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Abstract

Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously

revealed a dynamic exchange between partially closed and open conformations of the

SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simu-

lations, with the electrostatic effects of Manning counter-ion condensation and explicit mag-

nesium ions are employed to calculate the folding free energy landscape of the SAM-II

riboswitch. We use this analysis to predict that magnesium ions remodel the landscape,

shifting the equilibrium away from the extended, partially unfolded state towards a compact,

pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS

experiments, at different magnesium ion concentrations, quantitatively confirm our simula-

tion results, demonstrating that magnesium ions induce collapse and pre-organization.

Agreement between theory and experiment bolsters microscopic interpretation of our simu-

lations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive

to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II ribos-

witch allows rapid detection of ligand with high selectivity, which is important for biological

function.

Author summary

The presence of positively charged metal ions is essential to maintain the structural fold

and function of RNA. Among different metal ions, magnesium is particularly important

for the stability of RNA because it can efficiently support a close assembly of negatively

charged phosphate groups in an RNA fold. The SAM-II riboswitch is an example of a clas-

sical pseudoknot fold, which binds S-adenosyl methionine, stabilizing an alternate folded

form to inhibit gene expression. In our early 13C- and 1H-chemical exchange saturation

transfer (CEST) experiments, we found a conformational transition between a minor,
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partially closed and a major, open state conformation in the absence of ligand. Our CEST

experiments at different magnesium concentrations now suggest that magnesium ions

can induce a conformational pre-organization in the apo SAM-II riboswitch, which is

expected to facilitate ligand binding. To understand the microscopic details of this magne-

sium-induced transition, we perform all-atom structure-based molecular simulations

including electrostatics and explicit magnesium ions. Our free energy calculations reveal

that the partially closed pre-organized state is further stabilized with increasing magne-

sium concentration. This is in excellent agreement with our 13C-CEST profile, SAXS, and

size-exclusion chromatographic data, and with recent single molecule FRET experiments.

Our results suggest that a sufficiently high concentration of magnesium is essential to pre-

organize the apo SAM-II riboswitch.

Introduction

Non-coding RNAs are currently thought to account for over 75% of the human genome [1]. In

bacteria, non-coding RNAs play important roles in gene regulation. One such class of RNAs,

riboswitches, regulates metabolite production. Here, a single RNA sequence folds into one of

two or more mutually exclusive folds depending on the metabolite concentration [2,3]. In

some cases, such as the S-adenosylmethionine-I (SAM-I) riboswitch, the RNA contains a tran-

scriptional terminator that forms when ligand is present, in effect silencing genes important

for ligand production [4–6]. When the ligand is not present, the terminator does not form,

allowing gene expression, and therefore ligand production, to continue efficiently. In other

cases, such as the SAM-II riboswitch, ligand binding may lead to sequestration of the Shine/

Dalgarno sequence, likely blocking ribosome binding and, as a consequence, protein synthesis

[7]. While these examples of ligand-dependent secondary structure switches have been known

for some time, a detailed thermodynamic understanding at the atomistic level, including the

indispensable effect of the RNA’s ion-atmosphere, has not been achieved. In recent years,

riboswitches have become canonical systems for studies of diverse RNA behaviors, as they

possess quintessential characteristics of many RNA systems: ligand binding, Magnesium ion

(Mg2+) sensitivity, conformational changes, secondary structure remodeling, and regulatory

functions. Chemical footprinting, NMR, small-angle X-ray scattering (SAXS) and single mole-

cule FRET techniques are being exploited to elucidate the folding kinetics, thermodynamics

and the magnesium ion sensitivity in RNA systems such as the TPP riboswitch [8], glycine-

dependent riboswitches [9], different variants of P4-P6 RNA [10–12] and P5abc subdomain of

the Tetrahymena group I intron ribozyme [13]. Other work focuses on more complex func-

tions, such as splicing and ligand recognition and their associations with proteins or different

metabolites [14,15]. Success in understanding the structural, dynamical and functional aspects

of riboswitch systems requires an integrated experimental and theoretical approach. Tradi-

tional crystallographic techniques produce static snapshots of the riboswitch. SmFRET, NMR,

and SAXS methods obtain kinetic information and overall distributions of conformations.

Molecular simulation allows one to integrate disparate experimental data into a single coher-

ent picture, characterizing transitions in atomistic detail and the free energy landscape with

fine resolution. A large number of riboswitches have been crystallized and have also been

investigated via fluorescence and single molecule techniques [16–28].

Molecular simulations have also been used to study a number of riboswitches, including

but not limited to the SAM-I, SAM-II, pre-Q, and adenine riboswitches [29–32]. Some of

these studies replaced the essential atmosphere of divalent Mg2+ ions with other, monovalent
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ions. Others used a repulsive Debye-Hückel interaction between the phosphate groups of

the RNA. Such implicit treatments of the ions, however, neglect important near-field

effects that occur inside the core of the riboswitch, where the ions are strongly coupled to the

RNA.

