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Abstract We use a suite of 3-D numerical experiments to test and expand 2-D planar isoviscous scaling
relationships of Moore (2008) for mixed heating convection in spherical geometry mantles over a range of
Rayleigh numbers (Ra). The internal temperature scaling of Moore (2008), when modified to account for
spherical geometry, matches our experimental results to a high degree of fit. The heat flux through the
boundary layers scale as a linear combination of internal (Q) and basal heating, and the modified theory
predictions match our experimental results. Our results indicate that boundary layer thickness and surface
heat flux are not controlled by a local boundary layer stability condition (in agreement with the results ofMoore
(2008)) and are instead strongly influenced by boundary layer interactions. Subadiabatic mantle temperature
gradients, in spherical 3-D, are well described by a vertical velocity scaling based on discrete drips as opposed
to a scaling based on coherent sinking sheets, which was found to describe 2-D planar results. Root-mean-
square (RMS) velocities are asymptotic for both low Q and high Q, with a region of rapid adjustment between
asymptotes for moderate Q. RMS velocities are highest in the low Q asymptote and decrease as internal
heating is applied. The scaling laws derived by Moore (2008), and extended here, are robust and highlight the
importance of differing boundary layer processes acting over variable Q and moderate Ra.

1. Introduction

The Earth's mantle is heated by a combination of internal heating, from the decay of radioactive nuclei, and
basal heating associated with core cooling. This is also the case for other terrestrial planets and moons in the
solar system (for satellites such as Io, Europa, Enceladus, and perhaps the young Earth-Moon system, internal
heating is linked principally to tidal effects as opposed to radiogenic heating). The surface and basal heat flux
of a planet depends on the combination of these heating modes, and an understanding of planetary heat
transfer properties, as a function of internal and basal heating levels, is critical to developing thermal history
models for terrestrial planets.

While many studies have modeled the thermal evolution of planetary mantles, until relatively recently, the
majority of attention has been focused on the end-member parameterization of internal or basal heating only
[e.g., Reese et al., 1999; Hauck and Phillips, 2002; Reese et al., 2005]. Recently, there has been an increased interest
in exploring mixed heating systems [Sotin and Labrosse, 1999; Moore, 2008; Shahnas et al., 2008; Choblet and
Parmentier, 2009; Wolstencroft et al., 2009; Deschamps et al., 2010; O'Farrell and Lowman, 2010; Deschamps
et al., 2012; O'Farrell et al., 2013]. Several of the most recent studies have analyzed mixed heating convective
systems using inversion techniques applied to the output from numerical convection experiments [e.g.,
Deschamps et al., 2012; O'Farrell et al., 2013]. The inversion techniques seek to uncover empirical scaling
relationships between key model parameters. An alternative approach is to start with theoretically derived
scaling relationships and use numerical experiments to test the validity and map the limits of the theoretical
framework. That latter approach is the one we follow herein.

The goal of this study is to evaluate and expand the theoretical scaling relationships of Moore [2008]. The
theory was developed for a 2-D planar system, which is designed to emulate physical tank experiments.
We extend it to address a 3-D spherical shell system, designed to emulate planetary interiors. We then use
a large suite of numerical experiments to test the theoretical scaling predictions. We focus on isoviscous sys-
tems in order to test the scaling theory as straight forwardly, and comparably, as possible. We will extend the
theory to include temperature- and depth-dependent viscosities, as well as surface yielding in future work.
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2. Models and Methods

The governing equations of mass, momentum, and energy conservation, assuming infinite Prandtl number
and Boussinesq fluid approximation, are given in nondimensional form by

ui;i ¼ 0 (1)

�P;i þ η ui; j þ uj;i
� �� �

; j þ RaTδir ¼ 0 (2)

T ;t þ uiT ;i ¼ T ;ii þ Q; (3)

where u is the velocity, P is the dynamic pressure, η is the viscosity, Ra is the Rayleigh number, T is tempera-
ture, δij is the Kroneker delta tensor, Q is the heat production rate, i and j represent spatial indices, r is a unit
vector in the radial direction, t is time, and the form X,y represents the derivative of X with respect to y.
Repeated indices imply summation. Equations (1)–(3) are solved using the community benchmark code
CitcomS (version 3.2) [e.g., Zhong et al., 2000; Tan et al., 2006].

The vigor of convection is described by the Ra:

Ra ¼ gραΔTd3= κηð Þ; (4)

where α is the thermal expansivity, ρ is density, g is gravity, κ is the thermal diffusivity, d is layer depth, and η is
the viscosity. ΔT is the reference temperature drop across the system, given as follows: the temperature
contrast from the base of the convecting layer to the surface (Ts–Tb). CitcomS uses a Ra based on full shell
convection (d=planetary radius R0), thereby requiring a modification of the full radius Ra (RaR0) to an effec-
tive Ra (Raeff) to account for convection in the thinner layer: Raeff ¼ R0 � fð Þ�3RaR0, where f= Rc/R0 and Rc is
the core radius. Rc and R0 are taken as nondimensional (see CitcomS user manual; https://geodynamics.org/
cig/software/github/citcoms/v3.2.0/citcoms-3.2.0-manual.pdf). For the remainder of this paper, Raeff will be
shortened to Ra unless otherwise noted. Additional critical nondimensional quantities are the internal heat
generation rate Q:

Q ¼ Hd2= κΔTð Þ; (5)

where H is the volumetric heating rate.

We run suites of numerical experiments with Q varying between [0 – 200] and Ra varying between 2 orders of
magnitude [1e5–1e7], with higher values of Q associated with higher values of Ra. Similar Q values were
selected as comparison points between differing Ra values. Each simulation was run to a time that allows
for a statistically steady state and then allowed to run twice that length where computationally favorable
(e.g., lower Ra simulations). Where computationally prohibitive (e.g., high Ra systems), simulations were
run to a time that allows for a statistically steady state then run ~15–30% longer. Model resolution was not
assumed a priori; as a result, varying model resolutions were tested with system tie points at specific Q
and Ra values. Model domains consist of 32, 65, 81, or 128 grid cell elements in the three primary directions
for each of the 12 spherical caps. Boundary conditions are free slip; basal and surface temperatures are fixed
(Tb=1; Ts=0) and f= 0.55.

3. Geometric Factors

For use with thermal history calculations, the boundary heat flow needs to be expressed as a function of the
convective parameters Ra andQ. At statistically steady state, convective systemsmust balance heat input and
output. The Nusselt number (Nu) is a useful nondimensional representation of heat flow. In the planar case,
the balance between basal and surface Nu and internal heating rate is given by

Nusurf ¼ Nubot þ Q (6)

It has been long known that correction factors accounting for different geometries, areas, and volumes in
spherical domains should be implemented in order to scale between experiments and/or theory in planar
versus spherical systems [e.g., Shahnas et al., 2008; O'Farrell and Lowman, 2010; Deschamps et al., 2010;
Choblet, 2012; Deschamps et al., 2012; O'Farrell et al., 2013].

The manner in which CitcomS nondimensionalizes model equations will lead to a specific form of a geo-
metric correction. We follow the approach of the codes principal author [Zhong et al., 2008; S. Zhong,
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personal communication, 2015], which starts by solving the steady state heat equation in spherical geometry
for a shell. This leads to a modified form of equation (6):

q0surf
1� fð Þ
f

¼ q0bot 1� fð Þf þ 1� f 3
� �

3
1� fð Þ
f

Q; (7)

where Nusurf = (1� f)f� 1q ' surf and Nubot = (1� f)f q ' bot and assuming ΔT= 1. Q and the product of the term
adjacent to Q can be thought of as giving an effective Q (Qeff):

Qeff ¼
1� f 3
� �

3
1� fð Þ
f

Q (8)

An inspection of equation (7) suggests that the top and bottom boundary heat fluxes as well as Q should be
scaled together. It is useful to consider end-members. At f= 1, equation (7) predicts all quantities to be 0. At
f=0, equation (7) breaks down. The implication of f=1 is a sphere whose inner boundary is equal to its outer
boundary. To put it another way, there is no convecting layer, only the basal boundary. Consequently, the
prediction of equation (7) is one of returning a shell heat flow of 0. For f= 0, the opposite condition occurs,
there is no bottom boundary, only the convecting layer. As a result the assumption of both a finite f and
ΔT= 1 that were used in the derivation of the scaling form of equation (7) are invalid. For all f between the
conceptual end-members of zero and one, energy is conserved, which is the principal requirement of a
geometric correction [e.g., Deschamps et al., 2010, 2012].

