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Abstract An efficient and positivity-preserving layer method is introduced to solve the radiation belt
diffusion equation and is applied to study the bounce resonance interaction between relativistic electrons
and magnetosonic waves. The layer method with linear interpolation, denoted by LM-L (layer method-linear),
requires the use of a large number of grid points to ensure accurate solutions. We introduce a
monotonicity- and positivity-preserving cubic interpolation method to be used with the Milstein-Tretyakov
layer method. The resulting method, called LM-MC (layer method-monotone cubic), can be used to solve the
radiation belt diffusion equation with a much smaller number of grid points than LM-L while still being able
to preserve the positivity of the solution. We suggest that LM-MC can be used to study long-term dynamics
of radiation belts. We then develop a 2-D LM-MC code and use it to investigate the bounce resonance
diffusion of radiation belt electrons by magnetosonic waves. Using a previously published magnetosonic
wave model, we demonstrate that bounce resonance with magnetosonic waves is as important as
gyroresonance; both can cause several orders of magnitude increase of MeV electron fluxes within 1 day.
We conclude that bounce resonance with magnetosonic waves should be taken into consideration together
with gyroresonance.

1. Introduction

One widely adopted method to model the global dynamics of radiation belts is by solving a quasilinear
diffusion equation. Various numerical codes [Beutier and Boscher, 1995; Varotsou et al., 2005; Li et al., 2007;
Tao et al., 2008, 2009, 2011a, 2011b, Shprits et al., 2008a, 2008b; Albert et al., 2009; Xiao et al., 2009, 2015;
Su et al., 2010; Subbotin et al., 2010; Tu et al., 2013; Zheng et al., 2014; Glauert et al., 2014] based on quasilinear
diffusion theory have been developed to evaluate and to understand the dynamic changes of particle fluxes
in the radiation belts. Albert [2009, 2013] demonstrated that the numerically obtained phase space density
might become negative when solving multidimensional quasilinear diffusion equations using standard finite
difference methods, due to nonzero cross-diffusion terms. Different numerical techniques have been devel-
oped to avoid this problem when solving multidimensional diffusion equations [Albert and Young, 2005;
Tao et al., 2008, 2009].

The search for a positivity-preserving method for solving the radiation belt diffusion equation starts from
Albert and Young [2005]. This diffusion equation written in (J1, J2, J3) coordinates has the form

𝜕f
𝜕t

=
3∑

i=1

𝜕

𝜕Ji

(
Dij
𝜕f
𝜕Jj

)
, (1)

where Dij is diffusion coefficient, and J1, J2, and J3 are three canonical action variables associated with
cyclotron motion, bounce motion, and drift motion of radiation belt particles, respectively [Schulz and
Lanzerotti, 1974, pp 47]. The negative solutions of f are caused by the presence of cross-diffusion terms
(Dij, i ≠ j) [Albert, 2009, 2013]; therefore, Albert and Young [2005] made a coordinate transformation to elimi-
nate the cross-diffusion terms and solved the transformed diffusion equation using finite difference methods.
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The efficiency of the resulting algorithm is comparable to standard finite difference methods. The main dis-
advantage of the method, however, is that the success of the method depends on whether the coordinate
transformation can be made. Because of this, the method has not been extended to the full 3-D case yet.

A different approach to the problem was taken by Tao et al. [2008, 2009]. Tao et al. [2008] developed a
stochastic differential equation (SDE) code to solve the 2-D bounce-averaged pitch angle and energy diffusion
equation. The SDE code is particle based and is very efficient when solutions on a small number of points are
needed. Recently, this SDE code has been extended to the 3-D case [Zheng et al., 2014]. However, if solutions
are needed on a large computational domain for long times, the SDE code becomes less efficient, because of
the need to trace a large number of stochastic trajectories. Tao et al. [2009] aimed to address the efficiency
problem of the SDE method and introduced the so-called layer method developed by Milstein and Tretyakov
[2001, 2002]. Although the layer method is based on the SDE theory, it is nevertheless deterministic. One key
element of the layer method is the need to use interpolation. The layer method of Milstein and Tretyakov [2001,
2002] and Tao et al. [2009] used linear interpolation. However, linear interpolation has a low order of accuracy.
Correspondingly, the Tao et al. [2009] layer method code is not efficient due to the use of a large number of
grid points (1400×1500 for a 2-D problem). Tao et al. [2009] also tried the cubic interpolation method, as sug-
gested by Milstein and Tretyakov [2001]; however, they found that the cubic interpolation method can lead to
negative solutions of the phase-space density.

Because of the flexibility of the Milstein-Tretyakov layer method framework, it is possible to employ
other interpolation methods. In this paper, we introduce the use of a monotonicity-preserving (MP) and
positivity-preserving (PP) cubic interpolation method in the layer method; the resulting numerical code does
not need to use a large number of grid points to obtain accurate and positive results. Therefore, it is much
more efficient than the Tao et al. [2009] method. In the text below, we will call this layer method LM-MC
(layer method-monotone cubic) to differentiate it from the layer method used by Tao et al. [2009] with linear
interpolation, which will be called LM-L (layer method-linear).

The remainder of this paper is organized as follows. We introduce the LM-MC using a simple 1-D problem
in section 2. We review the layer method in section 2.1 and introduce the MP and PP cubic interpolation
method in section 2.2. Then we develop a 2-D LM-MC code to solve the bounce-averaged pitch angle and
energy diffusion equation. We validate this 2-D LM-MC code in section 3.1 and then explore effects of bounce
resonance diffusion with magnetosonic waves on radiation belt electrons in section 3.2. Our results are then
discussed and summarized in section 4.