Although the role of Mg2+ in stabilizing the RNA tertiary structure has long been realized

[33,34], the molecular basis of ion-RNA interactions, in terms of structure and function, is not

well understood. In a pioneering study, Draper and co-workers distinguished three classes of

ion environments: (i) the diffuse ions, which are not restrained to any particular region, (ii)

water-surrounded ions separated from the RNA by a single hydration layer, which we call

outer-sphere ions, and (iii) chelated ions in the inner sphere, which form direct contacts with

at least two different phosphate groups of the RNA [34,35]. While the potential role of chelated

ions has been emphasized in many studies, recent work using explicit solvent molecular

dynamics instead highlights a dense layer of outer-sphere Mg2+ ions, which are primarily

responsible for anchoring the RNA structure [36]. These outer-sphere Mg2+ ions are only tran-

siently bound but nonetheless strongly coupled to the RNA dynamics. Such highly correlated

Mg2+ ions may even reside in the core region of riboswitch RNAs [36,37]. This dynamic cloud

of Mg2+ has also been simulated in all-atom reduced models that combine Manning theory

with a background of monovalent ions, represented by Debye-Hückel interactions [37,38].

In addition to these native basin simulations, studies of metabolite recognition and specificity

have also been initiated using conformational ensemble sampling, again in the absence of

Mg2+ ions [39].

While most riboswitch studies have focused on riboswitches in the 5’-UTR of mRNA that

control transcription, less attention has been paid to translational control by riboswitches

through ligand-dependent sequestration of the ribosome binding site (i.e., the Shine/Dalgarno

sequence). The SAM-II riboswitch is one such relatively small RNA element which regulates

methionine and SAM biosynthesis. A single hairpin, classic H-type pseudoknot and triplex

interaction near the ligand binding site make this RNA an interesting system to study RNA

control over the translation initiation process [21,40–44].

A previous single molecule fluorescence resonance energy transfer (smFRET) [21] imaging

study sheds light on the dynamic nature of ligand-free SAM-II riboswitch, which becomes

conformationally restrained upon ligand binding. The flexibility of such highly transient con-

formations is tuned to ensure a viable time scale for conformational transitions in the absence

of ligand. More rapid sensing could, however, be achieved if the riboswitch adopted a binding

competent conformation in the ligand-free state. Mg2+ ions can act as effective anchors, aiding

in the preservation of the structural integrity of the RNA. The emergence of two distinct FRET

configurations in the presence of 2 mM Mg2+ in the ligand free system suggests that Mg2+ has

the ability to compress the RNA structure, in such a way that it might pre-organize the RNA to

form a binding competent conformation. In a series of small angle X-ray scattering (SAXS)

experiments, we observed an analogous signature of Mg2+ induced structural collapse that can

facilitate subsequent ligand binding [40]. Our studies provided direct insight into the global

rearrangement induced by both Mg2+ and ligand. The compaction of RNA by Mg2+ was also

studied by size-exclusion chromatography (SEC): changes in the measured elution volume

suggested a decrease in the particles’ hydrodynamic radius [40].

Pre-organization by Mg2+ has also been observed in other riboswitches [21,28,45]. In the

SAM-I system, our biochemical studies have shown that addition of Mg2+ yields the pre-

organized partially folded state. In addition, we have shown that, in the absence of Mg2+, the

fully folded state cannot be achieved, even at high ligand concentrations [23,28,46]. The pres-

ence of both, Mg2+ and ligand are required for the stabilization of the fully folded ligand-

bound configuration.

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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While previous smFRET and SAXS data revealed that ligand free RNA undergoes substan-

tial structural changes upon variation of Mg2+ concentration, these structural changes often

remained undetected by traditional NMR and X-ray crystallography techniques because of the

transient nature and low population levels of such intermediates [47]. The newly developed

Chemical Exchange Saturation Transfer (CEST) measurements are now capable of probing

these sparsely and transiently populated RNA conformations. Earlier we studied NMR dynam-

ics of the SAM-II system with this new method [47]. The data indeed confirmed that SAM-II

riboswitch can access a sparsely populated but bound-like pre-organized state even in the

absence of ligand [40,47].

In the present study, we performed molecular simulations to predict the effect of Mg2+ on

the conformational landscape of the SAM-II riboswitch. We then tested these predictions with
13C-CEST data. Analysis of our simulations yields the free energy landscape of the SAM-II

riboswitch, the effect of Mg2+ on this landscape and insight into the microscopic origins of

these effects. More specifically, reappraisal of the 13C-CEST data for the ligand-free SAM-II

riboswitch at different Mg2+ concentrations enabled us to probe the influence of Mg2+ on

sparsely populated bound-like pre-organized states. We then revisited earlier smFRET, SAXS

and SEC elution profiles and compared with our present equilibrium simulation results to

integrate these data into a unified scenario of Mg2+-induced collapse. We calculated the free

energy landscape of the SAM-II riboswitch using our recently developed all-atom structure-

