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Rapid evolution of dispersal ability makes
biological invasions faster and more variable
Brad M. Ochocki1 & Tom E.X. Miller1

Genetic variation in dispersal ability may result in the spatial sorting of alleles during range

expansion. Recent theory suggests that spatial sorting can favour the rapid evolution of life

history traits at expanding fronts, and therefore modify the ecological dynamics of range

expansion. Here we test this prediction by disrupting spatial sorting in replicated invasions of

the bean beetle Callosobruchus maculatus across homogeneous experimental landscapes. We

show that spatial sorting promotes rapid evolution of dispersal distance, which increases the

speed and variability of replicated invasions: after 10 generations of range expansion,

invasions subject to spatial sorting spread 8.9% farther and exhibit 41-fold more variable

spread dynamics relative to invasions in which spatial sorting is suppressed. Correspondingly,

descendants from spatially evolving invasions exhibit greater mean and variance in dispersal

distance. Our results reveal an important role for rapid evolution during invasion, even in the

absence of environmental filters, and argue for evolutionarily informed forecasts of invasive

spread by exotic species or climate change migration by native species.
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U
nderstanding and predicting the dynamics of biological
invasions are among the leading environmental challenges
in the Anthropocene. Biological invasions play out in the

contexts of intentionally or accidentally introduced species1,
recovery of threatened species2 and, increasingly, shifts in distri-
butional limits in response to climate change3. Long-standing
ecological theory provides a framework for understanding
and predicting the velocity of spread based on life history traits
related to dispersal ability and reproductive potential4. However,
accurate invasion forecasts remain elusive5–8, at least partly
because of the substantial variability in spreading speed that
appears to be an intrinsic but poorly understood feature of
biological invasions9–11.

Recent theory suggests that evolutionary processes unique to
spreading populations can influence the ecological dynamics of
invasion by modifying traits related to dispersal, reproduction or
both12–15. The dispersal phase of invasion provides an
opportunity for individuals to spatially sort themselves. Spatial
sorting is expected to cause the over-representation of highly
dispersive phenotypes at the leading edge of an invasion wave,
increasing the probability of assortative mating between highly
dispersive individuals and, if dispersal is heritable, the probability
that offspring produced at the leading edge will also be highly
dispersive14. Because the leading edge is characterized by low
population density, highly dispersive individuals may leave more
descendants, per capita, because of greater resource availability
and reduced intraspecific competition. This combination of
spatial allele sorting and increased per capita growth at the
leading edge of the invasion wave—a process described in the
invasion literature as ‘spatial selection’—is predicted to favour the
evolution of increased dispersal at the invasion front13–17. Finally,
in addition to spatial selection for increased dispersal, the
low-density leading edge is also subject to natural selection,
which may favour the evolution of increased reproductive rate in
the absence of strong resource limitation (r-selection)13. Since
invasion speed is determined both by dispersal and low-density
reproductive rate, these evolutionary processes that occur as a
result of spatial allele sorting are expected to accelerate range
expansion15.

Despite well-developed theory, empirical evidence that the
ecological dynamics of invasion can be modified by the spatial
sorting of alleles is scarce16–18. Most relevant studies have
been observational and retrospective, comparing demography
and dispersal trait values between range-core and range-edge
populations15,19–23. These studies highlight potential for rapid
trait evolution during range expansion but reveal little about how
trait evolution modifies the ecological dynamics of invasion.
Several considerations raise uncertainty about the general
ecological importance of spatial evolutionary mechanisms. First,
theoretical models of spatial selection usually assume perfect
heritability of dispersal behaviour12,24,25. In reality dispersal
is a complex, likely polygenic trait26 with imperfect herita-
bility20,26–29. Since low trait heritabilities generally dampen
evolutionary change30, imperfect dispersal heritability may
cause responses to spatial selection to be weaker than predicted
by theory. Second, stochastic forces may overwhelm the
directional influence of spatial selection at the expanding edge:
low-density, leading edge patches—precisely the locations where
spatial selection on dispersal and reproduction is expected to be
most potent—are also the locations most affected by stochasticity
in demography10,31, dispersal10 and allelic composition
because of founder events32. Finally, even in systems
where spatial selection has been implicated in accelerating
spread15, the influence of alternative, non-evolutionary
accelerating mechanisms4,33 is difficult to exclude. Experimental
tests are thus critical for understanding whether and to what

extent the evolutionary processes that arise from spatial allele
sorting modify spread dynamics—and therefore how much
information is lost by ignoring them, as most ecological studies
currently do.

Laboratory-based mesocosms provide a powerful setting to
study spread dynamics because they distil invasions to their
essential ingredients—local population growth and dispersal—
and facilitate experimental manipulations that are impractical in
the field. Importantly, replicated mesocosms reveal a distribution
of invasion trajectories in simple settings, providing a window
into intrinsic sources of variability that cannot be achieved with
unreplicated invasions across heterogeneous natural land-
scapes9,10,16,17,34. We used replicated laboratory invasions of
the bean beetle Callosobruchus maculatus to test the influence of
spatial evolutionary processes on the ecological dynamics of
range expansion. Bean beetles provide a powerful and convenient
system for testing rapid evolution during invasions because they
are semelparous with fast (30 days) and nonoverlapping gene-
rations. Our experimental set-up allows beetle populations to
spread through homogenous, one-dimensional (1D) landscapes
of interconnected habitat patches, with opportunity for dispersal
following within-patch population growth (Methods), giving rise
to travelling invasion waves over successive generations.