2. The Layer Method With Monotone Cubic Interpolation (LM-MC)

In this section, we first review the basic framework of Milstein-Tretyakov layer method in 1-D. Details about the
derivation of the layer method and the extension of the layer method to higher dimensions can be found in
Milstein and Tretyakov [2001, 2002]. Then we introduce the monotonicity-preserving and positivity-preserving
cubic interpolation method in 1-D and demonstrate its use in the Milstein-Tretyakov layer method. This inter-
polation method can be easily extended to higher dimensions by performing interpolations dimension by
dimension. For example, for a 2-D interpolation in x, y coordinates, the interpolation is first done along x
dimension and then along y dimension.

2.1. A Milstein-Tretyakov Layer Method in 1-D
Suppose we want to solve a general 1-D parabolic equation

𝜕f
𝜕t

= b(t, x) 𝜕f
𝜕x

+ 1
2

a(t, x) 𝜕
2f
𝜕x2

, x ∈ [𝛼, 𝛽], (2)

subject to the following general initial and boundary conditions

f (t = t0) = g(x), (3)

f (x = 𝛼) = h(t), (4)

𝜕f
𝜕x

(x = 𝛽) = 𝜑(t). (5)
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Here we assume a Dirichlet boundary condition at x = 𝛼 and a Neumann boundary condition at x = 𝛽 to
illustrate how to handle these two kinds of popular boundary conditions in the layer method below.

Like finite difference methods, we discretize t equidistantly into t0, t1, t2, · · · , tn, tn+1, · · · with ti = t0 + iΔt, and
x equidistantly into x0, x1, x2, · · · , xN−1 with x0 = 𝛼, xN−1 = 𝛽 , and xj = x0 + jΔx. The time step and the grid size
are chosen to be constant here only for simplicity of discussion. For any point xj with j = 1, 2, 3, · · · ,N − 2, the
Milstein-Tretyakov layer method solution of f (tn+1, xj) is closely related to the following two points:

x̃+ = xj + b(tn+1, xj)Δt + 𝜎(tn+1, xj)
√
Δt, (6)

x̃− = xj + b(tn+1, xj)Δt − 𝜎(tn+1, xj)
√
Δt, (7)

where 𝜎2 = a. We can choose either 𝜎 =
√

a or −
√

a; different choices of 𝜎 do not affect the solution of f .
For simplicity of discussion, we choose 𝜎 > 0 and thus x̃− < x̃+. In the simplest case, if 𝛼 < x̃± < 𝛽 , the layer
method solution of f is

f (tn+1, xj) ≈
1
2

[
f (tn, x̃−) + f (tn, x̃+)

]
. (8)

We can see from equations (6)–(8) that the layer method for the parabolic equation (2) is similar to the method
of characteristics for an advection equation. Indeed, if we let a = 0, then equation (2) becomes a pure advec-
tion equation, and equations (7) and (8) just reduce to the method of characteristics with the Euler method. If
𝛼 < x̃± < 𝛽 , equation (8) immediately gives f (tn+1, xj), because f (tn, x̃±) can be obtained using interpolation.
Clearly, if a small enough time step is used, 𝛼 < x̃± < 𝛽 for all xj with j = 1, 2, 3, · · · ,N − 2. However, if
a larger time step is used and x̃ is outside the computational domain, the value of f (tn, x̃) in equation (8)
is unknown, and we have to find the solution in a slightly different way, depending on the corresponding
boundary conditions.

For the Neumann boundary condition at x = 𝛽 , if x̃>𝛽 , we note that using the central finite difference formula,
the derivative 𝜕f∕𝜕x can be approximated as

𝜕f
𝜕x

(tn, x = 𝛽) = 𝜑(tn) ≈
f (tn, x̃) − f (tn, x̃′)

x̃ − x̃′
, (9)

where x̃′ is the symmetric point of x̃ with respect to x = 𝛽 ; i.e.,

x̃′ = 2𝛽 − x̃. (10)

Equation (9) can be solved to give f (tn, x̃) as

f (tn, x̃) = f (tn, x̃′) + 𝜑(tn)(x̃ − x̃′). (11)

If Δt is small enough that x̃′ is within [𝛼, 𝛽), the value of f (tn, x̃) can be obtained from interpolation, and
equation (8) can again be used to find f (tn+1, xj). Note that one of the most common Neumann boundary
condition in the radiation belt modeling is of the type 𝜕f∕𝜕x = 0, in this case f (tn, x̃) = f (tn, x̃′) from
equation (11).

For the Dirichlet boundary condition at𝛼, if x̃− < 𝛼 and x̃+ ∈ [𝛼, 𝛽], Milstein and Tretyakov [2001] demonstrated
that one method of solving f (tn+1, xj) is

f (tn+1, xj) ≈ 𝜉−h(tn+1−𝜆) + 𝜉+f (tn, x̃+), (12)

where

𝜉− = 1

1 +
√
𝜆
, (13)

𝜉+ =
√
𝜆

1 +
√
𝜆
, (14)

tn+1−𝜆 = tn+1 − 𝜆Δt. (15)

Here 0 < 𝜆 < 1, and it is the root of

𝛼 = xj + b(tn+1, xj)𝜆Δt − 𝜎(tn+1, xj)
√
𝜆Δt. (16)
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Figure 1. Comparison of the cubic Hermite interpolation method with the MP-S limiter (blue) and the cubic interpolation
method (red) using the modified Akima data set (black squares) given in Table 1. The MP-S limiter is defined in
section 2.2.1.

In equation (12), 𝜉− and 𝜉+ are two weights and may be regarded as the probabilities of reaching 𝛼 and x̃+,
respectively. Note that 𝜉± = 1∕2 only in the case 𝜆 = 1. For other ways of handling Dirichlet bound-
ary conditions and more details about the layer method, we refer readers to the Milstein and Tretyakov
[2001, 2002].

