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Delayed processes are ubiquitous in biological systems and are often characterized by delay differential
equations (DDEs) and their extension to include stochastic effects. DDEs do not explicitly incorporate
intermediate states associated with a delayed process but instead use an estimated average delay time. In an effort
to examine the validity of this approach, we study systems with significant delays by explicitly incorporating
intermediate steps. We show that such explicit models often yield significantly different equilibrium distributions
and transition times as compared to DDEs with deterministic delay values. Additionally, different explicit
models with qualitatively different dynamics can give rise to the same DDEs revealing important ambiguities.
We also show that DDE-based predictions of oscillatory behavior may fail for the corresponding explicit model.
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I. INTRODUCTION

Delayed reactions are present in many biological systems.
Most notably, the central dogma of biology describes how
functional protein production results from a sequence of nu-
merous processes covering transcription, translation, and post-
translational modifications. The sequential nature of protein
production causes delay from the point that RNA polymerase
binds to promoter DNA to the appearance of fully functional
proteins [1–3]. Moreover, the degradation of proteins can also
require multiple steps [4]. In addition to delay created through
reaction chains, the transportation of molecules within a cell
is a highly stochastic diffusion process which itself can often
generate significant delays within a system. For example,
in a eukaryotic cell mRNA is first produced in the nucleus
and then transported to the cytoplasm for further translation.
Transportation can be viewed as a reaction chain if molecules
at different spatial points are treated as intermediate products.
However, the intermediate steps in the transportation process
are reversible (i.e., molecules are free to move back and forth);
in contrast, many reactions in protein production proceed in an
irreversible manner. In this paper, we focus on the latter case
and leave the former case for future study.

To date, delay in biological systems has been most exten-
sively studied through delay differential equations (DDEs) and
their extension to include stochasticity. DDEs omit intermedi-
ate steps associated with a delayed process and instead estimate
the average delay time for those steps. Typically fixed delay
values are considered [5–11], though DDEs with a distribution
of delay values have been studied [12,13]. Several studies
employ DDEs to illustrate that delay can induce oscillation
in otherwise stable systems [1,7,11,14–18]. Intuitively, if we
increase the delay from zero to a value comparable to the
residence time [19] of the system, oscillations may appear
because of a phase lag in regulation. Additionally, a recent
study employing DDEs presented a less intuitive observation
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that a relatively small transcriptional delay can stabilize
bistable gene networks [5]. These studies demonstrate that
a delay can greatly influence the dynamics and equilibrium
properties of biological systems.

An obvious check on the validity of DDEs is to compare
them to more complete models that explicitly incorporate
intermediate steps into the system. We refer to such models as
explicit models. In this study we compare the predictions of
fixed delay systems and explicit models. Instead of applying
delay differential equations [11,18], we simulate reactions as
delayed stochastic systems (DSSs) using a Gillespie algorithm
first proposed by Bratsun et al. [14]. We show by a series
of paradigmatic examples that DSSs with fixed delay often
mischaracterize system behavior. Our results should inject a
needed note of caution into this common practice.

It is worth noting there has been an early study on DDEs
with discrete delay and distributed delay [20]. The authors
discuss the influence of the delay distribution on the systems by
analyzing deterministic DDEs. However, the cases they study
are mostly linear equations to allow analytical solutions. In
this study we are motivated to study more practical problems,
where DDEs could include nonlinear terms. Moreover, our
discrete simulation allows us to study nonlinear behaviors
caused by stochasticity, which is beyond the prediction of
deterministic equations (see Sec. V).

