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On the hydrodynamics of swimming enzymes
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Several recent experiments suggest that rather generally the diffusion of enzymes may be augmented
through their activity. We demonstrate that such swimming motility can emerge from the interplay
between the enzyme energy landscape and the hydrodynamic coupling of the enzyme to its envi-
ronment. Swimming thus occurs during the transit time of a transient allosteric change. We estimate
the velocity during the transition. The analysis of such a swimming motion suggests the final stroke
size is limited by the hydrodynamic size of the enzyme. This limit is quite a bit smaller than the
values that can be inferred from the recent experiments. We also show that one proposed explanation
of the experiments based on reaction heat effects can be ruled out using an extended hydrodynamic
analysis. These results lead us to propose an alternate explanation of the fluorescence correlation
measurements. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933424]

I. INTRODUCTION

All swimming ultimately can be traced to the dynamics
of enzymes. Both animal muscles and the cytoskeletons of
individual cells move through the cooperation of many motor
proteins, which are enzymes that act together in large scale
structures.1,2 Can individual enzymes, however, swim? How
would they do so? The possibility of single particle molecular
locomotion was already contemplated in setting up the theory
of motorized crystals, motorized glasses, and active molecular
matter years ago.3–9 Nevertheless, we were surprised by recent
observations10,11 that suggest that a large range of enzymes,
most of which are not in any way involved in biological motor
activity, appear to swim, albeit in an undirected manner. Two
groups have reported enhanced diffusion of several different
enzymes that include catalase, urease, and alkaline phospha-
tase. None of these are classical motor proteins. The apparent
enhancement of diffusion appears to be proportional to enzy-
matic activity, just as is predicted by the theory of motor-
ized assemblies.3,5 In their largely observational paper, Riedel
et al.10 also suggested a schematic mechanism by which the in-
ternal chemical energy in the substrate-enzyme complex could
be transduced into motion of the enzyme’s center of mass. They
postulated the idea that the heat released by the reaction would
lead to a pressure impulse in the surrounding water that in turn
would lead to the motion of the enzyme as a whole.

The reaction heat hypothesis was apparently inspired by
the experimental observation that they found no enhanced
diffusion for the enzyme triose phosphate isomerase, which
catalyzes a reaction that does not release heat, while the other
enzymes that catalyze reactions with substantial ∆H ′s did
apparently display activity enhanced diffusion. Although the
quantitative details of the proposed locomotion mechanism
were not completely laid out, on its face, the heat hypothesis
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itself raises some questions. For instance, if even momentarily
the motion of the protein center of mass is supposed to be
directed, why should the enthalpy change be the relevant ther-
modynamic quantity for determining the impulse, rather than
a free-energy change? Also, well established arguments sug-
gest that the large scale motions of proteins should be highly
damped by the solvent12,13 and that therefore such motions of
proteins should be described by the hydrodynamics of bodies
at low Reynolds number and with low Mach number, the ratio
of the characteristic speed of the moving object and the sound
speed in the medium. The arguments put forward by Riedel
et al. rely on the finite compressibility of the surrounding
solvent and thus their picture entails high Mach number hydro-
dynamics.

In this paper, we first explore an alternative explanation
for how single enzymes might be able to swim while never-
theless only moving at low Reynolds and Mach numbers.
The general problem of swimming at such low speeds has
formed a long standing elegant part of biologically inspired
physics starting with Purcell’s so-called “Scallop Theorem.”14