In above equations, the values of f (tn, x̃−) and f (tn, x̃+) are obtained from interpolation. It is clear from
equation (8) or (12) that if the interpolation method can guarantee the positivity of f (tn, x̃±), the whole
layer method is strictly positivity preserving. The layer methods of Milstein and Tretyakov [2001, 2002] and
Milstein [2002] were constructed using linear interpolation, which is positivity preserving and was used by
Tao et al. [2009].

However, Tao et al. [2009] demonstrated that to obtain accurate results, the layer method with linear inter-
polation requires the use of a large number of grid points. The resulting LM-L code is far less efficient
than finite difference methods. Milstein and Tretyakov [2002, 2001] suggested the use of cubic interpolation
method; however, the cubic interpolation method might give oscillatory interpolant and result in negative
solutions of f , as having been reported by Tao et al. [2009]. This behavior of cubic interpolation is also demon-
strated in Figure 1. We use a monotone data set (Table 1) modified from the Akima data [Akima, 1970]. The
cubic interpolation leads to a nonmonotone and negative interpolant between x = 9 and 11. Therefore, a
better interpolation method to be used with the layer method should have a higher accuracy than linear
interpolation and be monotonicity preserving and positivity preserving.

2.2. The Monotonicity- and Positivity-Preserving Cubic Interpolation Method
In this section, we give a brief review of Fritsch and Carlson [1980], Carlson and Fritsch [1985], and Huynh [1993]
about monotonicity-preserving (MP) or positivity-preserving (PP) cubic interpolation methods. The MP or PP
cubic interpolation methods are based on the cubic Hermite interpolations. Let the mesh {xi}N−1

i=0 be a partition
of the interval [x0, xN−1] with x0 < x1 < · · · < xN−2 < xN−1. The corresponding data are {fi} with fi = f (xi),
where f is a piecewise smooth function. The local derivative of f at xi, ḟi can be approximated numerically
using {xi} and {fi}. The cubic Hermite interpolant is defined for x0 < x < xN−1 in terms of fi, fi+1, ḟi, ḟi+1 by

q(x) = c3(x − xi)3 + c2(x − xi)2 + c1(x − xi) + c0, (17)

where for xi ≤ x ≤ xi+1,

c0 = fi, c1 = ḟi, (18)

c2 =
(

3si+1∕2 − 2ḟi − ḟi+1

)
∕Δxi+1∕2, (19)

c3 =
(

ḟi + ḟi+1 − 2si+1∕2

)
∕(Δxi+1∕2)2. (20)

Table 1. Modified Akima Data

x 3 5 6 8 9 11 12 14 15

y 0.001 0.001 0.001 0.001 0.5 5 40 50 75
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Here Δxi+1∕2 = xi+1 − xi , and si+1∕2 = Δfi+1∕2∕Δxi+1∕2, with Δfi+1∕2 = fi+1 − fi , is the linear slope between xi

and xi+1. It is straightforward to verify that q(xi) = fi, q′(xi) = ḟi, q(xi+1) = fi+1, and q′(xi+1) = ḟi+1. Note that the
derivative {ḟi} is evaluated numerically, e.g., one can use the parabolic formula given below in equation (30).
The key idea of MP and PP interpolation methods is then to find in a constructive way how to limit the numer-
ically calculated ḟi to a certain interval so that the resulting interpolant has the desired properties, such as
being monotone or positive. The corresponding ways of modifying ḟi are called MP limiters or PP limiters.
The use of the limited ḟi in the cubic Hermite interpolant q(x) in equation (17) results in a MP or PP cubic
interpolation method.
2.2.1. A Simple MP Limiter
We first review a simple MP limiter from Fritsch and Carlson [1980] and Huynh [1993]. The purpose of a MP
limiter is to limit the numerically calculated ḟi so that the interpolant is monotone if the data are monotone.
The data are monotone at xi if (fi − fi−1)(fi+1 − fi) ≥ 0. An interpolant is monotone in [xi, xi+1] if it is monotone
for any x between xi and xi+1. Fritsch and Carlson [1980] and Huynh [1993] proved theoretically that if

ḟi, ḟi+1 ∈ I[0, 3si+1∕2], (21)

then the resulting interpolant q(x) given by equation (17) is monotone in [xi, xi+1]. In this paper, we adopt the
symbols used by Huynh [1993], because we find that they are easy to use when developing numerical codes.
In equation (21),

I[z0, z1, · · · , zk] = [min(z0, z1, · · · , zk),max(z0, z1, · · · , zk)] (22)

is the interval between minimum and maximum of z0, z1, · · · , zk . To obtain continuous ḟi for 0 < i < N − 1,
one replaces i by i − 1 in equation (21), which implies

ḟi ∈ I[0, 3si+1∕2] and ḟi ∈ I[0, 3si−1∕2]. (23)

These two conditions of ḟi can be combined to give

ḟi ∈ I[0, 3si], (24)

with
si = minmod(si−1∕2, si+1∕2). (25)

Here the minmod function is defined as

minmod(x, y) = median(x, y, 0), (26)

where the median of three numbers is the one between the other two. To preserve monotonicity of data, we
only need to bring the numerically estimated ḟi into the range defined by equation (24) or using the minmod
function defined in equation (26),

ḟi ← minmod(ḟi, 3si). (27)

We call this MP limiter the MP-S (S for Simple) limiter to differentiate it from a more advanced MP limiter
discussed below. Equation (27) means that if the numerically evaluated trial ḟi ∈ I[0, 3si], then we do not
modify it; otherwise, ḟi = 0 or 3si depending on the sign of ḟi and si . For example, if the data are monotone and
increasing, then si > 0. By equation (27), if the numerically evaluated trial ḟi < 0, then we let ḟi = 0; if the trial
ḟi > 3si, then we let ḟi = 3si; otherwise, we do not modify ḟi and directly use it in the cubic Hermite interpolant
equation (17).