The organization of the paper is as follows. In Sec. II, we
discuss a self-activation circuit that has two stable states, first
studied as a delayed stochastic system by Gupta et al. [5].
We construct two distinct explicit models for the same DSS
and demonstrate that one model produces results consistent
with the DSS while the other produces markedly different
results. In Sec. III, we discuss how the original DSS can
sometimes emerge as the limit of an explicit model with
many intermediate steps of equal mean duration. In Sec. IV,
we examine a toggle switch circuit, another common bistable
system. In this case, we examine an explicit model that again
exhibits quantitatively different behavior as compared to the
parent DSS. In Sec. V, we discuss a simple linear system
where a DSS with deterministic delay generates oscillations
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FIG. 1. (a) A schematic diagram of the self-activation circuit. (b) Mean residence time calculated with DSS and explicit model I.
(c) Equilibrium distribution calculated with DSS. (d) Equilibrium distribution calculated by explicit model I. p is the proportion occupied by
the low number state. For all plots parameter values α = 5, c = 19, γ = ln(2), and b = 10 are used. MRT and PDF stand for mean residence
time and probability density function, respectively.

when explicit models do not. In Sec. VI, we summarize our
work and its implications for constructing biological models.

II. SELF-ACTIVATION CIRCUIT

A. Delay differential equations

Consider the single-gene delayed positive feedback loop
shown in Fig. 1(a). The dynamic behavior of the average
number of molecule X is denoted by x and is determined
by the following DDE:

ẋ = α + β
x(t − τ )b

cb + x(t − τ )b
− γ x(t), (1)

where α is the basal transcription rate due to leakiness of
the promoter, β the increase in transcription rate due to
protein binding to the promoter, b the Hill coefficient, c

the concentration of x needed for half-maximal induction,
γ the degradation rate coefficient of the protein, and τ the
transcriptional delay time. With the parameter values used
in [5], the self-activation circuit is bistable.

We are interested in the stochastic version of this type
of delayed system. Here, the right-hand side of Eq. (1) is
reinterpreted as the rate for a reaction that produces an
additional X. We employ the modified Gillespie algorithm

first proposed by Bratsun et al. [14] to carry out stochastic
simulations. Here are the formal steps:

(1) Set initial states X = (X1, . . . ,XN ); set time t = 0 and
reaction counter i = 1.

(2) Calculate the rates of each reaction aμ, μ = 1, . . . ,M.

(3) Generate two uniform random numbers u1,u2 ∈ [0,1].
(4) Compute �ti = − ln(u1)/

∑
μ aμ. The next reaction is

scheduled at t + �ti .
(5) If there are delayed reactions scheduled within the

time interval [t,t + �ti], then steps 2–4 are ignored. Update
t to the next scheduled delay reaction time td . X states are
updated according to the delayed reaction channel, and update
i = i + 1. Go to step 2. Otherwise, proceed to step 6.

(6) Find the channel of the next reaction μ, namely, take μ

to be an integer for which
∑μ−1

j=1 aj < u2at �
∑μ

j=1 aj , where

at = ∑M
j=1 aj is the total rate. Update t = t + �ti .

(7) If the selected reaction μ is not delayed, update X
according to the reaction channel; update i = i + 1. If the
selected reaction is delayed, update is put off until td = t + τ .
Go to step 2.

Results for the self-activation circuit from stochastic DDEs
are shown in Figs. 1(b) and 1(c). (We have validated our
results by employing a different delay stochastic simulation
method [21,22].) When the system has instant feedback (zero
delay), the equilibrium distribution favors the low number state
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[Fig. 1(c)] while for increasing delay the high number state
becomes more occupied. In addition, the mean residence time
(MRT), sometimes called the average first passage or transition
time, of the low number state grows rapidly with increasing
delay.

B. Explicit model I

Suppose the delay in Eq. (1) originates from the existence
of a precursor Y . We consider the following reaction scheme:

Change of x Change of y Rate

Y −→ X +1 −1 qy

∅ −→ Y 0 +1 α + β xb

cb+xb

X −→ ∅ −1 0 γ x

Molecule Y is transformed into molecule X, which activates
the production of Y . At the mean field level, we can write down
the corresponding ordinary differential equations (ODEs) to
match parameter values so as to obtain the same average value
of molecules X and Y given by x and y, respectively, as

ẋ = qy − γ x, (2)

ẏ = α + β
xb

cb + xb
− qy. (3)

The transformation rate q sets the delay time of the system and
Eqs. (2) and (3) have the same steady states in x as in Eq. (1)
for all q with all shared parameter values staying constant.

