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Molecular theory for self assembling mixtures of patchy colloids and
colloids with spherically symmetric attractions: The single patch case
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In this work we develop a new theory to model self assembling mixtures of single patch colloids
and colloids with spherically symmetric attractions. In the development of the theory we restrict the
interactions such that there are short ranged attractions between patchy and spherically symmetric
colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do
not attract spherically symmetric colloids. This results in the temperature, density, and composition
dependent reversible self assembly of the mixture into colloidal star molecules. This type of mix-
ture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng,
R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779–2783 (2013)]. As a
quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of
these mixtures; theory and simulation are found to be in excellent agreement. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4820417]

I. INTRODUCTION

The controlled, reversible and temperature dependant self
assembly of anisotropic colloidal molecules will provide a
new route to smart materials in the upcoming century.1 A
promising approach to controlled self assembly is the intro-
duction of anisotropic potentials between spherical colloids
by inclusion of some number of short ranged attractive surface
patches.2 These “patchy” colloids have been synthesized by
glancing angle deposition,3–6 the polymer swelling method,7

and by stamping the colloids with patches of single stranded
DNA.8

Theoretical modeling of patchy colloid fluids is com-
plicated by the anisotropic nature of the intermolecular in-
teractions as well patch saturation. Patch saturation is due
to the fact that if two colloids share an attractive bond be-
tween two patches their hard cores may prevent, depending
on patch size, a third colloid from approaching and sharing
in the attraction bond. These are also two of the challeng-
ing features of developing a primitive model for hydrogen
bonding.9 A particularly successful approach for modeling
hydrogen bonding fluids is the multi-density cluster theory of
Wertheim10–13 which explicitly accounts for the anisotropic
nature of the hydrogen bonding potential, as well as bond sat-
uration which he achieves through exact graph cancelation.
Due to the similarities between patchy colloids and hydro-
gen bonding fluids, Wertheim’s theory has been extensively
applied to model the self assembly and phase equilibria of
patchy colloid fluids.14–26

For single patch colloids (or many patch colloids in
first order perturbation theory) Wertheim’s perturbation the-
ory takes on a very simple form if patch size is restricted
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such that each patch can bond at most once (single bonding
condition), and contributions to the fundamental graph sum
which contain more than one path of attraction bonds can be
neglected (single chain approximation). The single chain ap-
proximation allows the perturbation theory to be written in
terms of the hard sphere reference system correlation func-
tions. Recently,27–31 there has been a significant amount of
work going beyond the single bonding condition to allow mul-
tiple bonds per patch. To allow for n bonds per patch the cor-
rect contributions to the free energy for n + 1 body associ-
ation interactions between colloids must be included in the
theory. This is only practical for small n due to the rapidly in-
creasing complexity as n is increased. So far, these theoretical
approaches have only accounted for the possibility of patches
bonding twice (n = 2).27–31

In a recent paper,8 researchers synthesized mixtures of
patchy p and spherically symmetric s colloids by binding
DNA to the surfaces of the colloids. The p colloids had a sin-
gle sticky patch terminated with type A single stranded DNA
sticky ends and the s colloids were uniformly coated with
DNA terminated with complementary type B single stranded
DNA sticky ends. The DNA types were chosen such that there
were AB attractions but no AA or BB attractions. That is, s
colloids attract the anisotropic p colloids, but s colloids do not
attract other s colloids and p colloids do not attract other p col-
loids. It was shown that this mixture would reversibly self as-
semble into clusters where a single s colloid would be bonded
to some number of p colloids into colloidal star molecules
consisting of n arms (n patchy colloids). Of course n is not
uniform and falls onto some distribution.

In this paper we wish to derive a new theory to model this
type of s and p colloid mixture. We will choose the patch size
of the p colloid such that the single bonding condition holds;
however, since the s colloid is a single uniform patch we must
account for the fact that it can bond multiple times going well
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beyond the single bonding condition. Actually, the maximum
number of bonds will be determined by the maximum num-
ber of p colloids which can be fit into the “bonding shell” of
the s colloid. For equal sized p and s colloids in a 3D system
this number must be a minimum of 12 which corresponds to
the coordination number of hexagonal cubic closest packing
of hard spheres. For 2D this number must be a minimum of 6.
We will develop the one patch theory in Wertheim’s two den-
sity formalism10, 11 for one site associating fluids. To account
for the fact that the s colloids can bond to multiple p colloids
we must include the contribution for each type of associated
cluster in the free energy. To quantitatively test the new the-
ory we perform new monte carlo simulations to test the effect
of temperature, density, and composition on the internal en-
ergy, pressure, average solvation number of s colloids, n dis-
tribution of s colloids, and fraction of p colloids bonded. The
theory and simulation are found to be in excellent agreement.
We conclude with a discussion of other possible theoretical
approaches to model systems of this type.

