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We derive and implement the analytic energy gradient for the symmetry Projected Hartree–Fock
(PHF) method avoiding the solution of coupled-perturbed HF-like equations, as in the regular un-
projected method. Our formalism therefore has mean-field computational scaling and cost, despite
the elaborate multi-reference character of the PHF wave function. As benchmark examples, we
here apply our gradient implementation to the ortho-, meta-, and para-benzyne biradicals, and
discuss their equilibrium geometries and vibrational frequencies. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4876490]

I. INTRODUCTION

One of the most challenging problems for modern com-
putational quantum chemistry is the accurate description of
systems with strong or static correlation. These situations in-
clude, for example, the breaking of chemical bonds, non-
equilibrium geometries, clusters with multiple metal cen-
ters, or states with ubiquitous multi-determinant character
like biradicals. Standard methods based on a single refer-
ence determinant often fail to give even a qualitatively correct
description of these cases marked by the presence of near
degeneracies. Methods for improving the wave function in
such situations have been developed over the years. A simple
solution is to replace the single reference determinant by a
multi-configuration expansion, which is the idea behind exact
diagonalization over an active space.1 The selection of such
an active space is often not unambiguous. When the strong
correlation is associated with spin symmetry breaking, meth-
ods to automatically choose the corresponding active space
have been proposed,2–4 but the problem cannot be considered
fully solved.

In recent work,5 we have shown how a variationally op-
timized symmetry-projected state results in a multi-reference
wave function that accurately describes static (or strong) cor-
relations in finite systems. Traditional constructions of the
Hilbert space are mostly based on particle-hole excitations out
of a reference determinant, leading to a basis of orthonormal
configurations. In PHF, on the other hand, a linear combina-
tion of non-orthogonal determinants generated by the action
of rotation operators on the reference state is formed. Inte-
gration over these non-orthogonal states weighted by coef-
ficients depending on the irreducible representation of inter-
est is the key ingredient for symmetry restoration.6 In our
work, we used the more powerful variation-after-projection
(VAP) scheme, which implies that the broken-symmetry ref-
erence determinant is variationally optimized to minimize the
projected energy. This is different from a simpler projection-
after-variation (PAV) scheme7 traditionally associated with
projection based methods in quantum chemistry. Symmetry
implies degeneracy and degeneracy is at the root of the static

correlation problem. In this sense, the PHF methodology is
able to account for the static correlations due to symmetries
present in finite systems.

It is well known that allowing the HF determinant to
break physical symmetries leads to a better estimate of the
energy in situations where near-degeneracies are present.8

Near-degeneracies can be easily diagnosed in a symmetry re-
stricted HF (RHF) treatment by closure of the HOMO-LUMO
energy gap, which in turn leads to spontaneous symmetry
breaking.9 For instance, Unrestricted HF (UHF) predicts qual-
itatively correct single bond dissociation curves in contrast
to RHF. However, at dissociation the UHF wave function
is not an eigenfunction of the S2 operator. Spin symmetry
breaking occurs spontaneously in bond breaking processes
(leading to open-shell fragments) and even though it is an
artifact resulting from the approximate nature of the wave
function, it definitely accounts for important static correla-
tion, a fact termed “symmetry dilemma”10 many years ago.
A Generalized HF (GHF) broken symmetry solution where
space, spin, and complex conjugation symmetries are all bro-
ken, is the most flexible wave function obtainable using a
single determinant.8 Despite being more flexible, GHF solu-
tions are not necessarily better or ideal, as they may display
kinks in the potential energy surface.11 The machinery of self-
consistent symmetry breaking and restoration remedies these
maladies.

PHF theory deliberately breaks the symmetries of the
reference determinant |�〉 whose energy is optimized in the
presence of symmetry projection operators P̂ ,

E = 〈�| P̂ †HP̂ |�〉
〈�| P̂ †P̂ |�〉 = 〈�| HP̂ |�〉

〈�| P̂ |�〉 . (1)

Here, we have used the fact that the symmetry projection
operator P̂ commutes with the Hamiltonian and is idem-
potent. The resulting wave function P |�〉 has an elabo-
rate multi-determinant structure that recovers a significant
portion of static correlation. The PHF wave function yields

0021-9606/2014/140(20)/204101/9/$30.00 © 2014 AIP Publishing LLC140, 204101-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/83830819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4876490
http://dx.doi.org/10.1063/1.4876490
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4876490&domain=pdf&date_stamp=2014-05-22


