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Abstract The discovery of large terrestrial (~1 Earth mass (Me) to< 10Me) extrasolar planets has prompted
a debate as to the likelihood of plate tectonics on these planets. Canonical models assume classic basal
heating scaling relationships remain valid formixed heating systemswith an appropriate internal temperature
shift. Those scalings predict a rapid increase of convective velocities (Vrms) with increasing Rayleigh numbers
(Ra) and non-dimensional heating rates (Q). To test this we conduct a sweep of 3-D numerical parameter space
for mixed heating convection in isoviscous spherical shells. Our results show that while Vrms increases with
increasing thermal Ra, it does so at a slower rate than predicted by bottom heated scaling relationships.
Further, the Vrms decreases asymptotically with increasing Q. These results show that independent of specific
rheologic assumptions (e.g., viscosity formulations, water effects, and lithosphere yielding), the differing
energetics of mixed and basally heated systems can explain the discrepancy between different modeling
groups. High-temperature, or young, planets with a large contribution from internal heating will operate in
different scaling regimes compared to cooler-temperature, or older, planets that may have a larger relative
contribution from basal heating. Thus, differences in predictions as to the likelihood of plate tectonics on
exoplanets may well result from different models being more appropriate to different times in the thermal
evolution of a terrestrial planet (as opposed to different rheologic assumptions as has often been assumed).

1. Introduction

Over the last decade, discovery of a significant number of large terrestrial extrasolar planets has led to specula-
tion regarding the tectonic regimes these worlds may operate within. Specifically, the interest has been in
determining the viability of an Earth-like style of plate tectonics as a function of planetary size. Studies to date
have led to seemingly contradictory conclusionswith somegroupspredicting that plate tectonics shoulddom-
inate [e.g.,Valencia et al.,2007;Valencia andO'Connell, 2009; vanHeck andTackley, 2011; Tackley et al.,2013] and
othergroups arguing that stagnant-lidswill beprevalent [e.g.,O'Neill and Lenardic, 2007; Stein et al.,2011, 2013].

The connectionbetweenmantle convection andplanetary tectonics is a complex subject,withmanyof the stu-
diesusingdifferingassumptions andapproximationsof theunderlying rheologies (e.g., differentparameteriza-
tion for lithospheric deformation). It's natural to attempt to reconcile differingmodel predictionswith differing
rheologic assumptions. The issuewith this approach is thatwhile these processes are clearly important, rheolo-
gic properties themselves are not well understood for the Earth, let alone the plethora of recently discovered
extrasolar planets. Therefore, any near-term resolution(s) that is(are) formulated around rheologic arguments
may depend on poorly known material parameters and, by the definition of rheology, may not be universal
(universal in this sense meaning based on conservation laws versus some particular constitutive equation).

There may be a simpler explanation for the discrepancies between various predictions tied to differences in
the energetics of dominantly basally, and extrapolations of internally heated systems versus mixed heated
systems. A hint that this may be the case comes from the observation that studies predicting the prevalence
of plate tectonic regimes [e.g., Valencia et al., 2007; Valencia and O'Connell, 2009] assume that the end-member
theoretical scalings can be extended to planetary mantles, while those that predict that plate tectonics may be
unlikely use the results from numerical convection experiments driven by mixed heating conditions [e.g.,
O'Neill and Lenardic, 2007; Stein et al., 2013]. The intent of this paper is not revisit how parameters may scale
with, or be affected by, Me, but instead to revisit the assumption that classic basal heating scalings can be
extended to terrestrial planets with internal heat sources (e.g., radiogenic or tidal). Beyond exoplanetary
issues, this question also has broad implications for models of the Earth's thermal history.
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2. Classic Scaling Arguments

It is useful to review the classic scaling arguments and the assumptions contained within them when applied
to terrestrial planets. Scaling relationships in convective systems are generally expressed in terms of a
thermal Rayleigh number (Ra):

Ra ¼ gραΔTd3= κηð Þ (1)

where α is the thermal expansivity, ρ is density, g is gravity, κ is the thermal diffusivity, d is layer (or mantle)
depth, and η is the viscosity. ΔT is the reference temperature drop across the system, or the temperature con-
trast from the base of the convecting layer to the surface (Ts-Tb). Within basally heated systems, classic scaling
theory indicates that the Vrms (root-mean-square velocity) increases with increasing Ra, such that Vrms∝ Ra

2/3

[e.g., Schubert et al., 2001]. At the simplest level, the Vrms is a proxy for the total kinetic energy of the system
and provides a measure of the convective vigor.