II. THEORY

In this section we derive the theory for a two component
mixture of patchy colloids, denoted p, and spherically sym-
metric colloids, denoted s. We consider the case that both col-
loids have the same diameter d. The p colloid has a single
attractive type A patch, the size of which is determined by the
critical angle β

(p)
c which defines the solid angle of the patch

as 2π (1 − cos β
(p)
c ). The s colloid has a single large type B

patch covering the entire surface of the colloid with a crit-
ical angle β(s)

c = 180◦. We allow AB attractions, but no AA
or BB attractions. This model draws inspiration from recent
experiments where researchers synthesized mixtures of s and
p colloids by binding DNA to the surfaces of the colloids.8

The p colloids had a patch of A type single stranded DNA
and the s colloid had a complementary B type.8 A diagram of
these colloids can be found in Fig. 1.

Since there are no attractions between p colloids, their
potential of interaction is simply that of a hard sphere sys-
tem φ(p, p)(r12) = φHS(r12). Similarly, since there are no at-
tractions between s colloids their potential of interaction is

FIG. 1. Diagram of spherical and patchy colloid. The angle β
(p)
c defines the

size of the patch and � defines the orientation of the patchy colloid. In this
depiction we are only illustrating the tethered DNA with sticky ends.

also φ(s,s)(r12) = φHS(r12). The potential of interaction be-
tween s and p colloids contains a hard sphere contribution and
an attractive association contribution φ(s,p)(r12) = φHS(r12)
+ φ

(s,p)
as (12). The attractions between p colloids32 are com-

monly treated as conical square well association sites.33, 34

Here we follow a similar approach with the p colloids treated
as a hard sphere with a conical square well association site
and the s colloid with a spherically symmetric square well
association site giving the association potential,

φ(s,p)
as (12) =

{
−εAB, r12 ≤ rc and βA ≤ β

(p)
c

0 otherwise
, (1)

which states that if colloids 1 and 2 are within a distance rc of
each other, and the p colloid is oriented such that the angle be-
tween the site orientation vector and the vector connecting the
two segments βA is less than the critical angle β

(p)
c , the two

colloids are considered bonded and the energy of the system
is decreased by a factor εAB. While simple in form, the param-
eters of this potential can be related back to the properties of
the grafted single strand DNA. For instance, the critical radius
rc will depend on the persistence length of the grafted DNA as
well as solvent conditions, and the square well depth εAB will
depend on both DNA sequences and grafting densities among
other things.35

We will develop the statistical mechanical theory to
model the potential given in Eq. (1) in Wertheim’s two den-
sity formalism10, 11 which gives the total density of species k
ρ(k) as the sum of the density of species k bonded ρ

(k)
b and the

density of species k not bonded ρ(k)
o ,

ρ(k) = ρ(k)
o + ρ

(k)
b . (2)

Using this definition of the densities, Wertheim developed an
exact cluster expansion for associating 1 site molecules. In
this formalism the free energy for a two component mixture
can be written as

A − AHS

V kBT
=

∑
k

(
ρ(k) ln

ρ(k)
o

ρ(k)
− ρ(k)

o + ρ(k)

)
− �c(o)/V,

(3)
where V is the system volume, T is temperature, and AHS

is the free energy of the hard sphere reference system. The
term �c(o) = c(o) − c

(o)
HS is the association contribution to the

fundamental graph sum c(o) which encodes all intermolecu-
lar interactions. Wertheim’s theory is typically applied within
the single bonding condition, which states that each site can
bond at most once. This is accurate for small to moder-
ate patch size, but will incur error as patch size becomes
large enough for multiple bonding of a patch to occur. For
the current case the s colloid is a single spherical associ-
ation site which can clearly not be modeled in the single
bonding condition. The maximum number of bonds is sim-
ply the maximum number of p colloids nmax which can pack
in the s colloid’s bonding shell d ≤ r ≤ rc. To account for
all association possibilities we will have to include contri-
butions for each association possibility explicitly (one s col-
loid with one p colloid, two p colloids, three p colloids, etc.).
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FIG. 2. Diagram of contributions to the graph sum �c(o).