based model (SBM) that includes explicit Mg2+ ions and the effects of Manning condensation

and Debye-Hückel Potassium and Chloride interactions. We specifically predict that, as Mg2+

concentration is increased from 0.25 mM to 2 mM, the SAM-II riboswitch collapses from an

extended, partially unfolded state to a highly compact, pre-organized state, in agreement with

the 13C-CEST studies, where we observe a shift in population towards a bound-like conforma-

tion. In addition, our simulations characterize this collapse transition in terms of the radius of

gyration as a function of Mg2+ concentration, which is qualitatively similar to previous SAXS

measurements. This agreement gives us confidence in the microscopic details of our simula-

tions, showing that the triplex formation between helix P2b and loop L1 plays an important

role in the collapse process.

Results

Simulations of the SAM-II riboswitch were performed with and without SAM at different

Mg2+ concentrations. The simulation started from the crystal structure of SAM-II riboswitch

(pdb accession code: 2QWY) [20]. A global view of this structure and details of the secondary

structure are presented in Fig 1. As ligand-free conformations of SAM-II are still under inves-

tigation in experiments, we explore the full folding free energy landscape both in the presence

of ligand (SAM) and in the absence of ligand to characterize the entire accessible conforma-

tional space. To cover the folding landscape, we employed umbrella sampling over the reaction

coordinate, Q, which is the fraction of intra-molecular native contacts, present in both the free

and bound states, formed by the riboswitch.

Detailed agreement between 13C-CEST, smFRET, SAXS, SEC elution

profile and generalized Manning model corroborates pre-organization by

Mg2+

As mentioned earlier, CEST experiments are able to capture transiently populated dynamic

conformations [13]. This strategy was applied to the ligand-free SAM-II riboswitch in the pres-

ence of 0.25 mM and 2 mM Mg2+. The 13C-CEST profiles of the labeled ribose C1’ and base

C6 carbons of C43 were recorded at three different B1-fields (17.5, 27.9, 37.8 Hz) with a mixing

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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time of 0.3 s at 298 K [47]. We compare the data for 0.25 mM and 2 mM Mg2+ concentrations

at B1-field of 17.5 Hz (Fig 2a). The data were fit with a two-state model where the low popula-

tion of the partially closed state (peaks around 300 Hz spin-lock offset) appears to increase

with addition of 2 mM Mg2+. Consistent results were obtained from CEST profiles for other

B1-fields of 27.9 and 37.8 Hz (Fig S1 in the S1 Text). Trajectory plots of the fraction of native

contacts extracted from the generalized Manning equilibrium simulations of ligand-free

SAM-II at these two concentrations clearly show the hopping between different conformations

(Fig 2b). Furthermore, the dynamic transitions between the two major states (bound-like:

Q�0.9 and open: Q�0.7) visit native-like conformations (Fig 2c) more frequently at 2 mM

than at 0.25 mM Mg2+, as summarized in the corresponding contact histograms, P(Q)

(Fig 2d). Both CEST experiments and simulation data indicate that the equilibrium shifts

from the open conformations toward the native bound-like state as we increase Mg2+

concentration.

The signature of the existence of such Mg2+ induced bound-like states has also been

reported in previous smFRET experiments (Fig 2e) [22]. To support our observations we have

revisited some of these smFRET efficiency assessments [22] and compared them with theoreti-

cal FRET predictions obtained from our generalized Manning model simulations under simi-

lar buffer conditions. The equation used for theoretical FRET prediction is described in

section S1 in the S1 Text. We tracked the dynamics of positions 14 and 52, where acceptor

(cy5) and donor (cy3) fluorophore labels were placed in the smFRET experiments (Fig 2f).

Both experimental and simulation FRET confirm the coexistence of two states at 2 mM Mg2+

(Fig 2g) [22].

Previous SAXS data corroborates well the existing smFRET observations [22,40]. The SAXS

data also indicated both ligand and Mg2+ ions are required to effectively fold this riboswitch.

Fig 1. Secondary and tertiary structure of SAM-II riboswitch in ligand-bound state (pdb:2QWY). (a)

Sequence-aligned secondary structure of the SAM-II riboswitch where base pair and stacking interactions are

indicated. There are three helices and two strands highlighted with different colors. (P1: Orange, P2a: Red,

P2b: Blue, L1: Green, L3: Magenta). (b) Tertiary structure displays triple helix between helix P2b and loop L1.

doi:10.1371/journal.pcbi.1005406.g001

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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Fig 2. Detailed agreement between 13C CEST, smFRET, SAXS, and SEC elution profiles with the

generalized Manning model corroborates pre-organization by Mg2+. (a)-(d) Comparison between