We present our results as parameterizations of heat flow and temperature structure within a spherical shell
for a range of mixed, basal, and internal heating conditions for isoviscous convection. The results of 98
three-dimensional numerical experiments are summarized in Table 1. Data analyses in the following sections
are limited to cases where the maximum misfits in the energy balance fall below 2.84% (where misfits are
reported as percent differences). The remainder of the discussion will reportQ in terms of CitcomS input para-
meters. The reader is referred back to Table 1 to reference Q to Qeff. The temperature and root-mean-square
(RMS) velocity structure within the shell are computed from both horizontal and time averages of the internal
temperature and velocity fields (<> denotes time averages). The temperature domain is radially divided into
the average temperature of the upper mantle<Tum> and lower mantle<Ti>.<Tum> is taken from R= 0.95
to R=0.85, and <Ti> is taken from R= 0.85 to R= 0.55, where R= 0.55 is the base of the system, giving a
mantle depth of 0.45. The value of <Ti> is consistent with the definition used in Moore [2008].

4. Internal Temperatures

The inclusion of heat production within the mantle requires more heat to be transported through the upper
boundary layer [e.g., Sotin and Labrosse, 1999;Moore, 2008; Deschamps et al., 2010]. This is accommodated by
an increase in the internal temperature, which leads to an increase in the temperature drop across the upper
thermal boundary layer (approximated by Tum). However, for large internal heating rates (resulting in large
internal temperatures), this excess heat may not only be transported through the upper boundary layer
but also through the lower boundary layer. The effects of internal heat production on internal temperatures
are additive to the basally heated reference case. Therefore, both Tum and Ti (time average notation dropped

for simplicity) should both follow the form of T ¼ Tbh þ cQ3=4Ra�1=4, where Tbh is the reference basal heating
temperature and c is a constant. This form follows

Ti ¼ 0:228þ 1:184Q3=4Ra�1=4 (9a)

as shown in Figure 1. Equation (9a), with an R2 = 0.996 is nearly identical to the results of Moore [2008], given
as Ti ¼ 0:49þ 1:24Q3=4Ra�1=4 , where the variation in c (~4.5%) and Tbh (~47%) reflect the effects of 3-D
spherical geometries. Further, the upper mantle temperature scales as

Tum ¼ 0:223þ 1:335Q3=4Ra�1=4 (9b)

agreeing with the ΔT top ¼ 0:50þ 1:355Q3=4Ra�1=4 of Moore [2008], with an R2 = 0.998 (using an identical Ra
range). The average variance in predicted to actual Ti is ~ 0.72% and Tum is ~0.69%. The difference in the base
offset temperatures (~0.5 for planar and ~0.2 for spherical) is well known and expected given the change in
domain geometry [e.g., Schubert et al., 2001]. Consequently, these values are nearly indistinguishable from
the results of Sotin and Labrosse [1999].
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Table 1. Convection Results

RaR0 Raeff Resolution QR0 Qeff Tum Ti Tum� Ti RMS Velocity qsurf qbot Nusurf Nubot Misfit (%)

1.10e+06 1.00e+05 33 × 33 × 33 0 0.000 0.240 0.205 0.035 373.960 8.376 27.773 6.853 6.874 �0.351
1.10e+06 1.00e+05 33 × 33 × 33 10 2.274 0.351 0.330 0.020 380.440 11.019 27.084 9.016 6.703 0.490
1.10e+06 1.00e+05 65 × 65 × 65 10 2.274 0.348 0.328 0.020 379.370 11.217 27.787 9.178 6.877 0.330
1.10e+06 1.00e+05 33 × 33 × 33 30 6.821 0.521 0.515 0.006 329.320 15.944 24.651 13.045 6.101 1.029
1.10e+06 1.00e+05 65 × 65 × 65 30 6.821 0.510 0.503 0.007 330.720 16.004 25.264 13.094 6.253 0.171
1.10e+06 1.00e+05 33 × 33 × 33 50 11.368 0.694 0.668 0.026 268.680 20.055 19.533 16.409 4.834 1.352
1.10e+06 1.00e+05 33 × 33 × 33 60 13.641 0.768 0.730 0.038 251.260 22.060 16.988 18.049 4.205 1.200
1.10e+06 1.00e+05 33 × 33 × 33 80 18.188 0.899 0.840 0.059 235.150 26.233 12.473 21.463 3.087 0.922
1.10e+06 1.00e+05 33 × 33 × 33 100 22.735 1.013 0.933 0.080 226.890 30.576 8.554 25.017 2.117 0.688
1.10e+06 1.00e+05 33 × 33 × 33 120 27.282 1.123 1.024 0.099 225.060 35.062 5.088 28.687 1.259 0.527
1.10e+06 1.00e+05 33 × 33 × 33 140 31.829 1.230 1.111 0.118 222.970 39.617 1.836 32.414 0.454 0.416
3.29e+06 3.00e+05 33 × 33 × 33 0 0.000 0.255 0.229 0.025 719.370 11.956 39.535 9.782 9.785 �0.028
3.29e+06 3.00e+05 33 × 33 × 33 4 0.909 0.273 0.262 0.012 711.890 13.389 40.295 10.955 9.973 0.731
3.29e+06 3.00e+05 33 × 33 × 33 10 2.274 0.306 0.303 0.003 698.560 14.790 40.148 12.101 9.937 �0.979
3.29e+06 3.00e+05 65 × 65 × 65 10 2.274 0.307 0.302 0.004 685.590 15.291 41.192 12.511 10.195 0.370
3.29e+06 3.00e+05 33 × 33 × 33 12 2.728 0.325 0.324 0.001 675.230 14.997 38.644 12.270 9.564 �0.201
3.29e+06 3.00e+05 33 × 33 × 33 20 4.547 0.386 0.386 0.001 617.380 17.470 38.898 14.294 9.627 0.905
3.29e+06 3.00e+05 33 × 33 × 33 30 6.821 0.457 0.450 0.007 546.980 19.696 36.310 16.115 8.987 2.057
3.29e+06 3.00e+05 65 × 65 × 65 30 6.821 0.446 0.438 0.008 539.750 20.191 38.741 16.520 9.588 0.719
3.29e+06 3.00e+05 33 × 33 × 33 50 11.368 0.585 0.559 0.026 462.400 23.486 30.227 19.216 7.481 2.036
3.29e+06 3.00e+05 65 × 65 × 65 50 11.368 0.567 0.543 0.025 459.000 23.915 32.659 19.567 8.083 0.629
3.29e+06 3.00e+05 33 × 33 × 33 60 13.641 0.642 0.607 0.035 437.050 25.416 27.443 20.795 6.792 1.844
3.29e+06 3.00e+05 65 × 65 × 65 60 13.641 0.624 0.591 0.033 435.990 25.782 29.693 21.094 7.349 0.518
3.29e+06 3.00e+05 33 × 33 × 33 61 13.868 0.649 0.613 0.035 430.860 25.541 27.056 20.897 6.696 1.684
3.29e+06 3.00e+05 33 × 33 × 33 80 18.188 0.742 0.693 0.049 413.180 29.408 22.636 24.061 5.602 1.180
3.29e+06 3.00e+05 33 × 33 × 33 99 22.508 0.827 0.765 0.062 399.500 33.275 18.680 27.225 4.623 0.359
3.29e+06 3.00e+05 33 × 33 × 33 100 22.735 0.832 0.769 0.063 403.760 33.552 18.614 27.452 4.607 0.416
3.29e+06 3.00e+05 33 × 33 × 33 120 27.282 0.913 0.838 0.075 398.740 37.812 15.065 30.937 3.729 �0.246
3.29e+06 3.00e+05 65 × 65 × 65 120 27.282 0.901 0.824 0.077 379.300 38.562 16.823 31.551 4.164 0.345
3.29e+06 3.00e+05 65 × 65 × 65 120 27.282 0.901 0.825 0.076 381.730 38.598 16.920 31.580 4.188 0.360
3.29e+06 3.00e+05 33 × 33 × 33 148 33.648 1.019 0.927 0.093 391.440 43.747 10.312 35.793 2.552 �1.164
3.29e+06 3.00e+05 33 × 33 × 33 160 36.376 1.066 0.967 0.099 395.950 46.407 8.712 37.969 2.156 �1.513
3.29e+06 3.00e+05 65 × 65 × 65 180 40.923 1.126 1.013 0.113 372.640 52.282 6.897 42.776 1.707 0.349
6.58e+06 6.00e+05 33 × 33 × 33 0 0.000 0.247 0.237 0.009 1087.000 15.093 50.032 12.349 12.383 �0.299
6.58e+06 6.00e+05 65 × 65 × 65 0 0.000 0.206 0.197 0.009 1072.000 15.517 51.479 12.696 12.741 �0.384
6.58e+06 6.00e+05 33 × 33 × 33 10 2.274 0.306 0.305 0.001 1033.700 17.552 48.356 14.361 11.968 0.898
6.58e+06 6.00e+05 65 × 65 × 65 10 2.274 0.291 0.293 �0.002 1017.100 18.806 53.055 15.387 13.131 �0.122
6.58e+06 6.00e+05 33 × 33 × 33 30 6.821 0.427 0.418 0.009 762.230 22.139 43.871 18.114 10.858 2.577
6.58e+06 6.00e+05 65 × 65 × 65 30 6.821 0.417 0.410 0.007 758.440 23.465 49.572 19.199 12.269 0.603
6.58e+06 6.00e+05 33 × 33 × 33 50 11.368 0.528 0.504 0.024 658.800 25.758 37.809 21.075 9.358 1.757
6.58e+06 6.00e+05 33 × 33 × 33 60 13.641 0.574 0.544 0.030 631.270 27.619 35.122 22.597 8.693 1.226
6.58e+06 6.00e+05 33 × 33 × 33 80 18.188 0.657 0.615 0.042 596.250 31.427 30.369 25.713 7.516 0.034
6.58e+06 6.00e+05 33 × 33 × 33 100 22.735 0.732 0.680 0.052 582.370 35.359 26.386 28.930 6.531 �1.195
6.58e+06 6.00e+05 33 × 33 × 33 120 27.282 0.800 0.739 0.061 579.820 39.367 22.978 32.209 5.687 �2.407
6.58e+06 6.00e+05 65 × 65 × 65 120 27.282 0.800 0.738 0.061 545.330 41.542 26.248 33.989 6.496 0.640
6.58e+06 6.00e+05 33 × 33 × 33 140 31.829 0.864 0.794 0.070 579.320 43.364 19.844 35.480 4.911 �3.591
6.58e+06 6.00e+05 65 × 65 × 65 140 31.829 0.864 0.793 0.071 538.880 46.000 22.575 37.636 5.587 0.601
6.58e+06 6.00e+05 33 × 33 × 33 148 33.648 0.890 0.816 0.073 579.770 44.958 18.687 36.784 4.625 �4.077
6.58e+06 6.00e+05 65 × 65 × 65 148 33.648 0.889 0.815 0.074 539.220 47.824 21.213 39.129 5.250 0.607
6.58e+06 6.00e+05 33 × 33 × 33 160 36.376 0.925 0.847 0.078 580.860 47.331 16.905 38.725 4.184 �4.750
6.58e+06 6.00e+05 65 × 65 × 65 160 36.376 0.924 0.845 0.080 534.140 50.517 19.082 41.332 4.723 0.579
6.58e+06 6.00e+05 33 × 33 × 33 180 40.923 0.984 0.897 0.086 580.870 51.245 14.110 41.928 3.492 �5.899
6.58e+06 6.00e+05 65 × 65 × 65 180 40.923 0.985 0.896 0.089 531.560 55.059 15.686 45.048 3.882 0.552
6.58e+06 6.00e+05 65 × 65 × 65 200 45.470 1.044 0.946 0.098 527.860 59.647 12.555 48.802 3.107 0.470
1.10e+07 1.00e+06 33 × 33 × 33 0 0.000 0.231 0.221 0.010 1461.800 16.738 55.968 13.695 13.852 �1.229
1.10e+07 1.00e+06 65 × 65 × 65 0 0.000 0.219 0.209 0.010 1422.400 18.251 61.135 14.933 15.131 �1.411
1.10e+07 1.00e+06 81 × 81 × 81 0 0.000 0.200 0.196 0.004 1457.000 18.327 60.816 14.995 15.052 �0.406
1.10e+07 1.00e+06 65 × 65 × 65 10 2.274 0.290 0.292 �0.001 1370.600 21.852 63.038 17.879 15.602 0.021
1.10e+07 1.00e+06 33 × 33 × 33 20 4.547 0.358 0.356 0.002 1147.100 22.412 53.281 18.337 13.187 3.539
1.10e+07 1.00e+06 65 × 65 × 65 30 6.821 0.396 0.389 0.007 990.490 26.252 58.485 21.479 14.475 0.900
1.10e+07 1.00e+06 81 × 81 × 81 30 6.821 0.395 0.388 0.007 985.690 26.406 59.487 21.605 14.723 0.299
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In aggregate, these results underline that the physics governing the internal temperatures in both planar and
spherical should be (and are) identical. For direct comparison we will scale the planar system, for which
the theory of Moore [2008] was originally developed, to its spherical equivalent. Equation (9a) and its
complimentary planar form suggest that it is straightforward to compare the temperatures of basally heated
systems through a constant offset. However, while accurate for basally heated systems, an additional step is
needed for mixed and internally heated systems. The offset in Tbh corrects the reference basal heating case,
but the planar system overemphasizes the effects of Q (e.g., equation (7)) and consequently temperatures.
Therefore, a correction to Q is also required. For the system considered here, this correction follows

