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The Yukawa one-component plasma (OCP) model is a paradigm for describing plasmas that contain one
component of interest and one or more other components that can be treated as a neutralizing, screening
background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, κ . As
a result, systems of similar κ show the same dynamics, regardless of the underlying parameters (e.g., density and
temperature). We demonstrate this behavior using ultracold neutral plasmas (UNPs) created by photoionizing a
cold (T � 10 mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons
providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench of the
interaction potential from κ = ∞ to a final κ value set by the electron density and temperature. We demonstrate
experimentally that the postquench dynamics are universal in κ over a factor of 30 in density and an order of
magnitude in temperature. Results are compared with molecular-dynamics simulations. We also demonstrate
that features of the postquench kinetic energy evolution, such as disorder-induced heating and kinetic-energy
oscillations, can be used to determine the plasma density and the electron temperature.
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I. INTRODUCTION

The Yukawa one-component-plasma (OCP) model, in
which particles interact through a screened, repulsive 1/r

potential [Eq. (1)], is used to describe systems such as the
cores of white dwarf stars [1] and Jovian planets [2,3],
plasmas produced during inertial confinement fusion [4], dusty
plasmas consisting of highly charged dust particles [5,6],
charge-stabilized colloidal systems such as latex spheres in
a polar solvent [7,8], and ions in ultracold neutral plasmas
(UNPs) [9,10], which are the focus of this work. Such systems
contain one species of interest (e.g., ions) and at least one
other species (e.g., electrons, polar molecules) that acts to
screen interactions between particles of the species of interest.
In addition to describing many real systems, this model is
also used in molecular-dynamics studies of strongly coupled
plasmas [11–13], and for research on phase transitions [8].
Interactions in the Yukawa model take the form

Vij (ri,rj ) = U0

rij

exp

(
− rij

λD

)
, (1)

where rij = |�ri − �rj |, U0 is a measure of the interaction
strength, and λD is known as the Debye screening length.

One important feature of the Yukawa model is that, in
suitably normalized units, the dynamics depends solely on the
screening parameter, κ = a/λD , where a = [3/(4πn)]1/3 is
the Wigner-Seitz radius and n is the density. This universal
scaling follows from the classical scaling invariance for a
system of charged particles, and it allows for comparisons to
be made between systems with different n, U0, and T , where
T is the temperature.

In this paper, we demonstrate universal scaling in the
ion component of UNPs created by photoionizing a laser-
cooled (T � 10 mK) magneto-optically trapped gas [9,10].

*tkl1@rice.edu

Ion interactions in UNPs are well described by the Yukawa
model, with U0 = e2/(4πε0). Electrons serve as a neutralizing
and screening background, with Debye screening length λD =√

kBTeε0/(ne2). This leads to the normalized units chosen
here of energy E → E/[e2/(4πε0a)], position r → r/a, and
time t → ωpit , where the time scaling factor is the ion plasma
oscillation frequency ωpi =

√
ne2/(ε0mi).

Universal scaling is demonstrated by measuring the
evolution of the ion kinetic energy after photoionization,
which can be thought of as a rapid quench of the interaction
potential from κ = ∞ (i.e., the noninteracting gas) to a final
κ value that is an experimental parameter (see Sec. II). We
verify that, in appropriately scaled units, the postquench
kinetic energy evolutions in plasmas with the same value of
κ are identical even if the density is varied over a factor of 30
[n ∼ (3 × 1014)–(9 × 1015) m−3] and the electron temperature
is varied over an order of magnitude (Te = 49–440 K). We
compare all of our results to molecular-dynamics (MD)
simulations. In addition to the specific application to
laser-produced plasmas [13], this work exploits the Yukawa
OCP as a paradigm model to explore the dynamics of
many-body systems far from equilibrium, which is of interest
in many areas of science. The scaling of the dynamics of
three-body recombination in an ultracold neutral plasma was
investigated with molecular-dynamics simulations in [14].