The effect of the monotone cubic interpolation with the MP-S limiter is demonstrated in Figure 1 using the
modified Akima data shown in Table 1. The trial ḟi is estimated using the derivative at xi of a parabola pi(x)
determined using three points fi−1, fi , and fi+1; i.e.,

pi(x) = fi + si+1∕2(x − xi) + di(x − xi)(x − xi+1), (28)

with
di =

si+1∕2 − si−1∕2

xi+1 − xi−1
. (29)
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Figure 2. Comparison of the cubic Hermite interpolation with three different limiters: the MP-S limiter (black), the M3-A
limiter (blue), and the combined M3-A and PP limiters (red). The data set (green squares) is given in Table 2.

The derivative of pi(x) at xi is then simply

p′
i (xi) =

si+1∕2Δxi−1∕2 + si−1∕2Δxi+1∕2

Δxi−1∕2 + Δxi+1∕2
, (30)

the weighted average of si+1∕2 and si−1∕2. It is clear from equation (30) that p′
i (xi) ∈ I[si−1∕2, si+1∕2]. Note that

p′
i (xi) is a second-order approximation to the exact derivative f ′(xi). In case of uniform grid, Δxi−1∕2 = Δxi+1∕2,

equation (30) reduces to the familiar second-order central difference approximation of f ′(xi),

p′
i (xi) =

fi+1 − fi−1

xi+1 − xi−1
. (31)

After letting ḟi = p′
i (xi), we apply the MP-S limiter to ḟi and use the limited ḟi in the cubic Hermite interpolant

in equation (17); the curve is shown in blue in Figure 1. The monotone cubic interpolation method clearly
guarantees that the interpolant is monotone.
2.2.2. The M3 Limiter
While always guaranteeing that the interpolant is monotone, the MP-S limiter described above might clip the
interpolant if the data are not monotone, leading to loss of accuracy. For example, if xi is a local extremum,
si−1∕2si+1∕2 < 0; therefore, si = 0 from equation (25). The MP-S limiter given by equation (27) will force ḟi = 0.
This is demonstrated in Figure 2, using the data set given in Table 2. The MP-S limiter forces ḟi = 0 at x = ±0.33.
The accuracy of the interpolation is reduced and equals that of the linear interpolation between the
two points.

A way to increase accuracy is to relax the MP condition (21) near local extrema so that if the data are not
monotone, the interpolant is not necessarily monotone. Huynh [1993] developed a class of methods, called
M3 (monotone third order) methods. To introduce the M3 limiter, we first define pi+1∕2(x) by

pi+1∕2(x) = fi + si+1∕2(x − xi) + di+1∕2(x − xi)(x − xi+1), (32)

where di+1∕2 = minmod(di, di+1). Then the derivative of pi+1∕2(x) at xi is given by

p′
i+1∕2(xi) = si+1∕2 + di+1∕2(xi − xi+1). (33)

In other words,
p′

i+1∕2(xi) = median[si+1∕2, p′
i (xi), p′

i+1(xi)], (34)

Table 2. A Data Set With Local Minima

x −3.00 −2.33 −1.67 −1.00 −0.33 0.33 1.00 1.67 2.33 3.00

y 0.9499 0.9457 0.8878 0.5821 0.05516 0.05516 0.5821 0.8878 0.9457 0.9499
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where p′
i+1(xi) = si+1∕2 + di+1(xi − xi+1). Similarly, we can define pi−1∕2(x) through replacing i by i − 1 in

equation (32); the derivative of pi−1∕2(x) at xi is

p′
i−1∕2(xi) = si−1∕2 + di−1∕2(xi − xi−1), (35)

where di−1∕2 = minmod(di, di−1). The minmod of p′
i−1∕2(xi) and p′

i+1∕2(xi) gives ti; i.e.,

ti = minmod[p′
i−1∕2(xi), p′

i+1∕2(xi)]. (36)

It can be seen from the above description that the definition of ti requires five grid points from i − 2 to i + 2.
Therefore, ti is not defined for the four points near two boundaries (i = 0, 1 and i = N − 2,N − 1). The M3
interval [Huynh, 1993] is then defined as

ḟi ∈ I[0, ti,max] (37)

where
ti,max = sgn(ti)max

(
3|si|, 3

2
|ti|) , (38)

with sgn(ti) the sign of ti . To enforce that ḟi belongs to the M3 interval, equation (37), we use

ḟi ← minmod(ḟi, ti,max). (39)

This MP limiter is called the M3 limiter. For details about how the M3 limiter extends the MP S limiter, we refer
readers to Huynh [1993].

For points near boundaries, we cannot use the M3 limiter. For i = 1 or i = N − 2, we use the MP-S limiter,
equation (27), to ensure monotonicity, because the MP-S limiter only requires three points centered at xi .
The monotonicity of the interpolant between [x0, x1] and [xN−2, xN−1] is guaranteed by using ḟ0 ← minmod
(ḟ0, 3s1∕2) and ḟN−1 ← minmod(ḟN−1, 3sN−3∕2), respectively, from equation (21).

Because of the relaxation of the monotonicity condition near local extrema, however, the M3 interval in
equation (37) does not necessarily guarantee the positivity of f . If xi is a local minimum, it is possible for the
M3 limiter to generate negative values of f . This is illustrated in Figure 2, where the M3 limiter relaxed the
monotonicity condition at x = ±0.33 and results in negative f s between x = −0.33 and 0.33. In Figure 2, M3-A
refers to the M3 limiter with the trial ḟi evaluated by equation (43) below, with A for average. To guarantee the
positivity of f , we use a positivity-preserving limiter, described by Carlson and Fritsch [1985], together with the
M3 limiter.

