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Abstract

The synthesis and characterization of luminogenic, bioorthogonal iridium probes is described. 

These probes exhibit long fluorescent lifetimes amenable to time-resolved applications. A simple, 

modular synthesis via 5-azidophenanthroline allows structural variation and allows optimization of 

cell labeling.

Luminogenic bioorthogonal probes have emerged as essential tools to visualize specific 

biomolecules in complex and confined environments, by virtue of “turn-on” emission and 

exquisite selectivity toward unique functional groups. Transition-metal complexes as 

labeling dyes have potential benefits such as red to near-IR emission, long 

photoluminescence lifetime, low photobleaching, stability in oxidative environments, and 

synthetic ease. Although they complement organic fluorogenic probes,2-5 transition-metal 

luminogenic probes remain relatively little-studied. In this paper, we describe the first 

transition-metal complex-based luminogenic azide probe appropriate for biological imaging: 

an iridium emitter with red photoluminescence, long emission lifetimes, efficient “turn-on” 

photoluminescence, and cell penetration and labeling capabilities.

Much of the development of luminogenic transition-metal complexes has focused on sensor 

development,6-9 while bioorthogonal probe development remains less studied.10 Yet metal-

based emitters have tunable emission and are prepared by simple synthesis. Furthermore, 

transition-metal complexes can have superior performance in two-photon imaging.11,12 

Octahedral metal complexes are 3D objects, less prone to aggregation, membrane 

association, and DNA interactions common with planar organic fluorophores. Indeed, 

appending polyarene units to octahedral complexes is a common method to induce DNA 

interactions in otherwise inert complexes.13,14 Perhaps most significantly, the intrinsic triplet 

excited–state of transition–metal complexes results in long photoluminescence lifetime (10 

ns to 100 μs or longer). Together with “time-gated” detection methods, photoluminescent 

probes would allow independent analysis of multiple dyes with similar emission profiles 

and/or images with significantly lower background noise. Recently, a study described turn-

on imaging with rhenium compounds by means of [4 + 2] cycloaddition reaction.15 A recent 
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report of DNA staining with dinuclear ruthenium complexes confirms the potential of time-

resolved imaging.16 Likewise, pH-responsive iridium complexes are effective for time-

resolved imaging of the cytoplasm.17

Our probe design was guided by our work7 indicating that the photoluminescence quantum 

efficiency of an octahedral phenanthroline–iridium complex is affected by substituents at the 

phenanthroline 5-position, which seem capable of modulating the contribution of non-

radiative pathways to the relaxation of a metal-to-ligand charge transfer (MLCT) excited 

state.19 Similar octahedral iridium complexes are well-suited to cellular and sub-cellular 

imaging.20-23 We hypothesized that an azide might serve as a similarly non-radiative 

quencher for Ir(ppy)2(phen) (ppy = 2-phenylpyridine and phen = 1,10-phenanthroline). 

Although the efficacy of azide-based quenching can be unpredictable even in relatively well-

studied organic fluorophores,24 we designed azide-substituted complexes 5. Three azide 

complexes 5a-5c were isolated (78-93%) by reaction of amine precursors 4 with t-butyl 

nitrite and trimethylsilyl azide25 after precipitation from ether (Fig. 1a).

A more convergent and efficient preparation of the desired complexes (5) was also 

developed from 5-azidophenanthroline (3), prepared for the first time here by epoxide ring-

opening and subsequent elimination1 of an epoxide precursor 1 (all attempts at diazotization 

of 5-aminophenanthroline were unsuccessful). In this way, 5-azidophenanthroline (3) was 

purified in high yield, and complexation with [Ir(ppy)2(MeCN)2][PF6] afforded 5a (74%). 

The preparation of complex 5 from azidophenanthroline 3 is a more convergent route that 

facilitates variation on the 2-phenylpyridine ligand. With an eye toward investigating the 

effects of different substituents, we synthesized complexes 5b, 5c, 5d, incorporating water-

solubilizing and anionic groups.

Consistent with photoluminescence “turn-on” behavior, the azide complexes show very 

weak photoluminescence, while the triazole products (6) of a cycloaddition reaction with 

phenylacetylene show bright emission. Fig. 1b shows the emission spectra of the 

carboxyazide complex 5b (red line) and the carboxytriazole complex 6b (blue line). The 

photophysical properties of these complexes are summarized in Table 1. Both parent and 

carboxylate-functionalized complexes show significant enhanced photoluminescence upon 

the triazole ring formation (13× for 6a, 19× for 6b, relative to the azide complexes). 