One interesting feature of UNPs is that the photoionization
process automatically results in a strongly coupled plasma
(SCP) [9]. Coupling is parameterized by the ratio of the average
nearest-neighbor Coulomb interaction energy to the kinetic
energy

�s = e2/(4πε0a)

kBTs

, (2)

where the ratio �s is the Coulomb coupling parameter for
species s at temperature Ts . For strong coupling, � � 1.
UNPs equilibrate with �i = 2–4. The electrons remain weakly
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coupled with �e � 0.1 [15]. The cores of white dwarf stars
(� = 10–200), the cores of Jovian planets (� = 20–50), and
plasmas produced in laser-implosion experiments, such as
those designed to produce inertial confinement fusion (ICF),
can also be near or in the strongly coupled regime [16]. This
definition of the coupling parameter arises naturally in our
rescaled units as an inverse temperature. We avoid the use
of an effective Coulomb coupling parameter (often defined
as �∗ = � exp [−κ]) [17], and we parametrize the Yukawa
system in terms of � and κ [11].

We note useful relations between parameters describing the
electrons: �e = κ2/3, and the number of electrons per Debye
sphere is ND = κ−3. Thus, for the plasmas described here,
κ � 0.55 and ND � 6. For the remainder of the paper, we will
only refer to Coulomb coupling parameters for the ions, and
we will drop the subscript on �.

The rest of the paper is structured as follows: In Sec. II we
discuss prior studies of UNPs. In Sec. III we provide details
of our experiment and MD simulation. In Sec. IV we discuss
the results of the joint experimental and numerical study.

II. ULTRACOLD NEUTRAL PLASMAS

UNPs can be generated by laser photoionization of either
laser-cooled, magneto-optically trapped gases of atoms [9,10]
or molecular beams [18], or spontaneous avalanche ionization
in a dense gas of highly excited Rydberg atoms [19–21].
Typical UNP densities range from n = 1014 to 1017 m−3.
The ion temperatures, Ti , in UNPs can be as low as ∼100 mK
[22]. The electron temperature, Te, in UNPs generated by the
photoionization process is determined by the excess photon
energy above the photoionization threshold [10]. The photon
energy is a controllable parameter, granting control over Te

and, consequently, κ .
The UNP dynamics after photoionization can be described

by a sequence of events that take place on substantially differ-
ent time scales. First, on a time scale ω−1

pe =
√

ε0me/(ne2) ∼
10 ps–1 ns, where ωpe is the electron plasma frequency, the
electrons equilibrate to close to a thermal distribution [10].
If κ � 0.55, additional phenomena occur, such as three-body
recombination (TBR) [15], which can cause deviations from
the simple description of UNP dynamics and from the Yukawa
OCP model. For this reason, we restrict ourselves to κ � 0.55
in this work.

As the electrons equilibrate, the ions retain the kinetic
energy distribution of the ∼10 mK atoms. If the ions were
to equilibrate to this temperature, they would be deep into
the SCP regime (for example, � = 580 for typical values
n = 1016 m−3 and Ti = 10 mK). However, a heating process
known as disorder-induced heating (DIH) reduces the achieved
coupling to � = 2–4 after equilibration.

A. Disorder-induced heating and kinetic-energy oscillations

After the electron equilibration, the ions undergo DIH
on a time scale ω−1

pi ∼ 100 ns–1 μs, which defines the
natural time scale for the ion dynamics [17,23,24]. During
DIH, the ion kinetic energy first increases dramatically, then
subsequently undergoes damped oscillations known as “ki-
netic energy oscillations” (KEOs), which occur at frequency
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FIG. 1. Experimental DIH curve plotted in scaled units for
average one-dimensional kinetic energy per ion 〈KE〉fit and time
t . Curve taken at κ = 0.14, n = 1015 m−3, and Te = 440 K, which
yields Ec/kB = 2.7 K and 2π/ωpi = 1.4 μs.

∼2ωpi. Figure 1 shows a DIH curve plotted in natural units,
with time scaled by 2π/ωpi and approximate average one-
dimensional kinetic energy per ion (〈KE〉fit) scaled by the
nearest-neighbor Coulomb energy, Ec = e2/(4πε0a), which
yields the inverse of an effective Coulomb coupling parameter,
�−1

fit = 2〈KE〉fit/Ec. We will describe in Sec. III how this
approximate measure of the kinetic energy is derived from
the data.