To understand the relationship between q and τ we conduct
stochastic simulations of both the original DSS and the explicit
process. We can tune the delay that arises from the existence
of precursor by varying q and adjust its value based on our
simulation results. As expected, we find the delay of the system
should be proportional to 1/q. When the effective delay is set as
τeff = 2

3
1
q

, the MRT versus τeff curve almost perfectly collapses
with the MRT versus τ calculated from the DSS [Fig. 1(b)].
We further calculated equilibrium configurations of the system
with τeff = 0.03, 2.00, and 4.00. The stationary distribution for
the explicit model is again reasonably consistent with those

calculated with DSS [FIgs. 1(c) and 1(d)], there being only a
modest difference at τeff = 2.00.

C. Explicit model II

If we regard X as a type of protein and Y as its mRNA
instead of a precursor, we can obtain a different explicit model
for the same DDEs [Eq. (1)]. Consider the following reactions:

Change of x Change of y Rate

∅ −→ X +1 0 qy

∅ −→ Y 0 +1 α + β xb

cb+xb

X −→ ∅ −1 0 γ x

Y −→ ∅ 0 −1 qy

This case is different from the precursor transformation
previously considered in that Y participates in the translation
of protein X but has an independent decay process. In
contrast to transformation, the translation process does not
consume X. We have set the decay rate of Y equal to q so
that the corresponding ODEs are also identical to Eqs. (2)
and (3). Despite obeying the same ODEs, there are profound
differences in the MRT versus delay τeff curve and equilibrium
distribution obtained by explicit stochastic simulation. Note
that we have used here the same definition for τeff = 2

3
1
q

as
in explicit model I, but the difference in the curves cannot
be accommodated by just shifting this relationship. The MRT
becomes notably smaller and, even in the small delay limit
(τeff → 0), the MRT does not equal to the case τ = 0 in
the DSS [Fig. 2(a)]. Moreover, the equilibrium distribution of
explicit model II is quantitatively different from its counterpart
in explicit model I [Fig. 2(b)].

It is straightforward to understand the qualitative difference
between explicit models I and II. Suppose at some time point
t , the number of molecules Y happens to be higher than the
number in the steady state, due to a fluctuation. In explicit
model I, such an abundant Y will quickly be transformed into
X. In contrast, the production of X does not consume Y in
explicit model II. Consequently, those abundant Y ’s produce
a burst of X before they undergo independent decay. The
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FIG. 2. (a) Mean residence time calculated by the DSS and by explicit model II. (b) Equilibrium distribution calculated by explicit model
II. p is the proportion occupied by a low number state. All parameters are the same as in Fig. 1.
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strengthened noise in explicit model II results in the greatly
reduced mean residence time. This dichotomy points out an
important ambiguity in the formulation of the delay equation.
In the DDE (no fluctuation) limit, these models give rise to
exactly the same steady states, and there is no obvious way
to choose which explicit model is better without postulating
the actual delay process being modeled. Once we include
stochasticity, our DSS algorithm effectively assumes that a
particle placed in the queue will be transformed to X after
a fixed delay (and at that time point increase X to X + 1)
while disappearing. This clearly is analogous to the process
described by the first explicit model, which therefore agrees
much more quantitatively with the original DSS.

III. FIXED VERSUS STOCHASTIC DELAY TIME

Given the reasonable agreement between explicit model
I and the original DSS, we investigate in more detail the
relationship between these two formulations. Let us first start
with the deterministic limit given by the respective ODE
systems. Starting from Eq. (3) and given x(t), the solution
of y(t) is determined as

y(t) = e−qty(0) +
∫ t

0
ds

[
e−q(t−s)

(
α + β

x(s)b

cb + x(s)b

)]
.

