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The combination of Rashba spin-orbit coupling and potential disorder induces a random current operator
for the edge states of a 2D topological insulator. We prove that charge transport through such an edge is
ballistic at any temperature, with or without Luttinger liquid interactions. The solution exploits a mapping
to a spin 1/2 in a time-dependent field that preserves the projection along one randomly undulating
component (integrable dynamics). Our result is exact and rules out random Rashba backscattering as a
source of temperature-dependent transport, absent integrability-breaking terms.
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The edge states of a quantum spin Hall (QSH) insulator
realize a time-reversal symmetric helical Luttinger liquid
(HLL): Two counterpropagating modes possess opposite
spins and hence form a Kramers doublet [ 1-7]. Owing to the
nontrivial bulk Z, topology, the HLL provides an alternative
realization for a quantum wire with strong spin-orbit cou-
pling and an odd number of channels [8], distinct from (e.g.)
carbon nanotubes [9-14]. In an ideal QSH insulator, the
S, component of the electron spin is conserved. Elastic
backscattering of HLL edge carriers off of impurities is
prohibited by the combination of spin U(1) and time-reversal
symmetries; only forward-scattering potential disorder is
allowed. The combination of pure potential disorder and
Luttinger liquid interactions bosonizes [15,16] to a trivial free
theory, leading to the prediction that edge electrons exhibit
ballistic transport at any temperature [5]. These conclusions
obtain in a fixed realization of the disorder, a robust version
of topological protection that also applies to the surface states
of 3D topological superconductors [17-19].

Axial spin symmetry in topological insulators is, however,
not typically robust [1,2,20]. Rashba spin-orbit coupling
(RSOC) arises whenever inversion symmetry is broken, as in
HgTe/CdTe [21] and InAs/GaSb [22,23] heterostructures.
The helical edge states then exhibit a twisted spin texture
[20,24]. Neglecting the gapped bulk, electron annihilation
operators at the edge can be expanded as

cp(x) = e*r*R(x) — ie~ 9, L(x),

c)(x) = e *L(x) — if*e™* 0, R(x), (1)
where R(x) and L(x) destroy right- and left-moving edge
mode electrons near the Fermi points k. The parameter
encodes the strength of the RSOC. In the model of

Refs. [20,24]¢ = 2kg/ k3, where k, sets the scale for rotation
of the spin axis. In Eq. (1), we choose the quantization axis
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to coincide with the Kramers pair at k = +k. To lowest
order in ¢, the electron density operator is given by

p= c?cT + czci =R'R+L'L
—{ile ¥ ~[RTO.L — (O,R")L] + H.c.}, (2)

where H.c. denotes the Hermitian conjugate. In a spinless
Luttinger liquid, the time reversal operation 7 exchanges
R<L (T? = +1). The term on the second line of Eq. (2) is
odd under this, and cannot contribute to p in the spinless
case. This term is even under time reversal in the HLL,
which sends R - L and L — —R (7% = -1).

Two key attributes of HLLs with RSOC follow from
Eq. (2). First, scalar potential disorder that couples to p(x)
generically induces a random backscattering component to
the Dirac current operator, in the low-energy effective field
theory of the HLL edge. Second, the screened Coulomb
interaction p?(x) induces the usual Luttinger liquid inter-
action, as well as a one-particle umklapp interaction term.
This interaction is irrelevant in the RG sense, due to an
extra derivative.

A recent experiment [25] has raised concerns that trivial
edge states can masquerade as HLLs, while previous
experiments [21-23,26] have not shown the anticipated
ballistic transport at the lowest temperatures (7°) for
sufficiently long edges. A crucial theoretical task is to
identify and understand mechanisms that might weaken
topological protection and suppress the conductance at
finite and zero T [3,20,27-31]. Although irrelevant, the
one-particle umklapp interaction can be the dominant
source of inelastic backscattering for kz7 much less than
the bulk gap in an isolated HLL, leading to 7T-dependent
corrections to the edge conductance [20,27-29]. Phonon
scattering [32], Kondo impurities [33-36], or charge
puddles [37,38] can also give T-dependent corrections to
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transport. In this Letter we ignore these known mechanisms
and focus upon the random Dirac current operator in a
disordered HLL with RSOC.

Quenched disorder that couples to the backscattering
kinetic operator on the second line of Eq. (2) has been
termed “random RSOC” in previous studies [30,31].
Unlike backscattering (random mass) disorder in a spinless
Luttinger liquid, short-range correlated random RSOC is
irrelevant in the RG sense for an edge Luttinger parameter
K > 1/2 [31]. Both the random RSOC and one-particle
umklapp interaction can be simultaneously irrelevant, and
map to similar operators in bosonization [28,30,39]. This
suggests that both can be treated with perturbation theory,
using bosonization to incorporate Luttinger liquid effects.
Within this framework, random RSOC is predicted to give a
T-dependent correction to transport that vanishes at 7 = 0
for K > 1/2 [31]. Moreover, it has been argued that
for K < 1/2 the random RSOC can induce Anderson
localization [30]. We show here that these conclusions
are incorrect and miss important physics.