DIH results from the fact that, before photoionization,
the equilibrium positions of the atoms are uncorrelated.
After plasma creation, however, strong Coulomb interactions
make close pairs of ions energetically unfavorable. Spatial
correlations develop as the ions move to reduce their potential
energy. By conservation of energy, this increases the average
kinetic energy per ion, leading to an elevated temperature
and reduced � in equilibrium. We model this process as
equilibration of a Yukawa OCP after a quench of interactions
from κ = ∞ to the value of κ determined by electron density
and temperature.

DIH was predicted [25] soon after the first UNP exper-
iments [10]. The magnitude of the resulting heating can
be calculated by using the pair correlation function, g(r),
to determine the change in interaction energy. The pair
correlation function reflects how the local density near any
particle (taken to be at the origin) is modified by correlations:
nlocal(r) = g(r)n [e.g., in an uncorrelated system, g(r) = 1].

At equilibrium, g(r) is solely determined by � and
κ [11,25,26]. The change in kinetic energy by the end of
the equilibration is equivalent to the negative of the change
in interaction energy, and therefore

kB(Tf − Ti)

N
=−�Uc

N
= n

2

∫
Vij (r)[1 − g(r,�,κ)]d3�r. (3)

By taking advantage of the isotropy of the Yukawa interac-
tion and expressing quantities in normalized units (r̃ = r/a),
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FIG. 2. �(κ) from solving Eq. (4).

and setting the initial temperature Ti ≈ 0, this takes the simpler
form

kBTf

e2/(4πε0a)
= �−1(κ) =

∫ ∞

0
r̃ exp[−κr̃][1 − g(r̃ ,�,κ)]dr̃,

(4)

where �(κ) is the Coulomb coupling parameter after equili-
bration, and �−1 can be viewed as a temperature or kinetic
energy in scaled units.

Already, we see evidence of universal scaling in the
equilibration process, since Eq. (4) can be solved for � as
a function of κ using MD simulation results for g(r̃ ,�,κ) (see
Fig. 2) [11]. Previous experiments have confirmed that the
�(κ) achieved after equilibration matches Eq. (4) [17,23].

The KEOs, on the other hand, are not described by an
analytical expression [13,23]. MD simulations have shown
that the frequency of these oscillations is approximately 2ωpi.
Increasing κ , however, softens the ion-ion interaction and
slows the oscillations slightly for the experimentally accessible
range of screening [24]. The KEOs result from the exchange
between kinetic energy and interaction energy as g(r) relaxes
toward equilibrium [13]. Oscillations at frequencies near ωpi

are a common feature in dynamics of SCPs; for example, they
are observed in velocity autocorrelation functions [27–30].

However, the principle of universal scaling demands that the
entire curve, not just the frequency and the postequilibration
coupling, depend solely on κ . This dependence is established
in Sec. IV over a factor of 30 in n and an order of magnitude
in Te.

III. METHODS

A. Experiment

We create UNPs by photoionizing a gas of laser-cooled
88Sr atoms in a magneto-optical trap (MOT) [9]. We use a two-
photon sequence to photoionize the gas: one 461 nm photon
from a pulsed-dye-amplified CW laser to excite the 1S0 → 1P 1

transition, and another tunable photon (405–413 nm) from a
pulsed dye laser to ionize from the 1P 1 state. We refer to
the latter as the ionization laser. Both systems are pumped by
10 ns, 355 nm pulses from the third-harmonic generation of a
pulsed Nd:YAG laser.

By tuning the wavelength of the ionization laser, we
adjust the plasma electron temperature in the range Te =
49–440 K [15]. The plasma has a Gaussian density profile,
n(r) = n0 exp [−r2/(2σ 2

0 )], with width σ0 = 1–2 mm and
peak density n0 = (3 × 1014)–(9 × 1015) m−3.