204101-2 Schutski, Jiménez-Hoyos, and Scuseria J. Chem. Phys. 140, 204101 (2014)

correct quantum numbers and preserves the physical sym-
metries of the system, while still being fully determined
by a single set of occupied molecular orbitals. The spe-
cific nature of the PHF wave function depends on the par-
ticular symmetries of the underlying HF reference determi-
nant that are broken and restored in each case. More than
one symmetry can be deliberately broken and restored us-
ing PHF. The group-theoretical classification of all possi-
ble classes of Slater determinants (solutions to the HF equa-
tions) was first given by Fukutome12 and later by Stuber
and Paldus.13 The molecular Hamiltonian is number conserv-
ing and preserves total spin symmetry (broken in UHF), Sz

symmetry (broken in non-collinear GHF), complex conjuga-
tion symmetry (broken by allowing molecular orbitals (MOs)
to become complex) and point group symmetry (often bro-
ken in UHF solutions). Additionally, number is a symme-
try of the Hamiltonian that can be broken if working with
determinants built from quasiparticles albeit never sponta-
neously for Coulombic repulsive systems. In previous work,
we have dealt with symmetry breaking and restoration of
number, spin (both collinear and non-collinear), molecular
point group, complex conjugation, and full space group in
lattice models with periodic boundary conditions.14–16 We
here focus on molecules where translation is not a sym-
metry and limit ourselves to spin symmetry breaking, al-
though the PHF formalism and its analytic energy gradient
are effectively the same in the case of point group and other
symmetries.

The PHF wave function inherits several advantages from
the HF approach. The method is fully variational, which fa-
cilitates the evaluation of properties such as energy deriva-
tives. Another advantage is its computational scaling: the
PHF procedure scales with the number of basis functions
in the same way the regular HF method does.17 However,
some drawbacks are present. The need of an integration grid
makes PHF more expensive than HF. As has been thoroughly
discussed,5, 18 PHF is neither size consistent nor size exten-
sive. This means that in the thermodynamic limit, PHF re-
verts to HF. Despite its accuracy for small systems, there
are types of correlations (unrelated to symmetries) that PHF
does not recover efficiently. These residual correlations are
mostly “dynamical” in nature and can be accounted for using
a multi-component PHF approach.19 Nevertheless, because
of its black-box description of static correlation, PHF is an
excellent starting point for subsequent treatment of residual
correlation via, for example, Quantum Monte Carlo.20

Availability of analytic energy derivatives is of outmost
importance for a method to become of practical use. In this
paper, we present the derivation and implementation of the
PHF analytical energy gradient. A previous attempt by Handy
and Rice21 was limited to the spin-projected HF method (or
Extended HF (EHF)),10, 22 which may be viewed as a special
case of the more general PHF formalism, and was based on
Löwdin’s many-body spin projection operator (as opposed to
the one-body symmetry rotation operators we use). The re-
sulting mathematical formulation of EHF gradients21 is quite
different from ours, and the results of Handy and Rice are
not directly applicable to the more general PHF methodology
discussed here.

II. THEORY

Before proceeding with the analytic energy derivatives
we describe the formalism of the PHF method. In contrast
to our previous work5 where PHF was formulated in terms
of the density matrix of the broken-symmetry determinant,
we here choose to formulate it in terms of molecular orbital
coefficients, as first done by Schmid.23 This section is orga-
nized as follows. First, we introduce the notation used for the
projectors and review their basic properties (Sec. II A). We
formulate the PHF equations in a non-orthogonal basis using
molecular orbitals in Sec. II B. Finally, we present the expres-
sions for the analytic energy gradients and comment on our
implementation (Secs. II C and II D).

A. Projectors and rotation operators

Let us introduce an ansatz for the wave function that sat-
isfies specific chosen symmetries (labelled by the quantum
numbers j and m):

∣∣�j
m

〉 =
∑

k

fkP̂
j

mk |�〉 . (2)

The function |�〉 is a broken-symmetry Slater determinant
|�〉 and P̂

j

mk is a “projection” operator for arbitrary groups.
Here, j labels the irreducible representations (irreps), while
m (k) denote the rows (columns) of the irrep. The lin-
ear variational coefficients fk are introduced in order to re-
move unphysical dependencies of |�j

m〉 on the orientation of
|�〉.24 Note that for Abelian groups the linear combination
above reduces to the standard PHF expression introduced by
Löwdin.10 For continuous groups the projection operators can
be written in the standard form:25

P̂
j

mk = 1

V

∫
V

dθ ω
j

mk(θ )R̂(θ ), (3)

where θ denotes the element of the group. Additionally, V

is the volume of integration, ω
j

mk(θ ) are integration weights
(characters) of the irrep and R̂(θ ) is a rotation operator. The
integral above should be understood as a summation for dis-
crete groups. More details on the projection operators can be
found in Ref. 26. The operators P̂

j

mk satisfy the properties

(
P̂

j

mk

)† = P̂
j

km, (4a)

P̂
j

mkP̂
j ′
k′m′ = P̂

j

mm′δjj ′δkk′ . (4b)

The molecular orbitals |i〉 determining the wave function |�〉
are represented by a linear combinations of basis functions in
the form

|i〉 =
∑

μ

Cμi |μ〉 . (5)

They are assumed to be orthonormal,

〈i|j 〉 = δij = (C†SC)ij , (6)

where S is the overlap matrix between basis functions. Let
us now consider the action of the (single-particle) rotation
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operator R̂(θ ) on the molecular orbital |i〉,
|i(θ )〉 ≡ R̂(θ ) |i〉 =

∑
μνλ

|μ〉 S−1
μν Rνλ(θ )Cλi, (7)

where Rμν(θ ) ≡ 〈μ|R̂(θ )|ν〉 is an element of the rotation ma-
trix in the atomic basis set. We should note, however, that
S−1R(θ ) is independent of the overlap between basis func-
tions, a fact that we use later on in our derivation.