We experimentally prevented spatial allele sorting (and
thus the spatial evolutionary processes that act on dispersal and
reproduction) in a subset of replicate invasions (N¼ 9) by
shuffling the post-dispersal locations of all individuals: we mixed
all dispersed beetles into a global pool and then randomly
redistributed them back on the landscape, maintaining the
density and sex ratio of each patch exactly as we found them.
This method decouples an individual’s genotype from its spatial
position, preventing highly dispersive or fecund individuals from
carrying their alleles to the invasion fronts. We compared spread
dynamics of these shuffled invasions to those of spatially sorted
(control) invasions (N¼ 9). After 10 generations, we reared
beetles from the leading edge of each invasion replicate in a
‘common garden’ setting to measure whether spatial evolutionary
processes generated genetically based differences in dispersal
distance or low-density reproductive rate between treatments.

Our experiments show that spatial sorting increases the speed
and variability of replicated invasions. These changes are caused
by the rapid evolution of dispersal: we observe that descendants
from spatially sorted invasions exhibit greater mean and variance
in dispersal distance compared with descendants from spatially
shuffled invasions. These results reveal an important role for
rapid evolution during invasion, even in the absence of
environmental filters, and argue for evolutionarily informed
forecasts of biological invasions.

Results
Effects of spatial sorting on invasion dynamics. Spatial evolu-
tionary processes increased the speed of range expansion (Figs 1
and 2, Supplementary Table 1). After 10 generations, spatially
sorted invasions spread 8.9% farther, on average, than shuffled
invasions (Figs 1 and 2). Spatial sorting also increased variability
across realizations of the invasion process, independently of the
increase in the mean invasion speed (Fig. 2 and Supplementary
Figs 1 and 2). The greater variability of spatially sorted invasions
was attributable to among- and not within-replicate variance
(Supplementary Fig. 1; 100% combined widely applicable infor-
mation criterion (WAIC) support for models including a treat-
ment effect on among-replicate variance, Supplementary Table 2).
The contrast between treatments was stark: among-replicate
variance in speed was 41.4 times larger in the sorted replicates
versus the shuffled replicates, a fold-change that far exceeded that
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of the mean invasion speed. Thus, the elevated variance was due
to unique trajectories of individual invasion replicates and not
inconsistency in speed from one generation to the next. In fact,
while most spatially sorted replicates were faster than most
shuffled replicates, the two slowest replicates were spatially sorted
(Fig. 2).

Evolved trait differences between treatments. A pre-invasion
analysis confirmed that C. maculatus is capable of evolution via

spatial selection because of the existence of additive genetic
variance for dispersal distance (Methods, Supplementary Table 3
and Supplementary Fig. 3). In post-invasion common-garden
experiments, descendants from spatially sorted invasion fronts
dispersed farther, on average, than descendants from shuffled
invasion fronts (males and females combined, Kolmogorov–
Smirnov test: Dþ ¼ 0.0646, P¼ 1.4E� 6; Fig. 3) and also
exhibited greater among-replicate variance in dispersal; the
magnitudes of these effects differed by sex. Females descended
from sorted invasions had dispersal kernels with greater means,
similar tails and similar among-replicate variance in kernel
parameters when compared with females descended from shuf-
fled invasions (90% of cumulative WAIC weight for an effect of
treatment; Supplementary Table 4 and Supplementary Fig. 4).
Males descended from spatially sorted invasions had dispersal
kernels with similar means, longer tails and higher among-
replicate variance in kernel parameters when compared with
males descended from shuffled invasions (97% of cumulative
WAIC weight for an effect of treatment; Supplementary Table 5
and Supplementary Fig. 5). For both males and females, common
garden generation had an effect on dispersal kernel shape inde-
pendent of treatment (Supplementary Tables 4 and 5). In the
second common garden generation, beetles descended from all
invasions dispersed less far and had shorter-tailed dispersal ker-
nels than in the first generation. However, the differences between
treatments were qualitatively similar between generations, with
greater evolved dispersal ability in the spatially sorted treatment
(Supplementary Tables 4 and 5; Supplementary Figs 4 and 5).