To accomplish this we decompose �c(o) as

�c(o) =
nmax∑
n=1

�c(o)
n , (4)

where �c(o)
n is the contribution for n patchy colloids bonded

to a s colloid. Equation (4) is depicted in Fig. 2. We ap-
proximate �c(o)

n in a generalization Wertheim’s single chain
approximation12, 13 and consider all graphs consisting of a sin-
gle associated cluster with n patchy colloids bonded to a s col-
loid with n association bonds. We also assume that the patch
size on the p colloid is such that double bonding between one
p colloid and multiple s colloids cannot occur. For each n this
results in an infinite sum of graphs consisting of this associ-
ated cluster interacting with the hard sphere reference fluid
which can be summed to yield

�c(o)
n =

ρ(s)
o

(
ρ

(p)
o

)n

�̃n+1n!

∫
d(1) . . . d(n + 1)

n+1∏
k=2

(
f (s,p)

as (1, k)
)

× gHS(1 . . . n + 1). (5)

The notation (1) = {�r1,�1} where �r1 is the position and
�1 the orientation of colloid 1 in the cluster, f

(s,p)
as (12)

= exp(−φ
(s,p)
as (12)/kBT ) − 1 is the association Mayer func-

tion, �̃ = 4π is the total number of orientations and gHS(1. . . n
+ 1) is the n + 1 body hard sphere reference correlation func-
tion. In Eq. (5) the s colloid is labeled (1).

To evaluate the reference system correlation function
gHS(1. . . n + 1) we first use the definition of the hard sphere
cavity correlation function,

gHS(1 . . . n + 1) = yHS(1 . . . n + 1)
∏

all pairs
{l,k}

eHS(rlk), (6)

where eHS(r) = exp (−φHS(r)/kBT) are the reference system
e bonds which serve to prevent hard sphere overlap in the
cluster. We note from Fig. 2 that the associated clusters of
n patchy colloids are simply star molecules with n arms of
length 1. In Wertheim’s perturbation theory, in the limit of
infinitely strong association, the excess free energy in going
from a mixture of hard spheres to a polyatomic star molecule
consisting of m hard spheres bonded at contact can be written
as36

Astar

NmkBT
= − ln y

(m)
HS, (7)

where y
(m)
HS is the m body cavity correlation function averaged

over the states of the star molecule and Nm is the number
of star molecules. While the correlation function y

(m)
HS is not

known in general we can approximate it as follows. Recently
Marshall and Chapman37 obtained an approximate general
branched chain solution to the free energy contribution due
to star formation (for spheres bonded at contact) in second or-
der perturbation theory.13 For star molecules with n arms of
length 1, m = n + 1, this solution is

Astar

NmkBT
=

⎧⎪⎨
⎪⎩

−n ln yHS(d) + (n − 3) ln

(
1√

1 + 4λ

)
− 3 ln

(
1 + √

1 + 4λ

2

)
for n > 1

− ln yHS(d) for n = 1

, (8)

where y
(2)
HS(d) = yHS(d) is the pair cavity correlation function

at hard sphere contact and36

λ = 2

3

π∫
π/3

(
y

(3)
HS (d, d, 2d sin(α/2))

yHS(d)yHS(d)
− 1

)
sin αdα

≈ 0.2336η + 0.1067η2. (9)

In Eq. (9), y
(3)
HS (d, d, 2d sin(α/2)) is the triplet cavity

function where the first and third sphere are bonded at con-
tact with the second and at an angle α to each other. Here η is
the packing fraction of the fluid.

For our current problem we will assume that the cavity
function yHS(1. . . n + 1) can be approximated by y

(n+1)
HS which

we obtain by solution of Eqs. (7) and (8) as

yHS(1 . . . n + 1) ≈ y
(n+1)
HS ≈ yHS(d)nδ(n), (10)
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where

δ(n) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + 4λ)
n−3

2

(
1 + √

1 + 4λ

2

)3

for n > 1

1 for n = 1

.

(11)
Equations (10) and (11) constitute our approximation of the
many body cavity correlation function.

With the association potential between p colloids and s
colloids given by Eq. (1), Eq. (5) can now be simplified as

�c(o)
n /V = 1

n!
ρ(s)

o �nδ(n)
(n). (12)

The term � is given by

� = f (s,p)
as ρ(p)

o F yHS(d), (13)

where f
(s,p)
as = exp(εAB/kBT ) − 1 is the magnitude of the as-

sociation Mayer function, F =
(

1 − cos β
(p)
c

)
/2 is the frac-

tional patch coverage of the p colloid. In Eq. (12) the integral

(n) is given by


(n) =
n+1∏
k=2

⎛
⎝ 2π∫

0

1∫
−1

rc∫
d

dφ1,kd cos θ1,kdr1,kr
2
1,k

⎞
⎠

×
∏

all pairs
{l,k}

eHS(rlk). (14)

Equation (14) is simply a single cluster partition function for
a cluster of 1 spherical colloid and n patchy colloids. Here
φ1,k, θ1,k, and r1,k define the azimuthal angle, polar angle, and
radial distance of p colloid k in a spherical coordinate sys-
tem centered on the s colloid 1. We discuss the evaluation of
Eq. (14) in detail in Sec. III.