The kinetic energy and density of the ion component are
probed using laser-induced fluorescence (LIF) spectroscopy
at λ = 422 nm, corresponding to the 2S1/2 → 2P 1/2 Sr+

transition [31]. Fluorescence is excited in a 1-mm-thick sheet
passing through the center of the plasma. This ensures that
fluorescence is excited in a region with little density variation
along the unresolvable imaging axis (for our smallest width,
σ0 = 1 mm, density varies by e−1/8 along the image axis). We
define our coordinate system such that the LIF laser lies in
the x-y plane, propagating along the x axis, at approximately
z = 0.

A fraction of the fluorescence emitted perpendicular to the
sheet is then collected and imaged via a 1:1 optical relay onto
an intensified charge-coupled device (ICCD) with a 13 μm
pixel size. This allows for regional analysis of small volumes of
roughly constant density. The ICCD can be gated with a 30 ns
resolution, which allows for time-resolved measurements of
the DIH curve. The DIH time scale is tDIH = 2π/ωpi � 500 ns
for typical UNP densities.

We scan f , the frequency detuning of the LIF laser from
resonance, to obtain a fluorescence spectrum. The spectrum is
a convolution of a Lorentzian of width given by the sum of the
laser and natural linewidths (γl = 6 MHz and γn = 20 MHz,
respectively) with Doppler shifts resulting from the velocity
distribution, D(v,x,y), for plasma at position (x,y):

S(x,y,f ) = C(x,y)
∫ ∞

−∞
dv′ D(v′,x,y)

γ 2/4 + (
f − v′

λ

)2 , (5)

where γ = γl + √
1 + s0γn is the Lorentzian width with

power broadening taken into account, s0 is the saturation
parameter for the transition, and C(x,y) is proportional to
the local density at (x,y) and the overall photon detection
efficiency [31].

If we assume that the velocity distribution can be de-
scribed with a thermalized Gaussian with width σv(x,y) =√

kBTfit(x,y)/mi , with Tfit(x,y) being the local temperature,
the signal can be expressed as

S(x,y,f ) = C(x,y)√
2πσv(x,y)

∫ ∞

−∞

exp
[ − (v′−v0(x))2

2σv (x,y)2

]
dv′

γ 2/4 + (
f − v′

λ

)2 . (6)

As we explain in Sec. III B, the assumption of a thermalized
plasma is not strictly valid during DIH; the velocity distribution
can differ slightly from a Gaussian, especially during the initial
rise in kinetic energy. However, fitting the velocity distribution
to a Gaussian and obtaining a value of Tfit provides a well-
defined method of characterizing data from experiments and
simulations, and it serves as our primary analysis tool. While
Tfit does not always have a 1:1 correspondence to the average
kinetic energy, we will use it to define an approximate kinetic
energy in scaled units as �−1

fit = kBTfit/Ec. In equilibrium,
�fit = �.

Another source of complication is that Tfit(x,y) will vary
with density throughout the plasma during the DIH process,
as both the frequency of the KEOs and the overall energy
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scaling are density-dependent. Thus, we restrict our analysis
to a region of area 1 mm × 1 mm (80 × 80 pixels) centered on
the center of the plasma as a compromise between the desire
to maximize the signal and the desire to keep the density
relatively uniform over the analysis region.

It is important to note that the plasma is unconfined, and
that after it is created the electron thermal pressure causes it to
expand radially. This will cause the average velocity along the
laser axis within a pixel to depend on x, which we take into
account by allowing for a bulk velocity in each region, v0(x),
in Eq. (6). The effect of expansion was discussed in greater
detail in previous papers [22,31]. For the work discussed in
this paper, the effect is relatively minor, as tDIH is shorter than

τexp =
√

miσ
2
0 /(kBTe), the time scale for expansion. For all

experiments discussed in this work, tDIH/τexp � 0.1.
We divide the 80 × 80 pixel analysis region into 20 regions

of size 80 × 4, with the short axis along x in order to minimize
spread in expansion velocity along x within each region. The
spectrum in each region is then fit to Eq. (6), with C, v0,
and σv as free parameters. We then take the average of the
temperatures derived from all 20 fits to σv . The density, n, can
be determined from the value of the amplitude, C, which is
calibrated with absorption imaging measurements as described
in [9]. The effect on the DIH curve of averaging temperatures
from regions of differing density to determine Tfit is discussed
in detail in Sec. IV C and in the Appendix.