He used the theorem to point out the difficulties bacteria face
in swimming. This theorem was later rigorously proved by
Shapere and Wilczek.15 The Scallop theorem states that to
swim at low Reynolds number, the swim cycle must involve
changing at least two degrees of freedom and also that the
sequence of changes must not be time reversal invariant. The
Scallop theorem constraints arise because the incompressible
steady Navier-Stokes equations that describe fluid motion at
low Reynolds number are time reversal invariant: reversing
a forward stroke therefore causes the swimmer simply to re-
trace its forward motion in the reverse sense so as to yield no
net displacement.16,17 Nevertheless, a cyclic motion in two or
more degrees of freedom need not be time reversal invariant
so that asymmetric cyclic movements can allow a swimmer to
crawl through its surroundings, no matter how viscous they are.
Since enzymes are complicated molecules with many more
than two degrees of freedom, and also recognizing that the
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enzymes’ degrees of freedom can be restored to equilibrium
after release of a catalytic product without actually reversing
the catalysis step itself, the Scallop theorem does indeed allow
an enzyme to translate forward in the process of carrying out
a series of chemical reactions. Treating this problem for any
specific enzyme in structural detail would doubtless be quite
complex so here to make our conceptual point, we confine
ourselves to studying a very schematic model that envisions
directly coupling the reaction coordinate of the reaction itself
or a subsequent enzyme allosteric structural change coordinate
describing motion after an enzymatic reaction to other degrees
of freedom of the enzyme molecule that describe the relative
motion of domains in the protein. While accounting explicitly
for the dynamic stochastic coupling between reaction modes
and the overall enzyme motion, this model is quite parallel
to models of nanomoters already put forward that use deter-
ministic cycles of swimmer shape change.18 We see in this
model that a key role is played by the hydrodynamics of coupl-
ing during the traversal period of the activated motion. The
latter quantity has recently received much attention through
experiments on protein folding.26,27 Even the simplest form
of the model, in our view, gives a plausible upper limit to the
possible speed and stroke size of an enzyme moving through a
solution no matter what the structural details of the enzyme
cycle. In the most favorable imaginable case, the maximum
predicted stroke size from this estimate turns out to be smaller
than the enzyme’s hydrodynamic radius. We can easily ima-
gine by involving more elaborate motional mechanisms that
the final stroke size could actually be much smaller than the
enzyme’s hydrodynamic size, but as we see it, achieving stroke
sizes significantly larger than the hydrodynamic radius would
require a huge conformation change of the enzyme tantamount
to its global unfolding. While actual biological motor motions
are known to involve “cracking,”19 nothing as dramatic as
complete unfolding has yet been contemplated, even for motor
proteins, and indeed such unfolding seems even more unlikely
for the particular enzymes that were studied experimentally,
which are quite stable. The upper bound character of our result
therefore raises some difficulties for the present interpretation
of the experiments: while a step size as big as the hydrody-
namic radius is quite substantial and would clearly be adequate
for most biological functional purposes, our predicted bound
is much too small to explain the reported enhancements of
diffusion; indeed, even the maximum step size that our model
would predict gives enhancements decidedly below the observ-
ability limits for the fluorescence techniques employed. The
reported values of the diffusion enhancement for catalase in
particular requires a step roughly 6 times larger than cata-
lase’s hydrodynamic radius. Clearly, our theory cannot ac-
count for a step size with the large value inferred from the
experiments. As we shall show explicitly, it is also hard to
see how high Mach numbers can ever be achieved during
enzyme locomotion so we also cannot see how the explanation
based on the heating mechanism can be hydrodynamically
plausible. Rather different mechanisms for enzyme locomo-
tion have been proposed such as self-electrophoresis.20 These
mechanisms involve transiently modifying the composition of
the solvent. Such effects are available for larger objects16–18 but
these models, however, have subsequently been withdrawn as

explanations for enzyme locomotion by their authors. At the
end of this paper, we are therefore led to suggest an alternative
interpretation of the fluorescence experiments whereby the
measured changes in fluorescence do not in fact arise from
enhanced diffusion due to enzyme swimming at all but rather
arise from chemically specific sources of transient fluores-
cence quenching that have not been taken into account.