Now that �c(o) has been completely specified we can
minimize the free energy with respect to monomer densities
to obtain the following mass action equations:

ρ(s) = ρ(s)
o + ρ(s)

o

nmax∑
n=1

1

n!
�nδ(n)
(n), (15)

ρ(p) = ρ(p)
o + ρ(s)

o

nmax∑
n=1

n

n!
�nδ(n)
(n). (16)

Comparing to Eq. (2), we see that the second term on the right
hand side of these two equations is the density of bonded
colloids ρ

(k)
b . For the s colloids it is convenient to introduce

the densities ρ(s)
n , which represent the density of spherically

symmetric colloids which are bonded to n patchy colloids. By
conservation these densities must satisfy the relation

ρ(s) =
nmax∑
n=0

ρ(s)
n . (17)

Comparing Eqs. (15) and (17) we can deduce the relation for
n > 0

ρ(s)
n = ρ(s)

o

n!
�nδ(n)
(n) n > 0. (18)

Introducing the fractions X(k)
n = ρ(k)

n /ρ(k) we can write the av-
erage cluster size n̄ (average number of p colloids bonded to
an s colloid) as

n̄ =
nmax∑
n=0

nX(s)
n . (19)

Equations (15) and (16) are now simplified as

1

X
(s)
o

= 1 +
nmax∑
n=1

1

n!
�nδ(n)
(n) (20)

and

X(p)
o = 1 − x(s)(

1 − x(s)
)

nmax∑
n=1

n

n!
�nδ(n)
(n)

1 +
nmax∑
n=1

1

n!
�nδ(n)
(n)

, (21)

where x(s) is the mole fraction of s colloids. To obtain the
monomer fractions, Eq. (21) is first solved numerically for
X

(p)
o and then Eq. (20) can be used to evaluate X(s)

o .
Now we combine Eqs. (3) and (4), (12) and (17) and (18)

to simplify the free energy to the following form:

A − AHS

NkBT
= x(s) ln X(s)

o + (1 − x(s))
(
ln X(p)

o − X(p)
o + 1

)
,

(22)
where N is the total number of colloids. Equations (20)–(22)
give the fundamental equations for the theory of single patch
colloids interacting with spherically symmetric colloids. The
chemical potential, pressure, and internal energy are all cal-
culated in the Appendix. In Sec. III we discuss the evaluation
of the cluster partition functions 
(n).

III. EVALUATION OF �(n)

In this section we evaluate the cluster partition functions

(n) given by Eq. (14). For n = 1 we solve the integral analyt-
ically to obtain


(1) = 4

3
π

(
r3
c − d3

) = νb, (23)

where νb is the bonding volume. We can also obtain an ana-
lytical solution for n = 2


(2) = ν2
b

2
+ π2

(
r3
c − d2rc

)2
. (24)

The remaining 
(n) are evaluated numerically using monte
carlo integration32 as


(n) = νn
bP (n). (25)

The term P(n) is the probability that if we randomly gener-
ate n patchy colloids in the bonding shell of the s colloid
that there is no hard sphere overlap. For the case rc = 1.1d,
Eq. (25) was evaluated using this Monte Carlo integration rou-
tine for cluster sizes 1 ≤ n ≤ 9. However, for n ≥ 9 this
method becomes very inefficient due to the low probability
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of generating this many hard spheres in the bonding shell of
the s colloid and there being no overlap.

A much more efficient method to evaluate P(n) in this case
is the following:

P (n) = P
(n)
insertP

(n−1), (26)

which states that the probability that n randomly generated p
colloids will not have any hard sphere overlap, is simply the
probability that n − 1 randomly generated p colloids do not
overlap multiplied by an insertion probability P

(n)
insert . This in-

sertion probability is simply the probability that a randomly
generated p colloid in the bonding shell of the s colloid,
with n − 1 non-overlapping p colloids already in place, will
not overlap with any of the existing n − 1 patchy colloids.
Mathematically the insertion probability is given by

P
(n)
insert =

〈
n−1∏
j=1

eHS(rj,n)

〉
n−1

, (27)

where 〈 〉n − 1 represents an ensemble average in a cluster of
n − 1 non-overlapping p colloids in the bonding shell of a
s colloid. This is similar to Widom test particle insertions.38

Solving Eq. (26) recursively we obtain

P (n) =
n∏

k=1

P
(k)
insert . (28)

Equation (27) was evaluated using standard monte carlo
simulation techniques.32 In total 108–109 configurations were
generated with 108–109 insertions used to evaluate the aver-
age in Eq. (27). Numerical calculations for the probabilities
P

(n)
insert and P(n) can be found in Table I for the case rc = 1.1d.