B. Molecular-dynamics simulations

The MD simulations evolve a Yukawa OCP of N = 20 000
particles in a cubic volume with periodic boundary conditions
using the minimum image convention [32] and a leap-frog
integrator [33] of Hamilton’s equations of motion, expressed
in natural units, with a time step of 0.0035ωpit . Simulations
were performed with κ ranging from 0.12 to 0.55, with 50
runs conducted for each chosen κ . The initial conditions
for the particles are random positions and zero kinetic
energy.

Figure 3 shows velocity distributions [in normalized units
ṽ = v/(aωpi)] from the MD simulation (red) taken at various
times throughout the equilibration process (the full set of
velocity distribution data is available as supplemental ma-
terial [34]). The distribution is clearly non-Maxwellian for
several plasma periods, as the real distribution differs from
that of a thermalized system with equal total kinetic energy
(gold), a feature that was demonstrated in previous MD
simulations [24]. This may be due to the high-velocity ions
observed in the tails of the spectrum (see Fig. 3) taking a
long time to reach equilibrium. This is somewhat expected
because the ion-ion collision rate scales with 1/v3 [37]
(although this scaling is modified slightly in strongly coupled
plasmas [28]).

The actual kinetic energy per particle at each time step can
be determined by calculating the rms velocity, regardless of
whether or not the system is thermalized. The scaled kinetic
energy can then be parametrized by a generalized coupling
parameter �gen = EC/(2〈KE〉), which becomes equal to �

[Eq. (2)] when the plasma is thermalized. The kinetic energy in
natural units is simply �−1

gen/2 (we plot �−1
gen instead of �−1

gen/2
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FIG. 3. One-dimensional velocity distribution for particles in
a Yukawa OCP calculated with the MD simulation (red, solid)
compared to maxwellian distribution of equivalent energy (gold,
dash-dot) and the maxwellian corresponding to the best fit to the
distribution (blue, dashed) for κ = 0.39. Velocity is in scaled units
ṽx = v/(aωpi). (a)–(d) ωpit/2π = {0.1,0.25,0.5,3}. Inset: The tail
of the distribution, showing the relatively large populations at high
velocity in the distributions calculated with MD.

for convenience). Figure 4 shows the DIH curves �−1
gen versus

ωpit/2π for the 11 different values of κ for which simulations
were conducted (each curve is an average over 50 runs). In
general, the oscillation frequency is roughly 2ωpi, and the

FIG. 4. Scaled kinetic energy �−1
gen = 2〈KE〉/Ec, where 〈KE〉 is

the one-dimensional kinetic energy per particle and Ec = e2/(4πε0a)
is the Coulomb energy between nearest neighbors, vs scaled time
ωpit/2π . Curves at various κ are calculated using a MD simulation
that propagates the equations of motion (in scaled units) for a Yukawa
OCP with random initial positions and initial velocities all set to zero.
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FIG. 5. Comparison of �gen and �fit from MD simulations to �(κ)
[Eq. (4)]. �gen = EC/(2〈KE〉) is the generalized Coulomb coupling
parameter calculated from the averaged kinetic energy of the ions,
while �fit = EC/(kBTfit) corresponds to the temperature extracted
from fitting the velocity distribution to a Maxwellian. In the early
stages of the equilibration, �fit falls below �gen. As the system
equilibrates, both measurements of � slowly rise to �(κ).

equilibrium temperature and oscillation amplitude decrease
with κ while the damping increases with κ .

Experimentally, we do not have access to the complete
velocity distribution without some filtering, as it is convolved
with a Lorentzian by the LIF diagnostic process, as explained
in the previous section. With the signal-to-noise ratio of our
experimental data, we cannot unambiguously detect deviations
from a Maxwellian velocity distribution during the DIH
stage (compare the red and blue curves in Fig. 3). Thus, in
order to compare the simulation with the experiment, we
run the distribution from the simulation through the same
convolution that occurs for our experimental data. Specifically,
we convert the distribution to a Doppler-broadened frequency
distribution and then numerically convolve it with a Lorentzian
of width γ . We then fit the result to Eq. (6) to determine
Tfit, which assumes that the real distribution is Maxwellian.
This Tfit can then be directly compared to Tfit measured in the
experiment, or, equivalently, we can convert both values of Tfit

to �−1
fit . �−1

fit tends to slightly underestimate the real kinetic
energy of the system (see Fig. 5) due to the insensitivity
of the fit to high-velocity ions in the tail of the distribution
(Fig. 3). However, �fit provides a well-defined prescription for
analyzing our numerical and experimental data. We note that
�fit introduces a dependence on other parameters outside of
the Yukawa potential, such as

