THEMIS probes in the
plasma sheet represent a local plasma veloc-
ity at essentially fixed point that is observed

as a function of time rather than the time-dependent velocity of a moving thin filament. Also, spacecraft
velocity data in the plasma sheet generally are subject to high noise levels. These facts make it difficult to
use plasma sheet velocity measurements to test whether the oscillations are harmonic. However, the statisti-
cally established fact that the signal from the oscillatory braking of fast flows in the near-Earth plasma sheet
is transmitted down to Earth and is observed as Pi2 pulsations there [Panov et al., 2014b] allowed us to use
ground magnetometer measurements near THEMIS footprints instead, thereby suggesting anharmonicity of
the flow oscillations observed by THEMIS probes P1–P3 at 11–14 RE downtail.

Note that the signal transmission process may be rather complex and involve a mix of, e.g., magnetospheric,
ionospheric, and plasmaspheric eigenmodes. For instance, Lysak et al. [2015] have investigated propagation
of a damped sine wave with about 1 min period from the near-Earth plasma sheet (X ≈ −10 RE) down to
the low-altitude ionospheric boundary placed at 100 km. They have revealed that ULF waves can propagate
through the inner magnetosphere, and a compressional pulse at −10 RE can excite both shear-mode field line
resonances and fast-mode plasmaspheric resonances.
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Figure 3. Anharmonic oscillation in an asymmetric potential of Figure 2e around the equilibrium position at X = −14 RE
at 6:21 UT: (a) coordinate x, (b) velocity v, (c) phase portrait (x,v), and (d) wavelet spectrum of v. Blue curves were
calculated from force equation (A7), red curves from (A9).

Figure 4. Ground BH magnetic field component observed by magnetometers at (a and c) Fort Churchill, Manitoba, and
(b and d) Rankin Inlet, Nunavut in Canada on 23 March 2009 between 6:00 and 6:40 UT, and their wavelet spectra.
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Such coupling of different transmitting modes may further modify some parameters of the transmitted sig-
nal. Note that the amplitudes of the fundamental mode and of the first harmonic appear to be comparable
in the ground observations, as is seen, e.g., in Figure 4d. The reason for the large amplitude of the first har-
monic oscillation may be smaller ionospheric impedance on shorter magnetic field lines, when field line
resonance effects [e.g., Takahashi et al., 1996; Glassmeier et al., 1999] are more dramatic. Thus, it is important to
study how the magnetosphere-ionosphere transmission of the Pi2 pulsations down to Earth is organized in
more detail.

Another important task would be to investigate whether the oscillatory flow braking could also effectively
generate higher harmonics. The latter could explain the higher-frequency noise in the power spectrum of
the ground magnetic field shown in Figure 4. Consider an axially symmetric magnetosphere, for simplicity,
and consider the poloidal normal buoyancy modes that have zero north-south velocity at the equator and no
nodes along the field lines (braking oscillations are of this type). Let𝜔b(L)be the frequency of the thin filament
oscillation centered at L. The normal mode that is proportional to exp(i(m𝜙−𝜔b(L0)t))peaks near L0 and varies
on a radial scale (L0∕m)2∕3l1∕3, where l is the scale length for variation of 𝜔b. In addition, that normal mode
includes a buoyancy wave that may be able to propagate into the region of higher 𝜔b. If 𝜔b(L1) = 2𝜔b(L0) for
L1 within the range of the L0-centered normal mode, then the first harmonic of that mode will resonate with
the fundamental of the mode centered at L1. Then the L0-centered normal mode, which is the direct result of
the BBF, will drive that fundamental mode, and the dominant oscillation seen near L1 will be at𝜔1=2𝜔0, which
may also be anharmonic if the amplitude is large enough.

Finally, we note that the progression of plasma sheet dipolarization farther downtail leads to tailward expan-
sion of a flux pileup region and oscillatory braking accompanied by poleward drift of the associated auroral
activity [Panov et al., 2014a], when the flow oscillation period tends to increase on longer field lines farther out
in the tail, which is in agreement with the MHD approximation predictions in Wolf et al. [2012]. Such plasma
sheet development may lead to coexistence of eigenmodes with different oscillation periods. The question
how such waves would interact with each other throughout the magnetosphere-ionosphere-plasmasphere
system may be quite intriguing.

