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Rydberg blockade in a hot atomic beam
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The dipole blockade of very-high-n, n ∼ 300, strontium 5snf 1F3 Rydberg atoms in a hot atomic beam is
studied. For such high n, the blockade radius can exceed the linear dimensions of the excitation volume. Rydberg
atoms formed inside the excitation volume can, upon leaving the region, continue to suppress excitation until
they have moved farther away than the blockade radius. Moreover, the high density of states originating from
the many magnetic sublevels associated with the F states results in a small but finite probability of excitation of
L = 3 n 1F3 atom pairs at small internuclear separations below the blockade radius. We demonstrate that these
effects can be distinguished from one another by the distinct features they imprint on the Mandel Q parameter
as a function of the duration of the exciting laser.
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I. INTRODUCTION

For a dilute gas the interaction between ground-state atoms
is small. However, the interactions between atoms can be
dramatically enhanced by exciting them to high-n Rydberg
states. In particular, resonant excitation of one atom can shift
the energy of neighboring atoms preventing their subsequent
excitation by photons of the same frequency and leading to
dipole blockade [1,2]. Blockade effects limit the number of
Rydberg atoms that can be excited within a given volume and
can facilitate the formation of strongly correlated many-body
systems allowing the generation of entanglement between
neighboring atoms [3–5], the realization of quantum gates
[6–8], and the observation of many-body Rabi oscillations
[9,10]. The strengths of such interactions increase rapidly
with principal quantum number n. In the presence of a weak
electric field, degenerate high-L states can form, through their
superpositions, strongly polarized states with large dipole
moments 〈d〉∝ n2. In contrast, the induced dipole moments
for (nondegenerate) low-L states are smaller and increase
with applied field, 〈d〉 ∼ αF , where F is the field strength
and α ∝ n7 is the polarizability. For Rydberg atom pairs this
difference in the single-atom response to a perturbing field
F leads, within a perturbative approach, to the dipole-dipole
interaction C3/R

3, with C3 ∝ n4, for degenerate high-L states,
and to the van der Waals interaction C6/R

6, with C6 ∝ n11,
for low-L states, where R is the internuclear separation.

Blockade effects have been studied experimentally using a
number of low-L, s, p, and d alkali-metal Rydberg states
with values of n � 100 [1,2,11–13], resulting in blockade
radii up to a few micrometers. Measurements have recently
been extended to n ∼ 300 using 5snf 1F3 strontium Rydberg
states [14]. Due to its strong n scaling, the van der Waals pair
interaction becomes quite strong for n ∼ 300. Moreover, be-
cause of their small quantum defects δF ∼ 0.089, strontium 1F3

states are nearly degenerate with the neighboring manifold of
high-L states. This not only further enhances interactions but
also leads to strong mixing with higher-L states modifying the
oscillator strength of the interacting pair eigenstate. The large
energy shift and the suppression of oscillator strength result
in a blockade radius RB as large as ∼0.1 mm (see Sec. III B).
In consequence, it is possible to study blockade effects where

RB exceeds the linear dimension of the excitation volume.
Similar situations have been achieved using ultracold atoms by
reducing the size of the atom cloud [10,15,16]. Moreover, the
high photoexcitation rates achieved for 1F3 states allow the ob-
servation of blockade effects in a hot atomic beam of relatively
low density ρV ∼ 109 cm−3 [14]. The motion of atoms into and
out of the excitation volume gives rise to features in Rydberg
blockade not seen using ultracold trapped atom ensembles. At
the same time, the very high density of states near n � 300 re-
sults in highly complex quasimolecular energy level diagrams
and in small, but finite, oscillator strengths for excitation near
resonance under conditions where blockade might otherwise
be expected. In this work we explore both experimentally and
theoretically the effects of atomic motion in a hot beam and
of the high density of states for very high n � 300 levels on
Rydberg blockade and its partial suppression. We show that
these effects give rise to distinct signatures in the time
dependence of the Mandel Q parameter [17] characterizing
the correlated multiple-atom excitation allowing each to be
distinguished.

The structure of this paper is as follows. In Sec. II we
briefly sketch the experimental approach. In Sec. III we present
a detailed theoretical analysis of Rydberg pair interactions
for very-high-n levels, in particular for the n 1F3 levels in
strontium, the preliminary results of which were discussed in
[14]. In Sec. IV we extend this work and consider the effects of
atomic motion on the Rydberg excitation dynamics. The com-
parison between experimental and theoretical results is dis-
cussed in Sec. V, followed by concluding remarks in Sec. VI.

II. EXPERIMENTAL APPROACH

The present apparatus is shown schematically in Fig. 1
and was developed from that used in earlier experiments in
the same laboratory. Strontium atoms contained in a tightly
collimated beam are excited in near-zero field to selected high-
n n 1F3 states near the center of an interaction region defined
by three pairs of copper electrodes. The number of Rydberg
atoms created is determined using field ionization, the product
electrons being detected using a microchannel plate (MCP).
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FIG. 1. Schematic diagram of the apparatus. The inset shows the
excitation scheme employed.

The strontium atom beam is provided by a cylindrical oven
that is positioned inside a water-cooled enclosure. The atom
beam exits the oven through a short 500-μm-diam canal and is
further collimated using a 500-μm-diam aperture located near
the entrance to the differentially pumped interaction region,
resulting in a beam with a divergence of θdiv � 4 mrad full
width at half maximum (FWHM). The temperature of the oven
is monitored by thermocouples attached to its front and rear
faces. (The nose of the oven is operated ∼40 ◦C hotter than the
back to prevent blocking of the exit canal.) The average of these
values is used when estimating the strontium vapor pressure
in the oven. The oven can be operated at temperatures up to
T ∼ 650 ◦C, sufficient to produce estimated beam densities
of ∼109 cm−3 in the excitation region. The most probable
(longitudinal) velocities of atoms in the beam lie in the range
vT ∼ (4–5) × 102 m s−1.

The three-photon excitation scheme employed is shown
in the inset in Fig. 1 and utilizes the 5s5p 1P1 and 5s5d 1D2

intermediate states and radiation at 461, 767, and 893 nm.
(The decay rates associated with the 5s5d 1D2 → 5s6p 1P1

and 5s5p 1P1 → 5s4d 1D2 transitions are small and population
transfer to these states is unimportant on the less than 1 μs
time scale of the present experiments.) The advantage of
using three-photon excitation is that powers of up to ∼1.2 W
can be readily obtained to excite the final transition to the
Rydberg state resulting in high photoexcitation rates. The
required radiation is provided by diode laser systems whose
output wavelengths are stabilized using Fabry-Pérot transfer
cavities locked to a polarization-stabilized helium-neon laser.
The 461- and 893-nm beams are linearly polarized along the z

axis indicated in Fig. 1 and the 767-nm beam is polarized
along the y axis, leading to creation of the superposition
|nF,M = 1〉 + |nF,M = −1〉. The crossed 767- and 893-nm
beams are focused at the center of the interaction region to
1/e2 diameters of ∼50 and 70 μm, respectively, resulting in a
strongly localized excitation volume of ∼1.3 × 10−7 cm3 that
typically contains tens to hundreds of ground-state atoms (see
Fig. 2). The 461-nm laser is not focused. Both the 461- and
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FIG. 2. Schematic diagram of the Rydberg blockade in a hot
atomic beam. Rydberg atoms are excited in the volume defined by
the intersection of the 767- and 893-nm laser beams (excitation region
shaded in light red), but can continue to suppress further excitation
until they have moved a distance ∼RB (shaded in light blue) from the
excitation region. In the numerical studies, only the atoms inside the
elliptically shaped cylinder (dashed line) are simulated.