II. THE SWIMMING ENZYME MODEL

Our schematic model of a swimming enzyme envisions
three protein domains that are hydrodynamically coupled to
their surroundings. The relative motions of the domains are
governed by two different free energy surfaces. One sur-
face that describes the conformational changes accompanying
ligand hydrolysis is called the “excited state” surface Fe while
the other, the so-called ground state surface Fg , describes the
motion accompanying ligand binding and enzyme structural
relaxation in the absence of hydrolysis. When these free energy
surfaces are projected on the domain locations r1, r2, and r3, we
take the excited surface Fe to be a bistable function of one of
the interdomain distances, say x1, as shown in Fig. 1 while the
relaxational ground state surface Fg is taken to have a single
minimum and is effectively harmonic. For simplicity, we do
not treat explicitly motion on the ground state surface and thus
suppose the locomotion primarily occurs during the hydrolysis
or allosteric step in the upper excited surface. Other possible
schemes can be treated in a similar fashion to the present
analysis. This setup is motivated by conformation switching
models introduced earlier to describe allostery.21 As pictured in
Fig. 1, the actual hydrolysis and release events are supposed to
occur instantaneously so that the domains are considered to be
fixed during the bond breaking events but the relevant motions
of the domains after the chemical changes are generated by
motion on either of the two surfaces Fg(x1, x2) and Fe(x1, x2).
The dynamics of the domain coordinates are coupled to the
solvent hydrodynamically following the original scheme of
Najafi and Golestanian.18 Again for simplicity, we take the
domains to be equal size spheres with radius a that move one
dimensionally along their mutual axis. The full cycle of motion
therefore consists of stochastic instantaneous switching be-
tween these two surfaces interspersed with hydrodynamically
coupled Brownian motion upon these two distinct surfaces.
This Brownian motion involves the internal motion of the
allosteric protein that ends up being frictionally coupled by
hydrodynamics to the overall displacement of the enzyme.

The actual swimming motion occurs on the excited state
surface by the internal coordinate of the enzyme stochastically
leaping up from the initial configuration to the transition state
configuration and then falling down to a product configura-
tion. While making this leap, fluid is displaced, the center
of mass of the enzyme thereby moves. The most probable
transition path can be found by using a path integral treatment
that amounts to calculating the average of a path ensemble
made up of all possible Brownian traversals over the free
energy barrier. The details of this argument may be found in
Appendices A–E. If we picture the bistable potential as being
an inverted harmonic well with a spring constraint of −k(k
> 0), the motions involved in traversing the free energy barrier
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FIG. 1. Illustration of a 3-sphere model
swimmer. r1, r2, and r3 are coordinates
for the three spheres in real 3D space.
The panel above shows the free energy
profile of excited state Fe that projected
onto internal coordinates x1 (left) and
x2 (right), while the panel below shows
the profile for the ground state Fg . All
the curvatures are taken to be the same,
ω =
√
k/m. The instantaneous transi-

tion processes are denoted by the two
red arrows. All the relevant chemical
step are also indicated.

can be found explicitly. Assuming equal and opposite negative
spring constants for each domain as well as an equilibrium
spring length x for each domain, the excited state barrier poten-
tial can be written as Fe(x1, x2) = − 1

2 k(x1 − x)2 + 1
2 k(x2 − x)2.

The hydrodynamically coupled Brownian dynamics equations
for the model swimmer in matrix form are

dri
dt
= β

j

Di jFj + ηi(t), (1)

where Fi is the effective spring force exerted on each sphere
determined by the excited potential Fe. ηi(t) are white
noise terms that are related to diffusion tensor Di j by the
fluctuation-dissipation theorem ⟨ηi(t)η j(t ′)⟩ = 2Di jδ(t − t ′).
Since the hydrodynamic coupling is kept at Oseen level
as the first matrix inside the square bracket on the r.h.s.
in Equation (1), the multiparticle diffusion tensor can be
written as Di j = kBT[δi jζ−1

0 + (1 − δi j)T(ri j)], where T(r)
= (8πη0r)−1(I + r̂ r̂

r2 ) is the Oseen Tensor.22 To solve the
coupled equations, we carry out an eigen-analysis of the deter-
ministic part of these linear equations. This is equivalent to
extremizing the Onsager-Machlup Lagrangian so as to allow
us to obtain the most probable path for a traversal from one
well to the other. Since three degrees of freedom are involved,
we find three eigenvalues. The eigenvalues for motion across
the barrier consist of one zero eigenvalue λ1 = 0 and two
nonzero values: one stable λ2 = −

√
3k(1 − 5a

4x )/ζ0 and the
other unstable λ3 =

√
3k(1 − 5a

4x )/ζ0. The existence of the zero
frequency collective mode demonstrates the capability of net
locomotion of the model swimmer. The dominant path for the
collective mode (swimming motion) arises from this model
and becomes simply

r ′1(t) =
1
3
[r1(t) + r2(t) + r3(t)] = −7ka2

8ζ0x
t + x, (2)

where the initial positions of the three spheres are set as 0, x,
and 2x respectively. We see the collective mode r ′1 with the
zero eigenvalue yields the motion of center of mass of the
swimmer starting at location x as a uniform motion. Dominant
paths for the auxiliary domains r ′2(t) and r ′3(t) are discussed in
Appendix C. We also see that the swimming velocity during
the transit time is vswim = − 7ka2