As expected, increasing n results in a decrease in both P
(n)
insert

and P(n). For this case, the maximum number of p colloids for
which we obtained a non-zero insertion probability was found
to be nmax = 13. This had a much lower probability than the
case n = 12, which corresponds to hexagonal cubic closest
packing if the colloids were restricted to bond at contact.

The partition functions evaluated in this section are for a
3D system; however, there are cases3 where a 2D theory may

TABLE I. Insertion probabilities P
(n)
insert (27) and generation probabilities

P(n) (26) calculated for rc = 1.1d.

n P
(n)
insert P(n)

1 1 1
2 0.774 0.774
3 0.573 0.444
4 0.401 0.178
5 0.261 0.0463
6 0.153 7.11 × 10−3

7 0.0790 5.61 × 10−4

8 0.0340 1.91 × 10−5

9 0.0111 2.12 × 10−7

10 6.97 × 10−3 1.48 × 10−9

11 3.37 × 10−3 4.98 × 10−12

12 2.23 × 10−4 1.11 × 10−15

13 ∼10−9 ∼10−24

be needed. For the 2D case the hexagonal cubic closest pack-
ing has a coordination number of 6. To evaluate the cluster
partition functions for this case a 2D bond volume would be
used in Eq. (25) and the probabilities P(n) would need to be
generated in an appropriate coordinate system.

IV. SIMULATIONS

As a test of the theory, we perform new monte carlo sim-
ulations (not to be confused with the simulations discussed
in Sec. III) for the case of a mixture of s and p type col-
loids which are hard spheres with an additional attractive
potential given by Eq. (1). Unless otherwise stated, we use
the potential parameters rc = 1.1d and β

(p)
c = 27◦ such that

only single bonding of a p colloid will occur. Constant NVT
(number of colloids, volume, temperature) simulations were
performed using standard methodology.32 Each NVT simula-
tion was allowed to equilibrate for 108–109 trial moves and
averages where taken for another 108–109 trial moves. A trial
move consists of an attempted relocation of a s colloid or
an attempted relocation and reorientation of a p colloid. For
each simulation we used a total of N = 864 colloids. Constant
NPT (number of colloids, pressure, temperature) simulations
were performed in the same manner as the NVT simulations
with the addition of an attempted volume change each N trial
moves.

The simulations equilibrated relatively quickly due to the
fact that the only attractions were between p and s colloids,
meaning there were no extended associated clusters. A sim-
ulation was considered to be equilibrated once the fraction
of accepted moves, average of the internal energy and av-
erages of the bonding fractions stabilized as the simulation
progressed. Even when the s colloids were bonded to a large
number of p colloids, reasonable displacement parameters
could be used due to the critical radius being rc = 1.1d and
the fact that reorientation of the s colloids was not required.

V. RESULTS

Now we use the theory derived in Secs. II and III to study
the self assembly of mixtures of s and p colloids. At each point
we will also compare to monte carlo simulation results to val-
idate the new theory. We begin with a discussion of the depen-
dence on s colloid mole fraction x(s) when association energy
(inverse temperature) ε∗ = 1/T∗ = εAB/kBT and density ρ∗ =
ρd3 are both held constant. Comparison of theory and simula-
tion predictions of the excess internal energy E∗ = EAS/NkBT,
average number of bonds per s type colloid n̄ and fraction of
patchy colloids bonded X

(p)
1 = ρ

(p)
b /ρ(p) can be found in Fig.

3, for both low ρ∗ = 0.2 (packing fraction of η ∼ 0.105) and
high ρ∗ = 0.7 (η ∼ 0.366) density cases. Here the association
energy is set to ε∗ = 7.