Estimates of pre-invasion dispersal kernels indicate that there
were no initial differences in dispersal ability between treatments
(Supplementary Fig. 6). For female beetles, model selection
indicated that a null model lacking any treatment differences
provided the best fit to dispersal data from the first gene-
ration of spread (47% WAIC support; Supplementary Fig. 6a and
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Figure 1 | Wave-like expansion of experimental beetle invasions. Points

show the mean population density of each patch, averaged across

replicates, for (a) spatially sorted and (b) spatially shuffled invasions (nine

replicates each). Invasions spread from left to right across the x axis (patch

number) over time so that each coloured wave represents a different

invasion generation. On average, spatially sorted replicates travelled farther

and faster than shuffled replicates after 10 generations.
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Figure 2 | Spread dynamics of spatially sorted and shuffled invasion

replicates. Lines show raw invasion trajectories (invasion extent through

time) for all replicates in the spatially sorted (red solid lines) and shuffled

(blue dashed lines) invasions (nine replicates each). Spatially sorted

replicates invaded faster, on average, than shuffled replicates (model

selection results in Supplementary Table 2). Variance in spread from one

generation to the next (within-replicate variance) was similar between

treatments but spatially sorted replicates had a larger among-replicate

variance in invasion speed (Supplementary Figs 1 and 2 and Supplementary

Table 3).
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Figure 3 | Comparison of post-invasion dispersal kernels. Histograms

(left axis) show dispersal distances of beetles descended from spatially

sorted (filled red bars) and shuffled (open blue bars) invasions following

one generation in a common environment; results from a second generation

in a common environment were qualitatively similar (Supplementary Figs 4

and 5). Lines show corresponding empirical cumulative distribution

functions (right axis; sorted: red solid line; shuffled: blue dashed line).

Beetles from spatially sorted invasions dispersed farther on average than

beetles from shuffled invasions (N¼ 3,240, Dþ ¼0.0646, Poo0.0001).

A hierarchical Bayesian analysis that accounted for random variance across

replicates and fitted male and female kernels separately yielded similar

results (Methods, Supplementary Tables 4 and 5).
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Supplementary Table 6). For males, model rankings were closer
but a model including treatment differences was not considerably
better than the null model (38% WAIC support for the model
containing an effect of treatment on variance, 35% WAIC support
for the null model; Supplementary Fig. 6b and Supplementary
Table 6). These results indicate that post-invasion differences in
dispersal between treatments evolved during range expansion.

In contrast to dispersal, the post-invasion common gardens
showed no difference in low-density reproductive rate between
treatments (52% Akaike information criterion (AIC) weight for
the null model; Fig. 4, Supplementary Fig. 7 and Supplementary
Table 7). The number of offspring produced by females in both
treatments was also similar across common garden generations.

Discussion
Our results provide novel experimental evidence that the spatial
sorting of alleles can, on ecological timescales, generate
accelerated invasions via the rapid evolution of dispersal ability.
Most studies of rapid evolution during biological invasion have
focused on adaptations to novel environmental selective pressures
and their potential to promote invasiveness35–37. Importantly, we
find an influence of evolution on invasion dynamics even in
homogeneous landscapes, absent environmental filters, because
space per se is an evolutionary agent. These experiments are
among the first to validate a wealth of theoretical research on the
eco-evolutionary dynamics of range expansion11,12,14,15,17,20,38,
but also paint a more complex picture than is currently
appreciated. Not only did we detect a signature of evolutionary
acceleration despite intrinsic variability in spread, we also found
that evolution was a source of that variability. In fact, the
evolutionary effect on variability in spread far exceeded the effect
on the mean.

Evolved differences in dispersal kernels of sorted and shuffled
invasions were consistent with their contrasting spread dynamics:
descendants from spatially sorted invasions exhibited kernels with
greater means (in females) and longer tails (in males) compared
with descendants from shuffled invasions, which would
increase the probability of long-distance dispersal events. Since

we observed no differences in pre-invasion dispersal kernels, the
treatment-specific differences in post-invasion kernels reflect
evolutionary divergence that developed during range expansion.
Furthermore, the post-invasion common gardens showed no
difference in low-density reproductive rate between treatments.
This leads us to conclude that, while evolution of the reproductive
rate may accompany evolution of dispersal during range
expansion13,15, the faster and more variable spread of spatially
sorted invasions that we observed was due primarily to rapid
evolution of dispersal ability with little contribution of the
reproductive rate. Given the relatively short timescale and modest
population sizes of our experiment, evolutionary changes in
dispersal were likely caused by the redistribution of standing
allelic variation rather than novel mutations.

We hypothesize that ‘gene surfing’ is a likely mechan-
ism24,32,39–42 by which spatially sorted invasions exhibited
amplified variance in spread dynamics11. Gene surfing is a
drift-like process where alleles initially present at the leading edge
of an incipient invasion can become fixed because of the serial
founder events that are characteristic of an expanding invasion
wave. Much like genetic drift, gene surfing can cause allele
fixation at expanding fronts even in homogenous, non-selective
environments24,32,39–41 and even if the allele is deleterious41,42.
The serial genetic bottlenecks that promote gene surfing (that is,
rare, leading edge colonists are likely the offspring of leading
edge colonists from the previous generation) were likely
to be especially influential in our experimental invasions, where
vanguard patches were often colonized by one or two individuals.
Although the densities of leading edge patches were similar
between our treatments (Supplementary Table 8), gene surfing
would have been suppressed by the shuffle treatment along with
the directional influence of spatial selection, since shuffling brings
a new, random set of alleles to the invasion front in each
generation.