8ζ0x
clearly showing the hydro-

dynamic coupling of the swimmer to the solvent is crucial to
its swimming behavior. How long does a given traversal take?
This is essentially the time for the internal coordinate to go
from the bottom of one well to the other. The transit time is
obviously a distributed property. For the inverted oscillation
model, it is essentially the time for the reactive mode to move
sufficiently to change the energy by an amount of ∆U‡. The
mean transit time therefore increases logarithmically with the
increase of barrier height ∆U‡ = 1

2 mω‡x‡2 since the internal
coordinate shift on the inverted potential grows exponentially
in time being described as the motion of an unstable damped
system describing the domain motion. Typical traversal times
have been discussed for the simplest models theoretically23–25

and indeed have been measured experimentally for biomolec-
ular folding process.26,27 While the dominant path argument
gives the most probable traversal time, one can also find explic-
itly the distribution for the transit time by normalizing the
probability density flux from the pre-stroke to the post-stroke
state with the flux being determined by the transit probability.
This distribution can also be explicitly obtained from our path
integral treatment. In Appendix B, we provide the details of
the derivation. The mean traversal time T determined from the
distribution turns out to be a bit larger than the most probable
transit time. Explicitly, we find

T ≈
ln(2β∆U†) + γ + ln[√3(1 − 5a

4x )/cos2 φ]
λ3

, (3)
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where γ is the Euler constant and φ is the angle between
the reaction coordinate and the eigenvector associated with
λ3 in the euclidean space spanned by r1, r2, and r3. This
angle follows from the hydrodynamic coupling as described
in Appendix D. Knowledge of the free energy barrier and this
eigenvalue corresponding to the unstable mode is enough for
evaluating the mean transit time T, but determining the coupled
dominant leaping path demands the motions in the pre-stroke
and post-stroke state of enzymes, which we neglect here. A
simple direct prediction for the stroke size L possible at the
Oseen limit ( a

x
→ 0) follows from this estimation for the mean

transit time combined with the velocity of the collective mode
that results from the path-integral treatment,

L = |vswim × T | = 7a2[ln(2β∆U‡) + γ + ln(√3/cos2 φ)]
8
√

3x
. (4)

The Euler constant γ is small and the free energy barrier for
a typical enzymatic reaction is just several kBT . For most
enzymes, the size of each subunit a is usually comparable
to the separation distance x and thus, one can infer from the
Equation (4) that the size of the net displacement can only
be of the same order as the hydrodynamic size of enzymes,
e.g., L ∼ a2

x
∼ a. From this formula, one can estimate the

maximum stroke sizes. We do this for catalase, one of the four
enzymes upon which the fluorescence correlation measure-
ment has been conducted by Riedel et al.10 The hydrodynamic
radius of catalase is 5.22 nm. The stroke sizes for catalase
assuming three different Oseen ratios a

x
= 0.1, 0.5, and 1

turn out to be correspondingly 9.2 × 10−2 nm, 2.3 nm, and
9.2 nm where ∆U‡ is taken as 5kBT . Riedel et al. did not
report the stroke size, but the theory of motorized assemblies
suggests that the slope α of the plot of diffusion constant vs. the
enzyme turnover rate is essentially related to the stroke size.4

The stroke size for catalase determined from the measured
values of

√
α is as large as 31.6 nm. This discrepancy between

the hydrodynamic model and the experiments10 argues that a
careful examination of other possible channels of fluorescence
correlation decays besides enhanced enzyme diffusion must be
considered.