B. Variational conditions and PHF equations

Using the ansatz of Eq. (2), the energy corresponding to
a state with quantum number j can be written as

Ej =
∑
kk′

f ∗
k fk′Hkk′, (8)

where we have introduced the Hamiltonian matrix elements

Hkk′ = 〈�| HP̂
j

kk′ |�〉 . (9)

In the same way, we also define norm matrix elements asso-
ciated with the projected state as

Nkk′ = 〈�| P̂ j

kk′ |�〉 . (10)

The Hamiltonian and the norm matrices can be proved to be
Hermitian using the properties of the projectors. We impose
two variational conditions on the wave function,

f †Nf = 1, (11a)

C†SC = 1N×N, (11b)

where the former equation constitutes a normalization of the
full PHF wave function, while the latter equation character-
izes the orthonormality of the occupied molecular orbitals.

In order to evaluate the matrix elements in Eqs. (8) and
(10), we write them in integral form as

Hkk′ =
∫

dθω
j

kk′(θ )n(θ )h(θ ), (12a)

Nkk′ =
∫

dθω
j

kk′(θ )n(θ ), (12b)

h(θ ) = 〈�| HR̂(θ ) |�〉
〈�| R̂ |�〉 , (12c)

n(θ ) = 〈�| R̂(θ ) |�〉 . (12d)

The overlap kernel can be evaluated using Wick’s
theorem as

n(θ ) = detN (C†R(θ )C) = detN (M(θ )), (13)

where the notation detN emphasizes that the determinant is
taken only over the block of occupied orbitals. That is, C is
the rectangular matrix of occupied orbitals, rendering M(θ )
as an N × N matrix, with N being the number of occupied
orbitals.

The Hamiltonian kernel can be evaluated using a general-
ized Wick’s theorem (see, e.g., Ref. 27). The final expression

is given by

h(θ ) =
∑
μν

(
〈μ| h |ν〉 + 1

2
Gμν(θ )

)
ρνμ(θ ), (14a)

Gμν(θ ) =
∑
λσ

〈μλ| v̂ |νσ 〉 ρσλ(θ ), (14b)

where 〈μ| h |ν〉 are core Hamiltonian (one-electron) integrals
and 〈μλ| v̂ |νσ 〉 are (antisymmetrized) two-electron integrals
in Dirac notation. Here, the transition density matrix ρ(θ ), is
given by

ρ(θ ) = S−1R(θ )CM−1(θ )C†. (15)

Only the occupied orbitals are used in the expression above
(C is thus a rectangular matrix).

We turn to presenting the PHF equations using the nota-
tion given above. Following the variational conditions (11a)
and (11b), we introduce the Lagrangian

Lj [f,C] =
∑
kk′

f ∗
k fk′Hkk′ −

∑
ij

εij [C†SC − 1N×N ]ji

−Ej (f †Nf − 1). (16)

Setting ∂Lj

∂fk
= 0 leads to a generalized eigenvalue problem for

the linear coefficients {f},

Hkk′fk′ = EjNkk′fk′ . (17)

In the same way, we handle the expressions for ∂Lj

∂Cαi
and ∂Lj

∂C∗
αi

to arrive at the following PHF equations:
∑
kk′

f ∗
k fk′

∫
dθω

j

kk′(θ )n(θ )
∑
μν

Wiμ(θ ){(h(θ ) − Ej )δμν

+Xμν(θ )}Rνα(θ ) = [εC†S]iα, (18a)

∑
kk′

f ∗
k fk′

∫
dθω

j

kk′(θ )n(θ )
∑

μ

{(h(θ ) − Ej )δαμ

+Yαμ(θ )}Zμi(θ ) = [SCε]αi, (18b)

where we have defined

Wiμ = [M−1(θ )C†]iμ, (19a)

Xμν(θ ) =
∑
λσ

(〈μ| h |λ〉 + Gμλ(θ ))S−1
λσ (δσν − [Sρ(θ )]σν),

(19b)

Yαμ(θ ) =
∑
λσ

(δαλ − [Sρ(θ )]αλ)(〈λ|h |σ 〉 + Gλσ (θ ))S−1
σμ,

(19c)

Zμi = [R(θ )CM−1(θ )]μi. (19d)

As one may expect, these equations are adjoints of each
other. However, in contrast to the conventional Hartree-Fock
scheme, the matrix of Lagrange multipliers ε cannot be as-
sociated with orbital energies.23 Moreover, it completely van-
ishes at convergence (to prove it one has to multiply the first
of Eqs. (18) by C from the left (or the second of Eqs. (18) by
C† from the right) and work out the definitions of the appro-
priate quantities)

εij = 0 ∀ i, j = 1, . . . , N. (20)
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We also note that the PHF equations (Eqs. (18)) are not eigen-
value equations. This formulation is thus somehow inconve-
nient in a practical optimization of the PHF wave function.