CEST-NMR experiments and Manning model simulations. (a) 13C CEST profiles for C43-C6 of SAM-II

riboswitch in the ligand-free situation in the presence of two different concentrations of Mg2+ (black dots: 0.25

mM, green dots: 2.0 mM) at B1 field of 17.5 Hz. The population distribution involving two major states was

obtained by fitting each 13C CEST profile (solid lines) into a two-state model. (b) The fraction of native

contacts (Q) dynamics extracted from simulations indicate the transition between two major states at 0.25

mM. (c) Same as (b) for 2.0 mM Mg2+. (d) The fraction of native contact population histograms at these two

concentrations. (e)-(f) Steady state smFRET analysis from fluorescently labeled experiments and theoretical

prediction from simulations. (e) Experimental smFRET occupancy histogram in the presence of 2.0 mM Mg2+

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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To microscopically understand their mutual and stand-alone effects from the present simula-

tions, we studied the conformational differences of this riboswitch in four extreme buffer con-

ditions and compared our computational results with experimental SAXS data. For this

comparison, we extracted multiple snapshots from several long trajectories and computed

ensemble averaged SAXS profiles using the Debye formula for spherical scatterers parameter-

ized in the FoXS web server [48,49] as described in section S2 in the S1 Text. The predicted

SAXS curves here show qualitative agreement with experiments (Fig 2h) [40]. The Kratky

representation of SAXS data presented in Fig s2 in the S1 Text shows a pronounced peak, indi-

cating the emergence of more extended conformations with decreasing Mg2+ concentrations.

We note that capturing the entire conformational heterogeneity of an extended state is compu-

tationally challenging. This mostly applies for the extreme case where neither ligand nor Mg2+

is present. In this case, the correlation between theoretical and experimental SAXS profiles

leaves room for improvement. Values for chi-square reflect that and are shown in Table S1 in

the S1 Text. These analyses indeed suggest the potential impact of both, ligand and Mg2+, sta-

bilizing the closed conformations, which we characterize further below with contact data to

describe the pre-organization and the ligand-organized closing.

A significant Mg2+ induced collapse transition, as indicated by the SAXS data, has been fol-

lowed over a wide concentration range (up to 100 mM) of Mg2+ in SEC elution volume profile

(Fig 2i). Here RNA elutes after longer retention times with increasing Mg2+ concentration

([Mg2+]) in the mobile phase [40]. Bigger elution volume signifies decreasing hydrodynamic

radius of a monomeric RNA molecule. The folding transitions, both from experimental elution

volume data and from average Rg measured from the equilibrium simulation analysis as func-

tions of [Mg2+], follow sigmoid curves with transition midpoint, Mg1/2 at 6 mM (Fig 2i).

Mg2+ remodels the free energy landscape, favoring pre-organized states

At this point, a range of experimental techniques and simulation data support the existence of

pre-organized states. Here we aim to obtain a thermodynamic description of how Mg2+ gov-

erns the energy landscape of RNA from our model simulation study. In Fig 3a, we show the

free energy landscape for the folding transition of SAM-II riboswitch in SAM-bound (in the

presence of explicit ligand) and SAM-free (in the absence of ligand) conditions near the physi-

ological concentration of Mg2+ ([Mg2+] = 2.0 mM). During this folding transition, each sec-

ondary structural segment folds sequentially illuminating the pathway of folding (Fig 3b). The

free energy profile, in the presence of explicit SAM has a distinct bound-state-well, reflecting

the ligand-induced stabilization of the closed conformations (designated as (i) in Fig 3c). In

the apo-form of the riboswitch, the fully closed bound state does not correspond to a mini-

mum in the landscape. At lower Q than this ligand-bound state, the free energy profile for

apo-SAM-II riboswitch reveals three distinct minima. They involve: a ligand-free partially

closed state (state (ii) in Fig 3c), which has a substantial overlap with the ligand-bound closed

conformation. In this state, the nonlocal contacts (involving base-pairing contacts) including

base-stacking contacts in P1, the P1-L3 pseudo-knot interaction, and major segments of P2b

(adapted from ref. 22) [22]. (f) Theoretical prediction of FRET occupancy in the presence of 2.0 mM Mg2+. (g)

Superposition of a set of different conformations at 2.0 mM Mg2+ depicts the prevalence of two distinct sets of

ensembles. (h) Comparison of experimental scattering profiles of SAM-II collected from four different buffer

conditions. Theoretical SAXS predictions are depicted by solid lines and the experimental data by dots

(experimental data adapted from ref. 40). (i) Compaction of SAM-II as a function of [Mg2+] obtained from SEC

elution profiles is consistent with a decrease in hydrodynamic radius (experimental data adapted from ref. 40),

[40] in qualitative agreement with the observed folding transition in the average radius of gyration (Rg)

obtained from equilibrium simulations at Mg1/2�6.0 mM.

doi:10.1371/journal.pcbi.1005406.g002
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Fig 3. Magnesium dependence of the SAM-II riboswitch free energy landscape demonstrates Mg2+

pre-organization of bound-like state. (a) The free energy landscape as a function of the fraction of native

contacts (Q) of SAM-II near physiological Mg2+ concentration ([Mg2+] = 2.0 mM). The system explores three

distinct barrier-separated minima on the free energy landscape. (b) The order of secondary structure

formation as a function of the fraction of all native contacts (Q) as measured by the fraction of non-local

regional contacts (QRegional). The transition displays high cooperativity. (c) Representative structures. The

representative structure corresponding to each region of the energy landscape is designated as follows: (i)

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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and the L1-P2b triplex interactions remain secured, while the contacts involved in Shine/

Dalgarno sequence (AAAG50G51A523´), and in the part of L1-P2b are disrupted (state (ii) in

Fig 3c).