The Vrms is often linked to the shear stress imparted on the lithosphere base by the convecting mantle, given

as τ ¼ η ∂u
∂d, where u is the velocity, and a scaling for Vrms as a function of Ra is used to solve for the

velocity. It has been argued that the normal stress (σ) in the lithosphere dominates over basal shear stress
τ and that it scales independently of Ra [e.g., Valencia et al., 2007; Valencia and O'Connell, 2009; Foley and
Bercovici, 2014]. The argument follows a simple force balance between the shear and normal stresses:

τL∝σδ (2)

where L is the convective cell length and δ is the boundary layer thickness. Using Vrms and δ consistent with
classic basal scaling forms (∝ Ra2/3 and ∝ Ra� 1/3, respectively), as well as η∝ Ra� 1 (from inspection of (1)), it is

trivial to show that normal stress is independent of Ra: σbasal∝ Ra�1Ra2=3

Ra�1=3 ∝C, where C is a constant value

but may scale linearly with Me [Valencia and O'Connell, 2009]. With the added assumption that cell length will
always be significantly greater than that of the boundary layer thickness [e.g., Valencia et al., 2007; Valencia
and O'Connell, 2009; Foley and Bercovici, 2014], it follows that σ may dominate in determining whether mantle
convection will allow for lithosphere deformation at the level needed to initiate and/or maintain plate tectonics.

A few concepts inherent in the approach above are worth highlighting. The scaling for both shear and normal
stress requires a scaling for velocity in terms of a mantle Rayleigh number. The velocity scaling, which was devel-
oped for bottom heated systems, is assumed to remain valid for a mixed heating system via a shift in the average
internal temperature which accounts for themantle running hotter due to the decay of radiogenic elements [e.g.,
Davies, 1980; Schubert et al., 2001]. The particular scaling exponent, 1/3 for system heat flux and twice that for
velocity, assumes a very high Ra such that the upper and lower boundary layers do not interact [Howard,
1966]. It additionally assumes that the viscous resistance to convective motions comes from the bulk interior of
the convecting system as opposed to the boundary layers themselves. Finally, it is worth noting that for high
Ra convection in systems were inertial effects are insignificant, which is appropriate for subsolidus convection
in themantles of terrestrial planets, a 1/3 scaling exponent for surface heat flux, and by association a 2/3 exponent
for velocity, is an absolute upper bound value [Chan, 1971; Constantin and Doering, 1999]. Notice that if the scaling
exponents fall below those upper bound values, the prediction of normal stress independent of Ra breaks down
—as is the case if the velocity scaling exponent approaches 1/2 for pure internal heating conditions.

The scaling arguments outlined above depend on the assumption that a convective velocity scaling that is
appropriate for a basally heated system can be extended to a mixed system. This is the assumption to be
tested in what follows.

3. Mixed-Heating Model Results

To test the scaling relationships between Ra and Vrms in mixed heating systems, we run suites of numerical
experiments using the 3-D community benchmark code CitcomS (version 3.2) [e.g., Zhong et al., 2000, 2008;
Tan et al., 2006]. The input parameters Ra and non-dimensional internal heating rate (Q), defined as:

Q ¼ Hd2= κΔTð Þ (3)

where H is the volumetric heating rate, range between 2 orders of magnitude, 1e5–1e7 and 0–200, respec-
tively. Each simulation was run sufficiently long to reach a statistically steady state and then allowed to run
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between 15% (high Ra simulations) and 200% (low Ra simulations) longer. Model domains consist of 32, 65,
81, or 128 (low–high Ra simulations) grid cell elements in the three primary directions for each of the 12 sphe-
rical caps. Boundary conditions are free slip, basal and surface temperatures are fixed (Tb= 1; Ts= 0), and the
core to planetary radius ratio is set at f= 0.55. All simulations are of constant viscosity.

Figure 1 illustrates the effects of variable Q, through a changing upper boundary layer Rayleigh number Rab
on the system Vrms (modified after Weller et al. [2016]). Rab is defined as Rab= RaΔTb, where ΔTb is the tem-
perature drop across the upper boundary layer. This accounts for internal heating leading to a larger tem-
perature drop across the upper boundary layer and, hence, a larger negative buoyant potential—this is in
keeping with the classic scaling arguments outlined in the introduction which are also formulated in terms
of a local boundary layer Rayleigh number [Howard, 1966], and it is also in keeping with the manner in which
basal heating scalings have been extended to parameterized thermal evolution models for internally heated
planets [Davies, 1980; Schubert et al., 2001]. Pure basal heating conditions are indicated by a line of constant
Upper Mantle Temperature (TUM) of TUM= 0.23–0.25. The best fit scaling relationship is indicated by Rab

0.609,
which is lower than the traditional scaling of exponent of 2/3. However, limiting the parameter range to
isolate high Ra (Ra ≥ 1e6) results in fits more closely approaching the 2/3 basal scaling, with a best fit expo-
nent of Rab

0.63, indicating that the system is moving toward the theoretical scale at high Ra (Ra ≥ e8� e9).
Below this high Rayleigh number limit, boundary layer interactions lead to a scaling that is different from
the classic form [Moore, 2008].