By integrating from the infinite past the initial condition
becomes negligible and we rewrite the equation above as

y(t) = α/q +
∫ t

−∞
ds

[
e−q(t−s)β

x(s)b

cb + x(s)b

]
.

Plugging back into Eq. (1) yields

ẋ = α +
∫ t

−∞
ds

[
qe−q(t−s)β

x(s)b

cb + x(s)b

]
− γ x.

From the equation above, it is clear that the delay caused by
the additional variable y follows an exponential distribution
with average value 1/q. When q → ∞, the peak of this
distribution approaches infinity and the width of the peak
approaches zero. Of course, by substituting it with a delta
function distribution, we recover Eq. (1). The difference
between the two models is that in the DDE the delay is fixed
but in the explicit model the delay is exponentially distributed.

It is critical to realize that this observation regarding the
difference between the two models also holds for the stochastic
version. As already mentioned, one can think of the delayed
reaction in the DSS algorithm as putting a produced particle
into a queue and only at a fixed later time allowing it to
be counted as an increase in X. The stochastic version of
the explicit model creates a Y particle which then obeys a
single exponential decay process to produce X; everything is
the same except that the delay is now stochastic. The fact that
the mean equations and the actual stochastic processes have
the same relationship to each other is ultimately due to the
linearity of the reaction scheme governing the production and
decay of X in the explicit model.

We can now extend our notion of an explicit model to allow
for more than one precursor step. For example, let us imagine
that there are two precursors. The ODEs for the explicit models

with two intermediate steps are

ẋ = qz − γ x, (4)

ẏ = α + β
xb

cb + xb
− qy, (5)

ż = qy − qz. (6)

Here the molecules Y and Z are intermediate products.
Assuming we know x(t), then from Eq. (5)

y(t) =
∫ t

−∞
ds

[
e−q(t−s)

(
α + β

x(s)b

cb + x(s)b

)]
.

Plugging it into Eq. (6),

z(t) =
∫ t

−∞
dre−q(t−r)q

∫ r

−∞
dse−q(r−s)

(
α + β

x(s)b

cb + x(s)b

)
.

Finally, Eq. (4) becomes

ẋ =
∫ t

−∞
dr

∫ r

−∞
ds

[
q2e−q(t−s)

(
α + β

x(s)b

cb + x(s)b

)]
− γ x.

Integrating over r first, this becomes

ẋ =
∫ t

−∞
ds

[
(t − s)q2e−q(t−s)

(
α + β

x(s)b

cb + x(s)b

)]
− γ x.

After some rearrangement we obtain

ẋ = α +
∫ ∞

0
ds ′

[
s ′q2e−qs ′

β
x(t − s ′)b

cb + x(t − s ′)b

]
− γ x.

So, the exponential distribution has been replaced by the γ

distribution p2 = tq2e−qt . Again this holds also for the single
particle stochastic dynamics where this distribution is now
interpreted as the time it takes for a particle to be transformed
from Y → Z → X, where each of the reactions is irreversible
and occurs at the same rate p. A simple extension of the above
shows that

pn(t) = nntn−1

τn(n − 1)!
e− n

τ
t ,

where now we have defined τ = n/q. This can be proven by in-
duction, using pn(t) = ∫ t

0 pn−1(t ′)p1(t − t ′) dt ′ = qntn−1

(n−1)!e
−qt .

When t∗ = n−1
n

τ , pn(t) reaches a maximum. As we vary the
number of intermediate steps, n, and keep the mean value of
delay 〈t〉 = τ the same, the distribution becomes increasingly
sharp. A plot of pn(t) is shown in Fig. 3.