The stochastic nature of gene surfing means that each
realization of range expansion can propagate a unique allelic
composition even if initiated from a common source pool, as in
our experiments43. Indeed, our common garden results reveal not
only increased dispersal distance, on average, in spatially sorted
invasions but also elevated among-replicate variance in dispersal
(in males). Furthermore, comparison of pre- and post-invasion
dispersal kernels shows that some spatially sorted replicates show
strong evolved increases in dispersal while other replicates show
weaker evolved decreases in dispersal (Supplementary Fig. 8),
consistent with increased mean and among-replicate variance.
We hypothesize that the net effects of spatial evolutionary
processes reflect a balance of directional spatial selection and
stochastic gene surfing; these forces resulted in dispersal kernels,
and consequently invasion speeds, that were not only greater, on
average, but also more variable.

Our results accompany a recent burgeoning of experimental
tests of theory for spatial sorting and its influence on invasion
dynamics16–18. Collectively, these studies present some coherent
patterns of evolution during range expansion, particularly the
result that spatial sorting can generate evolutionarily accelerated
invasions, even in homogenous environments. However,
disparities between these studies make it clear that invasion
context—the stage on which these evolutionary processes play
out—is critically important for determining the outcome of
evolution and its ecological consequences. While two new studies
(including ours) with sexually reproducing organisms indicate
that evolution drives increased variance in invasion dynamics18,
other recent work with asexually reproducing plants found the
opposite: evolution reduced variance across invasion replicates17.
The difference in breeding systems may explain this disparity,
since the variance-promoting effects of gene surfing are likely less
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Figure 4 | Comparison of post-invasion reproductive rates. Tukey

boxplots showing the number of offspring per female in spatially sorted

(red solid boxes, closed circles) and shuffled (blue dashed boxes, open

circles) replicates, following one generation in a common environment

(nine replicate populations per treatment, 11 females per replicate,

N¼ 198). Results from a second generation in a common environment were

similar (Supplementary Fig. 7). Model selection using generalized linear

mixed models (GLMMs) suggests no difference between treatments

(model selection results in Supplementary Table 7). Points show raw data,

and are jittered along the x axis to reduce overlap.
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prominent in populations without genetic recombination.
Instead, for invasions consisting of mixtures of asexual lineages,
the ‘fastest’ lineage would likely dominate the expanding fronts,
such that the directional and homogenizing influence of spatial
selection is the dominant evolutionary force. Furthermore, while
theory suggests that spatial evolutionary processes should result
in the enhancement of ‘r-selected’ traits, such as increased
fecundity or faster life histories13, evidence from recent
experiments and retrospective studies is mixed. Specifically,
studies where spatial sorting is thought to promote dispersal
ability have shown fecundity to be reduced18,23 or unchanged
(our study), although at least one study found evidence for the
evolution of a faster life cycle22. One possible explanation for
these mixed results is genetic constraints, such as correlations
between dispersal and other life history traits, which are currently
unaccounted for in most studies; these may have important
effects on evolutionary outcomes25,44–46, a hypothesis that merits
further study.

Lastly, it has been suggested that there may be fundamental
limits on our ability to predict invasive spread because accounting
for ecological sources of stochasticity fails to capture the total
observed variability9. Our results suggest that evolutionary
sources of stochasticity may be the missing piece of this puzzle
and offer a more optimistic assessment of predictive capacity.
While accurate point estimates for the pace of invasion will
likely remain elusive, accounting for evolutionary processes in
ecological forecasts can yield improved uncertainty windows for
the distribution of possible invasion outcomes. With more
accurate bounds on predicted invasion outcomes, natural
resource managers may be better equipped to prepare for best-
and worst-case scenarios of expansion by native or exotic species.

Methods
Establishing the source population. Laboratory populations, such as those of
C. maculatus used here, are typically highly inbred and the potential loss of genetic
variation due to extensive inbreeding may be unrepresentative of natural popula-
tions. We minimized the influence of historical inbreeding on our experiment by
randomly selecting females (N¼ 20) and males (N¼ 20) from each of 10 inbred
lineages, originally isolated from different parts of the species’ global distribution47,
to create a well-mixed and genetically diverse founding population of 400 beetles
with a 1:1 sex ratio. Beetles from different lineages are known to readily interbreed
and create viable offspring48,49. We provided virtually unlimited resources (B400 g
black-eyed peas; Vigna unguiculata unguiculata, Fabaceae) for 10 generations
to allow for population growth, genetic admixture and to reduce linkage
disequilibrium50. Beetles were maintained in a climate-controlled growth chamber
on a 16:8 photoperiod at 28 �C.

Invasion experiments. We discretized the beetle life cycle into a 30-day local
demography phase (mating, oviposition, development and eclosion) and a 2-h
dispersal phase. We initiated replicate invasions in the dispersal phase by randomly
selecting 25 males and 25 females from the source population and introducing
them into a 1D landscape consisting of 144 patches (Petri dishes), each containing
seven black-eyed peas, with dispersal connections (1/40 0 length of 1/80 0 tubing)
between adjacent patches. The 50 founding beetles were introduced at equal initial
densities to the first five patches (five males and five females per patch). After 2 h of
dispersal, the connecting tubes between patches were blocked with pipe cleaners,
and the numbers of females and males in each patch were counted. For each
invasion replicate assigned to the shuffle treatment, we then mixed all beetles into a
‘global’ pool and randomly redistributed them back on the landscape, maintaining
the density and sex ratio of each patch exactly as we found them. For spatially
sorted (control) replicates, beetles were allowed to mate and oviposit in the patches
to which they dispersed. Since replicates were manipulated differently depending
on treatment, experimenters were not blind to treatment. Post-dispersal, all beetles
in each patch were transferred to unconnected Petri dishes, each containing seven
black-eyed peas (B1.4 g) for the demography phase of the life cycle. Limiting the
number of black-eyed peas to seven imposed resource limitation, resulting in
negative density-dependent population growth and a carrying capacities of roughly
40 beetles (Fig. 1). Therefore, in addition to spatial selection on dispersal ability, we
hypothesized that beetles at low-density invasion fronts may be under natural
selection for increased fecundity.