767-nm lasers are tuned on resonance. The linear dimension of
the excitation volume (�70 μm) is smaller than the Rydberg
blockade radius RB � 100 μm for the present system (Fig. 2;
see also below). Therefore, atoms that have escaped from the
excitation volume may also contribute to blockading further
excitation while they remain close to the excitation volume.

Stray fields in the excitation volume are minimized by
application of small offset potentials to the electrodes that
define the interaction region. These potentials are optimized
by observing the widths of the n 1F3 features in the Rydberg
excitation spectra, which are very sensitive to the presence of
stray fields, and systematically varying the offsets to minimize
their widths. As illustrated in Fig. 3, once this process is
complete, well-resolved Rydberg excitation spectra can be
obtained even for values of n > 500. Given that the Stark
crossing field, 1/(3n5) a.u., at n = 520 is only ∼40 μV cm−1

and that the Stark broadening is sufficiently small that the
P and F states remain well resolved, the data indicate that
stray fields in the excitation volume are reduced to values less
than 10 μV cm−1. These are significantly smaller than seen
in our earlier work [18], presumably because the excitation
volume is smaller, which diminishes the effect of stray
field inhomogeneities. The overall experimental linewidth,
∼8 MHz at n ∼ 310, is attributed to transit time broadening,
Doppler effects, and fluctuations in laser wavelengths.

Measurements are conducted in a pulsed mode. The output
of the 461-nm laser is chopped into a series of pulses with a
pulse repetition frequency of ∼20 kHz using an acousto-optic
modulator (AOM). The other beams remain on at all times.
By varying the 461-nm pulse duration, the blockade effects in
the time evolution of Rydberg excitation can be studied. The
number of Rydberg atoms created is determined by selective
field ionization, which is accomplished by generating a slowly
increasing (rise time ∼2 μs) electric field by applying a linearly
increasing voltage ramp to the lower electrode. Since the
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FIG. 3. Excitation spectra measured for n ∼ 310, 370, 450, and
520. The various spectra are normalized to the same peak height. The
frequency axis is scaled by n−3 so that the spacing between, say, the n

and n + 1 features in each spectrum is the same. The large and small
peaks in the spectra correspond to excitation of 1F3 and 1P1 states,
respectively. The inset shows a typical electron number distribution
recorded using a large Rydberg atom production rate (see the text). For
comparison, a Poissonian distribution having the same mean value is
included.

time scale for a single experimental cycle is short, ∼10 μs,
the Rydberg atoms typically travel only ∼5 mm from their
point of formation before being ionized. Product electrons
exit the interaction region through a series of two 2-cm-diam
∼80%-transparent fine mesh grids and then enter a cylindrical
lens that defocuses them before passing through a further
grid to strike the MCP. The output pulses from the MCP
are amplified and fed to a discriminator. Output pulses from
the discriminator are used to generate discrete charge pulses
for injection into a charge-sensitive amplifier whose output
is fed to a multichannel analyzer to determine the number
of electrons detected. Data are accumulated following many
laser pulses to build up the electron number distribution. The
probability that zero electrons are detected is determined by
summing the number of events in which one, or more, electrons
are detected and subtracting this sum from the total number of
laser pulses used to acquire the data. The overall electron
detection efficiency η could not be directly determined,
but was inferred from the known grid transparencies and
published MCP detection efficiencies. With the MCP operating
with sufficient gain to saturate the count rate, the detection
efficiency is estimated to be η � 0.51.

To check the performance of the detection system at
high count rates where nonlinearities might arise, tests were
undertaken with the apparatus configured as in earlier studies
with the 767- and 893-nm beams copropagating antiparallel
to the 461-nm beam, which leads to a sizable increase in

the excitation volume and in the Rydberg atom production
rates. A typical distribution of the number NR of electrons
recorded at the MCP using low atom beam densities and
relatively long, ∼1-μs, laser pulses, i.e., recorded under
conditions where Rydberg blockade effects are not expected,
is shown as an inset in Fig. 3 and is well fit by a Poissonian
distribution, demonstrating that sizable numbers of electrons
can be detected without any significant nonlinearities in
detection efficiency.

III. INTERACTIONS BETWEEN RYDBERG ATOMS

The determination of the Rydberg-Rydberg interaction
strength both within and beyond the blockade radius requires
use of a nonperturbative approach. The Hamiltonian for
two interacting atoms is given within the Born-Oppenheimer
approximation by

H = HA + HB + Uint(R), (1)

where HA (B) is the Hamiltonian of the isolated atoms A (B)
and Uint(R) is the pair interaction between them. For distances
R sufficiently large that there is no significant overlap between
the electronic wave functions of the atoms, the interaction
Uint(R) can be approximated using a multipole expansion, the
leading terms of which are given by

Uint(R) � Udd (R) + Udq(R) + Uqq(R), (2)

where Udd (R) denotes the dipole-dipole interaction, Udq(R)
the dipole-quadrupole interaction, and Uqq(R) the quadrupole-
quadrupole interaction. Given the large blockade radius RB

for high-n Rydberg atoms, the multipole expansion [Eq. (2)]
applies not only for R > RB but also for R considerably
smaller than RB , R � RB/3 (see below).

For the matrix representation of the quasimolecular Hamil-
tonian [Eq. (1)] we employ a basis |nA,LA,MA; nB,LB,MB〉
formed by the product states of two noninteracting many-
electron atoms. By numerically diagonalizing the Hamilto-
nian, the energy shifts associated with the multipole terms
are evaluated nonperturbatively. One challenge in such cal-
culations is the accurate representation of the wave functions
|n,L,M〉 for an isolated many-electron atom. For Rydberg
atoms with one electron far outside the ionic core, a convenient
starting point is the single-active-electron (SAE) model [19],
in which the effective binding potential generated by the
Ne − 1 electron core for the Rydberg electron is chosen such
as to yield the measured quantum defects δL, i.e., the phase
shifts associated with core scattering for isolated atoms. The
resulting Rydberg wave functions are typically quite accurate
outside the core region. Since the multipole moments of
Rydberg states are rather insensitive to the details of the
wave functions near the core, a single-active-electron model
can be used to evaluate the energy shifts quite accurately,
in particular for states well removed from perturbers [20].
A more accurate treatment for alkaline-earth atoms involves
the two-active-electron (TAE) model [21,22], in which the
Hamiltonian of the two valence electrons outside the ionic
core is numerically diagonalized and the model potential now
accounts for the influence of the Ne − 2 electrons in the closed
ionic shell. In order to simulate both the dipole transition
strengths involved in the present excitation scheme and the
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FIG. 4. Energy levels for Rydberg atom pairs with �M = MA +
MB = 0 near the |nF ; nF 〉 pair for n = 50 calculated using (a) a
TAE model and (b) an SAE model and (c) for n = 300 using an
SAE model. The eigenstates with more than 10% probability when
projected onto the noninteracting pair of nF states are highlighted
in red. For these, the states with �E

(2)
dd < 0 are plotted on a log-log

scale in (d) (black, n = 50; red, n = 300). In the calculations, the
basis states are limited to quantum numbers with n ∈ [n − 2,n + 2],
L � 5, and |M| � 5. Both atoms are aligned along the z axis. The
internuclear separation R is scaled by n7/3 and the energy shift by
n−3 (see the text). Dashed lines indicate different power laws.

positions of all relevant energy levels near n ∼ 300 1F3 states
the two methods are combined. With the model potential used
in the SAE model adjusted to yield the same quantum defect
as obtained from the TAE model, the energy levels calculated
using both approaches agree well. The close agreement
between predictions made using the TAE and SAE models
for the quasimolecular energy levels of a Rydberg atom pair
is illustrated in Figs. 4(a) and 4(b) for a moderate n value
n = 50, where both models can be readily applied. Only at
small R, well inside the blockade radius, do minor differences
become noticeable. Given the accurate wave functions for both
low- and high-n Rydberg states provided by the TAE model,
this model is employed to determine the n dependence of
the excitation strength for creating a pair of Rydberg atoms
utilizing the 5s5d intermediate state, which is crucial when
analyzing the blockade probability. However, the computation
times required using the TAE model increase rapidly with n

limiting calculations to values of n � 100. Therefore, n scaling
is employed to extrapolate calculations undertaken at low n to
the higher values, n � 300, studied experimentally.