Hence, the limiting process of making n large leads to a
precise fixed value of the delay and asymptotically approaches
the DSS. It then becomes a quantitative issue as to whether
the actual process has intermediate states and to what extent
they occur at roughly equal rates, as opposed to having one
step dominate (being rate limiting), and whether the fixed
delay version is a good enough approximation for that actual
situation. For the simple self-activation case, we have shown
that even with only one precursor the DSS is a reasonably
accurate approach.
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FIG. 3. Probability density function (PDF) pn. Here the mean
delay is fixed to be 2.

IV. THE TOGGLE SWITCH

We now extend our discussion to a more complex circuit,
the toggle switch shown schematically in Fig. 4(a). If
the average number of molecules X and molecule Y are
represented by x and y, then the time evolution of x and y is

determined by the following DDEs (to simplify the problem,
we have assumed that the delay exists only in the repressive
regulation from Y to X):

ẋ = β
1

1 + y(t − τ )2/K2
− γ x(t), (7)

ẏ = β
1

1 + x(t)2/K2
− γy(t), (8)

where β is the decrease in transcription rate due to protein
binding to the promoter, K the concentration of X and Y

needed for half-maximal reduction, γ the degradation rate
coefficient of the protein, and τ the transcriptional delay time.
This DDE is again extended to a DSS by using the rates on
the right-hand side of the above equations. We have chosen
to use the same parameters as in Ref. [5], which puts the
system in a bistable regime. Similar to the result for the self-
activation circuit, the mean residence time of the X < Y state
grows rapidly as delay increases [Fig. 4(b)]. The equilibrium
distribution does not change significantly with varying delay
and the probabilities of finding molecule levels in the attractive
basin of each stable state are approximately equal [Fig. 4(c)].

We now construct the related explicit model, assuming that
the delay in Eq. (7) originates from the existence of a precursor
Z. We consider the following reactions:
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FIG. 4. (a) A schematic diagram of a toggle-switch circuit. (b) Mean residence time of X < Y state calculated by DSSs and the explicit
model. (c) Equilibrium distribution calculated by DSSs. (d) Equilibrium distribution calculated by the explicit model. p is the proportion
occupied by the X < Y number state; β = 21.9, k = 6.8, and γ = ln(2).
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Change of x Change of y Change of z Rate

Z −→ X +1 0 −1 qz

∅ −→ Y 0 +1 0 β 1
1+x2/k2

∅ −→ Z 0 0 +1 β 1
1+y2/k2

X −→ ∅ −1 0 0 γ x

Y −→ ∅ 0 −1 0 γy

Molecule Z is transformed into molecule X, which is a
repressor of Y . Molecule Y further inhibits the production of
Z. The corresponding ODEs are

ẋ = qz − γ x, (9)

ẏ = β
1

1 + x2/k
− γy, (10)

ż = β
1

1 + y2/k
− qz. (11)

By construction, Eqs. (9)–(11) have the same steady states of
x as in Eqs. (7) and (8).

We can tune the delay that arises from the existence of a
precursor by varying the q value. The delay of the system is
proportional to 1/q in the same manner as we have seen in
the self-activation circuit. When the effective delay is defined
as τeff = 0.80 1

q
, we find that the MRT of the X < Y state

versus τeff curve almost perfectly collapses with MRT versus
τ calculated from DSSs [Fig. 4(b)]. However, the equilibrium
distribution in this explicit model is strongly influenced by the
value of the delay, which suggests that the MRT of the X > Y

state versus τeff curve does not agree with its counterpart in the
DSS. Alternatively, one could get a better match to the decay
of the X > Y state and fail to match this one (data not shown).
This is in stark contrast to the delay-independent equilibrium
distribution in the DSS [Figs. 4(c) and 4(d)], which shows no
such change.