C. First energy derivatives

Having expressed the PHF equations in terms of atomic
integrals and molecular orbital coefficients (of the broken-
symmetry determinant), we can derive an expression for the
first derivative of the energy. Our procedure closely follows
the construction of energy derivatives of the standard HF
method, which stemmed from works of Bratoz,28 and later
by Pulay29 and Gerrat and Mills.30 For a review of the history
of analytic gradients, see Ref. 31.

In order to obtain the analytic derivative one differenti-
ates the energy expression (Eq. (8)) with respect to the param-
eter x. To eliminate the derivatives of various parameters of
the wave function from the final expression we consequently
use the variational conditions.

Differentiation of Eq. (11a) leads to

∑
kk′

[
∂f ∗

k

∂x
fk′Nkk′ + ∂fk′

∂x
f ∗

k Nkk′ + f ∗
k fk′

∂Nkk′

∂x

]
= 0

⇒
∑
kk′

[
∂f ∗

k

∂x
fk′ + ∂fk′

∂x
f ∗

k

]
Nkk′ =−

∑
kk′

f ∗
k fk′

∂Nkk′

∂x
. (21)

Differentiation of the orthonormality condition of the oc-
cupied molecular orbitals (see Eq. (11b)) leads to

∂C∗
μi

∂x
SμνCνj + C∗

μiSμν

∂Cνj

∂x
+ C∗

μi

∂Sμν

∂x
Cνj = 0

⇒ ∂C∗
μi

∂x
SμνCνj +C∗

μiSμν

∂Cνj

∂x
=−C∗

μi

∂Sμν

∂x
Cνj , (22)

which relates the derivatives of the molecular orbital coeffi-
cients to derivatives of the overlap matrix.

We are now in a position to take the derivative of the full
energy expression. Using Eq. (8), we arrive at

∂Ej

∂x
=

∑
kk′

[
∂f ∗

k

∂x
fk′ + f ∗

k

∂fk′

∂x

]
Hkk′ + f ∗

k fk′
∂Hkk′

∂x
. (23)

By using Eqs. (21) and (17), we eliminate ∂f

∂x
from the expres-

sion above (Eq. (23)):

∂Ej

∂x
=

∑
kk′

f ∗
k fk′

[
∂Hkk′

∂x
− Ej ∂Nkk′

∂x

]
. (24)

Standard differentiation and some algebraic manipulations
can be carried out to arrive at(

∂Hkk′

∂x
− Ej ∂Nkk′

∂x

)
=

∫
dθω

j

kk′(θ )n(θ )

×
{ ∑

μν

[〈μ| h |ν〉x ρνμ(θ ) + Gx
μν(θ )ρνμ(θ )]

+ (h(θ ) − Ej )
∑
μν

Sx
μνρνμ(θ )

−
∑
μνλσ

Sx
μνρνλ(θ )[〈λ|h |σ 〉 + Gλσ (θ )]ρσμ(θ )

+
∑
μναi

[Wiμ(θ )((h(θ ) − Ej )δμν + Xμν(θ ))Rνα(θ )]
∂C∗

αi

∂x

+
∑
μαi

[(h(θ ) − Ej )δαμ + Yαμ(θ )]Zμi(θ )
∂Cαi

∂x

}
, (25)

where we defined

Sx
μν = ∂ 〈μ|ν〉

∂x
, (26a)

hx
μν = ∂ 〈μ| h |ν〉

∂x
, (26b)

Gx
μν(θ ) =

∑
λσ

∂ 〈μλ| v̂ |νσ 〉
∂x

ρσλ(θ ). (26c)

We then use the PHF equations (18) and equation (22) to elim-
inate ∂Cαi

∂x
and ∂C∗

αi

∂x
from the expression above:(

∂Hkk′

∂x
− Ej ∂Nkk′

∂x

)
=

∫
dθω

j

kk′(θ )n(θ )

×
{ ∑

μν

[ 〈μ| h |ν〉x ρνμ(θ ) + Gx
μν(θ )ρνμ(θ )

]

+ (h(θ ) − Ej )
∑
μν

Sx
μνρνμ(θ )

−
∑
μνλσ

Sx
μνρνλ(θ )[〈λ|h |σ 〉 + Gλσ (θ )]ρσμ(θ )

+
∑
ij

[C†SxC]ij εji

}
. (27)

We note that at convergence the matrix of Lagrange multipli-
ers vanishes (Eq. (20)), and this gives the final expression for
the analytic derivative(

∂Hkk′

∂x
− Ej ∂Nkk′

∂x

)
=

∫
dθω

j

kk′(θ )n(θ )

×
{∑

μν

[ 〈μ| h |ν〉x ρνμ(θ ) + Gx
μν(θ )ρνμ(θ )

]

+ (h(θ ) − Ej )
∑
μν

Sx
μνρνμ(θ )

−
∑
μνλσ

Sx
μνρνλ(θ )[〈λ|h |σ 〉 + Gλσ (θ )]ρσμ(θ )

}
. (28)

Equation (28) does not contain the derivatives of the wave
function, and there is no need to solve coupled-perturbed-like
equations. This fact, which is a consequence of the fully vari-
ational nature of the PHF wave function, was emphasized al-
ready in the very first works on HF gradients.29, 30 We note
that our expression, indeed, reduces to the HF derivative in
the case of a trivial projector (see Appendix A).