In this Letter we prove that charge transport is perfectly
ballistic with Landauer conductance G = e?/h per edge,
for a HLL with random RSOC at T > 0, with or without
Luttinger interactions. We first solve the noninteracting
problem exactly by transfer matrix, which is unitary up to
a certain factor. This unitary matrix is equivalent to the
evolution operator of a spin-1/2 magnetic moment in a
random, two-component time-dependent magnetic field.
The dynamics are integrable, since the evolution preserves
the spin projection along one randomly undulating com-
ponent of the field [40], and this translates into the absence
of backscattering [2] for an edge connected to ideal leads.
With Luttinger interactions, we map the problem onto
one with a homogeneous (inhomogeneous) current operator
(density-density interaction). The transformed theory is
equivalent to a free Luttinger liquid, but with inhomogeneous
Luttinger and charge velocity parameters. We corroborate
these results with a numerical treatment of the edge wave
functions and level statistics. Finally, we compare to a
disordered, particle-hole symmetric spinless quantum wire
[8], which also evades Anderson localization in 1D.

Model with random RSOC.—In terms of the two-
component Dirac spinor W(x)=[R(x) L(x)]", the
Hamiltonian of a noninteracting edge incorporating random
RSOC [28,30-32,41-43] can be written as

Hy = / xR (x), (3a)
h = 300,

In Eq. (3b) the electric current operator reads

Jj(x) =1(x) -6, 4)

- %ax}m + V(). (3b)

where 6 = (6',6%,6°) are the Pauli matrices and
v(x) = [&1(x), & (x),vp(x)] encodes the random RSOC

backscattering strengths &, ,(x) and the (possibly inhomo-
geneous) Fermi velocity Vi (x); V(x) denotes the forward-
scattering scalar potential. All scattering strengths are real
functions. Equation (3) is invariant under time reversal 7,
defined by ¥(x) — iV (x) and i — —i. The term in Eq. (3b)
involving 0, j(x) is required by Hermiticity [cf. Eq. (2)].

Transfer-matrix solution.—The single-particle
Schrodinger equation takes the form

hy (x) = ey (x), (5)

where y(x) is the two-component wave function with
eigenenergy . We define the current norm ||j'(x) | and the
normalized current operator J(x) as

1)l = J(x) = J@)/ 15N, (6)

where ||j(x)|| is the local random speed. In terms of the

@(x) = \/IIj(*)llw(x), the

Schrodinger equation transforms to
(=i, )g(x) = Tl (x)p(x). (7)

where H, (x) is composed of two components,

= 0,(x) + O(x), (8a)

()l

rescaled wave function

, C:)(x):%jaxj(x). (8b)

O, (x), O(x), and H,(x) are all Hermitian operators.
The transfer-matrix solution for the single-particle wave
functions is

Vealx) = [/ 1T Te(v.—o0)la), (99)

where [a=1)=(1 0)" and [a=2)=(0 1) label
the degenerate Kramers pair, and the unitary transfer matrix
generated by the Hermitian operator (8) reads

T.(x.x')=Pexp [i Lx dy?flg(y)} (9b)

Here “P” denotes path ordering. The normalization con-
stant of the wave function (9a) is fixed in order to recover
the RSOC-free physics, e.g., the density profile given by
the U(l) axial anomaly in (14 1) dimensions [see
Eq. (12)]. Using the Heisenberg equation of motion for
the transfer matrix (—id,)T.(x,x') = H,(x)T.(x,x), one
can prove the nontrivial relation

I, (r o) = T.(x. 2)I (), (10)

which implies the integrability of the transfer matrix, as
discussed below.
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From the solution (9) we obtain the following conclu-
sions: (i) The single-particle wave functions are extended
and uniformly inhomogeneous (not rarely peaked or multi-
fractal), with a probability density determined by the local
random speed [see also Fig. 2(a)],

Weal) = wla@Wealx) = 17 (11)

(i) The density profile is defined via n(x)=

lim,_o >, [ def (e)ylalx = (1/2)lWealx + (n/2)], where
f(e) =1/(e’T 4+ 1) is the Fermi-Dirac distribution. We
recover the U(1) axial anomaly in (1 + 1) dimensions
[15,16] renormalized by the local speed,

n(x) = =V(x)/[zlj(x)Il]. (12)

The absence of additional terms due to the random
l7(x)]] suggests that density-density interactions will
not induce quantum (Altshuler-Aronov) corrections to
transport [19,44], as we confirm below. (iii) The
Kubo formula for the dc conductivity can be calculated
via o = (e?/2hL) [%, de[-df(e)/de] [ dxdx'F,(x,x'),
where L — co is the system size and F,.(x,x') =
Tr[J (x)T,(x, x')J(x)T! (x, x')]. Equation (10) implies that
F,.(x,x") = 2, independent of x, x". Then, the Kubo formula
suggests a temperature-independent, universal Landauer
conductance

GO:Jo/Lzez/h. (13)

The direct calculation of G for a HLL with random RSOC
connected to ideal leads confirms this result, as we now
explain.