After 30 days, offspring were transferred back to their ‘home’ location in the
landscape (the patch where their mother laid them), beginning the dispersal phase
of the next generation. This sequence of dispersal, counting/sexing, shuffling (if

applicable) and local demography was repeated for 10 generations. To keep the
experiment logistically manageable, we removed patches from the trailing edges of
the invasions; we applied the rule that only offspring from the leading 60 patches
of each replicate were allowed to participate in the next generation10,34. For most
replicates, we began removing trailing patches after the fifth generation. We also
discarded any beetles that dispersed more than two patches to the left of patch 0,
and only tracked the right-spreading invasion wave10,34.

Owing to the large number of beetles in each replicate, it became unfeasible to
sex beetles in the invasion core after the sixth generation. Consequently, for
generations seven through ten, we only sexed beetles on the expanding end of the
invasion wave, using the following method. Starting at the farthest occupied patch
and moving towards the range core, we sexed beetles in every patch until there
were a total of three patches that contained 40 or more beetles; after this patch, we
continued counting beetles, but no longer identified their sex. We chose a density
of 40 beetles because that roughly represents the local carrying capacity, given the
seven-bean resource environment (Fig. 1), and we chose three patches to ensure
that we were safely into the core of the invasion before disregarding sex. In
deep-core patches where sex ratios were not measured, we returned the required
numbers of beetles from the global pool irrespective of sex. Because sex ratios are
roughly constant in the invasion core10, this methodology preserved the average,
unmeasured sex ratio.

For each replicate, we measured invasion extent in each generation as the
distance from the starting patch (patch 0) to the farthest patch that contained at
least four beetles. We chose a threshold density of four beetles because it limited the
influence of observation error (e.g., failing to detect patches that contained single
beetles). We do not assume that the leading four-beetle patch contains a viable
population; the density threshold simply represents a marker with which to
measure displacement of the invasion from one generation to the next10,34.
Additional analyses showed that our results were not sensitive to the threshold
of four beetles; since we are attempting to measure a travelling wave, any density
that consistently corresponds to a location on the wave’s leading edge should yield
similar results10,34.

To evaluate the influence of the shuffle treatment on spread dynamics, we
performed model selection on the spatial spread data in two steps. First, we sought
to determine the model that best described how treatment affected mean invasion
extent over time. We used a first-order autoregressive (AR(1)) linear mixed model
to account for the fact that invasion extents within replicates were spatiotemporally
autocorrelated. The invasion extent of replicate i in treatment j and generation
k was modelled according to:

Eijk � Normal mijk; s
2
W

� �
ð1Þ

mijk ¼ b0 þ bTRTTRTj þ bGEN þ gið ÞGENk þbTRT�GENTRTjGENk þ bAREijðk� 1Þ

ð2Þ

gi � Normal 0; s2
A

� �
ð3Þ

where mijk is the expected invasion extent and s2
W is residual variance by which

each replicate deviates from its expected value (hereafter ‘within-replicate
variance’). b0 is the model’s intercept, bTRT represents the effect of the shuffle
treatment, bGEN represents the slope of the invasion extent with respect to
generation (that is, invasion velocity), bTRT�GEN allows the slope of invasion
extent over time to vary between treatments and bAR is the autoregressive term that
accounts for the invasion extent in the previous generation. A replicate-specific
random effect in invasion velocity, gi, is centred at the mean velocity bGEN and has
among-replicate variance s2

A. We also tested for nonlinearly increasing invasion
speeds by testing models that accounted for the square of generation
(Supplementary Table 1). To identify the best model for the mean invasion extent,
we fit all possible combinations of fixed effects in candidate models using the ‘nlme’
package51 in R, and used AIC to select the best-fitting model (Supplementary
Table 1). Visual inspection of the residuals confirmed that the model specification
was appropriate for our data set.

Once we determined the best-fit model for mean invasion extent, we tested
whether including treatment-specific within- and/or among-replicate variances
improved fit, by allowing s2

W and s2
A to vary between treatments. We considered

models where both, either or neither variance term was treatment-dependent,
yielding four models in total, using the fixed-effect linear predictors identified by
the model selection above. The model formulation was similar to equations 1–3 but
expanded to include the possibility of treatment-specific variances. The full model
was:

Eijk � Normal mijk; s
2
Wj

� �
ð4Þ

mijk ¼ b0 þbTRTTRTj þ bGEN þ gij

� �
GENk þ bTRT�GENTRTjGENk þ bAREijðk� 1Þ

ð5Þ

gij � Normal 0;sAj
2

� �
ð6Þ

We fit candidate models using Stan52 in R (ref. 53) and calculated the WAIC, using
the ‘loo’ package54, to determine the best-fitting model55 (Supplementary Table 2).
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As an additional test to determine whether spatial selection generated increased
variance in invasion extent over time, we calculated the coefficient of variation
(CV) within each treatment, across generations. In addition to the linear mixed
model analysis above, calculating the CV is another method to estimate whether
the increase in variance that we observed was independent of the increase of the
mean (Supplementary Fig. 2).