As discussed above, the DSS results should be approached
asymptotically if the number of intermediate states is in-
creased. We test the rapidity of this convergence in Fig. 5.
As we increase the number of intermediate reactions, n, the
difference in the height of two peaks becomes smaller, as
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FIG. 5. Equilibrium distribution of toggle-switch circuit for
τ = 2. p shows the probability of X < Y . Recall that in the DSS,
P (X < Y ) ∼ 0.5.

expected. Yet the difference is not negligible even for the
relatively large number of intermediate reactions, n = 4. The
width of the delay time distribution is still fairly significant
at n = 4 (Fig. 3). Apparently, the extra nonlinearity in the
toggle-switch circuit makes the system more sensitive to
having such a nontrivial distribution.

V. DELAY-INDUCED OSCILLATION

Previous studies have argued that the introduction of delay
in otherwise stable systems can induce oscillations [1,7,11,14–
18,23]. Here we focus on the case of delayed protein decay,
which has been shown to undergo oscillations in a DSS
formulation [14]. Furthermore, it has been posited that this
oscillation can be partially understood by writing down the
DDE system for average number of protein X, represented by
x, as

dx

dt
= A − Bx(t) − Cx(t − τ ), (12)

where A is the rate of protein production, and B and C are
the rates of nondelayed and delayed degradation, respectively.
Here we show that both of these statements need to be carefully
reconsidered.

First, it is necessary to note that there is an inherent
ambiguity in how to define the DSS for this case. We need
to specify in particular whether a particle slated for a delayed
decay can undergo regular decay while waiting in the queue.
A master equation formulation of the stochastic version of
Eq. (12) seems to allow this to occur (see Ref. [14]), but for
the parameter set reported in that work the characteristic direct
decay time 1/B is much smaller than the delay τ and therefore
nearly all molecules X involved in delayed decay (i.e., placed
in the queue waiting to decay) cannot finish this process and
undergo direct decay instead. As a consequence, the last term
on the right-hand side of Eq. (12) would not play any role in a
stochastic simulation.

Consequently, in our simulation we prohibit molecules
undergoing delayed decay from participating in direct decay.
With the same parameter set used in Ref. [14], x oscillates
[Fig. 6(a)]. The power spectrum calculated from time series
of x [Fig. 6(c)] reveals oscillatory behavior by the location
of the peaks. As expected these are separated by 1/τ . But,
it is clear that the system is not accurately described by the
above equation, even in an average sense. The simplest way
to see this is to note that the mean value of X depends on the
delay, whereas the steady-state solution of the equation does
not. The fact that this equation can have oscillatory modes
cannot be relevant for whether or not the stochastic system
oscillates.

We now construct an explicit model analog of our DSS.
Protein degradation often occurs through a sequence of events
that are mediated by a complex proteolytic pathway [4].
It is thus reasonable to assume in the delayed degradation
reaction that protein X will first be transformed into an
intermediate product Y , which has an independent decay
process. The existence of the intermediate product Y causes
the delay in the degradation of X [4]. Here are the reactions
involved:
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Change of x Change of y Rate

∅ −→ X +1 0 A

X −→ Y −1 +1 Cx

X −→ ∅ −1 0 Bx

Y −→ ∅ 0 −1 Dy

The corresponding ODEs in the deterministic limit are

dx

dt
= A − Bx − Cx, (13)

dy

dt
= Cx − Dy. (14)

The average value of the delay is 1/D. Therefore, we set
D = 1/τ in our explicit model to match the DSS. Note that,
unlike the previous deterministic equation, the steady-state
value of the total number of particles (x + y) does depend on
D; it equals A

B+C
(1 + Cτ ) which scales linearly for long time

delay and agrees with the data in Fig. 6(a).
For the case of linear reactions there can be no oscillations at

the deterministic level. Since the system is linear, oscillations
must mean imaginary eigenvalues of the Jacobian matrix

J =
(−B − C 0

C −D

)
.

A simple calculation shows, however, that the eigenvalues
are −B − C and −D, yielding simple exponential relaxation.