Integrable dynamics of a spin 1/2 in a random, but
correlated magnetic field—The purely ballistic transport
in Eq. (13) can be interpreted in terms of the instantaneous
eigenstates of a spin 1/2 evolving in a time-dependent
magnetic field, since the integration of the transfer matrix
[Eq. (9b)] between ideal leads is described by a corre-
sponding spin rotation. We introduce the Hamiltonian

H(t) =) Hy(t).  Hy(1) =By(1)-6.

(14a)
a=1
with the magnetic fields B (z) LB, (¢) defined by
1
B, (1) = Bi(t)n(z),  By(t) =5m(r) xIm(z),  (14b)

2

where B(tf) and n(z) denote the magnitude and the
direction of B(¢), respectively. The connection between
the spin model (14) and the edge model in Eq. (8) becomes
manifest if we choose B(z) = %Tr[@g(t)é]. The spin
Hamiltonian A () precisely takes the form of Eq. (8) with
time ¢ replaced by the spatial coordinate x.

The time evolution of the spin is determined by the
unitary operator U(t) = 7 exp[—i [{ d¢'H(¢')], where “T”

denotes time ordering. One can show the following for a
differentiable but otherwise arbitrary field B (7): Starting
from an eigenstate ¢(0) of ,(0), ¢() = U(¢)p(0) remains
an instantaneous eigenstate of A (7). This statement is
equivalent to the relation U'(¢)n(z)-6 U(r) =n(0)- &,
which is Eq. (10) in the spin language.

In particular, setting B, (0) = B (7) = BZ and the initial
state ¢(0) = |1) (aligned along z), we obtain ¢(7) = ¢(0)
for any smooth B(#) in t € (0,T); i.e., there is no net
rotation. Similarly, for an edge with random RSOC con-
nected to ideal leads at x = +L /2, the current operator in
Eq. (4) satisfies j(+L/2) = Vp6° (Vp is the uniform Fermi
velocity in the leads). The transfer matrix in Eq. (9b) is
therefore reflectionless, and this holds for all eigenenergies
€ [Eq. (8)]. Since the true eigenstate y differs from ¢ only
by a local Jacobian factor ||7||'/2, identical on either side
of the leads ||j||'/? = /V, the transmission coefficient is
exactly unity so that backscattering is prohibited. We
conclude that topological protection here corresponds to
a special, integrable two-level system that depends upon an
arbitrary random field, and which preserves the projection
along this field. This is an explicit example of how perfect
transmission is achieved for noninteracting edges in the
presence of RSOC [2].

Luttinger interactions.—We consider the model in
Eq. (3) for an edge spanning |x| < L/2, connected to ideal
leads. The Hamiltonian incorporating Luttinger inter-
actions is given by

H=H, +/de(x)[\If1'\Il(x)]2, (15)

where U(x) = UO(L/2 — |x|), and @(x) is the unit step
function. Inspired by the transfer-matrix solution (9a), we
introduce the rotated fermion field

O(x) = \/1j)I/ve To(x.—L/2)¥(x).  (16)

The operators ®(x) and ®'(x’) satisfy rescaled canonical
anticommutation relations since the rotation in Eq. (16) is
nonunitary. However, one is free to perform this trans-
formation in a path integral formalism, because Eq. (16) is a
linear change of variables, up to a disorder-dependent
Jacobian that cancels between numerator and denominator
for a correlation function. Note that ®(x) = ¥(x) for
|x| > L/2. Exploiting Eq. (10), Eq. (15) reduces to

H= / dx{ @V (—i0)B(x) + D)@ ()2}, (17)

where U(x) = v3U(x)/||j(x)||. This transformed theory
with a homogeneous (inhomogeneous) kinetic term
(Luttinger interaction) is equivalent to a free boson theory
[15,16]. The conductance in a Landauer setup for the ®(x)
fermions is therefore given by Eq. (13), independent of
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U(x) [45-47]. Bosonizing Eq. (17) in a fixed realization of
disorder gives the Luttinger parameter K(x) and charge
velocity v.(x) [39],

K(x) = 1/\/[1 + 2] = 2(x) + 20 () /v,

Vo) =iy [ = 2(x) + 20(0)/av /L +2(x)). (18)

where y(x) = vg/||7(x)|| = 1. As usual, while the mapping
to a free boson parametrized by K (x) and v,.(x) is exact, we
expect that the explicit formulas in Eq. (18) are correct only
to linear order in the perturbations y and U [15]. In the
noninteracting case U =0, we have K(x) =1+ 0(y)?
and 1/v,(x) = /[0l + O(x)?.