We wish now to show explicitly that due to damping the
motions of a swimming enzyme cannot excite a significant
acoustic response in the fluids as was envisioned in the reac-
tion heat mechanism proposed by Riedel et al. To treat the
hydrodynamic effects beyond the low Mach number regime,
one only needs to replace the long-time limit of the friction
ζ0 (given in our previous analysis using only steady hydro-
dynamics) with its frequency-dependent counterpart ζ(ω).
The frequency-dependent friction coefficient accounts both
for finite momentum diffusivity and for sound propagation.
Wolynes and McCammon13 calculated ζ(ω) for a biopolymer
decades ago by using nonsteady hydrodynamics. To focus on
the acoustic effects alone, one simply needs to omit the viscous
contribution from their expression for ζ(ω). This simplification
gives a pure acoustic drag coefficient at zero-frequency with
the value ζ(0) = ζ0

ac0
9ν0

. When substituted again into the long-
time limit equation of motion to obtain the swimming velocity,
we find the pure acoustic mode would be even more strongly
coupled to the motion of the swimmer than the viscous modes
are. Thus if sound plays a significant role, the enzyme motion

would be actually more strongly damped than it was our
calculation where only the viscous coupling is taken into
account. The acoustic effects clearly reduce the swimming
speed: the swimming velocity when the pure acoustic effect
is dominant turns out to be vsound =

9ν0
ac0

vswim. That the acoustic
effect is small and that it does not influence the locomotion is
not unexpected. The perturbed pressure field usually relaxes
more rapidly to its steady value than the perturbed velocity
field such that the prefactor of vsound as ν0

ac0
=

a/c0
a2/ν0

=
τs
τν

is
also small, where τs and τν are the typical time for sound wave
to propagate a distance of a and momentum to diffuse over
an area of a2, respectively. That τs is much smaller than τν
supports our prediction that compression indeed should be a
small correction to the locomotion speed.

III. CONCLUSION

While we see that individual enzymes can swim randomly
when they carry out a catalytic reaction and that therefore
chemistry can in principle lead to enhanced diffusion of an
individual enzyme proportional to the enzyme’s activity, the
effect should be quite a bit smaller than the recent experiments
seem to suggest. We therefore think alternate explanations of
the data need to be entertained. The absolute measured changes
of the fluorescence correlations are quite subtle, so other ways
of losing fluorescence correlation other than through enhanced
diffusion out of the illuminated region should be considered.
One possible way to lose fluorescence correlation is for an
intermediate in the catalysis or a reaction product of the enzy-
matic reaction to quench the fluorescence when an active spe-
cies forms transiently near the monitored fluorophore. In that
case, an extra source of decorrelation would be present and
it would be proportional to the enzyme activity just as the
proposed diffusion enhanced effect is. It seems essential to
rule out this possibility for the alkaline phosphatase system
which by catalyzing the hydrolysis of nitrophenylphosphate
yields a fluorescently active product nitrophenol. Likewise, the
two enzymes urease and catalase have spectroscopically and
electronically active metal centers. As these centers undergo
the catalytic cycle, they might yield species that can tran-
siently quench the fluorescence, possibly through fluorescence
resonance energy transfer but more likely through electron
transfer. In order to estimate the size of these quenching effects,
much detailed spectroscopic electrochemical and kinetic data
would be needed. This is beyond the scope of our present
effort. It is most interesting, however, that the one system that
displayed no excess decorrelation, triose phosphate isomerase,
also lacks metal centers and catalyzes a reaction that would
involve no active products. For this system, then the activity
induced quench mechanism could not operate and thus would
explain why no enhanced diffusion was observed in that case.
We point out that the excess transient quenching mechanism
can be experimentally distinguished from the enhanced diffu-
sion mechanism by carefully measuring the effect of changing
the size of the illuminated region. Such a change should alter
the diffusion signal but not the transient quenching signal.

As we finished preparing this account for publication, a
theoretical study by Golestanian28 appeared that supports the
idea that stochastic swimming can contribute to the enzyme
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activity enhancement of diffusion, but like us he concludes
that the effects should be much smaller than those that were
measured. In seeking an explanation of the observation, he
points out that the global heating by the enzyme reaction could
result in heating up the whole sample which would appear as
enhanced diffusion. The original authors of the experiments
had considered but ruled out such an effect in their work.
Obviously besides checking out the possibility of excess tran-
sient quenching, we hope that future experiments with accu-
rate temperature monitoring will also be undertaken. We look
forward to such experimental investigations.