A. n scaling in the Rydberg-Rydberg interaction

Extrapolation of the Rydberg pair energies from n = 50
to very high n > 300 requires n scaling and a transforma-
tion to reduced distance and energy scales for which the
energy diagrams becomes approximately scaling invariant.
This method combines atomic Coulomb scaling with scaling
of the interatomic potential assuming that the interaction

obeys a monomial power law ∼R−k with power k. Deviations
from strict scaling invariance are expected if the interaction
is polynomial rather than monomial as is the case for the
multipole expansion in Eq. (2). However, approximate scaling
invariance is expected when one term of the expansion (usually
with the lowest power k) dominates.

We first analyze the n scaling of the dipole-dipole in-
teraction Udd (R), which provides the dominant contribution
to Eq. (2) before considering the scaling of the higher-order
multipoles. To illustrate the n scaling of Udd (R), we consider
a simplified model in which the target pair state |n,L; n,L〉
(i.e., both atoms occupy the same state, nA = nB = n and
LA = LB = L) is coupled only to a single other pair state
|n′,L′; n′′,L′′〉. The matrix representation of the energy shift
�H = H − EnL;nL from the target pair in this two-pair state
subspace then reads

�H (2) =
(

0 W

W En′L′;n′′L′′ − EnL;nL

)
. (3)

Here W is the coupling matrix element with the R dependence

W = 〈n′,L′; n′′,L′′|Udd (R)|n,L; n,L〉 � n4W0

R3
(4)

explicitly displaying the power law k = 3 and the n depen-
dence. The energy difference between the pair states exhibits
the atomic Coulomb scaling

En′L′;n′′L′′ − EnL;nL � 1

n3
[(n′ + n′′ − 2n)

− (δL′ + δL′′ − 2δL)] ≡ δE0

n3
, (5)

where δL is the quantum defect for L states (unless otherwise
noted, atomic units are used throughout). By scaling the in-
ternuclear distance as R = R0n

7/3 [14], the dipole-dipole cou-
pling scales [Eq. (4)] as W = n−3W0/R

3
0 . Correspondingly,

the n-dependent part of the Hamiltonian can be factorized
out, i.e.,

�H (2) = n−3

(
0 W0/R

3
0

W0/R
3
0 δE0

)
= �H

(2)
0 n−3, (6)

indicating that the energy shifts of pair states, i.e., the
eigenenergies of �H (2), become invariant by scaling with n−3.
The eigenvalues of the scaled energy shift �H

(2)
0 are evaluated

as

(E0)1,2 = 1

2

(
δE0 ±

√
δE2

0 + 4W 2
0

R6
0

)
. (7)

When |δE0| � |W0/R
3
0 | (i.e., when the two pairs are nearly

degenerate),

(E0)1,2 � 1

2
δE0 ± W0

R3
0

, (8)

exhibiting the dipole-dipole splitting. This implies that the su-
perpositions |n,L; n,L〉 ± |n′,L′; n′′,L′′〉 form polarized pairs
of atoms having the eigenenergies ±W0/R

3
0, respectively.

They are perturbed by the small energy difference δE0. The
formation of polarized pair states typically occurs for pairs of
degenerate L states with vanishingly small quantum defects
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(L > 3 for strontium). In the opposite limit of weak coupling
between the pairs |δE0| 
 |W0/R

3
0 | (for example, for a pair

of low-L states), the scaled eigenenergies

(E0)1 � − 1

δE0

W 2
0

R6
0

, (E0)2 � δE0 + 1

δE0

W 2
0

R6
0

(9)

display energy shifts ∼R−6
0 indicating van der Waals interac-

tions. The above analysis can be extended to include multiple
pair states coupled to the target pair as long as the energy
difference scales as En′L′;n′′L′′ − EnL;nL ∼ n−3 and the scaling
invariance of the energy shift [Eq. (6)] associated with the
dipole-dipole interaction Udd can be identified. One prominent
exception, however, is a Förster resonance [23] for which
δE0 � 0 [Eq. (5)] and the Coulomb scaling ∼n−3 of the energy
difference is replaced by ∼n−4, thereby breaking this form of
scaling invariance.

For strontium n 1F3 pair states, the scaling invariance of
the energy shift associated with Udd (R) is demonstrated in
Figs. 4(b) and 4(c), which show the energy diagram for
pairs of interacting n = 50 and n = 300 Rydberg atoms
calculated with a SAE model using only Udd (R). When
scaled, quasimolecular energy levels adiabatically connecting
to the |n,F ; n,F 〉 states behave nearly identically. For better
visibility, pair states with more than 10% overlap with the
noninteracting |n,F ; n,F 〉 state are highlighted in red. The
subset of states that shift downward in energy are plotted on a
log-log scale in Fig. 4(d) and quantitatively confirm the scaling
invariance between n = 50 and n = 300. At large R the energy
shifts display the R−6 dependence typical of the van der Waals
interaction. The nearly degenerate limit |W0/R

3| 
 δE0 is
reached near R0 = 3 (or R = 3n7/3 corresponding to 100 μm
for n = 300) when the energy shift crosses over to an R−3

dependence, indicating the formation of a polarized pair state.
This is due to the fact that the n 1F3 pair state couples most
strongly to the nearly degenerate n 1G4 pair state, rendering
the two-state model discussed above applicable.

The noticeable differences between the energy diagrams
for n = 50 and 300 [Figs. 4(a) and 4(c)] directly reflect
the breaking of scaling invariance. For example, the energy
difference of the |(n − 1),F ; (n + 1),F 〉 pair state to the target
|n,F ; n,F 〉 pair state yields δE0 = 0 [Eq. (5)] and therefore
the leading-order term in the energy difference scales as
1/n4 rather than 1/n3. In consequence, the relative position
of |(n − 1),F ; (n + 1),F 〉 pair states with respect to the
|n,F ; n,F 〉 states varies with n being closer for n ∼ 300 than
for n ∼ 50. Another example is the |(n − 1),F ; (n + 1),H 〉
state that couples to the target pair state via the |n,G; n,G〉
pair state. Here the numerically calculated quantum defects
happen to approximately fulfill the relation δG � (δF + δH )/2
also yielding δE0 = 0 [Eq. (5)] and breaking the n−3 scaling.
While for n = 50 the |49F ; 51H 〉 and the |50F ; 50F 〉 states
undergo an avoided crossing near R0 � 4 resulting in a
marked deviation from the R−6 behavior, for n = 300 the
corresponding |299F ; 301H 〉 state is found at much higher
scaled energy outside the energy window covered by Fig. 4(d)
and the corresponding avoided crossings are absent.