Common garden experiment. We used a ‘common garden’ approach to test for
trait evolution after 10 generations of range expansion. After the dispersal phase of
the 10 th generation, we removed the farthest 10 male and 10 female beetles from
each replicate and placed them into common garden environments with 200 g
black-eyed-peas—virtually an unlimited amount of resources. We did not perform
the shuffle manipulation on the 10th generation of invasion, so the beetles that
we sampled arrived at the invasion fronts by their own means. Each replicate-
specific common garden was placed in an incubator under standard conditions
(16:8 photoperiod at 28 �C), where beetles were able to mate and reproduce. After
30 days of development, we measured dispersal and lifetime-reproductive-success
for a random sample of the offspring that emerged from the common garden. In
addition to measuring traits in these offspring, we randomly selected 10 males and
10 females from each replicate to create a second generation of replicate-specific
common garden populations, reared under identical conditions, and measured
traits in the offspring from those populations.

Dispersal trials took place in the same 1D, homogenous environment in which
we conducted the invasion experiments. Resources were evenly distributed among
all patches (seven black-eyed peas per patch). Since dispersal might be affected by
local demographic conditions, we held the number of dispersers and their sex-ratio
constant during dispersal trials; we performed 3 dispersal trials for each replicate,
using 15 males and 15 females in each trial for a total of 45 dispersal observations
per sex per replicate. For each trial, beetles were placed in a common starting patch
and allowed to disperse for two hours, as in the invasion experiment. During the
dispersal period, arrays were placed in incubators under our standard conditions.
After two hours, the net displacement (number of patches) of each male and female
was recorded. We performed the same dispersal measurements for both common
garden generations.

To estimate fertility, we randomly sampled 11 females from each common
garden replicate, and placed each female in a Petri dish containing 25 g black-eyed
peas and a single male. Females were allowed to mate and oviposit until they died.
After 30 days of incubation, we counted all fully-eclosed adult beetles as the
lifetime-reproductive-success for each female. We repeated the fertility
measurements for two common garden generations.

We tested for evolved differences in dispersal distances between common
garden populations of control and shuffle replicates in two ways. First, we
compared the empirical cumulative distribution functions (ecdf) for both
treatments, combining all data within treatments, using a discrete Kolmogorov–
Smirnov test56,57 (Fig. 3). This analysis provides a simple test of treatment effects
without needing to specify the probability distribution of dispersal distance.
However, this test does not include effects of sex or common garden generation
and it disregards the non-independence of multiple observations within invasion
replicates.

For a more thorough follow-up analysis, we modelled dispersal distance as a
random draw from a discrete probability distribution (that is, a dispersal kernel). In
preliminary analyses that compared the fits of different discrete distributions to the
dispersal data, we found that a Poisson-inverse Gaussian (PIG) distribution58,59,
which allows for a wider range of kurtosis than the Poisson or negative binomial
distributions, provided the best fit. The PIG is a two-parameter distribution
described by a mean x and shape parameter o, with variance given by x(1þ x/o);
it is a special case of the Sichel distribution58,59 with g¼ � 0.5. We analysed female
and male dispersal kernels separately since they are known to differ10 and may
have responded differently to spatial selection. The full model for dispersal distance
(d) of individual i from replicate j, treatment k, generation l was:

dijkl � PIG xjkl ;ojkl
� �

ð7Þ

logðxjklÞ ¼ a0 þ aTRTTRTk þ aCGGCGGl þ aTRT�CGGTRTkCGGl þ ejk ð8Þ

logðojklÞ ¼ b0 þ bTRTTRTk þbCGGCGGl þbTRT�CGGTRTkCGGl þ gjk ð9Þ

ejk � Norm 0; s2
xk

� �
ð10Þ

gjk � Norm 0; s2
ok

� �
ð11Þ

where a0 is the intercept for mean xjkl, aTRT is the effect of treatment k, aCGGis the
effect of common garden generation l, and aTRT�CGG represents the interaction
between treatment and common garden generation. The b parameters in
equation 9 that model the shape parameter ojkl have identical notation. The
random effect terms for replicate j treatment k are ejk and gjk, and these are
normally distributed with treatment-specific variances s2

xk
and s2

ok
, respectively.

We compared nested versions of the above full model (Supplementary Tables 4
and 5), considering effects of treatment and generation on neither or both kernel
parameters. In addition to models with treatment-specific variances in random

effects (e.g., s2
ok

), we also considered models with no effect of treatment on the
replicate variances. We fit all combinations of fixed and random effects using
Stan52 in R (ref. 53), and calculated WAIC using the ‘loo’ package54 to select the
best-fitting model (Supplementary Tables 4 and 5; Supplementary Figs 4 and 5).