ACKNOWLEDGMENTS

We thank Jose Onuchic for a most helpful discussion.
This work was supported by the Center for Biological Physics
sponsored by National Science Foundation Grant Nos. PHY-
1308264 and PHY-1427654. Additional support was provided
by the D. R. Bullard-Welch Chair at Rice University Grant No.
C-0016.

APPENDIX A: PATH-INTEGRAL TREATMENT
FOR BROWNIAN CROSSING OF A INVERTED
HARMONIC BARRIER

Brownian dynamics within the inverted harmonic poten-
tial U(x) = − 1

2 mω‡
2
x2 + ∆U‡ is described by an overdamped

Langevin equation

dx
dt
= bx + η(t), ⟨η(t)η(t ′)⟩ = 2Dδ(t − t ′), (A1)

where b = βDmω‡
2

is the frequency involved in overdamped
motion. To describe the probability functional for a Brownian
path, one has the Onsager-Marchlup Lagrangian associated
with the Brownian motion in the inverted harmonic potential,29

L(ẋ, x, t) = 1
4D

(ẋ − bx)2 + b
2
. (A2)

The corresponding Euler-Lagrange equation for the dominant
path d

dt
∂L
∂ ẋ
− L

∂x
= 0 then is

ẍ − b2x = 0. (A3)

This equation of motion for x describes an unstable damped
motion. Given the initial conditions (t = 0) and the final posi-
tions (t = T) of the diffusing degree of freedom x as x(0) and
x(T), respectively, one finds the most probable path for x(t),

x(t) = x(T) sinh(bt) + x(0) sinh[b(T − t)]
sinh(bT) . (A4)

The most probable leaping path starts from the initial posi-
tion x(0) = −


2∆U‡

mω‡2
proceeding to the final position x(T)

= +


2∆U‡

mω‡2
. At these endpoints, the free energy has fallen by

∆U‡ from the barrier top. Thus, the dominant leaping path for
traversing in a time T is given by

x(t) =


2∆U‡

mω‡
2

sinh(bt) − sinh[b(T − t)]
sinh(bT) . (A5)

APPENDIX B: TRANSIT TIME IN 1D INVERTED
HARMONIC POTENTIAL

From the dominant path, Equation (A4), one can calculate
the conditional transition probability densityΦ(x, t |x0,0). This
is also the propagator of a 1D Fokker-Planck equation with
absorbing boundary conditions at the start and end of the
trajectory at the bottom of the inverted well,

Φ(x, t |x0,0) =

D[x(t)] exp[−

 t

0
dτL(ẋ, x, τ)] (B1)

= [ b
2πD(e2bt − 1) ]

1
2 exp[−b(x − x0ebt)2

2D(e2bt − 1) ]. (B2)

Recalling that the Fokker-Planck equation is a probability
balance equation, we see the probability flux for starting at x0
at t = 0 while ending up at x at time t is proportional to the
probability of the transit time being t,

∂Φ(x, t |x0,0)
∂t

= − ∂

∂x
J(x, t |x0,0), (B3)

J(x, t |x0,0) = −DeβU (x) ∂
∂x

[e−βU(x)
Φ(x, t |x0,0)]. (B4)

We will denote the initial and final position ±


2∆U‡

mω‡2
as ±∆x

for convenience. Thus, the reactive flux J(∆x,T | − ∆x,0) with
transit time T is

J(∆x,T | − ∆x,0) = b∆x
4


b
πD

exp[− b∆x2

2D coth(bt/2)]
sinh(bt/2)sinh(bt) . (B5)

The probability distribution density P(t) for transit time is just
the normalized reactive flux,

P(t) = J(∆x, t | − ∆x,0) ∞
0 J(∆x, t | − ∆x,0)dt

(B6)

=
b∆x

2[1 − erf(∆x


b/(2D))]

×


b
πD

exp[− b∆x2

2D coth(bt/2)]
sinh(bt/2)sinh(bt) (B7)

=
b

β∆U‡

1 − erf( β∆U‡)
exp[− b∆x2

2D coth(bt/2)]
sinh(bt/2)sinh(bt) . (B8)

The mean transit time T can now be obtained as the first
moment of P(t) in the long-time limit (bt ≫ 1),