Recent fluorescence and NMR spectroscopic data also indicated that C16 in P2a helix

remains mostly unpaired in the absence of SAM [22]. The data also suggested that formation

of the pseudoknot in the absence of SAM is highly transient in nature. Intermediate states, (iii)

and (iv) in Fig 3c, although marginally separated by a small barrier, effectively belong to a

broad, flat basin which involves an ensemble of partially folded open configurations. A repre-

sentative unfolded structure ((v) in Fig 3c) is shown to describe the unfolded minimum. As we

increase the concentration of Mg2+ we find enhanced stabilization of the pre-organized par-

tially closed conformations (state (ii) in Fig 3d) relative to the open conformations. Our latest
13C-CEST chemical exchange data anticipated that the emergence of Mg-induced pre-organi-

zation can have immense consequences for rapid ligand recognition [47]. In the context of the

simulation, Mg2+ induced thermodynamic stabilization is reflected by the difference in stabil-

ity, ΔGPC-PO between the bound-like partially closed (PC) conformation and the partially open

(PO) conformation and by ΔGU-O between the unfolded (U) and the open conformation (O).

These two stability differences, ΔGPC-PO and ΔGU-O vary upon increasing [Mg2+] until they

reach their saturation limits. Both ΔGPC-PO and ΔGU-O plotted as functions of [Mg2+], are fit-

ted well to sigmoid curves with a Mg2+
1/2 value around 6 mM (inset of Fig 3d) which again cor-

relates well with the SEC elution volume data (Fig 2i) [40].

Mg2+-induced phosphate interactions facilitate pre-organization

To address the open question of how Mg2+ ions regulate structural collapse, we have deter-

mined the Mg2+ distribution in the ion-solvation layer of SAM-II, which accommodates

increasing numbers of Mg2+ up to 8 mM Mg2+ content (Fig 4a). Subsequent additions of Mg2+

beyond 8 mM do not effectively add to the 1st layer of Mg2+ solvation. How we characterize

the ion-solvation layer from our simulated trajectories is described in section S3 in the S1 Text

(Fig s3 in S1 Text). We have further classified the outer sphere Mg2+ present in the ion-solva-

tion layer into two categories based on their number of associated phosphate groups: (i) Single

phosphate coordinating Mg2+ (Fig 4b), which efficiently neutralize the negative charge of the

adjacent phosphate (Fig 4d), and (ii) multiple phosphate coordinating Mg2+ (Fig 4c). The key

role in stabilizing the structure is played by such Mg2+ bridging multiple phosphates, which

can act as glue in compact structures by holding a number of negatively charged phosphates

together in close proximity.

The population shift coincident with multiple coordinated Mg2+ ions with increasing Mg2+

concentration directly supports their role in stabilizing the structure (Fig 4e). We have also

investigated the thermodynamic impact of Mg2+-mediated phosphate contacts (PHOSCont:

total number of pair-wise phosphate-phosphate contacts) on the energy landscape as a func-

tion of overall folding progress, expressed by the number of native contacts (NCont), as shown

ligand-bound closed (C), (ii) ligand-free partially closed (PC) including triplex interactions, (iii) ligand-free

partially open (PO), (iv) ligand-free open (O), and (v) the unfolded (U) state. Green/mauve, bases in native

conformations. The ligand-bound closed minimum has been characterized from the free energy profile of the

folding transition of SAM-bound RNA which indicates the ligand-free partially closed conformation has a

substantial resemblance with the ligand-bound closed state. (d) Mg2+ concentration dependence of the folding

transition of apo-SAM-II riboswitch. Average free energy profiles of folding transition at different [Mg2+] show

significant stability difference between the ligand-free partially closed (PC) and the partially open (PO) minima

(ΔGPC-PO); and the unfolded (U) and the extended open (O) state minima (ΔGU-O). In the inset ΔGPC-PO and

ΔGU-O are plotted together as a function of [Mg2+]. Both sigmoid curves follow the same transition midpoint,

Mg1/2�6.0 mM, as found in the SEC profile.

doi:10.1371/journal.pcbi.1005406.g003
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Fig 4. Probability distribution and free energy landscape of the SAM-II riboswitch as a function of the

number of Mg2+ions in the ion solvation layer and Mg2+ mediated phosphate contacts (PHOSCont). (a)

The distribution of Mg2+ in the ion solvation layer shows gradual shift accommodating more number of Mg2+

with increasing Mg2+ concentration. Beyond 8.0 mM the first ion-solvation layer appears saturated.