Qeff=spherical ¼ Qplanar
1�f 3ð Þ
3

1�fð Þ
f . Using this scaled Q and Tbh with the reported form of the Ti scale for the

planar system results in T scale ¼ 1:24 Qeff=spherical
0:75

Ra0:25 þ 0:228 . Ti results from Moore [2008] and O'Farrell and

Lowman [2010] were selected for comparison. Only values of Ti< 1.0 were compared to avoid mantle over-
heating scenarios and to minimize error (higher Ti plot at significantly increasing errors). As a result the com-
parison parameter ranges follow: Ra= 1e5–1e7 with Q= 0–30 (with Q=30 reserved for Ra= 1e7, Q= 10 is the
maximum internal heating for Ra< 1e7) [Moore, 2008] and Ra=1e5–1e6 with Q= 5–15 [O'Farrell and
Lowman, 2010]. The results of applying the spherical correction to the planer systems result in Ti values that
are significantly lower than those predicted from the planar case but are in agreement with those predicted
from spherical geometries at the scaled internal heating values (Figure 1, inset b). As a result, the tempera-
tures are well described by the scaling relationships (misfits are nearly identical to those reported).

Table 1. (continued)

RaR0 Raeff Resolution QR0 Qeff Tum Ti Tum� Ti RMS Velocity qsurf qbot Nusurf Nubot Misfit (%)