Contributions from higher-order multipoles with different
∼R−k dependences may also break the scaling invariance
[24]. A matrix element of the dipole-quadrupole interaction
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FIG. 5. Energy levels for Rydberg atom pairs with �M = MA +
MB = 0 when including only Udd (R) (shown in black) and including
higher-order multipoles (shown in red). The plotted pair eigenstates
have more than 12% probability for Udd (R) and 10% for higher-
order multipoles when projected onto a noninteracting n = 300 1F3

pair state. In the asymptotic limit R → 0, these eigenstates have an
approximately good quantum number Ltotal = | �LA + �LB | (Ltotal =
0,1, . . . ,6 from the lowest energy). The calculations are undertaken
using an SAE model. The basis size is limited to n ∈ [n − 2,n + 2],
L � 8, and |M| � 8. Both atoms are aligned along the z axis. The
internuclear separation R is scaled by n7/3 and the energy shift by n−3.

typically scales as

〈n′,L′; n′′,L′′|Udq(R)|n,L; n,L〉 ∝ n6

R4
= n−10/3 1

R4
0

(10)

and that of the quadrupole-quadrupole interaction as

〈n′,L′; n′′,L′′|Uqq(R)|n,L; n,L〉 ∝ n8

R5
= n−11/3 1

R5
0

. (11)

Consequently, the ratio of the dipole-quadrupole corrections
to the leading dipole-dipole interaction scales as Udq/Udd ∼
1/(R0n

1/3) and that of the quadrupole-quadrupole corrections
as Uqq/Udd ∼ 1/(R2

0n
2/3). Higher-order multipole corrections

are therefore expected to contribute only for small R0 or n. To
confirm this behavior, the pair eigenstates for n = 300 having
significant overlap with noninteracting n = 300 1F3 pair states
are plotted in Fig. 5 when including only the dipole-dipole
interaction (in black) and when including the higher-order
multipoles (in red). We note that in Fig. 5, due to the lower
density of states when including only Udd (R), states with more
than 12% overlap are plotted, whereas this is reduced to 10%
overlap when including the high-order multipoles. The two
calculations show little difference, in particular beyond R0 >

2.5. Some deviations are visible at small R0. However, these
deviations do not affect the blockade probability for which
the excitation strengths are integrated over the eigenstates
within the laser linewidth. In the current experiments, the
laser linewidth is ∼0.04n−3 � 8 MHz. Since additional higher
multipole terms decay even faster with n, we can conclude that
for n ∼ 300 all terms beyond the dipole-dipole interaction only
play a significant role in the regime R0 < 2.5. This observation
has important implications for the n scaling: When TAE
calculations for n = 50 are extrapolated to n � 300, only the
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dipole-dipole interaction should be scaled and corrections due
to higher-order multipoles should be neglected. We note that in
the simulations the matrix elements of Uqq are only evaluated
among magnetic sublevels in degenerate manifolds to examine
the dominant contributions, i.e., the first-order corrections due
to quadrupole-quadrupole interactions.

B. Excitation strength of Rydberg pairs

The oscillator strengths for excitation of different eigen-
states are laser-polarization dependent as this determines
which M levels of the individual atoms that eventually
form the Rydberg pair are produced. In the present work
the intermediate 5s5d state is populated by two-photon
excitation involving a 461-nm laser polarized along the z

axis and a 767-nm laser polarized along the y axis yielding
the superposition |5D,M = 1〉 + |5D,M = −1〉. The 893-nm
laser is polarized along the z axis and excites the final
product Rydberg state |nF,M = 1〉 + |nF,M = −1〉. When
an |n,F ; n,F 〉 pair state is excited, it can thus have molecular
quantum numbers �L relative to the polarization axis ẑ of
the 893-nm laser, �L = MA + MB = 0,±2. This implies a
coherent superposition of states with different projections of
the angular momentum onto the internuclear axis �R . The
corresponding expansion coefficients are the rotation matrix
elements D�L�R

(θ ), where θ is the angle between the laser
polarization axis and the internuclear axis. These θ -dependent
expansion coefficients lead to an angular dependence in the ex-
citation strength of the molecular states [14]. Figures 6(a)–6(c)
show excitation spectra for creating a |70F ; 70F 〉 atom pair
from a |5s5d 1D2; 5snf 1F3〉 pair aligned along the x, y, and
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FIG. 6. Calculated excitation spectra for creation of Rydberg
atom pairs as a function of internuclear separation R. Here R is
scaled by n7/3 and the detuning by n−3. The laser linewidth is set to
0.002n−3. The atoms are assumed to be aligned along (a) the x axis,
(b) the y axis, and (c) the z axis. The calculation are done for n = 70
and Lmax = 8.
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FIG. 7. Probability for excitation of a pair of interacting Rydberg
states from the |5s5d 1D2; 5snf 1F3〉 pair state. The probability is
calculated assuming that the 893-nm laser is tuned on resonance
for a pair of noninteracting 5snf 1F3 atoms and the linewidth is
0.04n−3. The results are averaged over atom pair orientations and
are normalized to one in the limit R → ∞. The calculations are
undertaken using the TAE model. In (a) the results for n = 50
(black) and for n = 70 (red), both with Lmax = 8, are almost
indistinguishable, confirming the scaling invariance. In (b) the results
for n = 50 with different basis sizes (varying Lmax from 7 to 9) are
compared. The internuclear separation R is scaled by n7/3.

z axes, respectively, calculated using the TAE model. The
basis states for the TAE calculation are limited to quantum
numbers with n ∈ [n − 2,n + 2], L � Lmax, and |M| � Lmax

for n = 70 and Lmax = 8. (The convergence with respect to the
basis size will be discussed below.) The spectrum for a pair
aligned along the x axis is clearly different from that for the
other two orientations. This results because the polarizations
of all three lasers (two along the z axis and one along the y axis)
are perpendicular to the internuclear axis permitting excitation
of Mx = ±3 states and because the molecular states with small
energy shifts have large overlaps with such states. Figure 7(a)
gives the resulting excitation strength I (R) integrated over
all orientations assuming an isotropic distribution of atom
pairs and convoluted with a Gaussian representing the effective
laser linewidth in the experiment (∼0.04n−3 corresponding to
∼8 MHz for n = 310). The excitation strength is normalized
to 1 in the limit of R → ∞, i.e., normalized to the excitation
strength for creation of an isolated Rydberg atom. The R

dependence of the normalized excitation probabilities for two
different values of n (n = 50 and 70) are found to agree
quite well with each other. This is expected since the pair
eigenstates are, as discussed above, approximately scaling
invariant. Additionally, the oscillator strengths for excitation of
a single atom from a low-lying state to high-n Rydberg states
scale as ∼n−3 [21], indicating that the pair excitation strength
also scales as ∼n−3. We define now the blockade radius RB as
the radius where the R-dependent excitation strength I (R) is
suppressed by a factor 2, I (R = RB) = 0.5 (indicated by the
dotted line in Fig. 7), which results in a scaled blockade radius
RB0 � 3 or RB � 3n7/3 a.u. corresponding to 0.1 mm for
n ∼ 300. For values of R � RB the residual excitation strength
is distributed over many energy-shifted pair states and the
total excitation strength I (R) decreases dramatically, falling
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by 80%–90%. In this limit, all pair eigenstates adiabatically
connected to the noninteracting |n,F ; n,F 〉 pair states are
shifted beyond the effective linewidth of the exciting laser.
As a result of the high density of states, the excitation of
multiple atoms is not completely blockaded within RB , but
rather is strongly suppressed. This finite excitation probability
within RB is mainly due to atom pairs aligned along the x

axis (Fig. 6). The energy diagram in the regime where the
density of states is high is sensitive to the maximum angular
momentum Lmax included in the calculations. However, the
evaluation of excitation strength involves a convolution with
a relatively large laser linewidth (∼0.04n−3) realized in the
experiment rendering fluctuations associated with the choice
of Lmax relatively small [Fig. 7(b)]. The excitation probability
averaged over R within the blockade radius is nearly the same
for all values of Lmax and the fluctuations in this probability
are estimated to be ∼10%. As will be shown later, this basis
size dependence does not significantly affect evaluation of the
Rydberg atom number and the Mandel Q parameter.