For each case, n̄ increases with decreasing x(s) reach-
ing a maximum when x(s) → 0. The reasoning behind this
is simple, when x(s) is small there is an abundance of p col-
loids available to “solvate” the s colloids. As x(s) is increased,
n̄ decreases because there are less p colloids available for
association due to a decreased fraction of p colloids and
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FIG. 3. Excess internal energy E∗ = EAS/NkBT (top), average number of
bonds per s colloid n̄ (middle), and fraction of patchy colloids bonded
X

(p)
1 = 1 − X

(p)
o (bottom) versus mole fraction of s type colloids x(s) at an

association energy ε∗ = 7 and densities ρ∗ = 0.2 (dashed curve – the-
ory, crosses – simulation) and ρ∗ = 0.7 (solid curve – theory, circles –
simulation).

competition with other s colloids. Increasing density increases
n̄ as expected. The theory is in excellent agreement with sim-
ulation for ρ∗ = 0.2 over the full range of x(s) and is in good
agreement for the higher density case ρ∗ = 0.7 over much
of the x(s) range; however, at this higher density the accuracy
of the theory decreases somewhat for x(s) → 0. It is in this
limit that n̄ is a maximum and the high order contributions
�c

(o)
7 , �c

(o)
8 , etc. come into play. To evaluate these graphs

we approximated the many body correlation functions yHS

(1. . . . n + 1) by the approximation given by Eq. (10). We ex-
pect this to be most accurate at low densities and less accurate
at higher densities. For this reason the accuracy of the theory

decreases for x(s) → 0 and high density. That said the overall
agreement between theory and simulation is very good.

The fraction X
(p)
1 shows the opposite x(s) dependence as

compared to n̄. X
(p)
1 is a maximum for x(s) → 1 when there

are an abundance of s colloids available for association and a
minimum for x(s) → 0 when there are few s colloids available
for association. The x(s) dependence of E∗ is more interesting.
For small x(s), increasing the fraction of s colloids increases
association due to the fact that the system is s colloid limited.
This results in a more negative E∗. For large x(s), increasing
the fraction of s colloids decreases association due to the fact
that the system is now p colloid limited. This results in a less
negative E∗. Near x(s) ∼ 0.2 association is a maximum result-
ing in a clear minimum in E∗ at both densities. We see that
the minimum in E∗ shifts to lower x(s) as density is increased.
This is due to the increase in n̄ as density is increased. Theory
and simulation are in excellent agreement.

The left panel of Fig. 4 shows calculations for the com-
pressibility factor Z at the same conditions shown in Fig. 3.
At x(s) = 0 there is no association in the system and Z is that
of a hard sphere fluid. Increasing x(s), when x(s) is small, re-
sults in a decrease in Z as s and p type colloids associate into
larger clusters. The opposite is true for large x(s) where in-
creasing x(s) decreases association and results in an increase
in Z. Like the internal energy E∗, Z shows a distinct minimum
due to these competing effects near x(s) ∼ 0.2 when associa-
tion is maximized in the system. In the right panel of Fig. 4 we
compare theory to NPT simulations at an association energy
ε∗ = 7 and mole fractions x(s) = 0, 0.0579, and 0.174. The
agreement between theory and simulation is good, although
the theory slightly overpredicts Z at high density for the case
x(s) = 0.0579. This is due to the underprediction of n̄ in this
regime, Fig. 3.

Now we will specifically consider the effect of associ-
ation energy (inverse temperature) at constant density and
composition. These results can be found in Figs. 5 and 6 for
ρ∗ = 0.2 and ρ∗ = 0.7, respectively. At each density we per-
form calculations for x(s) = 0.5 (case I), 0.174 (case II), and
0.0579 (case III). We begin our discussion of these figures
with case I. For case I there is an equal number of s and p
colloids, so we should expect the relation n̄ = X

(p)
1 to hold

exactly for each ε∗; this is observed in both theory and simu-
lation. When there is an abundance of s colloids, as in case I,

FIG. 4. (Left) Compressibility factor Z versus mole fraction of s type colloids x(s) at an association energy ε∗ = 7. (Right) Z versus density ρ∗ at ε∗ = 7 for
x(s) = 0 (long dashed curve – theory, squares – simulation), x(s) = 0.0579 (solid curve – theory, circles – simulation), and x(s) = 0.174 (short dashed curve
– theory, crosses – simulation).
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FIG. 5. Excess internal energy E∗ (top), average number of bonds per s col-
loid n̄ (middle), and fraction of p colloids bonded X

(p)
1 = 1 − X

(p)
o (bottom)

versus association energy ε∗ at a density ρ∗ = 0.2 and x(s) = 0.0579 (solid
curve – theory, circles – simulation), x(s) = 0.174 (short dashed curve – the-
ory, crosses – simulation), and x(s) = 0.5 (long dashed curve – theory, trian-
gles – simulation). Inset in middle panel gives n̄ versus ε∗ for case III and
large ε∗.