Gratifyingly, the amine complexes 4a and 4b also show minimal luminescence. As expected, 

the triazole complex 6a has significant emission in the region of relative tissue transparency 

above 650 nm (emission maximum: 637 nm).27,28 Photoluminescence lifetimes of the 

triazole complexes (~60 ns) are significantly longer than that of typical organic fluorophores 

(<5 ns). The triazole 6b exhibited useful quantum efficiency in aqueous solution (4.5%), in 

contrast to lower efficiencies often observed with transition-metal emitters due to a large 

non-radiative rate constant. Moreover, the lifetime and brightness are greatly increased in a 

non-solution application; the lifetime of a carboxytriazole complex immobilized on PVDF 

membrane (vide infra) is ~1 μs, rendering these complexes useful for surface imaging.

The kinetics of azide-alkyne cycloadditions were straightforward and consistent with an 

electron-deficient azide. We first tested copper-catalyzed reactions with a triazole ligand 

using a microplate reader (Fig. 2a).26 Complete “turn-on” of the photoluminescence was 
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observed within 20 min (Fig. 2a, red rectangles), while no reaction occurred in the absence 

of copper catalyst (blue triangles). Similar trends were observed for the other azide 

complexes 5a-5c (ESI). A recent report suggests that the kinetics of metal-free cycloaddition 

reactions are governed by electronics matching of the two reactants to favor normal-demand 

or inverse-demand cycloaddition pathways.29 To further investigate reactivity of the azido Ir 

complex, we monitored the photoluminescence enhancement of reaction of 5d with an 

electron-rich cycloalkyne (BCN, 8a) and electron-poor dibenzocyclooctyne (DBCO, 9) (Fig. 

2b, c). Although both of reactions shows increase of photoluminescence, the reaction of 5d 
with 8a proceeded considerably faster than 9; Assuming a pseudo-first-order reaction, the 

apparent half-life of the reaction of 8a was much shorter than that of 9 (19 min vs 200 min). 

These results identify possible optimal alkyne partners for labeling applications, and imply 

that the complexes act as electron-deficient azides in cycloaddition reactions.

Having confirmed the luminogenic properties of the iridium complexes, we examined their 

suitability for protein labeling. Alkyne-tagged BSA30 was treated with the iridium-azide 

complex 5b in the presence of CuSO4, sodium ascorbate, and THPTA. After SDS-PAGE and 

membrane transfer, a strong photoluminescence band was observed only in the presence of a 

copper (II) salt and alkyne tag, consistent with selective tagging (Fig. 3b).

The long photoluminescence lifetime of the Ir complexes could be used to discriminate 

among emissive dyes and remove background emission.31 We analyzed mixtures of two 

dye-labeled proteins, the BSA-Ir conjugate and maltose binding protein labeled with 

rhodamine (MBP-TAMRA), which has an emission profile similar to BSA-Ir. A gel blot 

analysis of the mixture revealed two photoluminescent bands with similar steady-state 

intensities (Fig. 3c and ESI). However, the emission lifetimes were markedly different (~1 μs 

vs <100 ns, Fig. 4a). Following concepts we outlined previously,31 a 1000–1500-ns time 

window was chosen to minimize background MBP-TAMRA. Fig. 4b compares the emission 

intensity of the proteins under steady-state (left) and time-resolved (right) analysis. Time-

gating and the unique photophysical properties of the iridium complex allow a 20-fold 

diminution in signal from the model background TAMRA signal. Interestingly, time-gating 

methods also eliminated a significant background emission from the PVDF membrane 

(ESI).

Finally, luminogenic iridium azides proved capable cellular imaging agents. U2OS cells 

were pre-treated with reactive alkyne 8b, washed, and fixed. Attempted imaging with 

complex 5a was disappointing, as photoluminescence was observed in negative controls 

(Fig. 5a). Accumulation and membrane association of hydrophobic, cationic dyes is well 

known, and thus we had incorporated carboxylate or sulfate groups (5b and 5d) to alter the 

charge. The anionic sulfate complex 5d succeeded in minimizing background staining (Fig. 

5a). The observation of background non-covalent staining with 5a and 5b could be due to 

background photoluminescence of either the unreacted azide or (more probably) the reduced 

aniline compound, possibly amplified by solvochromatic behavior of hydrophilic 

dyes.30,32,33 Through chemical manipulation of the physical properties of the azide 

complexes, we successfully imaged alkyne-modified biopolymers while preventing 

background photoluminescence.
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Two-photon excitation is a powerful imaging tool, and iridium complex 5d exhibited robust 

two-photon imaging. Motivated in part by the large two-photon cross-section of similar 

octahedral metal complexes,34 we irradiated alkyne-modified cells with a 860-nm laser and 

saw clean cell images with minimal background in the absence of alkyne (Fig. 5b). Similar 

to results from one-photon excitation, the best images with minimal background were 

obtained with anionic complex 5d. Gratifyingly and consistent with the primary motivation 

for two-photon excitation in general, our initial studies indicate improved signal-to-noise 

with 860-nm excitation.