In fact it is trivial to extend this result to the case of an
arbitrary number of intermediates each of which is produced
and decays via unimolecular reactions. In other words, the
exact solution of any explicit model predicts no oscillatory
behavior in the mean field limit. Any oscillations must be due to
stochasticity.

In Fig. 6(b) we show a simulated time series for the total
particle number in one intermediate explicit model, and its
power spectrum is presented in Fig. 6(d). The time series
of X generated by the DSS versus the explicit model look
superficially similar [Figs. 6(a) and 6(b)]; however, the power
spectrum of DSS and the explicit model are markedly different.
In contrast to the equally spaced peaks in the power spectrum
[Fig. 6(c)], there is no obvious peak in the explicit model
[Fig. 6(d)]. Thus, the exponential distribution of delay values
will wash out the oscillation. We have extended this calculation
to the case of n = 4 (Fig. 7) which has a somewhat peaked
delay distribution. Even here, though, spectral peaks cannot
be detected as the distribution is still wide enough to eliminate
the peaks related to the fixed delay.

The results here and in the previous section on the toggle
switch address the importance of delay distributions. Our
results show that even when the number of intermediate
reactions is increased up to four, there can still be non-
negligible differences between DSSs and explicit models.
Modeling of biological systems may require constructing
explicit systems if one wants to obtain quantitatively accurate
predictions.
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FIG. 6. (a) Time series of total number of molecules in DSS. (b) Time series of total number of molecules in explicit model. (c) Corresponding
periodogram in DSS, where τ = 10. (d) Corresponding periodogram in explicit model. Here A = 100, B = 4.1, C = 1.0, and D = 1/τ = 0.1.
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FIG. 7. Time series of the total number of molecules in the
explicit model with n = 4. Parameters are the same as in Fig. 6.

VI. DISCUSSION

Stochastic delayed differential systems have been very
popular in biological physics due to their relative simplicity
as compared to models that include a large number of
intermediate steps that are anyway not being monitored in
the experimental data. The cost of such simplicity is the
conversion from Markovian explicit models to non-Markovian
DSSs. In most cases, the non-Markovian property makes
analytical studies challenging [20,24–26]. When the delay is
much larger than the transition time between stable states,
it can be assumed either that the delay does not affect the
dynamics within each attractive basin or the joint probability
P (X(t),X(t − τ )) can be decoupled as P (X(t))P (X(t − τ )).
Approximate analytical solutions can be derived with such
assumptions [14,23]. In the small delay case, it is sometimes
possible to derive approximate solutions for simple cases [27].
As for moderate delay problems, to the best of our knowledge,

there is no good way to derive analytical solutions, even
approximately.

Because of the difficulty in solving DSSs analytically, two
different but consistent stochastic simulation methods have
been proposed to study these systems numerically [14,21,22].
Since the reaction rate depends on both X(t) and X(t − τ ),
both methods require the storage of system dynamics from
t to t − τ . Therefore, stochastic simulation methods become
computationally inefficient for large τ . As we have seen in
our examples the rates of intermediate reactions in explicit
models are proportional to 1/τ , so that long delays correspond
to slow reactions. However, slow reactions do not increase the
computational cost of a stochastic simulation. Thus for systems
with long delays explicit models may be computationally
preferable.

Beyond the issue of computational ease is the question of
quantitative reliability. In this paper, we have demonstrated that
DDEs often yield inaccurate transition times and equilibrium
distributions. Additionally, there can exist multiple explicit
models with fundamentally different dynamics that give rise
to the same DDEs; some of these have stochastic extensions
which correspond better than others to a given DSS; sometimes
nonuniqueness exists when we attempt to formulate stochastic
simulation directly to DDEs, as we have seen in the delay-
induced oscillation case. Consequently results that depend
strongly on having a fixed delay may be nonrobust when the
cause of the delay is handled explicitly. In the end, we argue
that more attention needs to be paid to the limitation of the DSS
approach; blind use of this approach may cause significant
mischaracterization of important biological systems.
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