4. Conclusions

Applying thin filament theory to an AM03 model, magnetic field configuration adjusted to fit measurements
made by five THEMIS probes for a period on 23 March 2009, we find that oscillatory flow braking may occur
in an asymmetric potential. Oscillations in such a potential are anharmonic, exhibiting a power spectrum
with peaks at both a fundamental frequency and a first harmonic. Thus, anharmonic oscillatory braking can
explain the presence of the first harmonic in the Pi2 pulsations, which were simultaneously observed by
magnetometers on the ground near the conjugate THEMIS footprints.

Appendix A: Estimation of Potential Well Motion Based On Magnetic Field Model

From equation (26) of Wolf et al. [2012], the earthward force on a thin filament containing one unit of magnetic
flux is estimated as

Fx = −𝜋𝛿P
Bze

, (A1)

where 𝛿 indicates the difference between the filament and the adjacent background. The condition of total
pressure balance

Pb +
B2

b

2𝜇o
= Pf +

B2
f

2𝜇o
(A2)

implies that the filament field strength in the center of the current sheet is given by

Bze =
√

B2
zeb − 2𝜇o𝛿P, (A3)
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where Bzeb is the corresponding background field. If the difference 𝛿B between the field strengths inside and
outside the filament is small, then the difference in flux tube volume between the filament and adjacent
background is

𝛿V ≈ −∫
𝛿B ds

B2
b

≈
Vb

2
𝛿P
Pb

⟨𝛽b⟩, (A4)

where

⟨𝛽b⟩ ≡ 2𝜇oPb

Vb ∫
ds
B3

b

, (A5)

and we used the first-order approximation to (A2) to write the second equality in (A4). Defining K = PV𝛾 , we
can write, again to first order,

𝛿K
K

≈ 𝛿P
P

+ 𝛾
𝛿V
V

≈ 𝛿P
P

(
1 +

𝛾 ⟨𝛽⟩
2

)
. (A6)

Substituting (A3) and (A6) in (A1) gives

Fx1(xe, xeq) =
𝜋Q(xe) Bzb(xe) 𝛿K(xe, xeq)

2𝜇o

√
1 − Q(xe) 𝛿K(xe, xeq)

, (A7)

where

Q(xe) =
2𝜇oPb(xe)[

1 + 𝛾

2
⟨𝛽b⟩ (xe)

]
Kb(xe) Bzb(xe)

2
. (A8)

The quantity Fx1(xe, xeq) is our estimate of the force on a filament whose equatorial crossing point has been
displaced to xe from its equilibrium position xeq. In writing (A7), we have kept the nonlinear correction to
Bze but used the linear approximation in calculating the connection between 𝛿K and 𝛿P. Consequently, (A7)
represents an overestimate of the nonlinear effect. Replacing the square root in (A7) with unity and writing

Fx2(xe, xeq) =
𝜋Q(xe) Bzb(xe) 𝛿K(xe, xeq)

2𝜇o
(A9)

provides an underestimate. For both the force and the effective potential U = − ∫ Fx dx, we therefore present
calculations based on both (A7) and (A9) to obtain approximate bounds on the answer that would be obtained
from a full nonlinear analysis.

Additional approximations involved in computing Fx , U, and velocity are the following:

1. The formula

⟨𝛽⟩ ≈ 𝛽e

1.8 +
√
𝛽e

(A10)

which is based on fitting field line integrals for both highly stretched and quasi-dipolar equilibrium
magnetic field configurations.

2. Pressures are estimated from the magnetic field model.
3. The equatorial velocity of the filament is computed from

M
dVx

dt
= Fx , (A11)

where M is the mass of the flux tube.
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Erratum

In the originally published version of this article, the colors in figure 4 were not correctly rendered. The figure
has since been corrected, and this version may be considered the authoritative version of record.
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