IV. ATOMIC MOTION AND BLOCKADE

In a hot atomic beam, the motion of the atoms has a
profound influence on the excitation dynamics, especially
when correlations between the atoms are introduced via the
van der Waals interaction. In the present experiment, atoms are
excited via two intermediate states to the target n � 310 1F3

Rydberg state. The excitation rate is typically very small
(∼2.8 × 10−4 ns−1) and the excitation duration (∼100–800 ns)
is shorter than the Rabi flopping period. Therefore, the
excitation process can be described by first-order perturbation
theory (i.e., Fermi’s golden rule) and characterized by the
rate γ0 for a single isolated atom. For n ∼ 300, the radiative
lifetimes of Rydberg states are much longer than the interaction
time and therefore can be neglected. Atoms experience, during
propagation through the laser focus, spatially varying laser
intensities and the spread in arrival times of the atoms in
the excitation volume is larger than typical inverse level
spacings. Multiple-atom coherences such as the formation of
superatoms and the associated enhancement of Rabi frequency
are therefore not expected to be important. Moreover, the
experimental data represent an ensemble average over a large
number of excitation pulses. Therefore, even in the limit of
noninteracting atoms, coherences in the excitation process
are unlikely to survive. Here we discuss first an analytic rate
equation model for a frozen gas and extend it to a hot atomic
beam before moving on to present Monte Carlo simulations for
the dynamics of excitation and blockade. To quantify blockade
effects and atomic correlations, two different mechanisms for
allowing excitation of multiple atoms are considered: the finite
pair excitation probability within the blockade radius and the
motion of atoms out of the excitation volume. These two
contributions can be distinguished by their different effects
on the Mandel Q parameter.

A. Frozen gas

As a point of reference and to assess the effect of atomic
motion in a hot beam, we first consider a gas of N atoms
in an excitation volume Vex and neglect their motion. When
the linear dimension V

1/3
ex of the volume is less than the

blockade radius V
1/3

ex � RB , excitation of a single Rydberg
atom would, for perfect blockade, completely suppress any
further Rydberg excitation within the volume. However, in
the case of partial blockade where there exists a small but
finite excitation rate within RB (see Fig. 7), the effects of
multiple-atom excitation must be included. For simplicity, we
assume for the moment that the suppressed excitation rate

0 is constant and independent of R within the blockade
radius. In the Monte Carlo simulations presented below these
approximations will be avoided. With these simplifications
the rate equations that govern the probability Pi(τ ) of finding
i Rydberg atoms in the volume Vex at time τ can be written as

d

dτ
P0(τ ) = −γP0(τ ),

d

dτ
P1(τ ) = γP0(τ ) − 
P1(τ ),

d

dτ
Pi(τ ) = 
[Pi−1(τ ) − Pi(τ )] (i > 1),

(12)

where γ = Nγ0 is the excitation rate for N atoms and

 = N
0 (�γ ) is the suppressed excitation rate. Time τ = 0
corresponds to the turn-on of the exciting laser pulse, i.e.,
P0(τ = 0) = 1 and Pi(τ = 0) = 0 for i > 0. Because γ0

is small, simultaneous excitation of multiple atoms is not
included in Eq. (12). For a frozen gas, the number of ground-
state atoms decreases as the number i of excitations increases.
Therefore, the effective rate 
 should depend on i and decrease
with decreasing number of remaining ground-state atoms.
However, for a hot beam with continuous replenishment of
ground-state atoms in the excitation volume as considered in
the following, this dependence can be neglected. We therefore
assume for simplicity that 
 is independent of i in Eq. (12)
both for the case of a frozen gas and for a beam.

The solution of the rate equations can be found analytically
and typical results are shown in Figs. 8(a) and 8(d). As a func-
tion of the scaled time τ0 = γ τ , the time evolution becomes
independent of γ (i.e., of the density or the temperature of the
atomic beam) and depends only on the parameter I = 
/γ .
The average number of Rydberg atoms [Figs. 8(b) and 8(e)]
follows as

〈NR(τ )〉 =
∑

i

iPi(τ ) = Iτ0 + T (τ0), (13)

where T (τ0) = G(1 − e−τ0 ) with G = 1 − I . In the short-time
limit, Eq. (13) reduces to the unblockaded limit 〈NR〉 →
γ τ = τ0. Indeed, the scaled time corresponds to the expected
number of Rydberg atoms in the absence of interaction. In the
long-time limit (τ0 > 2), P0(τ ) = e−γ τ → 0, meaning that at
least one atom is excited and 〈NR〉 → 
τ = Iτ0. The slope I

indicates the degree of blockade. The Mandel Q parameter is
a measure of the correlation in the excitation process and is
defined such that it is zero for uncorrelated excitations and −1
for a perfectly blockaded ensemble. The solution of the rate
equation [Eq. (12)] implies, for the Mandel Q parameter,

Q(τ ) =
〈
N2

R(τ )
〉 − 〈NR(τ )〉2

〈NR(τ )〉 − 1

= 2Ge−τ0 − T (τ0)
2 − T (τ0)

Iτ0 + T (τ0)
. (14)
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FIG. 8. (a) and (b) Solutions of the rate equations [Eq. (12)] for
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the average Rydberg number, and (c) and (f) the Mandel Q parameter.
The time axis is scaled by the excitation rate γ and the results are
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/γ = 0.15 and (d)–(f)

/γ = 0.3.

Initially, as seen in Figs. 8(c) and 8(f), for small τ , Q decreases
linearly

Q(τ ) → −(γ − 
)τ = −Gτ0, (15)

indicating the onset of correlated excitation and, eventually, of
blockade. The long-time limit of Eq. (14) would give

Q(τ ) → −G
2 − G


τ + G
= −G

2 − G

Iτ0 + G
, (16)

implying convergence towards zero. Once at least one atom is
excited [i.e., P0(τ ) → 0] and the probability of exciting three
or more atoms becomes non-negligible (τ0 > 2.5), subsequent
excitations would become uncorrelated and the Rydberg
number distribution Pi(τ ) becomes Poissonian. The latter,
however, is an artifact of constant I = 
/γ (i.e., independent
of internuclear separation R and of the number of Rydberg
atoms i). Indeed, as will be discussed below, use of a more
realistic I and the effect of atomic motion modify this behavior.