T =
 ∞

0
tP(τ)dt

≈
 ∞

0
τdτ

b

β∆U‡

e−β∆U‡/

π β∆U‡

× exp[−β∆U‡(1 + 2e−bt)]
ebt/2/2 ×

√
πebt

=

 ∞

0
τdτ × 2bβ∆U‡ exp[−bτ − 2β∆U‡e−bτ]

≈ 1
b

ln[(2β∆U‡) + γ] (when β∆U‡ ≫ 1),
where two approximations have been made: (i) the free-energy
barrier is high such that β∆U‡ ≫ 1; (ii) coth(x) = 1 + 2e−x

1−e−x
≈ 1 + 2e−x when x is large. From the distribution function,
one can also calculate the most probable transit time tm.p .,
which differs from mean transit time T by the term containing
the Euler constant: tm.p . =

1
b

ln(2β∆U‡).
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APPENDIX C: THE MOST PROBABLE TRAVERSAL
PATH FOR A COMPOSITE SYSTEM: THE MODEL
SWIMMING ENZYME

We start with the equation of motion for the coupled
Brownian dynamics for the three domains of the enzyme,

dri
dt
= β

j

Di jFj + ηi(t). (C1)

Fi is the effective spring force exerted on each sphere and is
determined by the excited potential Fe. ηi(t) are white noise
terms that are related to the multiparticle diffusion tensor
Di j by the fluctuation-dissipation theorem ⟨ηi(t)η j(t ′)⟩
= 2Di jδ(t − t ′). At the Oseen level, the diffusion tensor
Di j is Di j = kBT[δi jζ−1

0 + (1 − δi j)T(ri j)], where T(r)
= (8πη0r)−1(I + r̂ r̂

r2 ) is the Oseen Tensor. This set of equa-
tions can be expressed more explicitly as

d
dt

*...
,

r1

r2

r3

+///
-

=
1
ζ0

*.......
,

1
3a
2x

3a
4x

3a
2x

1
3a
2x

3a
4x

3a
2x

1

+///////
-

 *...
,

k −k 0
−k 0 k
0 k −k

+///
-

*...
,

r1

r2

r3

+///
-

+
*...
,

k x
−2k x

k x

+///
-


+
*...
,

η1(t)
η2(t)
η3(t)

+///
-

(C2)

=
k
ζ0

*.......
,

1 − 3a
2x

−1 +
3a
4x

3a
4x

−1 +
3a
2x

0 1 − 3a
2x

−3a
4x

1 − 3a
4x

−1 +
3a
2x

+///////
-

*...
,

r1

r2

r3

+///
-

+
k
ζ0

*.....
,

x − 9
4

a

−2x + 3a

x − 9
4

a

+/////
-

+
*...
,

η1(t)
η2(t)
η3(t)

+///
-

(C3)

= A r + b + η(t). (C4)

Diagonalizing the composite force-mobility matrix part leads us to three real eigenvalues associated with three eigen-modes
r ′1, r ′2, and r ′3. These eigenvalues are also the three eigen-frequencies of the swimmer’s dynamics. By replacing the spring constraint
b in the 1D traversal time path with the eigenvalues, the dominant path for these independent eigen-modes r ′1, r ′2, and r ′3 can be
found as well as the paths for the original coordinates r1, r2, and r3. The resulting eigenvalues and eigenvectors are summarized
as follows:

Eigenvalues: λ1 = 0, λ2 = −
√

3
k
ζ0
(1 − 5a

4x
), λ3 =

√
3

k
ζ0
(1 − 5a

4x
),

Eigenvectors:
*.....
,

1

1

1

+/////
-

,

*.......
,

−2 +
√

3 +
a
x
(3 − 2

√
3)

1 −
√

3 +
a
x
(−9 + 5

√
3

4
)

1

+///////
-

,

*.......
,

−2 −
√

3 +
a
x
(3 + 2

√
3)

1 +
√

3 +
a
x
(−9 − 5

√
3

4
)

1

+///////
-

.