Subsequent additions of Mg2+ beyond 8.0 mM do not effectively participate in the 1st layer of solvation by

ionic interaction. (b) Snapshot extracted from the simulation at buffer condition [Mg2+] = 0.4 mM has single

phosphate coordinated Mg2+. (c) Snapshot extracted from the simulation at buffer condition [Mg2+] = 8.0 mM

has multiple phosphate coordinated Mg2+. (d) Single phosphate coordinated Mg2+ as a function of Mg

concentration. (e) Multiple phosphate coordinated Mg2+ as a function of [Mg2+]. The population shift of such

A magnesium-induced triplex pre-organizes the SAM-II riboswitch
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in Fig 4f–4h. As we increase the Mg2+ concentration the broad minimum that appeared

around NCont~800, involving partially folded open conformations, gradually becomes more

stabilized. Concurrent enrichment of phosphate-phosphate contacts extends the contour of

the minimum asymmetrically toward higher PHOSCont. Additionally, by 8 mM [Mg2+], the

bound-like pre-organized state grows with substantial population, stabilized again by phos-

phate connections (Fig 4h).

Mg2+-induced triplex interactions between helix P2b and L1 loop help

pre-organize the SAM-II riboswitch

We analyzed long equilibrium trajectories of the apo- and bound-forms of SAM-II slightly

below the folding temperature in order to capture the essential characteristics of the pre-orga-

nized state, and also to compare this state with the fully folded ligand bound state. We have

evaluated the distribution of native contact formation in each segment of secondary structure

as a function of the total Q at different Mg2+ concentrations. Plots show contact formation in

P2b (Fig 5a–5d) and the triplex interaction between helix P2b and loop L1 (Fig 5e–5h), which

are most affected by Mg2+ concentration. Data for the nonlocal contacts of P1, L3-P1, P2a,

which appear only marginally affected by Mg2+ concentration, are shown in Fig s4 in S1 Text.

The two distinct basins visible at low [Mg2+], for the P2b helix and L1-P2b triplex contacts cor-

respond to the pre-organized (at higher Q) and open states (at lower Q). At increasing [Mg2+],

the populations gradually shift towards the pre-organized state.

Around 8 mM Mg2+, the dominant contribution arising from this pre-organized triplex to

the conformational space is evident from Fig 5c and 5g. Ligand binding also strongly favors

structure formation, even at moderate [Mg2+], as the ligand bridges the gap between L1 strand

and P2b helix, producing the fully formed triplex.

Discussion

Motivated by our 13C-CEST profiles for SAM-II and their [Mg2+] dependence we have

explored the free energy landscape of the SAM-II riboswitch using a recently developed all-

atom SBM that includes explicit Mg2+ ions, Debye-Hückel treatment of implicit KCl interac-

tions, and the effects of Manning condensation to accurately account for the ion atmosphere

around the RNA. Our results support a mechanism involving Mg2+ induced pre-organization

followed by conformational selection by the ligand, SAM, as we speculated in an early study

[47]. The free energy analysis validates the observations of that pre-organization, providing an

atomistic and thermodynamic basis for the enhanced population of a partially collapsed, pre-

organized ensemble at sufficiently high Mg2+ concentration in the absence of ligand. We

observe three distinct sets of conformations in the folding free energy landscape of ligand-free

SAM-II riboswitch: (i) an ensemble of unfolded conformations, (ii) a broad ensemble of par-

tially folded open conformations, and (iii) an ensemble of pre-organized bound-like confor-

mations. As we increase magnesium concentration beyond 2–4 mM, the bound-like ensemble

is further stabilized, shifting the equilibrium toward the pre-organized states. All the experi-

mental results from our 13C-CEST profile, recent SAXS, single molecule FRET, and size-exclu-

sion chromatographic studies are assembled and found to be in good agreement with the

present simulation results (Fig 2). At higher concentrations, Mg2+ stabilizes compact

multiple coordinated Mg2+ serves to connect negatively charged phosphate groups. (f) Free energy landscape

as a function of Ncont and PHOSCont for [Mg2+] = 0.4 mM. (g) Same as (f) for [Mg2+] = 2.0 mM. (h) Same as (f)

for [Mg2+] = 8.0 mM. Increasing [Mg2+] reshapes the landscape, shifting the equilibrium from a basin at lower

Ncont to a basin at higher Ncont.

doi:10.1371/journal.pcbi.1005406.g004
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structures by coordinating multiple charged phosphate groups of RNA in close proximity. The

experimental results, together with free energy landscapes confirm that sufficient Mg2+ can

indeed promote stable ligand binding in the SAM-II riboswitch, and is likely the structural

basis for the switching control of protein translation.