1.10e+07 1.00e+06 33 × 33 × 33 50 11.368 0.490 0.468 0.022 872.970 27.394 43.770 22.413 10.833 0.997
1.10e+07 1.00e+06 65 × 65 × 65 50 11.368 0.484 0.466 0.019 843.880 29.902 51.778 24.465 12.815 1.211
1.10e+07 1.00e+06 81 × 81 × 81 50 11.368 0.481 0.463 0.018 846.800 30.040 52.671 24.578 13.036 0.742
1.10e+07 1.00e+06 33 × 33 × 33 60 13.641 0.529 0.502 0.027 835.750 29.157 41.232 23.856 10.205 0.043
1.10e+07 1.00e+06 65 × 65 × 65 60 13.641 0.524 0.500 0.024 806.570 31.764 48.695 25.989 12.052 1.191
1.10e+07 1.00e+06 81 × 81 × 81 60 13.641 0.519 0.496 0.024 806.430 31.884 49.418 26.087 12.231 0.860
1.10e+07 1.00e+06 33 × 33 × 33 61 13.868 0.533 0.505 0.028 837.550 29.325 41.051 23.993 10.160 �0.154
1.10e+07 1.00e+06 65 × 65 × 65 80 18.188 0.600 0.566 0.034 757.240 35.712 43.253 29.219 10.705 1.161
1.10e+07 1.00e+06 65 × 65 × 65 100 22.735 0.671 0.627 0.044 724.690 39.880 38.475 32.629 9.523 1.181
1.10e+07 1.00e+06 81 × 81 × 81 100 22.735 0.668 0.625 0.043 726.200 39.859 39.276 32.612 9.721 0.494
1.10e+07 1.00e+06 65 × 65 × 65 120 27.282 0.732 0.680 0.052 713.330 44.126 34.537 36.103 8.548 0.780
1.10e+07 1.00e+06 65 × 65 × 65 140 31.829 0.790 0.731 0.060 706.860 48.613 30.842 39.774 7.633 0.806
1.10e+07 1.00e+06 81 × 81 × 81 140 31.829 0.788 0.728 0.060 699.860 48.648 31.452 39.803 7.784 0.489
1.10e+07 1.00e+06 81 × 81 × 81 160 36.376 0.841 0.775 0.067 696.920 53.137 28.008 43.476 6.932 0.396
1.10e+07 1.00e+06 65 × 65 × 65 180 40.923 0.896 0.821 0.075 692.110 57.529 23.786 47.069 5.887 0.563
1.10e+07 1.00e+06 81 × 81 × 81 180 40.923 0.893 0.818 0.075 685.970 57.639 24.360 47.159 6.029 0.448
1.10e+07 1.00e+06 65 × 65 × 65 200 45.470 0.947 0.865 0.081 692.650 62.064 20.571 50.780 5.091 0.439
3.29e+07 3.00e+06 33 × 33 × 33 0 0.000 0.235 0.226 0.008 2342.300 21.972 71.042 17.977 17.583 2.348
3.29e+07 3.00e+06 65 × 65 × 65 0 0.000 0.218 0.214 0.004 2728.300 26.027 87.600 21.295 21.681 �1.884
3.29e+07 3.00e+06 65 × 65 × 65 50 11.368 0.426 0.413 0.013 1529.100 37.125 74.501 30.375 18.439 1.954
3.29e+07 3.00e+06 65 × 65 × 65 100 22.735 0.564 0.534 0.031 1316.000 46.925 61.042 38.393 15.108 1.481
3.29e+07 3.00e+06 81 × 81 × 81 100 22.735 0.564 0.534 0.030 1313.000 47.582 63.362 38.931 15.682 1.364
3.29e+07 3.00e+06 65 × 65 × 65 120 27.282 0.614 0.577 0.036 1280.800 51.089 56.622 41.800 14.014 1.242
3.29e+07 3.00e+06 65 × 65 × 65 160 36.376 0.699 0.653 0.046 1256.100 59.534 49.002 48.710 12.128 0.432
3.29e+07 3.00e+06 65 × 65 × 65 200 45.470 0.776 0.721 0.055 1238.900 68.068 42.081 55.692 10.415 �0.353
6.58e+07 6.00e+06 33 × 33 × 33 0 0.000 0.238 0.224 0.015 2785.700 23.624 75.871 19.329 18.778 3.052
6.58e+07 6.00e+06 65 × 65 × 65 0 0.000 0.222 0.219 0.003 3813.500 31.499 106.242 25.772 26.295 �2.089
6.58e+07 6.00e+06 65 × 65 × 65 50 11.368 0.396 0.385 0.011 2256.400 42.318 90.764 34.624 22.464 2.385
6.58e+07 6.00e+06 65 × 65 × 65 120 27.282 0.549 0.520 0.029 1889.000 55.836 73.103 45.684 18.093 0.693
6.58e+07 6.00e+06 65 × 65 × 65 160 36.376 0.624 0.587 0.037 1841.100 63.897 65.321 52.279 16.167 �0.514
6.58e+07 6.00e+06 65 × 65 × 65 200 45.470 0.688 0.645 0.043 1823.400 71.819 58.481 58.761 14.474 �2.028
1.10e+08 1.00e+07 33 × 33 × 33 0 0.000 0.250 0.235 0.015 3713.000 25.166 80.638 20.590 19.958 3.279
1.10e+08 1.00e+07 129 × 129 × 129 0 0.000 0.234 0.231 0.003 5831.600 41.367 134.493 33.846 33.287 1.716
1.10e+08 1.00e+07 129 × 129 × 129 50 11.368 0.376 0.369 0.007 3036.400 50.551 119.790 41.360 29.648 0.857
1.10e+08 1.00e+07 129 × 129 × 129 120 27.282 0.515 0.494 0.022 2469.700 64.354 99.960 52.653 24.740 1.229
1.10e+08 1.00e+07 129 × 129 × 129 160 36.376 0.574 0.545 0.029 2365.100 70.614 93.030 57.775 23.025 �2.824
1.10e+08 1.00e+07 65 × 65 × 65 200 45.470 0.629 0.593 0.037 2415.100 74.174 71.386 60.688 17.668 �4.023
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An interesting aspect of mixed heating systems occurs with an inspection of temperatures for a given Q over
a range of Ra. As the system Ra is increased, the relative effect of a given Q on the internal temperature

decreases. Given that temperatures are well prescribed by the functional form Q3=4Ra�1=4 , the change in

temperature for a given Q will follow: ΔTeΔRa�1=4, and indeed, this is the form that describes the differences
in temperature across Ras for these experiments. Equations (9a) and (9b) can further be used to predict the Q
required to give a specific temperature for a given Ra. For instance, to match the temperature of 1.12 given by
a Ra= 1e5 and Qinput = 120, a system with a Ra=1e7 would require a Qinput ~ 586. Fundamentally, even
though the input Q is identical, the system will not be the same and perhaps may not even be directly
comparable. It is far more useful to compare systems that exhibit the same temperatures, rather than systems
that have the same level of input internal heating (this will be explored in greater detail in later sections).

5. Nusselt and Boundary Layer Scaling

The Nusselt number (Nu) is a measure of the efficiency of heat transport. We start with the scaling form out-
lined for the bottom heated end-member case [Moore, 2008]:

Nu� 1ð Þ∝ Ra� Racð Þβ; (10)

where Nu~ 1 at the critical Ra (Rac) and Nu~ Ra1/3 for large Ra. The value for Rac of order 1200 is obtained
from linear stability analysis [e.g., Schubert et al., 2001]. Results are relatively insensitive to the choice of
Rac, a change in the Rac by a factor of 2 results in less than 0.4% change in fitting parameters.

The form of the Nu scaling for a mixed heated system should approach Ra1/3 in the limit of Q= 0 and large Ra,
and the heat flux through the system should approach a linear dependency on Q for large Q. Moore [2008]
assumed this later limit to scale as Nu~0.5 Q, with half the heat escaping through either boundary layer.
This assumption requires a geometric factor for spherical systems due to the smaller area of the basal

Figure 1. Internal temperature Ti versusQ
3=4Ra�1=4 for the parameter ranges of Ra [1e5–1e7] and Q [0–200]. The best fit line is given by (9a). (inset b) Comparison of

low-error planar results of O'Farrell and Lowman [2010] (blue stars) andMoore [2008] (red triangles), scaled to spherical geometries, to the 3-D isoviscous experiments
of this study (grey circles).
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boundary. It can be shown for a spherical system of geometry f that the geometricQ prefactor should scale by
a form of 1� f 3. Combining equations (8) and (10) and the prefactor term, the heat flow can be seen to follow:

Nusurf � 1ð Þ ¼ Nubot � 1ð Þ þ Qeff ¼ 1� f 3
� �

Qeff þ α Ra� Racð Þβ (11)

A critical aspect of Moore's [2008] theory is that it did not assume that a β =1/3 scaling will hold over the full
range of Q and Ra that is applicable to the thermal histories of terrestrial planets. This breaks from the
traditional view established through Howard [1966]. The traditional view is that the dynamics of the upper
boundary layer can be treated as being self-determined such that the upper boundary layer does not “see
the shear stresses exerted by the interior flow (to leading order), and therefore, the thermal boundary layer
structure is completely self-determined” [Fowler, 1985]. Moore [2008] argued that for Q and Ra conditions of
the present-day Earth, boundary layer dynamics would not be in a self-determined regime but would instead
fall into a boundary layer interaction regime with, for example, rising hot thermals interacting with the upper
thermal boundary layer and effecting its dynamic stability (this would lead to a deviation from a β =1/3 scaling).
That argument is supported by earlier numerical experiments, in planar geometry, which indicated that a
Howard [1966] scaling could be retrieved only for Ra exceeding a value of 109 [Lenardic and Moresi, 2003].
The associated Nu value, from the experiments of Lenardic and Moresi [2003], beyond which a β = 1/3 scaling
could be retrieved was between 50 and 60. Determining the degree to which the spherical shell case shows
similar departures from self-determined boundary layer dynamics is a motivation of this paper.