D. Remarks on implementation

The method described in this paper has been im-
plemented in a development version of the Gaussian
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software package.32 Our implementation was extensively ver-
ified against numerical differentiation results. Because of the
relatively involved final expression, it may be valuable to de-
scribe how we have organized our code. One may proceed as
follows (refer to Eq. (28)):

1. The wave function parameters (C, f) and the total energy
Ej are obtained from the PHF optimization. The space of
integration parameters θ (Eq. (3)) is discretized.

2. Atomic integrals and their derivatives are calculated: S,
Sx, 〈μ| h |ν〉, 〈μ| h |ν〉x , 〈μν| v̂ |λσ 〉, 〈μν| v̂ |λσ 〉x .

3. For each value of θ the transition density matrix ρ(θ ) is
built.

4. The overlap terms n(θ ) are calculated.
5. The transition density matrices are contracted with

atomic integrals to give two-body terms G(θ ), G(θ )x.
6. The transition density matrices are contracted with one

body atomic integrals and two-body terms to form h(θ )
and ρ(θ )(h + G(θ ))ρ(θ ) and complete the expressions
under the integral in Eq. (28).

7. Finally, one performs a contraction of the integration
weights ωkk′(θ ) with {f} and a numerical integration
over θ .

The most expensive part of the procedure is the calcula-
tion of the two-electron integrals and, especially, their deriva-
tives, which scales as M4 in small systems, where M is the
number of basis functions, and as M2 asymptotically.17 In the
algorithm described above, the operations on each grid point
are independent, and it is trivial to run them in parallel. The
evaluation of the energy (or energy gradient) of the Projected
HF wavefunction is roughly Ngrid times more expensive than
a corresponding HF calculation. For SUHF, it is 2 × Ngrid; the
factor of 2 is due to the fact that the transition density ma-
trices ρ(θ ) have non-vanishing mixed-spin components. The
number of grid points required depends weakly (sub-linearly)
on the size of the subspace where spin symmetry-breaking
occurs.

III. RESULTS

Earlier applications of PHF to molecular systems before
our recent work are very limited. Rosenberg and Martino33

and Klimo and Tin̆o34 used spin-projected HF to study
small molecules and radicals. Karadakov and Cooper35 per-
formed self-consistent spin-projected UHF calculations on
polyenes using an implementation based on spin-coupled
valence bond theory. Recently, PHF was used by Samanta
et al.36 to study the bare copper oxide cores and by Rivero
et al.37, 38 to study singlet-triplet (ST) splittings in vari-
ous molecules and the polyradical character in polyacene
systems.

We have chosen the o-, m-, and p-benzyne biradicals as
benchmark examples to test our PHF gradient implementa-
tion. The proper description of these molecules is quite chal-
lenging because strong correlation effects are usually present
in biradicals. For example, to accurately describe the lowest
singlet and the lowest triplet states with m = 0, where m is
the eigenvalue of Sz, one needs at least a two-configuration
wave function. In contrast, a single-configuration wave func-

tion is a good approximation for the lowest triplet states with
m = ±1.39

The benzyne isomers have been well studied, both ex-
perimentally and theoretically. The interest on benzynes is
motivated by the possible role of p-benzyne in the effect of
antitumor drugs and by the identification of o-benzyne as
an intermediate in elimination reactions. We point the reader
to Ref. 40 for a detailed discussion of the biradical charac-
ter in benzyne molecules. Biradical systems in general have
become popular targets for testing novel electronic structure
methods.41, 42 Recent theoretical studies on benzynes have pri-
marily concentrated on the geometry and the biradical char-
acter of the ground state,40, 43 the ST separations,40, 44, 45 and
the vibrational spectra.43, 46, 47

In this work, we study the optimized geometries and vi-
brational frequencies of the benzyne isomers with projected
HF methods and compare them with the Complete Active
Space Self-Consistent Field (CASSCF) method and experi-
mental data when available.

A. Computational details

Collinear (UHF-type) and non-collinear (GHF-type) ref-
erence functions were used in our calculations. We follow
the notation introduced in Ref. 5. If the HF wave function
is collinear and breaks S2 symmetry we denote the method as
SUHF. If complex conjugation symmetry is also broken and
restored, we refer to this case as KSUHF. The same notation is
used for GHF-based methods by replacing U with G. All com-
putations were carried out using an augmented split-valence
6-311G(p,d) basis set with six Cartesian components for d-
functions. This particular choice was made to better match the
results of previous studies on benzynes. The quality of PHF
results has a weak5 dependence on the basis set size (similar to
CASSCF), which is consistent with the method’s ability to de-
scribe static, as opposed to dynamic, correlation. The integra-
tion grid for the gauge angle θ (see Eq. (3)) of the projection
operator is chosen to provide the correct expectation value of
S2 to a precision of 10−7 or better (12 points were used for
S2 projection on an UHF reference and 7 × 12 × 7 for full
triaxial spin projection on a GHF reference). The harmonic
frequencies from PHF were obtained using a four point nu-
merical differentiation of first order analytic derivatives. For
other methods, analytic second derivatives were used when
available.