2.2.3. The Combination of MP and PP Limiters
According to Carlson and Fritsch [1985], the interpolant will not change sign over [xi, xi+1], assuming that fis
are positive, if derivatives ḟi and ḟi+1 satisfy

ḟi ≥ −
3fi

xi+1 − xi
and ḟi+1 ≤

3fi+1

xi+1 − xi
. (40)

By replacing i by i + 1 in the above equation, we have

−
3fi

Δxi+1∕2
≤ ḟi ≤

3fi

Δxi−1∕2
. (41)

If this condition of ḟi is satisfied, then equation (17) can be guaranteed to give positive f s. One can prove that
if the data are monotone or near local maximum, then if ḟi is within the M3 interval, it automatically satisfies
the PP condition given by equation (41). This proof is given in Appendix A. Using equation (41), a PP limiter
can be conveniently defined as

ḟi ← median
(

ḟi,−
3fi

Δxi+1∕2
,

3fi

Δxi−1∕2

)
. (42)

Now we combine the M3 limiter and the PP limiter to achieve a MP and PP cubic interpolation method. This
involves four steps. First, we estimate a trial value for ḟi . This can be done using

ḟi =
p′

i−1∕2(xi) + p′
i+1∕2(xi)

2
, (43)
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for interior points [Huynh, 1993]. For i = 1 and i = N − 2, we use ḟi = p′
i (xi). For i = 0 and i = N − 1, we use

one-sided approximations for ḟi according to Huynh [1993]; i.e.,

ḟ0 = p′
1(x0) = s1∕2 + d1(x0 − x1), (44)

ḟN−1 = p′
N−2(xN−1) = sN−3∕2 + dN−2(xN−1 − xN−2). (45)

The resulting algorithm after applying the M3-limiter will called M3-A if equation (43) for interior points is
used. One can also use higher-order approximations of ḟi for interior points. For example, a fourth-order accu-
rate quartic formula for ḟi is given in equation (4.21) of Huynh [1993], resulting in an algorithm called M3-Q,
Q for quartic, after applying the M3-limiter. Second, we apply the M3 limiter, equation (39), to ḟi for inte-
rior points and handling ḟi for points near boundaries as described in the previous section. This will make
necessary modifications of the trial ḟi so that the resulting interpolant is monotonicity preserving. Third, the
PP limiter is applied to ḟi , so that the resulting interpolant is both monotonicity preserving and positivity
preserving. Note that because of the results in Appendix A the PP limiter will only modify ḟi at local min-
ima if necessary. Fourth, using the ḟi from the previous step in the cubic Hermite function, equation (17),
results in the desired MP and PP cubic interpolant. The combined use of the M3 limiter and the PP limiter
is demonstrated in Figure 2, which leads to a nonoscillatory and positive interpolant throughout the whole
data range.

The order of the accuracy of the interpolation depends on the exact algorithm used. The highest order of accu-
racy of the interpolant q(x) in equation (17) is fourth order, and it requires that the derivatives {ḟi} are exact or
third order. Generally, the order of accuracy of q(x) is one order higher than the order of accuracy of derivatives.
For example, the M3-A algorithm is uniformly third order accurate, because ḟi given in equation (43) is a
second-order approximation of f ′(xi). The M3-Q algorithm is fourth-order accurate if the data are monotone
and third-order accurate near local extrema [Huynh, 1993]. The order of accuracy of M3-A and M3-Q methods
is demonstrated in Appendix B.

In the remainder of the paper, we always apply the PP limiter together with the M3-A limiter to guarantee the
positivity of the phase space density in LM-MC. We use the M3-A interpolation method in this paper because it
is relatively simple compared with M3-Q and our test results suggest that it is accurate enough for our purpose.
The long-term accuracy of LM-MC is compared with that of LM-L used by Tao et al. [2009] in Appendix C for
a 1-D pitch angle diffusion equation. This comparison demonstrates that the LM-MC can solve the diffusion
equation accurately with a relatively small number of grid points, and therefore can be used for long-term
modeling of radiation belt dynamics.

3. Application to Bounce Resonance Diffusion by Magnetosonic Waves

In this section, we first validate a 2-D LM-MC code developed to study pitch angle and momentum diffu-
sion. Then we use the 2-D code to investigate the bounce resonance diffusion of relativistic electrons by
magnetosonic waves.

3.1. Validation of a 2-D LM-MC Code
The 2-D pitch angle and momentum diffusion equation is

𝜕f
𝜕t

= 1
Gp

𝜕

𝜕𝛼0
G

(
D𝛼0𝛼0

1
p
𝜕f
𝜕𝛼0

+ D𝛼0p
𝜕f
𝜕p

)
+ 1

G
𝜕

𝜕p
G

(
D𝛼0p

1
p
𝜕f
𝜕𝛼0

+ Dpp
𝜕f
𝜕p

)
, (46)

where𝛼0 is the equatorial pitch angle, p is the momentum, and G = p2T(𝛼0) sin(2𝛼0)with T ≡ 1.30−0.56 sin 𝛼0

the normalized bounce period. Here D𝛼0𝛼0
,D𝛼0p, and Dpp are bounce-averaged pitch angle, mixed, and

momentum diffusion coefficients [Albert, 2004]. The diffusion coefficients used in this section are calculated
using a chorus wave model at L = 4.5 [Horne et al., 2005]. Initial and boundary conditions (E in MeV) are

f (t = 0) = exp[−(E − 0.2)∕0.1](sin 𝛼0 − sin 𝛼0L)∕p2, (47)

f |𝛼0=𝛼0L
= 0, (48)
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Figure 3. Comparison between the solutions of a 2-D LM-MC code (solid lines) and the Albert and Young [2005] method
(dashed lines) for (top) E = 0.5 MeV and (bottom) 2.0 MeV at T = 0.1 day (blue) and T = 1 day (red). Black lines indicate
initial fluxes.