We can obtain a best regression fit of all our numerical results onto equation (11), not accounting for the
prediction that the results might span transitions between different regimes of boundary layer dynamics. If
we do so, the best fit that follows is given by

Nusurf � 1ð Þ ¼ Nubot � 1ð Þ þ Qeff ¼ 1� f 3
� �

Qeff þ 0:1102 Ra� Racð Þ0:3477 (12)

Figure 2. Simulation-determined Nusselt numbers versus predicted values at the surface (triangles) and basal boundaries (plusQeff, inverted triangles) of the system.
The solid line shows a 1:1 fit that indicates a best fit empirical scaling form of (1� f3)Qeff + 0.1102(Ra� Rac)

0.3477. (inset b) The fit for variable f.
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The Q prefactor terms median value is reported as 0.8069 (±0.1177), which is nearly identical to the expected
1� f 3 scaling form for f= 0.55. Additional f values were tested (f= 0.35� 0.75; Figure 2, inset b, and Table 2),
with nearly identical fits (f=0.35 begins to deviate slightly from this trend), indicating 1� f 3 is a robust scaling
form. The best fit scaling relationship indicates the exponent β ranges from 0.3181 to 0.3773 (within 95%
confidence interval; Table 3), with 0.3477 as the median case. The numerical trends indicate that this best
fit empirical scaling value is predominantly sampling different Nu-Ra regimes, a higher Ra “weak boundary

Table 3. Scaling Relationships

Value Scaling

Upper Mantle and Surface R2

Tum 0.223 + 1.335 Qsc
3/4 Ra�1/4 0.9979

coefficients (95%) 0.223 (±0.0047)
coefficients (95%) 1.335 (±0.0140)

(Nusurf� 1) or (Nubot� 1 +Q) 0.8069 Qsc + 0.1102 (Ra� Rac)
0.3477 0.9953

coefficients (95%) 0.8069 (±0.1177)
coefficients (95%) 0.1102 (±0.0477)
exponents (95%) 0.3477 (±0.0296)

δsurf Tum/(Nusurf) 0.9795

Interior
Ti 0.228 + 1.184 Qsc

3/4 Ra�1/4 0.9965
coefficients (95%) 0.228 (±0.0054)
coefficients (95%) 1.184 (±0.0160)

ΔT 0.1774 Qsc Ra
�1/3 0.9773

coefficients (95%) 0.1774 (±0.0125)

Velocity No one scale NA

Mantle Base
Nubot� 1 �0.1931 Qsc + 0.1102 (Ra� Rac)

0.3477 0.9775
coefficients (95%) �0.1931 (±0.1177)
coefficients (95%) 0.1102 (±0.0477)
exponents (95%) 0.3477 (±0.0296)

Table 2. Variable f

RaR0 Raeff Resolution f QR0 Qeff qsurf qbot Nusurf Nubot Misfit (%)

3.29e+06 3.00e+05 33 × 33 × 33 0.55 0 0.000 11.956 39.535 9.782 9.785 �0.028
3.29e+06 3.00e+05 33 × 33 × 33 0.55 4 0.909 13.389 40.295 10.955 9.973 0.731
3.29e+06 3.00e+05 33 × 33 × 33 0.55 12 2.728 14.997 38.644 12.270 9.564 �0.201
3.29e+06 3.00e+05 33 × 33 × 33 0.55 20 4.547 17.470 38.898 14.294 9.627 0.905
3.29e+06 3.00e+05 33 × 33 × 33 0.55 61 13.868 25.541 27.056 20.897 6.696 1.684
3.29e+06 3.00e+05 33 × 33 × 33 0.55 99 22.508 33.275 18.680 27.225 4.623 0.359
3.29e+06 3.00e+05 33 × 33 × 33 0.55 148 33.648 43.747 10.312 35.793 2.552 �1.164
3.29e+06 9.04e+05 33 × 33 × 33 0.35 0 0.000 3.597 29.083 6.681 6.616 1.138
3.29e+06 9.04e+05 33 × 33 × 33 0.35 12 7.110 9.318 44.611 17.305 10.149 0.282
3.29e+06 9.04e+05 33 × 33 × 33 0.35 20 11.850 11.421 41.152 21.211 9.362 �0.006
3.29e+06 9.04e+05 33 × 33 × 33 0.35 61 36.143 22.223 27.162 41.271 6.179 �2.577
3.29e+06 5.48e+05 33 × 33 × 33 0.45 0 0.000 8.801 44.517 10.757 11.018 �2.640
3.29e+06 5.48e+05 33 × 33 × 33 0.45 12 4.443 12.408 43.402 15.165 10.742 �0.144
3.29e+06 5.48e+05 33 × 33 × 33 0.45 20 7.406 14.332 40.364 17.517 9.990 0.736
3.29e+06 5.48e+05 33 × 33 × 33 0.45 61 22.587 23.820 26.542 29.113 6.569 �0.154
3.29e+06 1.41e+05 33 × 33 × 33 0.65 0 0.000 15.796 37.537 8.506 8.540 �0.449
3.29e+06 1.41e+05 33 × 33 × 33 0.65 12 1.562 18.313 36.275 9.861 8.253 0.519
3.29e+06 1.41e+05 33 × 33 × 33 0.65 20 2.604 19.907 35.276 10.719 8.025 0.928
3.29e+06 1.41e+05 33 × 33 × 33 0.65 61 7.942 27.341 28.344 14.722 6.448 2.447
3.29e+06 5.14e+04 33 × 33 × 33 0.75 12 0.771 21.689 33.977 7.230 6.371 1.424
3.29e+06 5.14e+04 33 × 33 × 33 0.75 20 1.285 22.414 32.540 7.471 6.101 1.325
3.29e+06 5.14e+04 33 × 33 × 33 0.75 61 3.918 27.697 27.703 9.232 5.194 1.461
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layer (BL) interaction” regime in which β is approaching 1/3, an intermediate Ra “transitional BL interaction
regime,” and a lower Ra “strong BL interaction” regime which is predicted to deviate more strongly from
the classic β = 1/3 value [e.g., Moore, 2008]. High Nu values in Figure 2 (Nu� 1> 50) show a deviation from
the β =0.3477 trend and instead are fit well by a β that approaches 1/3, in agreement with the 2-D numerical
results of Lenardic and Moresi [2003] for the same Nu range. For 20<Nu� 1 ≤ 50 the system is in a transitional
BL interaction regime with a β ≅ 0.34. In the range of Nu� 1 ≤ 20, the system operates within a strong BL
interaction regime, where β ≅ 0.35. Subset β values for weak, transitional, and strong BL interaction regimes
have larger best fit ranges due to smaller sample sizes and cannot be determined nonuniquely; however, the
best fit values indicated fall within the 95% confidence interval of the overall best fit empirical trend indicat-
ing that the single fit bulk trend is indeed sampling multiple physics related to multiple interaction regimes.
Similar to the high Nu cases for f= 0.55 the deviation for f= 0.35 in Figure 2 (inset b) is nearly completely
accounted for by allowing β to approach 1/3.

We now seek a scaling form of the boundary layer thickness (δ) as a function of both Ra and Q. As shown in
(9b), our Tum is comparable to ΔTtop defined in Moore [2008] to describe the temperature drop across the
upper boundary layer. The predicted form of δsurf for spherical systems becomes

δsurf ¼ Tum
Nusurf

¼ 0:223þ 1:335Q3=4Ra�1=4

1� f 3
� �

Qþ 0:1102 Ra� Racð Þ0:3477 (13)

The predicted form of the scaling is shown versus the δsurf from simulations in Figure 3. The degree of fit is
given by R2 = 0.987 for all Ra ranges. The average variance between predicted to actual is 2.6%. The data
points that deviate from the prediction occur when Q= 0 (pure basal heating) and at low Ra. Removing these
data points, results in an improvement of fit with an R2 = 0.996. Generally, the fit improves as both Ra and Q
increase as systems with both low Ra and low Q exhibit long period oscillations in system parameters
(Figures 4a and 4b), consistent with oscillatory regimes indicated from laboratory experiments [e.g.,
Davaille and Limare, 2007 and references therein].