In summary, the facile synthesis of luminogenic azido iridium complexes enables their use 

for biomolecule labeling and imaging. These iridium complexes have large Stokes shifts, 

exhibit photoluminescence “turn-on” behaviour upon triazole formation, have long 

photoluminescence lifetimes, and are amenable to two-photon imaging. The use of time-

gating removes unwanted signal from spurious emitters. The simple, modular synthesis 

allowed access to an anionic derivative that prevents background emission. Since 

phenanthroline is a common ligand motif for photoactive transition-metal complexes (e.g. 

Ru,35 Re,36 Pt37), the facile synthesis of 5-azidophenanthroline described here could help 

expand the portfolio of functionalized photoactive complexes.
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Fig. 1. 
a) Synthesis of compounds. i) NaN3; then Ac2O.1 ii) DBU, 83%. iii) [Ir(ppy)2(MeCN)2]

[PF6], 74%. iv) tBuONO and TMS-N3, 88% (5a), 78% (5b), 93% (5c). v) phenylacetylene, 

CuI, 42% (6a), 74% (6b). (vi) SO3·NMe3, 44%. b) Emission spectra of 5b (blue) and 6b 
(red). c) Solution of 5a (left) and 6a (right) under UV lamp.
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Fig. 2. 
Kinetics complex 5d cycloadditon, assessed by micro plate reader. Emission measured at 

600 nm. a) reaction with pentynoic acid in the presence or absence of CuSO4, sodium 

ascorbate, and a triazole ligand THPTA.26 b) Cu-free reaction with bicyclo[6.1.0]non-4-yne 

(BCN) derivative 8a and dibenzocyclooctyne (DBCO) derivative 9. c) Structure of alkynes 

used.
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Fig. 3. 
a) Labeling alkyne-tagged BSA with the carboxy complex 5b in PBS buffer/DMSO (95:5). 

b) Analysis of reactions by photoluminescence imaging and total protein stain. c) 

Luminescence imaging of a mixture of BSA-Ir (alkyne-tagged BSA reacted with Ir complex 

5b) and MBP-TAMRA (fusion protein of Yes-SH3 and maltose binding protein (MBP) 

modified with TAMRA-NHS ester).
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Fig. 4. 
a) Photoluminescence time decay for the two bands in Fig. 3c on the PVDF membrane. 

Excitation with a picosecond 370-nm laser diode and emission collected at 570 nm. b) 

Comparison of emission intensity using steady-state (left) and time-resolved (1000-1500 ns, 

right) spectroscopy.
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Fig. 5. 
Labeling U2OS cells after treatment with BCN NHS-carbonate 9b. a) Single-photon 

excitation luminescence image after treatment with complexes 5a, 5b, or 5d. The emission 

observed in the absence of BCN varies among three dyes while is comparable in the 

presence of BCN. b) Two-photon excitation luminescence image of the cells after treatment 

with azide complexes 5a, 5b, and 5d. (Scale bar: 100 μm).
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Table 1

Photoluminescence properties of Ir complexes.

complex λem
a

(nm)
εa, b

(M−1cm−1)
Φa, c

(%)
τa,d

(ns)
brightness

e turn-on

ratio
f

amine 4a 601 8100 0.13 366 10.5 1.1

azide 5a 632 7600 0.13 69 9.5 –

triazole 6a 637 8000 1.50 62 119.0 12.5

amine 4b 591 9400 0.15 719 14.2 0.80

azide 5b 623 9400 0.18 104 17.0 –

triazole 6b 590 7200 4.48 104 322.6 19.0

BSA-Ir
g 571 – – 1151 – –

a
measured in PBS/MeOH (4:1) for 4a-6a and in PBS/MeOH (95:5) for 4b-6b.

b
extinction coefficient at 370 nm.

c
quantum yields relative to [Ru(bpy)3]Cl2 reference (Φ = 4.0%) in air-saturated aq soln.18

d
photoluminescence lifetime.

e
brightness = ε × Φ.

f
Relative brightness of triazole/azide.

g
carboxylate complex bound to bovine serum albumin on PVDF membrane.
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