B. Propagating atoms in a hot beam

Atoms in a hot beam propagate with average velocity vT =√
2kBT /M (∼400 m/s in the current experiment), where kB

is the Boltzmann constant, T is the (oven) temperature, and M

is the mass of a strontium atom. If the width of the excitation
region in the direction of beam propagation isL (∼50 μm), the
time it takes for an atom to traverse this region is τL = L/vT ∼

120 ns (Fig. 2) and the time it takes for an atom to travel one
blockade radius is about twice as long τB = RB/vT ∼ 240 ns.
Rydberg atoms that have traveled well beyond the excitation
region can still contribute to blockading further excitation.
Accordingly, the effective excitation rate for the present beam
geometry (Fig. 2) is given by


beam = γP0 + 
(1 − P0), (17)

with P0 the probability of finding no Rydberg atoms inside
the blockade radius (but not necessarily inside the excitation
region). Assuming now for simplicity that all atoms in the
beam move along the x axis with constant speed vT and the
excitation region extends from x = 0 to L, the probability
�P0(x,t) of finding no Rydberg atom in the slice [x,x + dx]
after exposure to an excitation laser pulse with a duration t

obeys the differential equation

d

dt
�P0(x,t) = −γ0ρdx�P0(x,t), (18)

where ρ is the number of atoms per unit length and ρdx is
the number of atoms in this slice [see Eq. (12)]. In a hot
beam, the evolution of a given atom begins at the time t0
at which it enters the excitation volume at x = 0. Therefore,
the effective duration τ for which the atom is exposed to the
laser field depends on the position x, i.e., τ = t − t0 = x/vT .
(Only for a frozen gas is τ = t for all atoms.) The solution of
Eq. (18) is given by �P0(x,t) = e−γ0ρ(t−t0)dx . Consequently,
the probability Pin of finding no Rydberg atom within the
entire excitation volume can be estimated as

Pin =
L∏

x=0

�P0(x,t) = exp

(
−γ0ρ

∫ L

0
(x/vT )dx

)
= e−γ τL/2,

(19)

where γ = γ0N and N = ρL is the number of atoms in
the excitation volume. Extending this estimate to a slice of
the beam (L < x < L + �x) outside the excitation volume
but inside the blockade region yields Pout(�x) = e−γ0ρ�xτL .
For an atom at position x (0 < x < L) inside the excitation
volume, unblockaded excitation is observed when there is no
Rydberg atom in the interval [0,x + RB]. The correspond-
ing probability is given by P0(x) = PinPout(�x = x + RB −
L) = e−(x/L+b−1/2)γ τL , with b = RB/L. Averaged over the
entire excitation region, the probability of zero Rydberg atom
excitation is

〈P0〉 = 1

L

∫ L

0
P0(x)dx = 1

γ τL

e−bγ τL (eγ τL/2 − e−γ τL/2).

(20)

Using Eq. (20) in Eq. (17) yields the effective rate


beam = γ 〈P0〉 + 
(1 − 〈P0〉). (21)

Note that, similar to the frozen gas, both the effective probabil-
ity of zero Rydberg excitation 〈P0〉 and the effective excitation
rates 
beam become invariant under scaling τL0 = γ τL (τL0 is
the number of Rydberg excitations during the traversal time
of the excitation region in the absence of a blockade). When
the blockade region is larger than the excitation volume (i.e.,
b > 1) as in the present experimental setting, 〈P0〉 decreases
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monotonically with increasing γ τL. In the limit γ τL 
 1, at
least one Rydberg atom is found within the excitation region
(i.e., 〈P0〉 ∼ 0). Correspondingly, the excitation rate 
beam

approaches 
. The accumulated number of Rydberg atoms
〈NR〉 increases with the laser pulse duration t , leading to
〈NR〉 ∼ 
t . On the other hand, when γ τL < 1, there is no more
than one atom inside the excitation volume. Every time such a
Rydberg atom travels beyond the blockade radius, excitation
becomes unblockaded and the excitation rate becomes

〈NR〉 ∼ 
beamt, (22)

with 
beam > 
. Thus the effect of atomic motion becomes
observable through 〈NR〉 and is more prominent for small
γ τL, i.e., for a low-density beam and/or a short dwell time in
the excitation region.

The Mandel Q parameter provides another measure for the
effect of atomic motion. While the average number of Rydberg
atoms created is cumulative and keeps increasing linearly in the
long-time limit [Eq. (22)], the Mandel Q parameter saturates.
This is because, once the atom travels beyond the blockade
radius, the Rydberg number distribution outside the excitation
volume becomes independent of the position x. The conse-
quences for the Mandel Q parameter can be easily deduced
from the following consideration: When the same normalized
number distribution f (NR) is found in two partial volumes A

and B, the average number of Rydberg atoms is additive

〈NR〉 =
∑

NA
R ,NB

R

(
NA

R + NB
R

)
f

(
NA

R

)
f

(
NB

R

) = 2NR, (23)

where NR indicates the average in a partial volume. Since the
second moment behaves analogously,〈

N2
R

〉 =
∑

NA
R ,NB

R

(
NA

R + NB
R

)2
f

(
NA

R

)
f

(
NB

R

) = 2N2
R + 2NR

2
,

(24)
the Mandel Q parameter in the combined volume

Q =
〈
N2

R

〉 − 〈NR〉2

〈NR〉 − 1 = N2
R − NR

2

NR

− 1 (25)

is identical to that of a partial volume. This can be extended
to any number of partial volumes. Therefore, for t > τB

the Mandel Q parameter remains unchanged and saturates
at the value for t � τB . This differs markedly from the
behavior of a frozen gas for which Q converges towards
zero as t → ∞. While the frozen gas results are independent
of temperature in scaled time t0 = γ t , the temperature-
(or, equivalently, density-) dependent scaled saturation time
(τB)0 = γ τB = Nγ0τB reveals the temperature dependence
in the Mandel Q parameter. This effect of atomic motion is
expected to be seen irrespective of the value of γ τL.

C. Monte Carlo simulation

The excitation dynamics in a propagating atom beam can be
more rigorously analyzed using a Monte Carlo method where
the fluctuations in the number of ground-state atoms as well
as the velocity distributions of the atoms can be accurately
accounted for. As will be shown later, the method also
allows for the inclusion of a more realistic R-dependent and
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FIG. 9. (a) Calculated average number of Rydberg atoms created
and (b) the corresponding Mandel Q parameter. The length of the
excitation region is 50 μm. The excitation rate is set to γ0 = 2.8 ×
10−4 ns−1 and the numbers of atoms are 41 for T = 570 ◦C (black
lines) and 173 for T = 639 ◦C (red lines). The dashed lines are the
calculations for a frozen gas and a blockade radius of 100 μm, the
dash-dotted lines are for an atomic beam with a constant 
 = 0.15γ

within the same blockade radius, and the solid lines are for an atomic
beam but using the excitation rate I ( �R) calculated with the TAE
model (n = 50,Lmax = 8).

angle-dependent pair excitation probability (see Figs. 7 and 9).
Initially, the positions of Ntot atoms are randomly distributed in
the volume V of an elliptically shaped cylinder oriented along
the direction of propagation of the beam (Fig. 2). Here Ntot is
determined from the atomic density, which is derived from the
vapor pressure [25] at a given oven temperature. A collimated
atom beam is simulated by selecting, from a Maxwell-
Boltzmann distribution, a subensemble with momenta px

such that px/p > cos(θdiv/2), where θdiv represents the beam
divergence (FWHM). At high temperatures, the kinetic energy
of the atoms is much larger than the van der Waals interaction.
Therefore, this interaction has a negligible effect on the atomic
motion and the atoms are assumed to travel with constant
velocities. The cylinder is chosen to be sufficiently long as
to ensure that the number of atoms N inside the excitation
volume Vex stays nearly constant during the excitation period.
The excitation dynamics is simulated using discrete time steps
�t . During a single time step a ground-state atom within
the excitation volume 0 < x < L is excited with probability
γ0�t . Once a single atom is excited, the excitation probability
within a blockade radius is reduced to 
0�t . This procedure
is iterated for an ensemble of different initial random
distributions of the Ntot atoms in the excitation volume.