A specific prediction follows from equations (12), (13), (9a), and (9b), that the surface heat flow and boundary
layer thickness do not exhibit a 1:1 functional relationship. Comparing the output heat flow and surface
boundary layer thickness from our numerical experiments in Figure 5 confirms this. It is useful to compare
boundary layer data with a boundary layer Rayleigh number (Rab) defined as Rab= RaΔTb, where ΔTb is the
temperature drop across the boundary layer, given by Tum in our models. Rab is a more robust indicator of
internal dynamics linked to surface characteristics than quantities such as RaQ(RaQ). The boundary layer

thickness has a power law dependency on Rab, and for clarity two fits are indicated, basal and high Q

Figure 3. Surface boundary layer thicknesses versus predicted boundary layer thicknesses. The solid line indicates a 1:1 fit.
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asymptotic. For basally heated systems, the best fit exponent is �0.388 (Figure 6a, solid line), different than
the classic �1/3 value. The fit is robust with R2 = 0.959. With the addition of internal heating, a change in
boundary layer behavior is observed. At high levels of internal heating (Q> 50 for Ra< 1e6 and Q> 100
for Ra> 1e6), boundary layers begin to converge to an asymptotic limit. This high Q asymptotic limit indi-
cates a best fit exponent of �0.359 (Figure 6a, dashed line), with an R2 = 0.985. Overall, the effects of increas-
ing the system Ra (at a constant Q value) lead to a decrease in ΔTb and δsurf that are well prescribed by scaling
relationships. However, the effects of increasing the internal heating rate (at a constant Ra) are less straight-
forward, as the system exhibits two distinct behaviors. It can be anticipated that some deviation from pure
basal and high internal heating cases should be expected, with the intermediate internal heating case
(0<Q ≤~ 50 for Ra< 1e6 and 0<Q ≤ 100 for Ra> 1e6) indicating some form of system adjustment as the
system resides in neither end-member state. As internal heating increases from a basally heated condition
for low Q, the boundary layer thickness increases with increasing Rab. However, as the system approaches
an internally heated state, it begins to approach an asymptotic value and enters a regime where subsequent
increasing internal heating (and Rab) decreases boundary layer thicknesses along the asymptotic line. The
same behavior can be seen in the 2-D planar data of Moore [2008]. This behavior is consistent with the iso-
viscous convective planform metastability suggested by Arrial et al. [2014].

Figure 4. Variable long wavelength output for Ra = 1e5 (Q = 0). Time series of (a) internal temperatures and (b) Nu values.
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Given the complexity in the δsurf relationship, it is worth inspecting how heat flow changes with Rab. For pure
basally heated systems in the limit of high Ra, we expect that Nu~ Ra1/3 [e.g., Turcotte and Schubert, 2005] or

alternately that Nusurf � 1e RaΔTb
RacΔT

� �1=3
. Results of Nusurf� 1 versus Rab are illustrated in Figure 6b. In the limit

of no internal heating, the best fit line describing Nusurf� 1 follows a power law slope of 0.362 with Rab (solid
line Figure 6b), which deviates from the theoretical scaling of 1/3, but is well described with an R2 = 0.990 and
is consistent with the relationships shown previously. The best fit exponent does not remain constant with
increasing internal temperatures. At high internal heating (Qinput = 160), the exponent of the best fit changes
to a value of 0.131 (omitted from Figure 6b for clarity). However, as was shown in section 4, this is misleading.
The systems are not being affected by a given Q in the same way. This makes a direct comparison difficult as
the parameter ranges explored may not allow for completely comparable temperatures. Therefore, to com-
pare systems appropriately, the internal temperature should be matched, not the level of internal heating.
However, the effects of Q (noting the previous limitation) can be explored within a given Ra. In bulk, the sys-
tem appears to be approaching a Ra specific asymptote. As the system experiences increased heating, the
surface heat flow shows a decreasing dependency on Rab. The break in behavior is given by an onset Q,
which scales as Rab

0.284 (dashed line Figure 6b) and corresponds to the asymptotic Q limit identified in
Figure 6a. Inspecting the behaviors of low (pre-onset)Q and high (post-onset)Q in Figures 6a and 6b indicates
that the dependency of quantities such as heat flow and boundary layer dynamics on internal parameters is
complex. At low internal heating, both the boundary layer and the heat flow increase roughly linearly.
Above the onset Q value, surface heat flow increases while the boundary layer thickness decreases.
However, the predicted scaling form of onset Q intersects the basal heating trend at Nusurf� 1~ 116 and
Rab~ 9e7, indicating and that traditionally identified (classic) scaling forms (such as Nu~ δ� 1 [e.g.,
Solomatov, 1995]) are applicable for all levels of internal heating for a system of Ra> ~4e8. However, for an
Ra< 4e8, the system fundamentally allows for differing scaling behaviors linked to different regimes
(strong/weak BL interaction, classic). This in turn allows formultiple expressions ofNusurf� 1 for the samevalue
of δsurf (or vice versa), suggesting that the surface heat flowmay not always be a reliable metric to determine
lithosphere thicknesses of planets.

We turn our attention to the behavior of the basal boundary. A specific prediction from the scaling theory is
that changes in the heat flow of the upper boundary should be reflected in some inverse form by the lower
boundary layer. This behavior is illustrated in Figure 6c. In the limit of no internal heating, the best fit scaling
form describing Nubot� 1 follows a power law slope of 0.362 with Rab (Figure 6c, solid line), which is identical
to the scaling form of Nusurf� 1. Similar to Figure 6b, as the system experiences increasing levels of heating,
the basal heat flow shows a decreasing dependency on Rab. Generally, while surface heat flow increases,

Figure 5. Nusurf� 1 versus surface boundary layer thicknesses (δ) for experiment space.
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Figure 6. (a) Surface boundary layer thickness (δ) versus boundary layer Rayleigh number (Rab = RaΔTb); (b) surface heat
flux (Nusurf� 1) versus boundary layer Rayleigh number; and (c) basal heat flux (Nubot� 1) versus boundary layer
Rayleigh number. A range of internal heating rates is plotted for each Ra result. The solid line is a fit to bottom heated cases,
whereas dashed lines indicate the onset Q, where δ values in Figure 6a become asymptotic, indicating the transition
between a high-Ra “low-boundary layer (BL) interaction” regime and a low-Ra “strong BL interaction” regime.
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basal heat flow decreases. The differences in system behavior, given by the onset Q, are more pronounced,
and the trend, given as Nubot� 1~ Rab

0.435 (dashed line Figure 6c), indicates an equal but opposite change in
the exponent form from Nusurf, validating the prediction of inverse activity between the boundaries.

An additional prediction from scaling theory, in planar cases, is that an increase in internal heating should
force the boundary layers to become asymmetric (e.g., increasing the heat flow of the upper boundary, while
decreasing the heat flow across the lower boundary). However, in spherical cases the boundaries are
already asymmetric (~83% of the heat flow is through the surface boundary; equation (12)). As a result,
higher temperature behaviors (e.g., basal heat fluxes become negative) should occur for lower values
of temperature (and conversely higher values of Q) than Moore [2008] reported due to the effect of a
spherical geometry. This implies the scaling form of critical Q (the Q for which Nubot→ 0), which is
reported in the form Q= (0.15� 0.35)Ra1/3 for planar cases [Moore, 2008], would be predicted to scale
with a different exponent due to geometric effects. Indeed, the form is predicted from data to scale as
Qsc = (1.836 ± 0.572)Ra(0.257 ± 0.0207), indicating that spherical geometries require larger internal heating
rates than planar counterparts would predict.

6. Temperature Gradient Scaling

The temperature profile in internal and mixed heating systems is not, in general, expected to be constant
with depth. In internally heated convection, distributed upwelling flow is a passive response to concentrated
downwelling of cold upper boundary layer material. Passive upwellings balance themass flux of active down-
flows from the upper boundary layer. As fluid from depth moves upward to replace material from the active
surface boundary layer, internal heating in the system gradually increases the parcel's temperature. This
asymmetry between upflows and downflows, which do not heat significantly on descent, can lead to a sub-
adiabatic gradient within the interior of the convecting layer [Jeanloz and Morris, 1987]. The temperature gra-
dient with depth is expected to be proportional to the heating rate and inversely proportional to upwelling
velocities [e.g., Turcotte and Schubert, 2005].

To explore subadiabatic scalings from our experiments, we tracked the difference in temperature between
upper and lower mantles (ΔT= Tum� Ti). This is directly analogous to the dT/dz employed in Moore [2008].
The best fit curve in the 2-D planar numerical experiments of Moore [2008] was associated with subadiabatic
gradient that scaled as (QRa� 1)0.52. From a theory point of view, this was close to the expectation if upwelling
velocity scaled as the internally heated Rayleigh number to the 1/2 power which leads to a predicted suba-
diabatic gradient scaling given by (QRa� 1)0.50. The theoretical upwelling velocity scale used byMoore [2008]
comes from the assumption that the upwelling velocity will scale as the downwelling velocity and that the
downwelling velocity scale will follow the form associated with a sinking fluid sheet that remains steadily
attached to the upper boundary layer [e.g., O'Neill et al., 2007].