We have considered the possibility that there are multiple
solutions to the HF and PHF equations. To this end, we have
ensured that our HF solutions (i.e., our UHF calculations) are
stable. Although this cannot, in principle, guarantee that the
global minimum energy wave function is obtained, our HF
energies and optimized geometries agree with the results of
other authors.46, 48 The lowest energy stable HF determinant
has been used as an initial guess for the PHF procedure. Al-
though this strategy does not necessarily lead to the lowest-
energy PHF state (or even a local minimum), we have found
that it often does. A stability analysis of the PHF state can be
performed, but this is out of the scope of the present study.

The active space of the CASSCF calculations consisted
of 8 electrons in 8 orbitals, as previously proposed by various
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authors.49, 50 The choice of this active space is also supported
by our UHF calculations (see Appendix B). We chose the ac-
tive space based on the natural orbital occupancy.3 The (8, 8)
active space corresponds to the inclusion of all orbitals with
occupation numbers roughly differing by 0.02 from double or
zero occupation.

B. Adiabatic singlet-triplet separations

The different benzyne isomers are known to display vary-
ing degrees of biradical character.42 All isomers have singlet
ground states. Experimental51, 52 ST separations change in the
order

ortho (37.5 kcal mol−1) < meta (21.0 kcal mol−1) < para (3.8
(2.1) kcal mol−1).

As it has been extensively discussed,40, 44 static correla-
tion is pervasive in benzynes. The smaller the ST gap, the
larger the static correlation present in the singlet ground state.
Table I lists the adiabatic ST splittings in o-, m-, and p-
benzyne biradicals predicted by several methods.

Several conclusions can be drawn from the calculated ST
splittings. First, we note that UHF predicts the correct ground
state for o- and p-benzyne, but not for m-benzyne. Also, as
one may expect, UHF produces highly spin contaminated so-
lutions for singlet states. For triplet states the spin contamina-
tion is smaller but still significant.

SUHF recovers a significant correlation energy (over
UHF) for the singlet states of all isomers. In contrast, triplet
states are improved to a lesser degree, which leads to an over-
estimation of the ST splittings. Our results thus make evident
the fact that the improvement that PHF provides over UHF is
not the same for states of different symmetries, as the char-
acter of the correlations present (static vs. dynamic) need not
be the same. We note that by breaking and restoring further
symmetries of the wave function, for example Sz symmetry
with SGHF, one can systematically improve the quality of
PHF wave functions. We point the reader to Ref. 37 for more
examples of ST splittings calculated using PHF methods. For
states with a significant fraction of static correlation, such as
the ground state of the benzyne isomers, PHF yields a high-
quality wave function considering its fully variational nature
and mean-field scaling. This conclusion is consistent with our
recent findings regarding the quality of PHF wave functions
in post-PHF quantum Monte Carlo calculations.20

TABLE I. Adiabatic ST-splittings E(T) − E(S) (kcal mol−1) in o-, m-, and
p-benzyne as predicted by different methods.

Method p-benzyne m-benzyne o-benzyne

UHF 11.1 − 6.0 20.4
SUHF 29.3 4.4 67.0
KUHF 23.4 6.9 50.6
CASSCF(8,8) 2.7 15.2 35.1
Expt.a 3.8 21.0 37.5

〈S2〉UHF (singlet) 1.80 1.31 1.59
〈S2〉UHF (triplet) 2.40 2.80 2.41

aFrom photoelectronic experiments (Ref. 52).

FIG. 1. Geometries of benzyne isomers as obtained with SUHF. For
metabenzyne, the SGHF geometry is also given in italics. Absolute energies
are in a.u.

C. Optimized geometries

We have used spin-projected HF to optimize singlet ge-
ometries of three benzyne isomers. The SUHF equilibrium
geometries are shown in Fig. 1.

For all three isomers, the SUHF and CASSCF predicted
equilibrium geometries are close. In almost every case SUHF
predicts shorter bonds than CASSCF, rendering the opti-
mized geometries closer to recent multi-reference CCSD(T)
calculations.47 We emphasize that the difference in the bond
lengths C1–C2 and C2–C3, which has been used by Craw-
ford et al.43 as a measure of diradical character, is 0.042 Å.
This agrees with the results of Li and Paldus (0.060 Å) and
our own CASSCF calculations (0.035 Å), indicating that the
strong correlation effects are successfully captured by PHF.