𝜕f
𝜕𝛼0

||||𝛼0=90°

= 0, (49)

f |E=Emax
= 0, (50)

f |E=Emin
= exp[−(Emin − 0.2)∕0.1](sin 𝛼0 − sin 𝛼0L)∕p2

min, (51)

where the loss cone pitch angle 𝛼0L = 5°, Emin = 0.2 MeV, Emax = 5 MeV, and pmin is the momentum
corresponding to Emin.

We validate the 2-D LM-MC code by comparing the LM-MC results with the Albert and Young [2005] solution.
The LM-MC solution uses 80 equidistantly spaced grid points in 𝛼0 and 80 equidistantly spaced grid points in
log(E). The comparison between LM-MC results and Albert and Young [2005] method solution for E = 0.5 MeV
and 2 MeV at T = 0.1 day and 1day is shown in Figure 3. The mean difference between the two results is
measured by

𝜀 = mean(| log(jAY) − log(jLM-MC)|), (52)

where j = p2f is flux and subscripts denote the corresponding method. We find that 𝜀 ≈ 0.06 for E = 0.5 MeV
at T = 1.0 day and 𝜀 ≈ 0.14 for E = 2.0 MeV at T = 1.0 day. This comparison demonstrates that the results
from the two different methods agree very well with each other, especially considering the slight difference
in boundary conditions [Albert and Young, 2005]. We conclude that our 2-D LM-MC code is capable of solving
the bounce-averaged pitch angle and momentum diffusion equation with cross diffusion.

We now briefly comment on the efficiency of LM-MC methods compared with finite difference methods and
LM-L. The number of computations used by layer methods in one time step is on the same order as that by
finite difference methods; both are of(N1N2), with N1 and N2 the number of grid points in dimensions 1 and 2,
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Figure 4. Inverse timescales in units of s−1 from bounce resonance diffusion coefficients calculated using the
magnetosonic wave model from Horne et al. [2007]. The last panel shows the sign of the cross-diffusion coefficients.

Figure 5. Same as Figure 4 but for the combined diffusion coefficients from bounce resonance with magnetosonic waves
and gyroresonance with hiss waves.
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Figure 6. Evolution of electron fluxes using a combined wave model of magnetosonic waves and hiss waves for (top)
E = 0.5 MeV and (bottom) E = 2.0 MeV at T = 0.1 day (blue) and 1 day (red). Dashed lines represent gyroresonant
interactions with both magnetosonic waves and hiss, while solid lines represent gyroresonance with hiss and bounce
resonance with magnetosonic waves. Black lines indicate initial fluxes.

respectively. Because of the extra steps involved in constraining ḟ , the computation time of LM-MC is longer
than finite difference methods if using the same numbers of grid points and time steps. For example, with a
CPU of 3.0 GHz, it takes the 2-D LM-MC code about 5 min to finish the calculation in this section, while the
computation time for a finite difference code we developed is about 1 min under the same settings. The main
disadvantage of finite difference methods is that they do not guarantee positivity of the solution and typi-
cally involves trying different settings of grid resolutions to obtain results free of negative values. For example,
Camporeale et al. [2013] demonstrated that when solving a 2-D problem with a fully implicit finite difference
method, negative phase space densities exist even when N1 = N2 = 201, although their absolute values are
small. For time explicit finite difference methods, using a smaller grid size also means a smaller time step,
therefore more computation time, because of the Courant-Friedrichs-Lewy condition. On the other hand, one
can choose any N1 and N2 with LM-MC and completely avoid nonphysical negative solutions. Therefore, the
total time used by finite difference methods to achieve positive solutions could be comparable to or even
longer than LM-MC, either from extra tries of different grid resolutions or from the use of a large number of
grid points. Compared with LM-L, which requires the use of a large number of grid points to obtain accurate
solutions of equation (46) [Tao et al., 2009], the LM-MC can significantly save computation time by using a
much smaller number of grid points. For example, LM-L would require N𝛼0

= 1400 and Np = 1500 for the prob-
lem in this section [Tao et al., 2009], and the resulting computation time is a few hours on the same computer.
Therefore, we conclude that LM-MC can be used for long-term modeling of radiation belt dynamics.

3.2. Bounce Resonance Diffusion by Magnetosonic Waves
We now use the 2-D LM-MC code to investigate the effect of bounce resonance diffusion of relativistic elec-
trons by magnetosonic waves. Because magnetosonic waves are confined to equatorial regions, the bounce
resonance diffusion coefficients derived by Roberts and Schulz [1968] cannot be used directly; they assumed
that waves cover the whole bounce trajectory of particles. Recently, Li et al. [2015] extended the work of
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Roberts and Schulz [1968] and derived bounce resonance diffusion coefficients for spatially confined waves
such as magnetosonic waves. Using a previously published magnetosonic wave model by Horne et al. [2007],
they concluded that bounce resonance diffusion is as important as gyroresonance diffusion (from Landau res-
onance). Note that for simplicity, instead of a spread in wave normal angle direction, Li et al. [2015] assumed
a single wave normal angle 𝜓 = 89∘. The calculated bounce resonance diffusion coefficients are shown in
Figure 4 assuming 𝜔pe∕|Ωe| = 3, where 𝜔pe and Ωe are the plasma frequency and the electron cyclotron
frequency at the equator, respectively.