FIG. 6. Same as Fig. 5 with ρ∗ = 0.7.

the entropic penalty of association is quite low. For this reason
we see a rapid increase in X

(p)
1 even at low ε∗. This results in

case I having the lowest E∗ for the given x(s) when ε∗ is low.
Of course, for this case, when ε∗ is high n̄ must reach a lim-
iting value of 1 due to simple stoichiometry. Decreasing the
mole fraction to x(s) = 0.174 (case II) the fraction X

(p)
1 now

increases more slowly with ε∗ due to the fact that there are
less s colloids available for association as compared to case I.
For large ε∗, n̄ reaches a limiting value of 4.76 which is sim-
ply the ratio of p colloids to s colloids. Of the three cases, case
II has the most negative E∗ for strong association energies. In
case III the ratio of p to s colloids is 814/50 = 16.28 which is
greater than nmax . This means that there is no stoichiometric
limit to n̄. The inset in the middle panel of Fig. 5 shows n̄ lev-
els out at n̄ = 12 in strongly associating systems; although, as
ε∗ is increased further contributions from n = 13 will be be-
come significant. Also, X

(p)
1 does not approach 1 as in cases I

and II. Comparing the low and high density cases (Figs. 5 and
6) we see that the results are qualitatively similar with associ-
ation being enhanced for ρ∗ = 0.7. The theory and simulation
are in good agreement; however, for case III at ρ∗ = 0.7 there
is some error for the same reasons discussed previously.

Until now, for convenience, we have only considered the
average number of bonds per s colloid (solvation number) n̄.
However, the mole fraction of s colloids in each cluster of
n patchy colloids X(k)

n is easily calculated through Eq. (18).
We show these fractions for the cases I–III, discussed above,
in Fig. 7 at a density of ρ∗ = 0.2 and association energies
ε∗ = 6 and 12. Simulations were performed for ε∗ = 6 and

FIG. 7. Fractions of s colloids bonded n times X
(s)
n versus n at a density of ρ∗

= 0.2 and association energies ε∗ = 6 (blue bars – theory, stars – simulation)
and ε∗ = 12 (red bars – theory).
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are represented by the star symbols. First we will focus on
the bottom panel, case III. As discussed above, for this case
there are enough p colloids for the s colloids to become fully
bonded. At an association energy of ε∗ = 6, the average num-
ber of bonds per s colloid is n̄ = 2.89, and the distribution of
X(s)

n is more or less Gaussian with significant contributions
ranging between n = 0 and n = 6. Increasing the association
energy to ε∗ = 12 the shape of the distribution is similar to the
ε∗ = 6 case with n̄ shifted to 9.32 with non-negligible contri-
butions as high as n = 12. For case II, with a mole fraction x(s)

= 0.174, the n̄′s shift to lower n, n̄ = 2.14 for ε∗ = 6 and n̄

= 4.72 for ε∗ = 12, due to the fact that the p colloids are now
limiting with a maximum possible average solvation number
of 4.76. Even with the low n̄ = 2.14 for ε∗ = 6 there are still
significant contributions for clusters with n = 5 patchy col-
loids. Lastly, for case I, there are an equal number of p and
s colloids rendering a maximum average solvation number of
1. For this case the distributions are asymmetric with the ma-
jority of s colloids being in clusters 0 ≤ n ≤ 3 with clusters of
larger n contributing to a lesser degree. Theory and simulation
are in excellent agreement for each case.

Lastly we will consider the effect of fractional patch cov-
erage F of the patchy colloid on n̄. In general, one has to
account for the possibility of multiple bonds per patch once
patch size increases beyond a certain point, about β

(p)
c ∼ 30◦

for rc = 1.1d.27, 30 For the current case, in which the patchy
colloids do not self attract, the possibility of a patchy col-
loid with large patch size forming a double bond will vanish
for small enough x(s). Simply put, if the s type colloids are
very dilute the probability of a p colloid simultaneously in-
teracting with more than one s colloid (regardless of patch
size) is vanishing. In this regime the theory derived in this
work should be accurate for the full range of patch sizes.
We validate this in Fig. 8 which shows the F dependence
of n̄ for the case ε∗ = 8 and ρ∗ = 0.2 at a spherical col-
loid mole fraction of x(s) = 0.00579. As can be seen, n̄ in-
creases logarithmically with F. The theory and simulation
are in excellent agreement. This logarithmic dependence can
be explained by the following simple model. We can write
the change in Helmholtz free energy due to forming a sin-

gle bond as �Ab = �Ub − T
(
�Sb

conf ig + �Sb
orient

)
, where

FIG. 8. Average number of bonds per s colloid n̄ versus fractional patch
coverage F at a density ρ∗ = 0.2 and mole fraction x(s) = 0.00579. Curve
gives theory predictions and symbols are simulation results.