In the case of m-benzyne, a SUHF stationary point with
C2v symmetry corresponds to a first order saddle point.
The actual SUHF minimum has only Cs symmetry and is
18.8 kcal mol−1 lower in energy. We note that the lowest en-
ergy stable UHF solution also has a Cs minimum. SUHF is
thus unable in this case to restore the broken spatial symme-
try in the UHF wave function. Using a non-collinear GHF-
type determinant, HF yields a minimum structure with C2v

symmetry. The SGHF equilibrium geometry compares nicely
with CASSCF and also possesses C2v symmetry. Indeed, the
problem displayed by UHF-type determinants has been pre-
viously observed in density functional theory53 (DFT) calcu-
lations on small symmetric systems,54 and can be partially
explained by spin frustration effects. Finally, we emphasize
that all our PHF calculations correctly predict a monocyclic
equilibrium structure (see Refs. 46 and 55 for a discussion on
this issue) for m-benzyne. For example, the angle C1–C2–C3

in the SUHF and SGHF optimized structures is 105.7◦ and
106.0◦, respectively.

The SUHF equilibrium structure of o-benzyne is suf-
ficiently close to the experimental results of Groner and
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Kukolich. However, we should note that the C1–C2 predicted
bond length, which should have a partial triple-bond charac-
ter, is 0.019 Å off from the experimental measurement. The
latter is not present in the CASSCF structure. PHF better
reproduces other geometrical parameters than in the p- and
m-isomers.

D. Vibrational frequencies

In the following, we discuss the frequencies of p-
benzyne, where strong correlation effects are most significant.
The PHF vibrational spectra of the other benzyne isomers
are presented in Appendix B. We enumerate the harmonic
frequencies according to their irreducible representations in
Table II.

The difficulty in the calculation of the harmonic spectrum
of p-benzyne by single reference methods has been first out-
lined by Crawford et al.43 Specifically, the frequencies b1u/12
and b2g/14 which were found imaginary by these authors at
the RHF-CCSD(T) level, are heavily dependent on a proper
accounting of static correlation effects.47

The SUHF harmonic spectrum agrees with calculations
using more sophisticated (and expensive) coupled-cluster
(CC)47 techniques, which go beyond single reference wave
functions. Comparing to CASSCF, one may notice that
most PHF frequencies are below the corresponding CASSCF
values, which is known to overestimate the harmonic

TABLE II. Vibrational frequencies (in cm−1) of p-benzyne as predicted by
SUHF, KSUHF, and other methods.

Sym. No. Expt.a CASSCF SUHF KSUHF RMR-CCSD(T)b

ag 1 3352 3318 3342 3236
2 1537 1456 1477 1385
3 1219 1074 1186 1167
4 990 1040 1000 1008 1023
5 635 647 619 623 647

au 6 962 936 942 924
7 431 383 384 429

b1g 8 771 759 768 692

b1u 9 3334 3302 3326 3215
10 1403 1565 1526 1544 1468
11 978 1088 1062 1075 1063
12 918 1039 1007 1016 869

b2g 13 933 914 923 857
14 657 658 660 547

b2u 15 3350 3315 3339 3230
16 1331 1407 1409 1427 1341
17 1207 1265 1327 1346 1223
18 1092 1071 1080 1040

b3g 19 3334 3301 3326 3217
20 1694 1628 1643 1665
21 1372 1351 1365 1290
22 625 619 622 573

b3u 23 721 777 770 776 758
24 435 460 449 449 500

aSee Refs. 52 and 56.
bFrom Ref. 47 (see Table I (4R RMR-CCSD)).

frequencies. The case of p-benzyne thus clearly illustrates
that the proper accounting of static correlations is a neces-
sary condition to describe the shape of the PES in the benzyne
isomers.

IV. CONCLUSIONS

We have derived and implemented analytic energy gradi-
ents for the projected HF method, which we hope will facil-
itate PHF applications in quantum chemistry. The derivative
expressions do not require the solution of CPHF-like equa-
tions and have several analogies with derivatives in standard
HF theory. Higher order derivatives could be produced in a
similar way; however, the formulation of Coupled-Perturbed
equations for PHF will then be necessary.

Our test calculations show that PHF is capable of captur-
ing effects of static correlation and predicts qualitatively cor-
rect potential energy surfaces. However, the amount of recov-
ered correlation energy, and thus the quality of the potential
energy surface, varies for different systems.
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APPENDIX A: CONNECTION WITH CONVENTIONAL
HF GRADIENT

We show here that the PHF energy derivative (Eq. (28))
reduces to the standard HF derivative derived by Pulay57 in
the case of a trivial projection operator P̂ = Î . In this case,
the integral and summation in Eq. (28) collapse to a single
point. We additionally have

R(θ ) → S, n(θ ) → 1, h(θ ) → E. (A1)

The first two terms in Eq. (28) are just traces of the density
matrix with the derivatives of atomic integrals found in the
HF derivative expression. The third term identically vanishes.
We also have

ρ(θ ) → ρ = CC†. (A2)

The fourth term in Eq. (28) can then be recognized as a prod-
uct of the HF Fock and density matrices∑

μνλσ

Sx
μνρνλ[〈λ|h |σ 〉 + Gλσ ]ρσμ

=
∑
μνλσ

Sx
μνρνλFλσρσν

=
∑
μνλij

Sx
μνCλiεijC

†
jμ = Tr(SxW ). (A3)