Figure 9 shows a comparison between simulations for a
frozen gas and an atomic beam with a constant suppressed
excitation rate 
. For simulating a frozen gas, the number
density of atoms is taken to be that in the beam, which is
determined by the oven temperature, but the velocity is set to
zero. Accordingly, at T = 570 ◦C, N ∼ 41 atoms are found
in the excitation volume, and for T = 639 ◦C, ∼173 atoms.
The excitation rate is γ0 = 2.8 × 10−4 ns−1 and the blockaded
rate is set to 
0 = 0.15γ0 (see Sec. III B). The blockade radius
is 100 μm, corresponding to RB = 3n7/3 for n � 300. The
time for an atom to traverse the excitation region is taken
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to be τL � 120–125 ns and an atom will travel a distance
corresponding to the blockade radius in a time τB = 240 ns. In
practice, the Monte Carlo simulation for a frozen gas (dashed
lines) reproduces the analytical prediction [Eq. (13)]. Here
〈NR〉 initially increases linearly, ∼γ t , and, as blockade sets
in, the growth is reduced to ∼
t [Fig. 9(a)]. The atomic beam
simulations (dash-dotted lines) agree well with the frozen gas
results for t < τB . However, beyond τB the excitation rate for
the atomic beam is enhanced when compared to the frozen
gas, i.e., 
beam � 
 [see Eq. (20)], as the Rydberg atoms
travel beyond the blockade radius. This enhancement is more
pronounced for the lower temperature because, at the higher
temperature and thus higher atomic density, another Rydberg
atom is more likely to be excited before a Rydberg atom travels
beyond RB . Here 〈P0〉 is estimated to be 0.09 for T = 570 ◦C
and 5 × 10−5 for T = 639 ◦C, implying that for the latter 
 �

beam and the results of the two simulations should approach
each other. The remaining difference seen for T = 639 ◦C
in Fig. 9(a), however, is due to the depletion in the number
of ground-state atoms in the frozen gas, which modifies the
excitation rate γ = Nγ0. The Mandel Q parameter [Fig. 9(b)]
also shows good agreement between the frozen gas (dashed
lines) and the atomic beam (dash-dotted lines) before it
saturates for the atom beam for times t � 200 ns, i.e., on the
order of τB , displaying the effect of atomic motion more clearly
than does 〈NR〉. The minimum value of Q is temperature
independent since a constant ratio 
/γ = 0.15 is used for the
simulations (see Fig. 8). Only for 639 ◦C is an increase of Q

seen after reaching the minimum, implying that the excitation
of three or more atoms within the interaction volume becomes
non-negligible [Fig. 8(a)]. However, for the lower temperature
at most two Rydberg atoms can be excited before one of them
travels out of the excitation volume.

D. Position-dependent pair-excitation strength

To obtain more realistic results, the excitation probability
I (R,θ,φ) calculated using the TAE model is introduced in the
Monte Carlo simulation and the sensitivity to the details of
the suppressed excitation rate within the blockade radius is
examined. Values of I ( �R) are plotted in Fig. 6 for selected
conditions. To compare the predictions with measured data
presented later, the Monte Carlo simulations employ an I ( �R)
evaluated using a much larger laser linewidth, ∼0.04n−3,
than the value used to plot Fig. 6. The residual excitation
rate of the ith atom within the blockade radius is evaluated
as 
0 = Icorr( �Ri)γ0. When there is only one Rydberg atom
(atom j ) already present, �Ri can be uniquely determined as
�Ri = �Rij , with �Rij defining the relative positions of atoms
i and j . As discussed above, for low temperatures at most
two Rydberg atoms can be found within the interaction
volume. However, for the highest temperature used in the
experiment (639 ◦C) there is a small probability of exciting
three (or more) atoms within the blockade radius. Since
the evaluation of the excitation strength for multiple-atom
eigenstates is very demanding, we approximate this by that for
pair eigenstates calculated with the TAE method. We note that
simultaneous absorption of multiple photons is not considered
in the Monte Carlo model and therefore the excitation strength
of, for example, N -atom eigenstates implies the probability
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FIG. 10. (a) Calculated average number of Rydberg atoms created
and (b) the corresponding Mandel Q parameter. The calculations
are for an atomic beam using the excitation rate I ( �R). Each line
corresponds to the excitation rate I ( �R) calculated using the TAE
model with a different basis size: n = 50 with Lmax = 7 (solid line),
Lmax = 8 (dash-dotted line), and Lmax = 9 (dashed line).

of exciting the N th atom when the other N − 1 atoms are
already excited. We evaluate an “average” position �Ri of the
already excited N − 1 Rydberg atoms and the suppressed rate
is evaluated using I ( �Ri) calculated for the pair eigenstates.
The average distance Ri is evaluated as a power mean, i.e.,

Ri =
⎛
⎝ ∑

j∈Ryd

R−λ
ij

⎞
⎠

−1/λ

, (26)

where the summation extends over N − 1 Rydberg atoms.
The polar angles θ and φ of �Ri are taken from those of
the nearest Rydberg atom. In the following simulations we
choose the power λ = 6 taken from the R dependence of
the van der Waals interaction. We have also tested other
values between λ = 3 and 6, but the results are found to
be insensitive to the value of λ. Whereas the inclusion of
the �R dependence of the excitation rate has little influence
for lower temperatures (Fig. 9), it has a significant influence
at higher temperatures since the pair excitation of atoms at
smaller separations becomes more accessible due to the higher
density of atoms. The average number of Rydberg atoms 〈NR〉
becomes smaller in the long-time limit when using I ( �R) than
when using a constant 
 = 0.15γ . This implies that the pair
eigenstates are excited below R0 < 2 for which I ( �R) < 0.15
(Fig. 7). Correspondingly, the Mandel Q parameter becomes
smaller [Fig. 9(b)] due to the stronger blockade effect.
The uncertainties in the excitation strength seen at small R

[Fig. 7(b)] do not substantially affect the behavior of 〈NR〉 and
Q (Fig. 10). This is because the average of I ( �R) over distance
R largely cancels basis-size-induced fluctuation effects.

V. COMPARISON BETWEEN EXPERIMENT
AND SIMULATION

Figure 11(a) shows the mean number of Rydberg atoms
〈NR〉 excited as a function of the scaled time t0 = γ t for a
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FIG. 11. (a) Mean number 〈NR〉 and (b) the Mandel Q value of
n ∼ 310 Rydberg atoms excited as a function of the duration of the
AOM drive pulse for the oven operating temperatures T indicated.
For comparison, the analytical predictions of the rate equations for a
frozen gas [Eq. (12)] with I = 
/γ = 0.15 for 〈NR〉 and Q are also
given. The pulse duration is scaled as t0 = γ t .

number of different oven operating temperatures, i.e., beam
densities, and a fixed 893-nm laser power of 1 W. (The
results presented in Figs. 11–13 are corrected for the detection
efficiency η; 〈NR〉 and Q both scale as 1/η.) Preliminary
measurements of the transmission characteristics of the AOM
showed that for drive pulse widths td < 40 ns the optical
output pulse width remained almost constant (at ∼40 ns)
but its amplitude decreased at a rate such that the energy
in the transmitted pulse remained proportional to td . For
values of td > 40 ns the optical output pulse width scales
with td . For comparing to experiment, the theoretical model
assumes a constant amplitude pulse with a duration t = td
and a uniform laser intensity over the (1/e2) width of the
laser beam. We have tested a more realistic distribution of
laser intensity in both space and time, but this did not lead
to any significant differences. This is because the degree of
blockade 
/γ = I ( �R) is independent of laser intensity and
consequently the time evolutions of 〈NR〉 and Q are affected
little. We note that the laser intensity does not significantly
affect the linewidth dominated by Doppler broadening and
therefore does not modify the degree of blockade.