While Vrms generally increases with increasing system Ra, the effects of increasing Q are more complex. Vrms

decreases with increasing Q and approaches asymptotes at both high and low levels of internal heating. The
introduction of an internal heat source (Q) to the system results in a deviation from the basal scaling form.
This is shown by best fit lines of constant TUM which reflect scaling exponents that decrease within the para-
meter space, such that Vrms∝ Rab

0.457–Rab
0.425 for high levels of internal heating (Figure 1). As noted inWeller

et al. [2016], simulations compared at equivalent temperatures (which encompass a range of Q) are better
indicators of system scaling trends than simulations compared at constant input parameters. All TUM best
fit lines are well described with R2> 0.993.

Despite the noted limitations of comparing systems at similar input Q, it is still useful to illustrate the effects
on Vrms of variableQ explicitly (Figure 2) given that models which predicted plate tectonics to be less likely for

Figure 1. Internal velocities (Vrms) versus boundary layer Rayleigh number (Rab = RaΔTb), modified afterWeller et al. [2016].
A range of internal heating rates [0–200] are plotted for each thermal Ra. Lines indicate constant Upper Mantle
Temperatures (TUM) across variable Ra and Q. All TUM best fit lines are well described with R2> 0.993.
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massive planets effectively increased internal heating rates as a proxy for planets with greater internal
heat sources. The general trend that appears is one of Vrms decreasing with Q toward an asymptotic
value. Increasing Ra tends to truncate the asymptotic branches where velocity becomes independent
of Q (Figure 2a). That is, as Ra increases the regime were Vrms decreases with Q extends over a
broader Q range. Figure 2b recasts the Vrms in a normalized form as a given Vrms divided by the

maximum Vrms,
V rms

max V rmsð Þ, for a fixed Ra. All Ra ranges show similar behaviors as a function of Q, that

of decreasing Vrms. However, the difference in the maximum to minimum Vrms appears to increase as

a function of Ra, with Ra = 1e7 indicating that Vmin
rms ¼ 0:406 Vmax

rms , whereas Ra = 1e5 indicates that

Vmin
rms ¼ 0:586 Vmax

rms , or
Vmin
rms

Vmax
rms

∝1:342 Rab�0:07.

Figure 2. (a) Internal velocities (Vrms) versus Internal heating rate (Q); and (b) normalized Vrms versus Q. Q values shown

are scaled from CitcomS input Q to an effective Q following Qeff ¼ 1�f 3ð Þ
3

1�fð Þ
f Q, where f is the core ratio (following

Weller et al. [2016]).
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The changing exponent in the Vrms scaling (Figure 1) suggests that stress scaling inmixed heating systemwill-
not follow either end-member basal or internal heating trends. In contrast to the classic basal heating
scale, mixed heating Vrms has a much shallower exponent with Rab leading to a normal stress scaling

of σmixed∝
Rab�1Rab0:425�0:457

Rab�1=3 ∝Rab�0:242 � Rab�0:201 (assuming an end-member basal heating boundary

layer scale: δ∝Rab
� 1/3 which, as previously noted, is an upper limit). If δ∝Rab

� 1/4, appropriate for the end-
member case of pure internal heating, then σinternal∝ Rab

� 0.293� Rab
� 0.325. These results suggest that

neither basal or internal heating scaling approximations are appropriate to use in mixed heating systems.

4. Discussion and Implication for Planets

Conceptually, reduced velocity, with increasing internal heating (Figure 2), can be explained by the effects of
increasing internal temperature on a system with a fixed basal temperature. As Q is increased, the internal
temperature increases following a well described scaling form of Q0.75Ra� 1 [e.g., Sotin and Labrosse, 1999;
Moore, 2008;Weller et al., 2016]. The net effect is to decrease the temperature difference between the interior
and base, reducing the basal heat flux. A basal heating Rayleigh number defined for a total system tempera-
ture drop is not the appropriate measure for the degree of basal heating the system experiences; the basal
heat flux is a model output as opposed to a control parameter. The result is that the total system driving
energy does not track internal heating in a one to one manner. As internal heating increases the system
can move from a state that is near a basal heating end-member to a state that is near an internally heated
end-member. Those end-members do not scale in the same way. One could attempt an empirical regression
fit onto models that transition between the two, but the fit would be applied to systems that fundamentally
differ in terms of the ratio of driving energy terms (internal heating and heat flowing into the system base).