Like gyroresonance diffusion coefficients, the bounce resonance diffusion coefficients of magnetosonic waves
are significant only over a limited pitch angle range for a given energy using the model of Horne et al. [2007].
Therefore, as in Tao et al. [2009], we combine bounce resonance diffusion coefficients of magnetosonic waves
outside the plasmasphere with gyroresonance diffusion coefficients by hiss waves inside plasmaspheric
plumes from Li et al. [2007]. The drift averaged diffusion coefficients from bounce resonance with magne-
tosonic waves (60%) and gyroresonance with hiss waves (15%) are shown in Figure 5. We adopt the parameter
𝜖 ≡ |D𝛼0p|∕√D𝛼0𝛼0

Dpp from Albert [2009] to indicate the relative importance of cross-diffusion terms. The

mean value of 𝜖 is 0.6, and the maximum value of 𝜖 is about 1.0; these values suggest that cross-diffusion
terms are important for this set of diffusion coefficients. We use the same initial and boundary conditions as
in section 3.1. The resulting evolution of electron fluxes for E = 0.5 MeV and E = 2.0 MeV at T = 0.1 and
1.0 day is shown in Figure 6 as solid lines together with initial fluxes at these two energies. Bounce reso-
nance with magnetosonic waves can increase the flux of 2.0 MeV electrons by a few orders of magnitudes
within a day, and the flux peaks around 45∘, producing a butterfly distribution. Also shown by dashed
lines in Figure 6 are the corresponding fluxes resulting from gyroresonance with magnetosonic waves and
hiss waves calculated by Tao et al. [2009]. We see that bounce resonance with magnetosonic waves is as
important as gyroresonance, confirming the conclusion of Li et al. [2015]. Note that even though there is a
difference in wave normal angle distributions used in calculating bounce resonance and gyroresonance dif-
fusion coefficients of magnetosonic waves, adopting a spread in wave normal angle in bounce resonance
diffusion calculation should not change our conclusion qualitatively. Our results suggest that bounce reso-
nance should be incorporated into modeling when gyroresonance with magnetosonic waves is considered to
be important.

4. Summary

In this work, we introduced the use of monotonicity- and positivity-preserving cubic interpolation methods in
the Milstein-Tretyakov layer method. The resulting method, LM-MC, is positivity preserving and can be used
to solve the radiation belt diffusion equation with a much smaller number of grid points compared with the
layer method with linear interpolation; correspondingly, a significant amount of computation time can be
saved. The LM-MC can therefore be used to model long-term radiation belt dynamics.

We then developed a 2-D LM-MC code and used it to investigate the bounce resonance diffusion of radiation
belt electrons by magnetosonic waves. Using a previously published magnetosonic wave model [Horne et al.,
2007] combined with a plasmaspheric plume hiss wave model [Li et al., 2007], our simulation demonstrated
that bounce resonance with magnetosonic waves is as important as gyroresonance, with both leading to
significant acceleration of MeV electrons for the wave model used [Li et al., 2015]. Our results suggest that
bounce resonance with magnetosonic waves should be taken into consideration when gyroresonance with
magnetosonic waves is considered to be important.

Appendix A: The Relationship Between the PP Limiter and the M3 Limiter

In this section, we prove that if ḟi is within the M3 interval, equation (37), then ḟi automatically satisfies the PP
condition, equation (41), if data are monotone at xi or if xi is a local maximum.

First, assume that the data are monotone and increasing; i.e., fi−1 < fi < fi+1. In this case, si−1∕2 > 0 and
si+1∕2 > 0. Assuming that si+1∕2 > si−1∕2, the M3 interval, ḟi ∈ I[0, 3si], becomes 0 < ḟi < 3si−1∕2. Note that
equation (41) can be written as

−
3fi

Δxi+1∕2
≤ ḟi ≤ 3si−1∕2 +

3fi−1

Δxi−1∕2
. (A1)
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Because all fis are positive, 3fi−1∕Δxi−1∕2 > 0 and 3fi∕Δxi+1∕2 > 0; therefore,

−
3fi

Δxi+1∕2
< 0 < ḟi < 3si−1∕2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

the M3 interval

< 3si−1∕2 + 3fi−1∕Δxi−1∕2. (A2)

Hence, the PP condition is automatically satisfied. If, on the other hand, si+1∕2 < si−1∕2, the M3 limiter leads to
0 < ḟi < 3si+1∕2 < 3si−1∕2, and the above proof is still correct. The case where data at xi are monotone and
decreasing can be proved similarly.

Second, if xi is a local maximum, fi−1 < fi and fi > fi+1, si−1∕2 > 0 and si+1∕2 < 0. The M3 interval, equation (37),
becomes

ḟi ∈ I
[

0,
3
2

ti

]
. (A3)

Three cases can be discussed. First, If ti = 0, then ḟi = 0, and the PP condition (41) is satisfied. Second, If ti > 0,
from the definition of ti , equation (36), p′

i+1∕2(xi)> 0 and p′
i−1∕2(xi)> 0. Note that from equation (34),

p′
i+1∕2(xi) ∈ I

[
si+1∕2, p′

i (xi)
]
; (A4)

similarly,
p′

i−1∕2(xi) ∈ I
[

si−1∕2, p′
i (xi)

]
. (A5)

Because p′
i (xi) ∈ I[si−1∕2, si+1∕2] from equation (30), equations (A4) and (A5) imply that

p′
i−1∕2 ∈ I[si−1∕2, si+1∕2] and p′

i+1∕2 ∈ I[si−1∕2, si+1∕2]. (A6)

Because p′
i±1∕2 > 0, si−1∕2 > 0 and si+1∕2 < 0,

0 < p′
i−1∕2 ≤ si−1∕2 and 0 < p′

i+1∕2 ≤ si−1∕2. (A7)

From the definition of ti , 0 < ti ≤ si−1∕2; therefore,

−
3fi

Δxi+1∕2
< 0 ≤ ḟi ≤

3
2

ti

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
the M3 interval

≤
3
2

si−1∕2 < 3si−1∕2 < 3si−1∕2 +
3fi−1

Δxi−1∕2
. (A8)

Correspondingly, the PP condition is automatically satisfied for ḟi . Third, if ti < 0, similar to second case, we
have si+1∕2 ≤ ti < 0. The M3 condition becomes

−
3fi

Δxi+1∕2
= 3si+1∕2 −

3fi+1

Δxi+1∕2
≤ 3si+1∕2 <

3
2

si+1∕2 ≤
3
2

ti ≤ ḟi ≤ 0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
the M3 interval

<
3fi

Δxi−1∕2
. (A9)

Therefore, the PP condition is automatically satisfied for ḟi .