We tested for evolved differences in beetle fertility by fitting the total number of
adult offspring from each female to a linear model with a negative binomially-
distributed response, and tested for effects of treatment and common garden
generation. The total number of offspring from female i in replicate j, treatment k,
generation l was:

offspringijkl � NegBinom mjkl ;f
� �

ð12Þ

log mjkl

� �
¼ b0 þbTRTTRTk þ bCGGCGGl þ bTRT�CGGTRTkCGGl þ ej ð13Þ

ej � Norm 0;s2
� �

ð14Þ

We allowed fixed and random effects to modify mean fertility; the overdispersion
parameter f was fit as a constant. Replicate-specific random effects (ej) were
modelled as being normally distributed about 0. We fit all nested versions of the
above model using the glmmADMB package60 in R and used AIC to select the
best-fitting model (Fig. 4, Supplementary Fig. 7 and Supplementary Table 7).

Testing for additive genetic variance in dispersal distance. After our source
population had gone through six generations of genetic admixture but before the
invasion experiment, we conducted a nested paternal half-sib breeding experi-
ment30,61 to test whether there was additive genetic variance for dispersal ability.
The breeding design requires that each male (sire) be mated with multiple females
(dams); the result is a nested pedigree, where all full siblings (offspring from the
same sire and dam) are a subset of half-siblings (offspring from the same sire but
different dams). Using this nested design, it is possible to estimate additive genetic
variance by estimating the variance among half-sibling families (that is, the sire
variance), which is proportional to the additive genetic variance30. We isolated
virgin adult beetles (N¼ 17 males, 51 females) into breeding groups containing one
male and three females (N¼ 17 groups yielding 51 full-sib families). After 48 h of
mating, each female was transferred to a Petri dish containing B9.5 g black-eyed
peas and permitted to oviposit for 24 h.

Offspring began to eclose after B29 days of incubation and dispersal trials
began within 48 h of emergence. Since dispersal might be affected by local
demographic conditions, we held the number of dispersers, their sex ratio and
relatedness constant during dispersal trials: trials included five females and five
males from full-sibling groups. Occasionally, it was not possible to disperse five
females and five males from the same full-sibling group because of asynchronous
maturation, in which case we supplemented trials with marked males and females
from the source population to reach the requisite numbers; however, all trials
contained at least three female and two male full siblings, and only the data from
full siblings were used in analysis. We ran dispersal trials opportunistically, as
beetles emerged, in an effort to collect as much data as possible. The total number
of offspring that emerged varied among full-sib families, with some families
yielding no offspring at all. This resulted in unequal numbers of replicate dispersal
trials among full-sib families (min¼ 0, max¼ 9, median¼ 2), but our statistical
approach is robust to these differences.

For each trial, beetles were placed in a common starting patch and allowed to
disperse for 2 h, as in the invasion experiment. During dispersal, arrays were placed
in lighted growth chambers (28 �C). After 2 h, the net displacement (number of
patches) of each male and female from the starting patch was recorded and used to
estimate sex-specific dispersal kernel estimates for each full-sib family.

We used a hierarchical model selection approach to determine whether or not
accounting for sire variance significantly improved the fit of dispersal kernels to the
data30,61. We modelled net dispersal distance (d) of sibling i from dam j and sire k
as being drawn from the PIG distribution58,59, such that:

dijk � PIG xjk;o
� �

ð15Þ

log xjk

� �
¼ a0 þ ejk ð16Þ

logðoÞ ¼ b0 ð17Þ
where a0 is the intercept for mean xjk, b0 is the intercept for shape parameter o and
ejk is a random effect that allows for family-specific variation in kernel mean
parameter values. We did not model family-specific random effects in dispersion
parameter o because some families had very few dispersers (minimum number of
dispersers¼ 4, maximum¼ 64, median¼ 27), which made it difficult to estimate
family-specific dispersion and caused model convergence failures. However, we
achieved reliable convergence when modelling random effects in xjk only. Finally,
since previous studies have detected sex differences in dispersal distance for
C. maculatus10, we analysed male and female dispersal kernels separately.

We considered two competing models in which sire variance was either
included or not; these two models differed only in the way random effects were
modelled. When ejk accounted for sire variance (and thus additive genetic
variance), its error was modelled as a nested random effect, with the random effect
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of dam j nested within the random effect of sire k (Sk), such that:

ejk � Norm Sk;s2
D

� �
ð18Þ

Sk � Norm 0; s2
S

� �
ð19Þ

The variance term s2
D represents the among-dam variance (maternal effects), and

the variance term s2
S represents the variance among sires and is proportional to the

additive genetic variance50.
For the alternative model without additive genetic variance in the dispersal

kernel, family-specific random effects were modelled as:

ejk � Norm 0; s2
D

� �
ð20Þ

Thus, both candidate models included variance among dams and differed only in
the presence/absence of sire effects.

We fit both candidate models for males and females using Stan52 in R (ref. 53),
and used the WAIC to determine the best-fitting model54,55 (Supplementary
Table 3 and Supplementary Fig. 3).