√
kBTfit/mi/(λγ ). Therefore,

�fit does not rigorously scale with κ . However, utilizing the
results from the MD simulation, we have confirmed that the
effect is not detectable within the current signal-to-noise ratio
of the experiment for our parameter range.

We also observe in Fig. 5 that full equilibration to the
expected value of � occurs over a relatively long time scale.
We discuss this further in Sec. IV B.

FIG. 6. Top: Tfit(t) for {n,Te,κ = 3 × 1014 m−3,105 K,0.23} and
{9 × 1015 m−3,440 K,0.20}. Bottom: �−1(ωpit/2π ) for the same
parameters. The collapse of the curves in the top panel onto the
nearly identical curves matching the MD simulations in the bottom
panel demonstrates the universal scaling of DIH over a wide range of
n and Te.

IV. RESULTS AND DISCUSSION

A. Examination of the universality of DIH

To verify the universal scaling of DIH expected from
the Yukawa model, we experimentally measured DIH curves
for two conditions with approximately equal κ: {n,Te,κ} =
{3 × 1014 m−3,105 K,0.23} and {9 × 1015 m−3,440 K,0.20},
where n is measured from the LIF image and Te is set by
the wavelength of the ionization laser. The results are shown
in Fig. 6. Although the two Tfit(t) curves differ dramatically,
the scaled �−1

fit (ωpit/2π ) curves collapse onto the simulation
curves. This demonstrates the power of universal scaling
for Yukawa systems. Conversely, one could interpret this as
experimental evidence that ultracold neutral plasmas are nearly
perfect realizations of Yukawa OCPs.

Next, we took two sets of data in which κ was varied: in
one we kept Te constant and varied n, and in another we kept
n relatively constant and varied Te. The results are shown in
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FIG. 7. Top: Tfit(t) for densities ranging from n = 9 × 1014 to
9 × 1015 m−3 at Te = 440 K. Bottom: �−1

fit (ωpit/2π ) for the same
parameters. The scaled data are all similar because κ varies slowly
with plasma density.

Figs. 7 and 8, respectively. In the constant Te case, we observe
that even changing the density by a factor of 10 is not enough
to significantly change the behavior of the scaled curves. This
follows from κ having a weak dependence on n (κ ∝ n1/6).
In contrast, when Te is varied by a factor of ∼7, we see clear
differences between the scaled curves as κ ∝ T

−1/2
e . Moreover,

the experimental results fall on the corresponding MD curves,
showing quantitative agreement between data and simulation.

B. Equilibration to �eq(κ)

From the MD simulations (Figs. 4 and 5), it is evident that
the average kinetic energy quickly rises to roughly 95% of
the final equilibration value [�(κ), Eq. (4)] within a time of
roughly 2π/ωpi. However, the final approach to equilibrium
as the KEOs damp occurs on a time scale that is an order of
magnitude longer. We confirmed that this behavior is not a
numerical artifact by checking convergence of the results with
increasing particle number and decreasing time step. We also
note that energy is conserved over the course of the simulation
to better than one part in 105.

FIG. 8. Top: Tfit(t) for n ∼ 5 × 1015 m−3 at various κ . Bottom:
�−1

fit (ωpit/2π ) for the same parameters. Each experimental curve
matches the appropriate simulation curve.

This suggests that equilibration of a Yukawa OCP after
a quench of the interaction might display prethermalization
dynamics, which has been discussed as a general phenomenon
of many-body systems far from equilibrium [35] and was
recently observed in isolated quantum systems [36].

Currently, we cannot confirm this behavior in our ex-
periment. This is because the time scale is long enough
for other temperature-changing dynamics, such as heating
from electron-ion collisions and expansion-induced adiabatic
cooling [22], to mask the effect.