The above provides an explanation for why mixed heating numerical experiments, with fixed basal tempera-
tures, predict plate tectonics to be less likely for increased levels of internal heating [e.g., O'Neill and Lenardic,
2007; Stein et al., 2013], and why results from those experiments are not in line with scaling arguments
that assume a single heating mode (e.g., pure basal heating) holds over all ranges of mantle Rayleigh num-
bers [e.g., Valencia et al., 2007; Valencia and O'Connell, 2009; Foley and Bercovici, 2014]. With some 20-20 hind-
sight one can see why in Figure 1 a good regression power law fit could be achieved if experiments with the
same internal temperatures were fit, as those cases maintained consistent ratios of internal relative to basal
heating (an apples to apples comparison between models that maintain the same heating modes). Even for
models with the same heating mode, the scaling of velocity with Rayleigh number is different for pure bot-
tom heating versus mixed heating, which will also feed into different model predictions that stem from scal-
ing arguments based on basal heating versus models that assume a mixed heated system. The latter models
lead to the prediction that both shear and normal stresses will decrease with decreasingmantle viscosity and,
by association, increasing mantle Rayleigh number. Notice that the explanations above for divergent model
predictions are independent of any rheologic assumptions applied to the lithosphere.

There is another factor at work that can cause a mixed heating system to deviate from classic scaling assump-
tions. As internal heating increases, cell aspect ratios can move toward shorter wavelengths, i.e., smaller L in
equation (2) [e.g., Schubert and Anderson, 1985]. This can enhance a decrease in convective normal stress with
increasing internal heating beyond the decrease that comes from the different scalings for system velocities
in mixed versus basally heated systems.

Our findings suggest the potential of plate tectonics on “super-Earths” (or terrestrial planets in general)
should be viewed within a temporal and/or internal heat source density framework. In this framework, the
predictions developed for exoplanets [Valencia et al., 2007; Valencia and O'Connell, 2009], and for general con-
vective systems [e.g., Foley and Bercovici, 2014] using basal heating scaling forms (and a formulation for pure
internal heating) [Valencia and O'Connell, 2009] are not inconsistent with our results, but instead are for spe-
cial cases of (A) planets that are radiogenically depleted or old enough to have tapped internal heat sources,
or sequestered the bulk of them into a nonrecyclable crust while still maintaining sufficient heat flow from
the core into the mantle to maintain high values of a bottom heated Rayleigh number; and (B) planets for
which the mantle temperature briefly becomes equal to that of the core. Predictions based on mixed heating
results are then for systems with high to moderate radiogenics and temperatures. The need to think in a pla-
netary evolution framework suggests that age and compositional constraints (as related to initial heat source
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density) will be required for probabilistic studies as to the plate tectonic potential of the large set of terrestrial
exoplanets that have been, and continue to be, found.
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Erratum
In the originally published version of this article, a typographical error in a reference to a recently published
article which contains the data used in this study was discovered. In the Acknowledgments section, Weller
et al. [2016] was changed to Weller et al. [2008]. The following have since been corrected and this version
may be considered the authoritative version of record.

Geophysical Research Letters 10.1002/2016GL069927

WELLER AND LENARDIC THE ENERGETICS OF MIXED-MODE CONVECTION 9474

Acknowledgments
We would like to thank two anonymous
reviewers for their helpful comments.
All the data for this paper are published
in Weller et al. [2016] and can further be
made available upon request by con-
tacting the authors. The computational
work was supported in part by the
Cyberinfrastructure for Computational
Research funded by NSF under grant
CNS-0821727, the Data Analysis and
Visualization Cyberinfrastructure
funded by NSF under grant OCI-
0959097, and Rice University.

http://dx.doi.org/10.1029/JB085iB05p02517
http://dx.doi.org/10.1029/2006JB004778
http://dx.doi.org/10.1029/2006JB004778
http://dx.doi.org/10.1029/2007GL030598
http://dx.doi.org/10.1029/2011GL049341
http://dx.doi.org/10.1016/j.epsl.2012.11.011
http://dx.doi.org/10.1016/j.icarus.2013.03.013
http://dx.doi.org/10.1029/2005GC001155
http://dx.doi.org/10.1016/j.epsl.2009.07.015
http://dx.doi.org/10.1086/524012
http://dx.doi.org/10.1016/j.epsl.2011.07.029
http://dx.doi.org/10.1002/2016JB013247
http://dx.doi.org/10.1029/2000JB900003
http://dx.doi.org/10.1029/2008GC002048


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