Comparing pre- and post-invasion dispersal kernels. We fit dispersal kernels to
spread data from the first generation of our experimental invasions. The goal of this
analysis was twofold. First, we tested whether there were any treatment-specific
differences in dispersal at the beginning of the experiment; because replicate
invasions were drawn from a common source population and randomly assigned
to treatments, we expected control and shuffle dispersal kernels to be similar at the
start of range expansion. Second, we compared the change in the mean dispersal
distance from the beginning to the end of the experiment, which identifies the
magnitude and direction of evolutionary change in dispersal ability at the level of
individual invasion replicates.

At the start of the experiment, invasion replicates were initialized with five male
and five female beetles in each of the first five patches of the dispersal array. Since
beetles were simultaneously dispersing from multiple patches and not released
from a single point, we could not estimate dispersal kernels using the same
approach that we used in the common garden experiment. Instead, we estimated
dispersal kernels from the first generation by fitting density data to mixture
distributions composed of multiple dispersal kernels. To calculate these mixtures,
we assumed that, within a replicate, beetles in each patch dispersed according to the
same PIG dispersal kernel. We defined this kernel, K, as the probability mass
function (pmf) of a 1D PIG distribution that is transformed to be symmetric about
0 and scaled so that it sums to 1:

K x x;ojð Þ ¼ 1
2

PIG xj j x;ojð Þ ð21Þ

where K gives the probability that an individual travels x patches, x and o are the
mean and shape parameters of the PIG distribution, respectively, and 1/2 is a
scaling factor to ensure that K sums to 1.

Next, we defined the mixture distribution M as a mixture of kernels K, each
centred on a different starting patch and scaled so that M sums to 1:

M x N; x;ojð Þ ¼ 1
N

XN

i¼0

K x� ið Þ x;ojð Þ ð22Þ

where N is the number of contiguous patches that beetles dispersed from (for our
experimental design N¼ 5). Note that Equation 8 assumes that there are initially
equal beetle densities in each starting patch, which was the case in our experiment.
This mixture distribution enables us to use invasion-wave data (patch-specific
densities following the first bout of dispersal, but prior to reproduction) to infer the
dispersal kernel that generated the wave shape.

We tested whether this method could accurately estimate the PIG parameters x
and o using simulated data for a region of parameter space appropriate for our
system, and were able to reliably recover the parameters of the underlying kernels.
We then fit dispersal data from the first generation of the experiment. We
estimated male and female kernels separately, as we did when estimating dispersal
kernels from the common garden experiments.

First, we tested for any treatment-specific differences in x, o and random effect
variances, just as we did when testing for dispersal differences in the common
garden experiment. The models converged well and gave parameter estimates on
scales comparable to parameter estimates from our common garden experiment.
We fit candidate models using Stan52 in R (ref. 53), and used WAIC to determine
the best-fitting model54,55 (Supplementary Table 6 and Supplementary Fig. 6).

Second, we compared the mean dispersal distance (x) between the first bout of
dispersal (pre-invasion) and the first generation of the common garden experiment
(post-invasion) for both treatments (Supplementary Fig. 8). For the ‘post-invasion’
estimates, we only considered the first common garden generation, as data from
the second generation were qualitatively similar (Supplementary Tables 4 and 5;
Supplementary Figs 4 and 5).

Although the results from these analyses are consistent with our other findings
and theoretical expectations, limitations of this analysis warrant consideration.
Notably, the dispersal conditions of the first generation were different from the
conditions of the common garden experiment, and the first-generation kernels
were estimated without population-level replication. While our multiple lines of
evidence from disparate sources demonstrate that evolution resulted in divergent

dispersal ability, we suggest that readers interpret results from these first-
generation dispersal kernel analyses with appropriate caution.

Comparing invasion bottleneck size between treatments. We measured
population bottleneck sizes each generation, for each replicate, to determine
whether the observed differences in invasion speeds could be due to treatment-
specific differences in population bottlenecks. We estimated bottleneck size as the
number of female beetles in the farthest patch of the expanding invasion wave,
since only patches that contain females will make genetic contributions to future
generations. We assumed that the number of leading-patch females was Poisson-
distributed, and visual inspection confirmed that this choice of distribution was
appropriate for the data. We performed model selection to determine whether
treatment, generation or an interaction between treatment and generation were
strong predictors of bottleneck size. We modelled bottleneck size Bjkl for replicate
j undergoing treatment k in generation l as:

Bjkl � Poisson ljkl
� �

ð23Þ

ljkl ¼ b0 þbTRTTRTk þ bGENGENl þ bTRT�GENTRTkGENl þ gj ð24Þ

gj � Normal 0; s2
� �

ð25Þ

where ljkl is the expected bottleneck size, b0 is the model’s intercept, bTRT repre-
sents the effect of the shuffle treatment, bGEN represents effect of generation and
bTRT�GEN represents the interaction between treatment and generation. A repli-
cate-specific random effect in bottleneck size, gj, is centred at 0 and has variance s2.
We fit all possible combinations of fixed effects in candidate models using the
‘lme4’ package62 in R, and used AIC to select the best-fitting model
(Supplementary Table 8).

Data availability. The data that support the findings of this study are available in
the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.13410.
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