C. Application: Using DIH to measure density and
electron temperature

A typical challenge in UNP experiments is the precise
measurement of plasma density and electron temperature.
As discussed and demonstrated in the previous sections, an
experimental DIH curve Tfit(t) taken at a known n and Te will
match the �−1

fit (ωpit,κ) from MD simulations corresponding
to κ(n,Te) after Tfit and t are scaled by Ec/kB and ω−1

pi ,
respectively. Conversely, one could use a fitting routine to
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FIG. 9. Demonstration of the effectiveness of fitting DIH curves
for n and Te. (a) and (b) Curve of best fit (blue) with curves
corresponding to +10% (red) and −10% (green) variation in nfit. (c)
and (d) Curve of best fit (blue) with curves corresponding to +20%
(purple) and −20% (gold) variation in Te,fit.

match an experimental DIH curve to a simulated Tfit curve
with density and electron temperature as fit parameters.

To generate the simulated Tfit curve for a given n and Te,
we utilize a “library” of MD results. MD simulations were
conducted at 11 different values of κ (see Fig. 4). For each
simulation, we record the 1D velocity distribution, D(ṽ), every
40 time steps (0.14ωpit), where the natural velocity unit ṽ =
v/(aωpi) (see Fig. 3). The velocity distributions for arbitrary
0.12 � κ � 0.55 determined by the input n and Te can then
be determined by interpolating between the 11 acquired sets
of distributions. The simulated Tfit curve is then determined
by first unscaling the interpolated velocity distributions so that
they are in units of m/s, then convolving them with a Lorentzian
[as in Eq. (5)] and fitting the results to Eq. (6). Adjusting n

and Te to minimize the difference between this simulated Tfit

curve and the experimental Tfit data determines best-fit values
and confidence intervals for both parameters.

We applied the fitting routine to 10 distinct Tfit(t) curves;
four are reproduced in Fig. 9. We also compared the fitted
density (nfit) and electron temperature (Te,fit) to the density
determined from the LIF measurements (ncam) and the electron
temperature measured from the wavelength of our pulsed
dye laser (Te,dyeCal), as illustrated in Figs. 10 and 11. The
uncertainties in both fit parameters are taken from the 95%
confidence interval of the fit routine. The uncertainty in ncam is
systematically around 20% due mostly to imprecise knowledge
of the shape of the plasma along the axis of the absorption
imaging beam, whereas the uncertainty in Te,dyeCal is taken to
be ±10 K.

FIG. 10. Comparison between ncam and nfit. Uncertainty in ncam

stems from camera calibration (±10%). Uncertainty in nfit is
determined directly from the confidence intervals (95% confidence)
of the fit. The gold curve shows the expected nfit for a plasma with
additional density variation as described in the text.

We observe clear systematic deviations in the fit measure-
ments of both parameters; the fitted densities are too high
(Fig. 10) and the fitted electron temperatures are too low
(Fig. 11). These deviations can be explained, at least in part,
by additional dephasing in the DIH curve caused by density
fluctuations: Fluctuations arise from shot-to-shot experimental
variation and the inhomogeneous, Gaussian density distribu-
tion of the plasma. The measurement effectively averages
oscillations of different frequencies due to the dependence

FIG. 11. Te,fit vs Te,dyeCal uncertainty in Te,dyeCal stems from
uncertainty in the dye laser frequency (±10 K). Uncertainty in Te,fit is
determined from the confidence intervals (95% confidence) of the fit.
The gold curve shows the expected Te,fit for a plasma with additional
density variation as described in the text.
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of ωpi on n. The additional dephasing mimics the damping
that would result from increasing the screening parameter κ ,
therefore this dephasing should push Te,fit down with respect
to Te,dyeCal, as κ ∝ T

−1/2
e . However, a higher fitted κ value

would also reduce the expected DIH for a plasma of density
ncam (see Fig. 2); nfit is therefore pushed higher than ncam in
order to increase the energy scaling parameter Ec enough to
compensate for the reduction in DIH. The difference between
nfit and ncam has a negligible effect on the fitted κ relative to
the difference between Te,fit and Te,dyeCal.