�Ub = −εAB is the change in internal energy, �Sb
conf ig is the

change in configurational entropy and �Sb
orient ∼ ln F is the

change in orientational entropy8 due to bond formation. Since
�Ub and �Sb

conf ig are both independent of F we can say

∂�Ab

∂F
∼ − 1

F
. (29)

Equation (A1) states that a small change in patch size results
in a large decrease in the free energy for small F, while for
larger F the decrease in free energy upon increasing patch
size is less. This is due to the fact that the penalty in decreased
orientational entropy due to association is much less for large
patches than for small patch sizes. This is the genesis of the
logarithmic dependence observed in Fig. 8.

VI. CONCLUSIONS

We have derived a simple perturbation theory to model
mixtures of patchy p and spherically symmetric s colloids.
In the current derivation we have assumed that the p colloids
have a single patch which can engage in a single bond to a
s colloid only. The s colloids consist of a single spherically
symmetric site which can bond to as many p colloids as can
physically fit in the s colloids bonding shell with no overlap.
We have enforced the restriction that the spherically symmet-
ric colloid cannot bond to other spherically symmetric col-
loids. Inspiration for this model was drawn from the recent
work of Feng et al.8 who synthesized mixtures of spherical
and patchy single stranded DNA coated nanoparticles which
have the same type of restrictions as discussed above. The new
theory was extensively tested against new monte carlo simu-
lation results and was found to be accurate. We will consider
extension of this model to the case that the p colloid can have
multiple patches in a future paper.

A similar model to the one presented here is the Smith
and Nezbeda39 (SN) model of associating fluids. This model
considers a spherical core with a single directional bonding
site. Each core can give only a single bond, but, like the s
colloid model presented here, the maximum number of bonds
the colloid can receive is simply the maximum number of col-
loids which can fit in the bonding shell. Wertheim40 devel-
oped an integral equation theory for this model of associating
fluids which was later solved analytically by Kalyuzhnyi and
Nezbeda.41

Also, we may draw parallels with the study of highly
asymmetric electrolyte solutions. These solutions contain
large polyions and small single charge counterions. Previ-
ous multi-density integral equation theory studies of these
solutions42–44 have treated the counterions as singly bondable
and the maximum number of times the polyion ion can bond
is unrestricted and determined by steric constraints. This is
similar to the single patch case considered in this paper, ex-
cept the association potential of the counter ion is spherically
symmetric, as opposed to patchy, and Coulomb forces must
be accounted for. These integral equation theories could be
applied to the potential model given in this paper to obtain the
structure of the fluid.45 One advantage of the approach pre-
sented in this work is that the distribution of s colloids bonded
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n times is obtained; this information is not accessible with the
previously mentioned integral equation theories for polyelec-
trolyte solutions or Wertheim’s SN solution.
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APPENDIX: CALCULATION OF THERMODYNAMIC
QUANTITIES

In this appendix we calculate the chemical potential μ,
pressure P, and excess internal energy EAS. The simplest
way to calculate the chemical potential is to use the Euler–
Lagrange equation supplied by Wertheim10

μ(k)

kBT
= μ

(k)
HS

kBT
+ ln X(k)

o − ∂�c(o)/V

∂ρ(k)
, (A1)

where μ
(k)
HS is the hard sphere reference chemical potential for

component k. From Eq. (A1) we obtain for k = {s, p},

μ(k)

kBT
= μ

(k)
HS

kBT
+ ln X(k)

o − n̄ρ(s) ∂ ln yHS (d)

∂ρ(k)

−
nmax∑
n=1

X(s)
n ρ(s) ∂ ln δ(n)

∂ρ(k)
, (A2)

where n̄ is the average number of bonds per s type colloid and
is given by Eq. (19).

With the chemical potentials known the pressure is easily
calculated through the relation

P =
∑

k

μ(k)ρ(k) − A/V. (A3)

Lastly we obtain the excess internal energy as

EAS

N
= ∂

∂β

(
β (A − AHS)

N

)
= x(s) 1

X
(s)
o

∂X(s)
o

∂β

+ (
1 − x(s)

) ∂X
(p)
o

∂β

(
1

X
(p)
o

− 1

)
. (A4)
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