Figure 7 shows that the scaling form of Moore [2008] provides a poor fit to our 3-D spherical results (bulk
R2 = 0.5056). While at high Q there is scaling form that can be recovered, it is both Ra specific and indicates
a power law slope of 1.347 ± 0.192 (R2> 0.990 within a given Ra). Though it is clear that there exists a sensi-
tivity to the Q/Ra scale, it strongly deviates from the form that stems from assuming an upwelling velocity
scale that balances a steady conduit type downwelling (see Figure 7, inset b, for comparison with the 2-D pla-
nar case of Moore [2008]). The alternative possibility to steady conduit flow is a velocity scaling associated

with discrete drips [e.g., O'Neill et al., 2007]. In that case the vertical velocity will scale as Ra1=3 . Figure 7c
indicates that the results collapse to single trend for moderate and high values of Q, with a best fit line of
0.1774 Q/Ra1/3 within a high level of agreement (R2 = 0.9556). It should be noted that a similar, though lower,

quality fit can be achieved by allowing the vertical velocity to scale with Ra1=4 (R2 ~ 0.92). However, the Ra1=3

scale is preferred given both the more robust fit of Ra1=3 to the data and that there is currently no obvious

physical reason to explain why the vertical velocity would scale as Ra1=4.

Of interest is another departure from the planar scaling cases. For highQ, the gradient is indeed subadiabatic.
However, for low values of Q (Qinput< 10) the gradient may be weakly negative, indicating the existence of a
superadiabatic profile. At low Ra (<1e6), there appear to be two distinct temperature gradient trends oper-
ating opposite in slope to each other. From Q=0 to Qinput ~ 10, the profiles indicate a decrease in tempera-
ture gradient with increasing Q. At Qinput ~ 10, a minimum in the temperature gradient occurs, after which
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Figure 7. The temperature gradient of the mantle plotted against a functional form of Q and Ra. ΔT = Tum� Ti is directly analogous to dT/dz from Moore [2008].
(a) 3-D isoviscous results plotted against the form of Q/Ra, predicted from internal heating velocity scaling, with poor agreement (R2 = 0.5056). (b) Inset shows
results ofMoore [2008] (grey circles), with a best fit form of 16 (Q/Ra)0.52, in agreement with internal heating scaling predictions (e.g., steady conduit flow of RaQ

1/2).
(c) 3-D isoviscous results plotted against the discrete drip velocity scale (e.g., Ra1/3), with a best fit form of 0.1774 Q/Ra1/3 and high level of agreement (R2 = 0.9556)
forQ> 10. The form is subadiabatic for highQ and high Ra but deviates strongly at lowQ for low Ra systems (Ra< 1e6). FromQ = 0 to Q ~ 10, systematic decreases in
ΔT to slightly superadiabatic values are possible and are a consequence of curvature and 3-D geometries. All plots are semilog.
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gradients increase. In general, these results suggest that a single fit in temperature gradients in a spherical
parameter space that operates across multiple regions of boundary layer interactions (e.g., strong, weak,
and classic) should not be expected—similar to our conclusion regarding Nusselt number scalings.

7. Velocity Scaling

The original theory of Moore [2008] showed a ΔT that was well described by a scaling form that assumed a
steady conduit flow velocity. Aside from that, the work did not consider velocity scaling further. Our results
indicate that the vertical velocity scaling differs between 2-D planar and 3-D spherical with the former scaling
associated with conduit flow and the later with discrete thermals. This is perhaps not a surprise given that 2-D
planar geometry forces the system toward cellular rolls that have sheet-like downflows. That geometry also
limits time-dependent cell structure which can minimize the potential for development of discrete sinking
drips. We turn now from vertical velocity to the bulk system RMS velocity. As indicated in Figure 8, the
RMS velocity has a power law dependency on Rab, similar to both Nu and δ scaling obtained previously.
For basally heated systems, the best fit exponent is 0.585 which falls below the classic theoretical scaling
of exponent 2/3 [e.g., Schubert et al., 2001]. However, this fit is a bulk trend over high and low Ra.
Subselecting the parameter range toward high Ra (Ra ≥ 1e6) results in fits approaching two-thirds scaling,
with a best fit exponent of 0.63.

While velocities are predicted to increase with increasing Ra for a fixed level of internal heating, the system
exhibits more complex behavior for varying levels of internal heating at any given Ra. Values of velocity
approach asymptotes at both high and low levels of internal heating. Intermediate levels of internal heating
indicate rapid system adjustments between the asymptotes, with the dividing value given as the onset Q (as
defined in Figure 6a) with a predicted scaling form of Rab

0.520. This predicts that in high Q systems (or high Ti
regimes) RMS velocities plateau and that further increasing heating or temperaturewill not result in increasing
RMS velocities, despite increasing surface heat flux and decreasing boundary layer thickness (Figure 6b).

As outlined, ΔT has an interdependence on velocity. The results of the velocity and ΔT scale from Figure 7c
are explored (Figure 9). Best fit trends for a given Q along variable Ra are indicated. The data are well
described (R2> 0.999) by a power law relationship where the slopes approach �1.55 for high Q. The utility
of this form is that for a given internal heating rate and given ΔT, the velocity may be predicted (or vice versa)
following VRMS ~ΔT1.55 for high Q or ΔT1.58 for intermediate Q (provided Q> 10). Similar to Figure 8, for a
fixed Ra over variable Q despite a first-order reduction in velocity, there appear to be different subtrends

Figure 8. Internal velocities (VRMS) versus boundary layer Rayleigh number (Rab = RaΔTb). A range of internal heating rates
are plotted for each Ra result. The solid line is a fit to bottom heated cases, whereas dashed lines indicate the onset Q,
where δ values in Figure 6a become asymptotic, indicating the transition between a high-Ra “low Boundary Layer (BL)
interaction” regime and a low-Ra “strong BL interaction” regime.
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in the data, and no single scaling form can completely fit, or describe, the data. It is interesting to note as Q
increases for a given Ra, the temperature gradients increase, but the velocities themselves become
asymptotic. This may indicate that the convecting mantle is becoming sluggish in response to the stable
density layering associated with a strongly subadiabtic thermal gradient (i.e., cold high-density mantle below
warmer lower density upper mantle). This is a prediction that can be tested by examining the scaling
relationship of velocity with heat flow and boundary layer dynamics.

The system velocity can be shown to scale with heat flow along a certain range ofQ (Figures 10a and 10b). We
can recast the heat flow as a function of velocity. The surface heat flow is well described by a similar power
law relationship as was expressed in Figure 8 (Figure 10a). For low levels ofQ,Nusurf� 1 varies with velocity by
a power law of 0.618 (basal heating) to 0.606 (high Q). The same susceptibility to differing internal heating
rate effects as a function of Ra (similar to Figure 6) occurs for the higher Q range. However, the asymptotic
regimes from Figure 8 indicate a change in behavior given by onset Qwhich scales as Nusurf� 1~ VRMS0.534.
Figure 10b shows a dependency of basal boundary heat flux on velocity, by a near-identical scaling form as
the surface boundary for low Q systems. At high Q, this form breaks down. This indicates that the upper and
lower boundary layers are connected by the RMS velocity, highlighting that the system is operating within a
strong BL interaction regime for low Q parameters. As the system evolves to higher temperatures and levels
of internal heating, the basal boundary heat flux also becomes independent of the RMS velocity (a direct
inverse relationship with the surface), given by onset Q (Nubot� 1 ~VRMS0.838). This may suggest that BLs
are decoupling. Therefore, the increase in heat flux must come from surface boundary layer dynamics alone.

Figure 11 shows RMS velocity versus surface boundary layer thickness. As expected, velocity scales inversely
to δsurf, with a best fit power law slope of �1.460 for basal heating and �1.811 (omitted from Figure 11 for
clarity) for high internal heating rates. The bulk system behavior (best fit exponent for all simulations) is nearly
parallel with the basal heating case, with a slope of �1.512. As was suggested by Figures 10a and 10b, the
increasing surface heat flow and increasing internal temperatures with near-constant RMS velocities are
being accommodated by a rapidly thinning boundary layer. This suggests that in high-temperature regimes
the convective system can only remove heat by boundary layer thinning associated in response to a hotter
mantle. Prior to that point, the system can adjust characteristic flow wavelengths and associated RMS
velocity, in order balance heat flow with heat production. After that RMS velocities plateau, the boundary
layer itself balances heat flow with heat production until it is physically thin enough to be indistinguishable
from the interior of the mantle. If this later state exists in planetary convective systems, it would likely be very
short-lived and perhaps not existent at all given that the high temperatures associated with it would favor a
heat pipe mode of convection which would change the system scalings [Moore and Webb, 2013].