Appendix B: The Order of Accuracy of Different Interpolation Algorithms

In this section, we show the order of accuracy of three different interpolation methods using a fourth-order
polynomial

y(x) = 5x4 + 4x3 + 3x2 + 2x + 1; x ∈ [0, 4]. (B1)

We divide the x domain into N − 1 bins and consider N = 10, 20, 40, 80, 160, 320, and 640. For each N, we
randomly select 500 points located between x = 0 and 4. Approximate values of y, denoted by ỹ, are obtained
from three interpolation methods: linear, the M3-A method, and the M3-Q method. Both M3-A and M3-Q
methods have the PP limiter applied, meaning that positivity of the data is preserved.
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Figure B1. The order of accuracy test for three different interpolation methods: linear interpolation (black), M3-A (blue),
and M3-Q (red). Black squares are interpolation errors at different grid sizes.

For a given N, the error of the interpolation is estimated using

error =

(
500∑
i=1

|ỹi − yi|
)/

500. (B2)

We then plot 7 calculated errors as a function ofΔx, the grid size, and perform a least squares fitting to obtain

log(error) ∝ n log(Δx). (B3)

Hence, n is the order of accuracy of the corresponding interpolation method.

The results for linear, M3-A, and M3-Q methods are shown in Figure B1. We see that the order of accuracy
of linear interpolation is about 2, just as expected. For M3-A, n ≈ 3.2, and for M3-Q, n ≈ 3.77. These results
are consistent with a theoretical estimate of the order of accuracy of M3-A and M3-Q by Huynh [1993]. Other
types of functions we have tested but not shown here are x−7, ex , e−x2

, and sin(x); conclusions are similar.

Appendix C: The Comparison of Efficiency and Accuracy of the LM-MC and LM-L

To compare the efficiency and accuracy of LM-MC with LM-L used by Tao et al. [2009], we solve a 1-D pitch
angle diffusion equation for E = 0.4 MeV electrons

𝜕f
𝜕t

= 1
G

𝜕

𝜕𝛼0

(GD𝛼0𝛼0

p2

𝜕f
𝜕𝛼0

)
. (C1)

We use an artificial pitch angle diffusion coefficient here for simplicity

D𝛼0𝛼0

p2
= 1 +

p
mc

sin 𝛼0. (C2)

Initial and boundary conditions in 𝛼0 are the same as in equations (47)–(48).

We solve the pitch angle diffusion equation for f at a given time t = T using three different methods:
NDSolve from the commercial software Mathematica [Wolfram Research, 2014], LM-MC, and LM-L. The func-
tion NDSolve solves the diffusion equation using an adaptive solver so that the total error is within a certain
range; thus, we do not need to specify the time step and the number of grid points for it. We use the solution
from NDSolve as a reference to compare the accuracy of the LM-MC and the LM-L. In both layer methods, we
use a time step Δt = 10−3Δ𝛼0, where Δ𝛼0 is the grid size of 𝛼0. The final time T in all simulations is chosen
to correspond to 10000 time steps when we use 100 grid cells; i.e., T = 1.7𝜋∕36. For LM-MC, we use 50 grid
cells, while for the LM-L we use a series of number of grid cells (N𝛼0

): 50, 100, 200, 400, 800, 1600, and 3200.
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Figure C1. Comparison between solutions at a given time of a 1-D pitch angle diffusion equation using LM-MC
(red dots), LM-L (dashed lines), and NDSolve (the solid black line). For LM-L, solutions with different numbers of
grid cells (N𝛼0

) are shown to demonstrate the convergence of the solution.

The solutions from three different methods at t = T are shown in FC1Figure C1. Note that for the LM-L, we only
show results with N𝛼0

= 50, 200, 800, and 3200 for simplicity and clarity of the figure. We use the 𝜀 parameter
defined by

𝜀 = mean(| log(fNDSolve) − log(fLM)|), (C3)

to measure the error of LM-MC and LM-L. Here the subscript “LM” indicates either LM-MC or LM-L. We find
that 𝜀 ≈ 0.0007 for LM-MC with N𝛼0

= 50, indicating almost perfect agreement. On the other hand, the LM-L
solution is significantly smaller than the other two solutions when N𝛼0

= 50 and the corresponding 𝜀 ≈ 0.8,
indicating that the use of the inaccurate linear interpolation has caused excessive numerical diffusion in this
case. To obtain accurate solutions, we have to increase the number of grid cells used. With Δt = 10−3Δ𝛼0, this
means that we will also use a smaller time step when Δ𝛼0 is decreased. For this case, the solution from the
LM-L agrees with the NDSolve solution only when N𝛼0

= 3200 (𝜀 = 0.01). This comparison demonstrates that
compared with LM-L the LM-MC can solve the diffusion equation accurately with a much smaller number of
grid points and preserves the positivity of the solution; therefore, the LM-MC can save a significant amount of
computation time, and it can be used for long-term simulation of the radiation belt dynamics.
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