First we compare the measured data with the analytical
solution for a frozen gas (Fig. 11). To minimize the effect
of atomic motion, only the measured data with pulse duration
t < 150 ns are used. The pulse duration is scaled by t0 = Nγ0t

with γ0 = 2.8 × 10−4 ns−1 and N is derived from the vapor
pressure of strontium. As predicted, 〈NR〉 and Q are nearly
independent of temperature when expressed as a function
of scaled time. At early times t0 < 1 (i.e., when at most
one Rydberg atom is expected in the excitation volume),
〈NR〉 scales as ∼t0, indicating that the excitation rate before
blockade sets in is given by γ = Nγ0 and is proportional
to the beam density. After blockade sets in for t0 > 2, the
analytical solution converging to 〈NR〉 ∼ (
/γ )t0 agrees well
with the measured data, confirming that the suppressed rate
is about 
 = 0.15γ . However, the measured Q values are
less than predicted by the frozen gas model, indicating that it
overestimates the effect of blockade.
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FIG. 12. (a) Mean number 〈NR〉 of n ∼ 310 Rydberg atoms
excited as a function of the duration of the AOM drive pulse for
the oven operating temperatures T indicated. The symbols are the
measured data and the lines are the Monte Carlo simulation results.
The corresponding Q values are presented in (b) for the measured
data and in (c) for the Monte Carlo results.

For more realistic estimates, 〈NR〉 and Q are calculated
using the Monte Carlo method [Fig. 12(a)]. The excitation
rate γ0 is taken from the measured value 2.8 × 10−4 ns−1

and the suppressed excitation rate from I ( �R) calculated with
the TAE model (Fig. 6). The average Rydberg number 〈NR〉
is well reproduced by the simulations even for t > 200 ns,
for which the effect of atomic motion becomes significant
[Fig. 9(a)]. The Mandel Q parameter [Figs. 12(b) and 12(c)],
on the other hand, is underestimated by 30% in the Monte
Carlo simulation. This discrepancy starts appearing even for
t0 = γ t < 2 (see Fig. 11), i.e., when the excitation of at
most two atoms is expected. The effect of blockade appears
much smaller in the measured Q values as opposed to 〈NR〉.
Indeed, 
 � 0.3γ would yield a minimum Q value of �−0.5.
Uncertainties in the oven temperature and in the excitation
volume do not strongly modify the ratio 
/γ and therefore
may not be the main reason for the present discrepancy. The
current calculations may underestimate 
 (Fig. 10). A more
accurate calculation including contributions beyond the Born-
Oppenheimer approximation and the effective line broadening
for short pulses may be necessary to explain this discrepancy.
However, the correction in 
 should be limited so that the good
agreement in 〈NR〉 is maintained. Another potential source
of the discrepancy might be uncertainties in the detection
efficiency η. Even allowing for some uncertainty in η, however,
no single value of η was found that leads to agreement in
both Q and 〈NR〉. For high temperatures 600 ◦C and 639 ◦C,
a small increase of Q is seen after reaching the minimum.
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FIG. 13. Mean number 〈NR〉 of n ∼ 310 and n ∼ 370 Rydberg
atoms excited under identical experimental conditions as a function
of AOM drive pulse width td (see the text). The corresponding Q

values are shown in the inset as a function of 〈NR〉.

This is the regime where the excitation of three or more
atoms becomes non-negligible. The approximation used for
multiple-atom excitation [Eq. (26)] is a perturbative treatment
and valid when only one Rydberg atom is nearby. However,
at higher temperatures, there is a non-negligible probability
of finding multiple Rydberg atoms in close proximity and the
perturbative treatment may break down. Since the measured
data display almost no increase in Q, this indicates that the
excitation of multiple atoms is suppressed more than predicted
by the theoretical model.

We have also verified experimentally the n scaling of partial
blockade by exciting n ∼ 310 and n ∼ 370 states under other-
wise identical experimental conditions (Fig. 13). As expected,
the two data sets display many of the same characteristics.
Moving to higher n reduces the Rydberg excitation rate
by a factor of ∼(310/370)3 � 0.6. In consequence, larger
laser pulse widths are required to create 〈NR〉 ∼ 1 Rydberg
atoms, suggesting that atomic motions will be more important.
However, this is offset by the fact that, for the same laser
linewidth, the blockade radius should be increased by a factor
∼(370/310)11/6 � 1.4, requiring that a Rydberg atom created
in the excitation volume must travel a larger distance before
the excitation of a further Rydberg atom can occur. The
asymptotic excitation rate 
beam [Eq. (20)] can be evaluated
as 4.6 × 10−3 ns−1 for n = 310 and, by scaling γ and RB , for
n = 370 can be estimated as 2.8 × 10−3 ns−1, in accord with
the measured data, which approach the long-time limit 
beamt .
For small values of 〈NR〉, i.e., for short laser pulses td � 100 ns,
the Mandel Q parameter is expected to be proportional to the
mean Rydberg number 〈NR〉, i.e.,

Q = −γ − 


γ
〈NR〉 (27)

[see Eqs. (13) and (15)]. Since both γ and 
 scale as n−3, this
relation is n-scaling invariant. Indeed, as shown by the inset in
Fig. 13, the measured Q values are nearly identical functions
of 〈NR〉. With increasing 〈NR〉, however, small differences
start to appear.

VI. CONCLUSION

The present work demonstrates that with careful control of
stray fields and laser polarizations, strong blockade effects can
be observed in a high-temperature, T ∼ 600 ◦C, atom beam
even when using very-high-n atoms with relatively high L

(in the present case, L = 3). While the direct calculation of
Rydberg-Rydberg interactions and of pair-excitation strengths
for very high-n (n 
 100) is challenging, scaling invariance
provides a useful theoretical tool to overcome this problem.
Rydberg-Rydberg interactions remove the degeneracy of pair
states involving high-L Rydberg atoms. At small internuclear
distances the oscillator strength is distributed over many
sublevels. Since for high n the laser linewidth becomes
effectively large (∼4% of the energy spacing between adjacent
n levels, n−3), the probability of excitation of an interacting
pair, while small, can be non-negligible. This suppressed,
but nonzero, pair excitation probability provides a means for
exciting multiple Rydberg atoms, which affects the correlation
of Rydberg excitation in the long-time limit. Concurrently, the
motion of atoms in a high-temperature beam reduces the effects
of blockade because Rydberg atoms, once created, may leave
the excitation volume. This motion, however, does not strongly
modify the correlation and the Mandel Q parameter is found
to eventually saturate.

A further extension of the present study of Rydberg block-
ade in a hot beam will involve multiple excitation volumes.
Estimating the probability of exciting a single Rydberg atom
in the excitation volume, the probability of exciting one,
and only one, Rydberg atom in each of two well-separated
Rydberg excitation volumes becomes sizable (∼0.6). This
might be further enhanced [14] by reducing the excitation
volume and/or by reducing its width along the x axis so as
to have fewer pairs of atoms aligned along the x axis (see
Fig. 6). Furthermore, improvements in detection efficiency
promise better discrimination against events in which fewer
than, or more than, two Rydberg atoms are created. Thus
blockade in separate excitation volumes promises creation
(and identification) of Rydberg atom pairs with well-defined
initial separations. This, coupled with manipulation of the
wave functions of the Rydberg pairs using tailored electric field
pulses [26], opens opportunities for detailed time-resolved
studies of Rydberg-Rydberg interactions.
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