Figure 9. Internal velocities (VRMS) versusQRa�1/3 scale. Dashed line indicatesmoderate levels of internal heating (Q = 50)
and the dotted line indicates high levels of internal heating (Q = 160).
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8. Discussion

The dynamics and heat transfer properties of mixed heating thermal convection have previously been
explored for one-, two-, and three-dimensional systems with different viscosity formulations [e.g., Sotin and
Labrosse, 1999; Reese et al., 1999; Hauck and Phillips, 2002; Reese et al., 2005; Moore, 2008; Shahnas et al.,
2008; Choblet and Parmentier, 2009; O'Farrell and Lowman, 2010; Deschamps et al., 2010; Choblet, 2012;
O'Farrell et al., 2013]. This study has tested and extended the isoviscous 2-D planar theoretical heat transfer
scalings of Moore [2008] to 3-D spherical systems (Table 3). Internal temperatures (Ti) and boundary layer
temperature drops (Tum) are well described by the modified scalings adjusted for spherical geometries.
Surface heat flux retains a linear form of simple addition of internally generated heat to that of heat trans-
ported by the temperature difference between the boundaries reported by Moore [2008], modified to
account for curvature at the base of the mantle. Scaling theory-predicted boundary layer thicknesses agree

Figure 10. (a) Surface heat flux (Nusurf� 1) versus internal velocities (VRMS) and (b) basal heat flux (Nubot� 1) versus
internal velocities (VRMS). A range of internal heating rates are plotted for each Ra result. The solid line is a fit to bottom
heated cases, whereas dashed lines indicate the onset Q, where δ values in Figure 6a become asymptotic, indicating the
transition between a high-Ra “low boundary layer (BL) interaction” regime and a low-Ra “strong BL interaction” regime.
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with numerical experiment-derived thicknesses to a high degree of accuracy. Internal mantle temperature
gradients are well predicted by a modified form of the Moore [2008] scaling that accounts for differences
in vertical velocity between 2-D planar and 3-D spherical cases.

Our results show that conversion between temperatures in planar and spherical geometries can be accom-
plished via appropriate geometric conversions. Care should be taken when comparing planar and spherical
geometry results at the same parameter values. Instead of directly comparing systems with similar input
parameters, our results highlight that it is of greater utility to compare systems operating at the same, or close
to equivalent, internal temperatures.

The results of our study reinforce and reemphasize a critical departure of mixed heated convection dynamics
from local boundary layer stability theory [e.g., Christensen, 1989; Lenardic and Moresi, 2003; Moore, 2008].
Specifically, Howard's [1966] (classic) theory does not apply to convective systems until Nu exceeds ~50. At
this limit, the scaling exponent for heat flux versus Ra converges toward one third. For the parameter ranges
considered in this study, the bulk exponent best fit is 0.3477. It should be reemphasized that this Nu scaling
exponent is a single empirical fit over regions of differing system dynamics, and as a result, it is misleading to
apply a single fit across all Nu values.

Any discussion of mantle temperature gradients is intertwined with that of internal velocities. Our results
show a mismatch between 2-D planar scalings for the internal mantle temperature gradient, which assume
vertical velocity scalings appropriate for conduit flow. Instead, the gradients from our 3-D spherical experi-
ments are well described (for high Ra and Q) by a vertical velocity scaling appropriate for discrete drip flow.
This discrepancy appears to be tied both to curvature and to the extra degree of freedom provided by 3-D geo-
metries. Two general trends exist for RMS velocities: (1) Velocities increase with increasing basal Ra and (2)
velocities decrease with increasing Q. The first case is consistent qualitatively with the bottom heated
convective scale of Vrms ∝ Ra2/3, thus ensuring that for a given internal heating rate, an increase in Ra will
increase internal velocities. However, the second trend is less expected. If we consider planets, it is easy to show
that the Ra should changemuchmore slowly than the internal heating (more closely following trend 2) over a
planet's radiogenic lifetime. This implies that high Q (early) planets have lower bulk internal velocities than
later, cooler, planets. This in turn would predict that stresses, linked to internal velocities, could be lowest
early in a planet's development despite the overall higher Ra state. This would indicate that for any system
in which radiogenic are important, simple bottom heated and pure internal heating scaling laws and extra-
polations [e.g., Valencia et al., 2007; Valencia and O'Connell, 2009] can be misleading (see Weller and

Figure 11. Internal velocities (VRMS) versus surface boundary layer thickness (δ). A range of internal heating rates
are plotted for each Ra result. The solid line is a fit to bottom heated results, whereas dashed lines indicate the onset Q,
where δ values in Figure 6a become asymptotic, indicating the transition between a high-Ra “low boundary layer (BL)
interaction” regime and a low-Ra “strong BL interaction” regime.
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Lenardic [2016] for a more thorough discussion). This offers another line of support, in addition to viscosity
arguments, for models that predict lower stress states (stagnant lids) early in planetary development [e.g.,
O'Neill and Lenardic, 2007; Weller and Lenardic, 2012; Lenardic and Crowley, 2012; Stein et al., 2013; Weller
et al., 2015].

Of interest is understanding why low Q (low Ti) systems have higher convective velocities than high Q sys-
tems. O'Farrell and Lowman [2010] noted this behavior and suggested that it reflected a transition to more
diffuse upwellings. We expand on this idea and suggest that these quantities can also be influenced by
the characteristic wavelength of mantle flow (which is free to evolve in spherical models).

A line of evidence that the wavelength of mantle flow structure can have a strong effect on heat flow and
temperature distribution comes from the results of Höink and Lenardic [2010] and Arrial et al. [2014]. Höink
and Lenardic [2010] showed that internal temperatures can vary as much as 30% with a variance in aspect
ratio in planar geometries, a value that is nearly identical to that obtained from Arrial et al. [2014] of ~25%
from spherical geometries. It should be noted that similar results can be seen from the steady state solutions
of differing aspect ratios reported by O'Farrell and Lowman [2010].

Considering the dependence of aspect ratio on internal quantities, a decrease in velocity with increasing Q is
qualitatively expected, as are maximal velocities for basally heated systems. For isoviscous convection,
increased internal heating moves the system toward smaller cell aspect ratios [Schubert and Anderson,
1985] which are associated with lower average velocities. As internal heating increases, the temperature drop
from the upper to the lower mantle increases due to the development of a subadiabatic thermal profile. The
net effect is a stable density layering which can decrease convective vigor and has the potential to alter char-
acteristic flow wavelengths. How temperature- and/or depth-dependent viscosity alters these results in a 3-D
sphere remains an open question for future work. Currently, no scaling theory exists that can predict coupled
aspect ratio, velocity, and temperature gradient development as a function of heat production in 3-D spheres.

Many numerical modeling suites are currently not set up to explicitly track aspect ratios over time in spherical
3-D. Our results suggest that this is a worthwhile future avenue. Analog experiments could also be of value
to test both 3-D spherical aspect ratio development, as well as the shell-derived heat flow conversion equa-
tion (section 3). Using current spherical core experiments [e.g., Aurnou and Olson, 2001], direct measurements
of heat flow for defined geometries and modifications to the experiments could be made in order to directly
test and validate a subset of our numerical results.

Our 3-D spherical scalings will be expanded in the future to include temperature-dependent viscosity,
depth-dependent viscosity, and lid states with yielding. Convection within a high-viscosity contrast regime
differs from isoviscous convection in that the temperature-dependent viscosity modifies the temperature
drop across the convecting region to a rheological temperature scale that is of order 1 [e.g., Davaille and
Jaupart, 1993], which forces this layer into the small viscosity contrast regime, whereas the bulk internal man-
tle is that of nearly isoviscous convection. Ra adjustments in this sublayer then can only respond by changing
the mean temperature and consequently the viscosity. Depth-dependent viscosity formulations, in contrast,
allow for more subtle changes from pure isoviscous convection, such as a weak Ra dependence on mean
temperature in basally heated convective systems [O'Farrell et al., 2013] and longer wavelength dependence
on aspect ratio [Bunge et al., 1996]. Yielding formulations, using both temperature- and depth-dependent
viscosity allow for mobility of the surface and interaction with the interior despite high viscosity “lids.”
These updated scalings, built upon the fundamental framework of isoviscous convection, can be applied
to complex convective systems that more closely emulate planetary development.
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