Noninteracting energy level statistics, comparison to
Dyson.—Single particle energy levels in random systems
typically exhibit Poissonian or Wigner-Dyson energy level
statistics, associated to localized or ergodic wave functions
[48]. Since the helical edge with random RSOC is solved
by an integrable transfer matrix, we do not expect Wigner-
Dyson statistics. Using the Heisenberg equation of motion
for ®(¢, x) in Egs. (16) and (17) with U=0 gives the static
Schrodinger equation || 7(x)||J(=L/2)(=id,)®(x) =£®(x).
On a periodic ring with circumference L, the eigen-
energies {¢,} with n € Z (doubly degenerate) can be
obtained via the Bohr-Sommerfeld quantization, which
leads to e, = +2znA; . Here, the level spacing is A7! =
¢, dx||lj(x)||I”". For a fixed realization of disorder, the
energy levels are equally spaced, as for a clean system.
We confirm this by numerically diagonalizing the original
Hamiltonian (3b) in momentum space [39,49]. The result
is the sharp delta-function-like level-spacing distribution
shown in Fig. 1.

140
120f w0 * E=0.4
100 - 5, . - =Z=06
= 80 %35 i 11 v E=08
60| r '
40
20 ii
0
0.0 0.5 1.0 1.5 2.0

S

FIG. 1. &-type level spacing distribution p(s) for the non-
interacting helical edge model, obtained by numerical diagonal-
ization of the Hamiltonian Eq. (3b) in momentum space. We
sample every other level to account for the Kramers degeneracy.
Here s = |¢, — €,.0|/A is the normalized level spacing near
energy &,, while A is the average of |¢, — €,_,| over the chosen
set of levels. The parameter = is the disorder correlation length in
units of the inverse ultraviolet momentum cutoff [39,49]. Inset:
The broadening of the J-type distribution with different values
of = [39].

We conclude that the helical edge with a random back-
scattering kinetic operator (induced by RSOC) possesses
extended states, shows perfect ballistic transport, and
exhibits clean level statistics. It is interesting to contrast
these results for Eq. (3) to a nontopological 1D system that
incorporates backscattering, but also possesses extended
states. This is the random mass (“Dyson,” class BDI) Dirac
model [8,50,51], which has the Hamiltonian

ilDyson = VF6'3(—i0X) + m(x)&z.

This is particle-hole symmetric in every realization of
disorder, and arises as the continuum limit of a 1D lattice
model perturbed with weakly random nearest-neighbor
hopping. In sharp contrast to the HLL with random
RSOC, however, the extended states exist only near
zero energy (the localization length diverges at e = 0).
Moreover, an extended Dyson state is quasilocalized,
consisting of a few isolated peaks with stretched exponen-
tial tails, separated by large distances [50]. Because of
this rarefied structure the typical Landauer conductance

decays as Gy, ~ (€*/h) exp(—2+/2DL/x), where D is the
variance of the random mass and L is the length [51].
Position-space profiles of random-RSOC edge state and
Dyson wave functions are shown in Fig. 2. For the helical
edge state (a), the wave function is ergodic, with only a
modulated profile [Eq. (11)].

Discussion.—Although the combination of random
RSOC and Luttinger interactions does not affect transport,
in QSH materials the low-temperature conductance will be
affected by other scattering mechanisms. Finite-temperature
corrections, likely to be power law in temperature, may arise

(a) Helical model

0 200 400 600 800 1000
X
05
(b) Dyson model
04
a_
<03
N
T
w 0.2
>
0.1
o || l
0 200 400 600 800 1000
X

FIG. 2. Typical single-particle delocalized wave functions for
the helical model (a) and the Dyson model (b) at energy € =0
(momentum space exact diagonalization [39]).
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due to various irrelevant time-reversal symmetric mecha-
nisms such as inelastic umklapp processes [3,20,27-29],
phonon scattering [32], or Kondo impurities [33-36]. More
recently, it has been suggested that the corrections due to
scattering off charge puddles in the bulk [37,38] giverise to a
much weaker temperature dependence and might dominate
the low temperature transport in existing materials [38].
These studies have been performed in terms of the physical
U(x) fermion [Eq. (3)]. We suggest that, as long as the
random RSOC is present, it is necessary to carry out
calculations in terms of the rotated ®(x) fermions
[Eq. (16)]. We leave this work to future study.
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