We simulate this effect using our MD library, as discussed
in further detail in the Appendix. By fitting the simulated
curves in the same way that we fit experimental Tfit(t) data,
we acquired the gold curves in Figs. 10 and 11, which
largely account for the observed deviation in both n and Te.
These curves correspond to a 20% shot-to-shot variation in
density, which agrees with the estimate of shot-to-shot density
variation obtained from images of individual plasmas. For both
parameters, the deviation of the fit value from the actual value
varies weakly with κ . However, this effect is small compared
to the size of the deviation (<25% in our range). Therefore,
we neglect it here and show a single curve of the fit parameters
versus the actual plasma parameters to describe all the κ values
in our range.

V. CONCLUSION

This work represents a clear demonstration of the universal
scaling of Yukawa OCP dynamics with respect to κ . We have
confirmed that plasma dynamics after a rapid quench from
κ = ∞ to κ(n,Te) are universal in κ over nearly two orders of
magnitude in n. This work expands on prior studies of DIH in
UNPs [17,23,24] by showing with simulation and experiment
that the universal scaling holds over the entire equilibration pe-
riod, encompassing the initial disorder-induced heating phase,
damped kinetic-energy oscillations, and the slow approach
to equilibrium over several inverse plasma periods. We have
also demonstrated that universal scaling can be used as a tool
for measuring the plasma density and, to a lesser degree, the
electron temperature. Future work will focus on the excitation
and damping of collective modes during equilibration, and the
influence of κ on these phenomena.
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APPENDIX: EFFECT OF DENSITY VARIATION

Here we consider the effect of experimental density
variations on our analysis of DIH and the KEOs. Density
fluctuations arise in two ways in the experiment. First, under-

FIG. 12. Comparison between the uniform density κ = 0.35 MD
DIH curve (blue) and the curves with regional and/or shot-to-shot
density fluctuations taken into account. The shot-to-shot fluctuations
are the larger source of dephasing, becoming significant when the
fluctuations are on the 20% level (green).

lying each LIF spectrum are images of ∼1000 plasmas, which
is necessary for good statistics. Ideally, all of those plasmas
would have the same size, density, electron temperature, etc.
However, there is natural shot-to-shot fluctuation in all of these
parameters.

Second, plasmas inherit the Gaussian spatial distribution
of the MOT, i.e., they have nonuniform density. The largest
region that is used when measuring Tfit is a 1σ × 1σ × 1σ

region in the center of the plasma, selected by the LIF laser
beam and region of interest on the camera. The variation in
density within this region forms another source of density
variation.

The spread in κ and Ec from density variations is small.
However, since the frequency of the KEOs depends on density
through ωpi, averaging curves corresponding to different
densities results in an apparent increased damping through
dephasing. In Fig. 12, we examine the effect of both sources
of density fluctuations using the MD data.

For a given peak density n0 and temperature Te, the
regional variation is described by dividing the 1σ × 1σ × 1σ

box into subboxes of size 0.05σ × 0.05σ × 0.05σ , with the
density in each subbox calculated using the measured Gaussian
density distribution ns = n0 exp [− x2+y2+z2

2σ 2 ], where (x,y,z)
are the subbox coordinates. We then unscale MD DIH data for
κ(ns,Te) in each subbox (i.e., in each subbox we convert the
MD �−1

fit (ωpit/2π ) to Tfit(t) with the scaling factors determined
by ns). Tfit(t) curves are then averaged together and then
rescaled back to �fit using n0. The shot-to-shot fluctuations
are taken into account by repeating that procedure for a set
of 1000 values of n0 taken from a normal distribution with a
standard deviation of either 10% or 20%. Figure 12 shows the
effect of density variation. The regional variation of density
has a small effect on the fit parameters, but the shot-to-shot
fluctuations are significant. By fitting these simulated data for
n and Te in the same way that we fit our real experimental data,
we determine that the fitted electron temperature is reduced, as
the additional dephasing is indistinguishable from an increase
in κ , and thus a decrease in Te (see Fig. 11). The density
measurement is also increased (Fig. 10).
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