While this structural pre-organization of SAM-II can assist in rapid ligand recognition, our

study suggests that a sufficiently high concentration of Mg2+ is necessary to capture those pre-

organized states. Only when the system achieves a well-organized ion solvation layer at high

[Mg2+], the effect of additional Mg2+ seems limited. This layer involves a number of Mg2+

ions, each coordinating with multiple phosphate groups. Mg2+ ions thus serve as glue to the

negatively charged phosphates and facilitate the structural compaction. We note that while

chelated Mg2+ may play an important role in other riboswitch RNAs, no specific chelated ions

have been reported so far in the SAM-II system.

Fig 5. Thermodynamics of triplex formation. Free energy landscape of the SAM-II riboswitch as a function

of total native contacts (x-axis) and native contacts for an individual structural element (y-axis). (a)-(c) Free

energy landscapes for helix P2b formation for increasing values of [Mg2+], without SAM. (d) Free energy

landscapes for helix P2b formation for the case of [Mg2+] = 2.0 mM, with SAM. (e)-(g) Free energy landscapes

for triplex formation (L1-P2b contacts) for increasing values of [Mg2+], without SAM. (h) Free energy

landscapes for triplex formation for the case of [Mg2+] = 2.0 mM, with SAM. (a)-(c) and (e)-(g) Collective

integrity of triplex interaction (involving both P2b and P2b-L1) appears most sensitive RNA element to [Mg2+].

doi:10.1371/journal.pcbi.1005406.g005
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Our molecular simulation trajectories also allow us to pinpoint the structural basis of the

effect, revealing that triplex interaction between the helix P2b and its association with the L1

strand dominate the process of pre-organization as summarized in Fig 5a–5c and 5e–5g, show-

ing the gain of structure with increasing [Mg2+]. In the final step, ligand binding firmly bridges

the extended gap between L1 and P2b, which seems otherwise not achievable through the

addition of small, dynamic Mg2+ alone. But although P2b and its connection with L1 can be

secured by the ligand, its presence again alone cannot fully stabilize the overall structure with-

out addition of significant amount of Mg2+ (Fig 2h). These findings suggest that a sufficiently

high concentration of Mg2+ is necessary to stabilize the pre-organized triplex and then the

presence ligand promotes the native triplex formation, as summarized in Fig 5d and 5h. We

note that triplexes have recently emerged as important players in gene regulation by non-

coding RNAs [50–53]. Base triples also play a role in RNase P and the Diels-Alder ribozyme

[54]. Heroic calculations, as such recent microsecond explicit solvent simulations of ribos-

witches, will also shed light on these effects, especially regarding the role of solvation [55].

Nucleic acid-ion interactions make a substantial energetic contribution in the stabilization

of the native state of RNAs, including complex formation with proteins and other macromole-

cules [56]. The dynamics of nucleic acids are also found to be strongly influenced by the

motion of their ion atmospheres. Relative to other ionic species, Mg2+ can efficiently support a

close assembly of negatively charged phosphates by mediating favorable interactions among

them. Other earth alkali metals/divalent ions (e.g. Ca2+) and even monovalent ions are also

able to induce similar transitions, albeit at higher concentration. Our early SEC elution profiles

for SAM-II show that the transition midpoint in presence of Potassium (K+) alone occurs only

at [K]1/2� 25 mM. The midpoint for Calcium (Ca2+) is [Ca]1/2� 8 mM, compared to 6 mM

for the Mg2+ ion [40]. This is a direct result of the larger charge/radius ratio of magnesium

[40,57].

Thus, having these special characteristics, Mg2+ efficiently helps pre-organize the system

and enables access to the partially collapsed states that are further stabilized by ligand binding.

The general importance of Mg2+ for the stability of compact RNA structures supports a possi-

bly universal role of conformational selection in ligand-binding RNAs, such as riboswitches,

aptamers, and possibly protein-binding RNAs. A detailed thermodynamic understanding of

the underlying landscape will indeed enable greater control of riboswitch regulation, highly

sought after by researchers in synthetic biology who are currently employing riboswitches as

ligand-dependent ‘knobs’ to control desired gene expression [58].

Methods

RNA electrostatic model

Our all-atom structure-based model (SBM) has proven successful in describing the dynamics

of numerous proteins and macromolecular complexes [59–63]. To elucidate RNA free energy

landscapes under the influence of Mg2+, models capable of quantitatively describing the ion

atmosphere are needed, including ionic condensation around the negatively charged phos-

phate groups of RNA. Early studies have simply included electrostatic effects in SBM of RNA

via repulsive Debye-Hückel interactions, thus treating all ions implicitly [29,30]. Recently, our

group developed a more detailed model of RNA electrostatics and applied it within all-atom

structure-based molecular dynamics simulations. Our model treats Mg2+ ions explicitly to

account for ion-ion correlations neglected by mean-field theories [38]. The KCl buffer, which

completes the experimental setup, is treated implicitly by a generalized Manning counter ion

condensation model [38,64], since mean-field theories correctly assess the charge densities of

monovalent K+ and Cl- ions. Classical Manning counter-ion condensation theory was
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originally developed for understanding the low concentration limiting behavior of polyelectro-