Here, we have used the HF equations (FC = SCε), satis-
fied at convergence, as well as the orthonormality condition
among the occupied orbitals. The matrix W is the so-called
energy-weighted density matrix in the last equality. Putting
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TABLE III. SUHF natural occupations and UHF charge natural occupations
in the ground state of benzyne isomers on SUHF geometries.

p-benzyne m-benzyne o-benzyne

No. UHF SUHF UHF SUHF UHF SUHF

16 1.996 1.990 1.998 1.992 1.996 1.992
17 1.952 1.937 1.984 1.961 1.961 1.951
18 1.813 1.803 1.928 1.875 1.850 1.860
19 1.800 1.801 1.891 1.843 1.819 1.838
20 1.080 1.161 1.294 1.553 1.498 1.726
21 0.920 0.839 0.706 0.447 0.502 0.274
22 0.200 0.199 0.109 0.157 0.181 0.162
23 0.187 0.197 0.072 0.125 0.149 0.141
24 0.048 0.063 0.016 0.039 0.039 0.049
25 0.004 0.010 0.003 0.008 0.004 0.008

all the pieces together, we recover the familiar HF derivative
expression

∂E

∂x
=

∑
μν

[ 〈μ| h |ν〉x ρνμ + Gx
μν(θ )ρνμ

] −
∑
μν

Sx
μνWνμ.

(A4)

APPENDIX B: NATURAL ORBITAL OCCUPATIONS

We list here the natural orbital occupations of our fi-
nal SUHF wave functions, as well as the charge natu-

TABLE IV. Vibrational frequencies (in cm−1) of m-benzyne as obtained
with SUHF, SGHF, and other methods. See discussion in the text regarding
the SUHF geometry.

Sym. No. Expt.a CASSCF SUHF SGHF RMR-CCSD(T)b

a1 1 3037 3399 3388 3338 3302
2 3348 3323 3275 3228
3 3313 3284 3248 3160
4 1722 1762 1662 1656
5 1402 1516 1525 1477 1447
6 1155 1161 1124 1101
7 1069 1087 1038 1025
8 949 937 937 836
9 367 506 488 506 419

a2 10 883 945 905 825
11 501 523 485 492

b1 12 990 1083 1012 917
13 824 870 940 880 872
14 751 789 841 794 742
15 561 604 664 617 513
16 362 410 432 408 377

b2 17 3341 3287 3255 3196
18 1486 1612 1651 1572 1372
19 1493 1504 1473 1519
20 1363 1367 1342 1255
21 1286 1248 1274 1382
22 1181 1084 1175 1180
23 936 1016 650 1000 969
24 547 628 119i 612 616

aFrom Refs. 59 and 60.
bSee Table VI of Ref. 47.

TABLE V. Vibrational frequencies (in cm−1) of o-benzyne as obtained with
SUHF and other methods.

Sym. No. Expt.a CASSCF SUHF CCSD(T)/cc-pVTZb

a1 1 3094 3363 3327 3220
2 3071 3331 3307 3191
3 1846 1924 1774 1904
4 1415 1568 1549 1477
5 1271 1397 1378 1318
6 1055 1219 1208 1154
7 1039 1066 1068 1055
8 982 1027 1009 996
9 589 646 631 606

a2 10 997 1007 949
11 869 878 862
12 638 656 592
13 451 465 440

b1 14 838 952 956 914
15 737 763 766 746
16 388 418 394 387

b2 17 3086 3360 3322 3216
18 3049 3314 3292 3174
19 1451 1631 1562 1488
20 1394 1513 1497 1418
21 1307 1319 1303 1261
22 1094 1182 1136 1107
23 849 949 953 849
24 472 563 579 462

aFrom Ref. 61.
bFrom Ref. 58.

ral orbital occupations of UHF. The orbital occupations in
Table III justify our choice of the active space in CASSCF
calculations.

APPENDIX C: VIBRATIONAL FREQUENCIES
OF M- AND O-BENZYNES

The vibrational frequencies of m- and o-benzyne are less
illustrative than in the case of p-benzyne, as these isomers
display less strong correlation effects. Both molecules have
C2v symmetric equilibrium geometries.

For m-benzyne, we considered the minimum in the C2v

surface which, as can be seen from Table. IV, is not predicted
to be a true minimum by SUHF (there is one imaginary fre-
quency). In fact, the symmetry of the SUHF actual minimum
is reduced to Cs. Consequently, some normal modes differ
significantly from the corresponding CASSCF and experi-
mental values (cf. modes b2/24, b2/23). However, SGHF pre-
dicts an expected C2v minimum and improves the harmonic
spectrum.

o-benzyne exibits the lowest biradical character of all
three isomers, as we discussed above. Consequently, the
ground state wave function of o-benzyne can be well
described with single-reference methods. Indeed, single-
reference CC calculations58 reproduce the experimental vi-
brational spectrum quite accurately. The SUHF frequencies
are of CASSCF quality (most frequencies have actually
smaller errors) (Table V).
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