The eigenmodes r ′i(t) can be transformed to the original coordinates ri(t) through a transformation matrix P composed of the
eigenvectors,

*...
,

r ′1
r ′2
r ′3

+///
-

= P−1
*...
,

r1

r2

r3

+///
-

=

*......
,

1 −2 +
√

3 +
a
x
(3 − 2

√
3) −2 −

√
3 +

a
x
(3 + 2

√
3)

1 1 −
√

3 +
a
x
(−9 + 5

√
3

4
) 1 +

√
3 +

a
x
(−9 − 5

√
3

4
)

1 1 1

+//////
-

−1

*...
,

r1

r2

r3

+///
-

(C5)

=

*........
,

1
3
+

a
12x

1
3
− a

6x
1
3
+

a
12x

−1
6
− (1 − 3

√
3)a

24x
−1 +

√
3

6
+
(1 − √3)a

12x
2 +
√

3
6

− (1 + √3)a
24x

−1
6
− (1 + 3

√
3)a

24x
−1 −

√
3

6
+
(1 + √3)a

12x
2 −
√

3
6

− (1 − √3)a
24x

+////////
-

*...
,

r1

r2

r3

+///
-

. (C6)

The collective mode r ′1 with zero eigenvalue is apparently the motion for center of mass at the Oseen limit ( a
x
→ 0):

r ′1 =
1
3 (r1 + r2 + r3). Transformation of the constant part of Equation (C3) gives
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b′ = P−1b =

*.........
,

−7ka2

8ζ0x
k x
6ζ0

(3 + 3
√

3) − ka
8ζ0

(9 + 5
√

3) + 7ka2

16ζ0x
(1 − √3)

k x
6ζ0

(3 − 3
√

3) − ka
8ζ0

(9 − 5
√

3) + 7ka2

16ζ0x
(1 + √3)

+/////////
-

. (C7)

The swimming velocity is the first entry of transformed constant vector: vswim = b′1 = −
7ka2

8ζ0x
. Obviously if we set the initial

position of r ′1 as x, its final position will be the stroke size x + L at transit time T. Thus, the dominant path for the center of mass
is

r ′1(t) = −
7ka2

8ζ0
t + x = −L

T
t + x. (C8)

Equation (C8) also reveals that we can estimate L once we have obtained transit time T . The dominant paths for r ′2(t) and r ′3(t)
follow Equation (A4) by substituting in the corresponding eigenvalue and boundary conditions.

APPENDIX D: TRANSIT TIME FOR THE MODEL SWIMMER

Since we are especially interested in the motion along the unstable mode r ′3(t) that gives rise to the transit time of the catalytic
reaction, we must find the boundary conditions r ′3(0) and r ′3(T). The exponential escape motion at the transition state is given by a
rate λ3; motion along the eigen coordinate is not parallel to the displacement that determines the free energy barrier ∆U‡. We thus
need to calculate the angle φ between the energetic reaction coordinate and the unstable mode in the euclidean space spanned by
r1, r2, and r3. The direction of unstable mode is proportional to the components of the eigenvector e3 associated with eigenvalue
λ3 along the reaction coordinate is er xn = 1√

2
(−1,1,0). We find the angle is

cos φ=
1
√

2

(−1,1,0) · (−2 −
√

3 + a
x
(3 + 2

√
3),1 + √3 + a

x
(−9−5

√
3

4 ),1)
|(−2 −

√
3 + a

x
(3 + 2

√
3),1 + √3 + a

x
(−9−5

√
3

4 ),1)|
≈ 1

4
√

2(3 + √3) [12 + 8
√

3 − (21 + 13
√

3)a
x
].

Thus, the transit time for the swimmer with the proper tra-
versal barrier is

T =
ln(2βV ‡) + γ

λ3

=
ln(2β∆U‡) + γ + ln[√3(1 − 5a

4x )/cos2φ]
λ3

. (D1)

APPENDIX E: CALCULATION OF STROKE SIZE

The product of transit time T expressed in Equation (D1)
of swimming speed immediately leads us to the approximation
for the stroke size L quoted in the main text,

L =
ln(2β∆U†) + γ + ln[√3(1 − 5a

4x )/cos2φ]
λ3

× 7ka2

8ζ0x
(E1)

=
7a2[ln(2β∆U‡) + γ + ln(√3/cos2φ)]

8
√

3x
. (E2)
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