lyte chains modeled with an infinite line of charge. Folded RNA, however, is not a line of

charge. To account for the compact and irregular structures of RNAs and the effects of varying

ion concentrations, we improve the Manning counter ion condensation model to handle elec-

trostatic heterogeneity, making the condensed charge density a dynamical function of each

phosphate coordinate. KCl screening is characterized by a Debye-Hückel potential. Removal

of the continuum screening ions from the inaccessible volume of RNA is a substantial exten-

sion to Manning counter-ion condensation. The model has been tested against experimental

measurements of excess Mg2+ associated with RNA, characterizing the Mg2+-RNA interaction

free energy. This hybrid SBM has opened up new possibilities to study various structural and

functional processes of RNA that are essentially controlled by ions [38]. In the present study

we used this recently developed all-atom hybrid SBM to understand the conformational transi-

tion of SAM-II and the corresponding Mg2+ sensitivity. The energy function used in this

model is given below,

F ¼ FSBM þ FMg� Size þ Fion� effect ð1Þ

where, FSBM is the all-atom SBM potential ensuring a global minimum in the landscape for

the native state of RNA. The SBM potential is composed of two general types of interactions:

FSBM ¼ Flocal þ Fnon� local ð2Þ

where, Flocal characterizes the local interactions that encode covalent bonds and torsional

angles, maintaining the correct local geometry and chirality. Fnon-local comprises two non-

local contributions: (i) an attractive term that is applied specifically to all tertiary interactions

determined from the native structure, (ii) the general repulsive interactions, that describe the

excluded volume by symmetric hard potentials (to avoid any unwanted chain crossing).

FMg-Size adds the excluded volume interactions involving the explicit Mg2+ ions, regulating

RNA-Mg2+ and Mg2+-Mg2+ interactions. Fion-effect accounts for all interactions between char-

ges in the system which consist of the fixed charge distribution of the RNA and the dynamic

contribution from the ions. Mg2+ and phosphate charges interact via a Debye-Hückel potential

with a screening term that depends, in turn, on the distribution of the monovalent ions. The

monovalent ions, K+ and Cl- from the added salt, fall into two categories: screening ions and

Manning condensed ions. The screening ion density is obtained using Debye-Hückel electro-

statics. The density of the Manning-condensed ions is modeled as the sum of two normalized

Gaussian distributions where the center of each Gaussian is located on the position of the neg-

atively charged phosphate group. All the condensation variables along with the explicit Mg2+

and RNA coordinates are evolved with Langevin dynamics [38]. The mathematical formula-

tions of all the terms and the related parameterizations are discussed in depth in section S4 in

the S1 Text.

Free energy simulations

The umbrella sampling method [65] was used to sample the conformational space of SAM-II

riboswitch along the reaction coordinate, Q, which is the fraction of intra-molecular native con-

tacts in the riboswitch. The Weighted Histogram Analysis Method [66] was then used to calcu-

late the thermodynamic quantity, G(Q). The detail is described in section S5 in the S1 Text.

13C-CEST experiments

CEST data were collected using a pseudo-3D HSQC experiment with the B1 field offsets (-600

to 600 Hz) incremented in an interleaved manner with 3 references (no CEST period) [47]. A
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total of 1024x16 complex points were recorded [40] with 32 transients with a recovery delay of

1.5 s for a total experimental time of approximately 12 hr for each spin-lock field. A CEST satu-

ration period of 100 ms was used for the base and 200 ms for ribose. The pulse program used

was an adaptation of a previously published one without the need for selective pulses [47].

Analysis of relaxation parameters

We used a two-state model to fit each of the three profiles of the selectively labeled carbon

(ribose C1’ and base C6) and quantitatively extracted the carbon chemical shift (Δω), the

exchange rate, and the population of the minor state based on the Bloch−McConnell 7x7

matrix [47]. The CEST data was plotted as I(t)/I(0) versus spin-lock offset (Hz) and was fit by

numerically solving the matrix exponential for the CEST spin-lock period based on this 7x7

two-state Bloch-McConnell equation as described earlier [47,67].

FRET

In experiments, Fluorescence Resonance Energy Transfer (FRET) efficiency is the quantum

yield of the energy transfer where a donor chromophore from its excited electronic state may

transfer its energy to an acceptor chromophore through a non-radiative dipole-dipole cou-

pling. The FRET efficiency varies with the separation between donor and acceptor fluoro-

phores following the Förster relation. For theoretical FRET predictions we use the Förster

relation where the value of Förster radius is taken as 53Å [68]. We described it in detail in sec-

tion S1 in the S1 Text.

SAXS analysis

In SAXS experiments, the scattering intensity is measured from the electron density difference

between the purified sample and that of the solvent/buffer. FoXs is a method that uses the

Debye formula by which a theoretical scattering profile of a structure can be computed

[48,49]. The detail is discussed in section S2 in the S1 Text.
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